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Under open-circuit condition, the current is not extracted and the photogenerated carriers in principle

disappear only by recombination. We study the open-circuit voltage VOC and transient photovoltage

under the effect of bulk recombination in a medium with energetic disorder by using the multiple

trapping (MT) model. The key parameter in the MT model is the dispersion parameter α given by

the ratio of thermal energy to the characteristic energy of trap states. We show that VOC depends

linearly on the logarithm of the light intensity and the slope depends on the α of the MT model. Under

the continuous irradiation of light, the photovoltage response to the weak perturbation by a pulsed

light obeys pseudo-first-order decay. The rate as a function of VOC is independent of the dispersion

parameter. However, it obeys the power law as a function of light intensity, and the exponent is given

by 1/(1 + α), which reduces to 1/2 in the absence of energetic disorder.

1. Introduction

One of the factors limiting the efficiency of organic photovoltaic cells is the charge re-

combination between strongly bound positive and negative charges.1) Organic photovoltaic

cells are composed of organic materials of low dielectric constants. As a result, positive and

negative charges are attracted by the long-range Coulombic interaction of low-dielectric ma-

terials. The efficiency of organic photovoltaic cells is also closely related to structural disorder

inherent in amorphous dielectric materials.2) The commonly used bulk heterojunction struc-

ture contains microdomains of disordered phases as it is difficult to make a perfectly ordered

blend of two-phase systems. The structural disorder in dielectric materials creates the dis-

tribution of electrostatic energy at charge trap sites, which is characterized by the trapping

energy distribution. In this study, we examine the open-circuit voltage (VOC ) under the bulk

recombination incorporating charge trap states with the trapping energy distribution.

The kinetics of charge recombination incorporating charge trap states with the trapping

energy distribution was investigated by simulating a thermally activated hopping model where

charge recombination is limited by the random walk of charges towards the counter charges; the

random walk is mediated by trapping and detrapping from a limited number of deep traps.3, 4)

The model differs from the continuous time random walk model; it prevents the multiple
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occupancy of sites and requires intensive numerical simulations.3, 4) A simplified version of

the model, amenable to analytical treatment, was studied to elucidate the kinetics of charge

recombination processes.5–7) The model was based on the multiple trapping (MT) model,8–11)

where trapping and detrapping from a limited number of deep traps were fully taken into

account but the spacial distribution of carriers was not taken into account.5–7) According to

the random walk simulation or the MT model, the decay of the total density of charges after

they were generated by a short pulse of the excitation light was slower than that predicted

using an ordinary bimolecular reaction model.3–7) In the MT model, the decelerated decay

of the total density of charges reflects the decrease in detrapping rate as the distribution of

charges among trap states shifts toward deeper trap levels inside the band gap.5, 7) A similar

feature was also revealed by other approaches.12, 13) Recently, several groups have observed

the decelerated decay of carriers in bulk heterojunction composites.14–23) The results can be

interpreted using the MT model.7)

The MT model can also be applied to the study of the steady state carrier distribution

among trap sites with different trapping energies. The carrier distribution can be changed by

changing the intensity of continuous light, and the detrapping rates are changed accordingly.

By using the MT model, the variation in detrapping rates by changing the light intensity can

be fully taken into account, and we have shown theoretically that the total density of carriers

depends on the light intensity, as observed in the experiments.24)

If the total density of carriers is changed in steady state experiments by changing the

light intensity, it changes the distribution of carriers among trap sites with different trapping

energies. Under open-circuit condition, the current is not extracted and the photogenerated

carriers in principle disappear only by recombination. When recombination is in equilibrium

with the generation of charge pairs, VOC is given by the difference between the quasi-Fermi

energy of a hole and that of an electron both measured from the same level.25, 26) This affects

VOC. In the present work, we study the dependence of VOC on light intensity using the MT

model.

Recently, the transient decay of photovoltage has been measured.27, 28) The transient pho-

tovoltaic decay was measured by applying a low intensity of pulsed light under the irradiation

of strong continuous light. Pseudo-first-order decay has been typically observed. In this work,

we show that the decay rate as a function of continuous light intensity is affected by the

trapping energy distribution, but that as a function of VOC is insensitive to the exponential

trapping energy distribution . To corroborate our theory, we also calculate the decay of VOC

after the continuous light is completely turned off.

For simplicity, we assume that the kinetic parameters of electrons and holes are identical.

Previously, we assumed that the detrapping frequencies of holes and electrons are very dif-

ferent.7, 24) When both electrons and holes are equally mobile among trap sites obeying the
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Fig. 1. Schematic representation of E and E′ coordinates of trap states. The corresponding dimen-

sionless energies are denoted by ǫ = E/(kBT ) and ǫ′ = E′/(kBT ), respectively.

same trapping energy distribution, the former approach is relevant in the study of VOC.

In Sect. 2, VOC is formulated. In Sect. 3, VOC in the steady state is calculated using

the MT model when the kinetic parameters of electrons and holes are the same. In Sect. 4,

the transient kinetics is studied by using the MT model. The last section is devoted to the

conclusion.

2. Open-Circuit Voltage

The distribution of holes among trap states with different trapping energies can be char-

acterized by the quasi-Fermi energy. We define the quasi-Fermi energy of a hole, EF , from the

highest occupied molecular orbital (HOMO) level of the donor in the upward direction (see

Fig. 1). The open-circuit voltage is given by the difference between the quasi-Fermi energy of

a hole and that of an electron both measured from the same level, for example, the HOMO

level of the donor is,25, 26)

eVOC = E
(e)
F − EF , (1)

where E
(e)
F is the quasi-Fermi level of an electron measured from the HOMO level of the donor.

The quasi-Fermi energy of an electron, E′

F , is measured from the lowest unoccupied molec-

ular orbital (LUMO) level of the acceptor in the downward direction (see Fig. 1 for the energy

coordinates). We consider the case when the kinetic parameters of electrons and holes are the

same. We also assume that the trapping energy distributions of electrons and holes are the

same. In this case, the quasi-Fermi energy of an electron measured from the HOMO level of

the donor in the upward direction is given by

E
(e)
F = acceptor LUMO level − donor HOMO level − EF , (2)

where EF = E′

F is used. Equation (1) can be expressed using Eq. (2) as

eVOC = acceptor LUMO level − donor HOMO level − 2EF . (3)
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3. Open-Circuit Voltage in Steady State

In the steady state, the quasi-Fermi energy depends on the light intensity according to the

distribution of holes among trap states with different trapping energies changed by varying

the intensity of continuous light. This implies that the open-circuit voltage estimated from

the quasi-Fermi energy is affected by the light intensity.

By light irradiation, excitons are generated. The excitons at the interface between the

donor and acceptor phases can be dissociated into a hole and an electron. The charge gener-

ation rate G is proportional to the light intensity I,

G = kgI, (4)

where kg is the proportional coefficient. In the MT model, both holes and electrons are trapped

in the trap states. By assuming that the number density of trap sites for electrons is the same

as that for holes, the number density of trap sites can be denoted by N for both electrons and

holes. The total number density of holes, n, is the same as that of electrons since charges are

generated and recombine with pairs. We introduce the trapping energy E of a hole measured

relative to the HOMO of the donor (see Fig. 1). The detrapping rate constant is given by

kd(E) = νd exp

(

−E

kBT

)

, (5)

where νd is the detrapping frequency, kB the Boltzmann constant, and T the temperature.

The trapping energy distribution in organic materials including components of bulk-

heterojunction solar cells can be represented by an exponential distribution.29–34) The ex-

ponential distribution of trapping energies, g(E), can be represented by

g(E) =
1

E0
exp

(

−
E

E0

)

, (6)

where E0 is a parameter indicating the characteristic trapping energy.

By thermal excitation, holes can be detrapped to the free state. The holes in the free

state can either be trapped by vacant trap sites at the rate kt or recombine with trapped

electrons at the rate kr. For simplicity, we assume that the kinetic parameters of electrons are

the same as those of holes and that the trapping energy distribution of electrons obeys the

same exponential form. Therefore, we use the same notations for kinetic parameters and E0

for electrons.

νd will be used to normalize rates and dimensionless energy will be introduced using

ǫ = E/kBT . In the case when we need to distinguish the ǫ of electrons from that of holes, we

denote it by ǫ′ (see also Fig. 1). ǫ′ is measured from the LUMO level of the acceptor in the

downward direction. We denote the number density of holes trapped at trap sites with the

trapping energy ǫ by f(ǫ). The notation f(ǫ) will also be used for electrons since the kinetic

parameters of electrons are the same as those of holes.
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In the dimensionless unit, the trapping energy distribution is expressed as

g(ǫ) = α exp(−αǫ). (7)

α = kBT/E0 is a key quantity in the MT model and is called the dispersion parameter. The

dispersion parameter is the ratio of thermal energy to the characteristic energy of trap states.

When thermal energy is lower than the typical trapping energy of trap states, α is smaller

than unity. When α is small, detrapping assisted by thermal energy is suppressed.

The holes initially produced in the free state can be trapped into a trap state with the

trapping energy ǫ with the probability proportional to kt multiplied by the number density

of the vacant trap sites for holes given by Ng(ǫ) − f(ǫ). The probability that a hole in the

free state will recombine with a trapped electron is proportional to the recombination rate

multiplied by the total number density of electrons given by

n =

∫

∞

0
dǫf(ǫ). (8)

The probability that a hole in the free state will be trapped into a site with the trapping

energy ǫ becomes7, 24)

kt[Ng(ǫ) − f(ǫ)]

ktN + (kr − kt)n
, (9)

where N − n =
∫

∞

0 dǫ[Ng(ǫ) − f(ǫ)] is used. This factor is multiplied by the hole generation

rate in the free state, G, and the number density of holes detrapped into the free state from

all traps per unit time,
∫

∞

0 e−ǫf(ǫ)dǫ, to obtain the growth rate of holes with the trapping

energy ǫ,
(

G+

∫

∞

0
e−ǫf(ǫ)dǫ

)

kt [Ng(ǫ) − f(ǫ)]

kt(N − n) + krn
. (10)

Electrons produced in the free state can recombine with holes and the probability per unit

time is given by

krf(ǫ)

ktN + (kr − kt)n
. (11)

This factor is multiplied by the electron generation rate in the free state, G, and the number

density of electrons detrapped into the free state from all traps per unit time,
∫

∞

0 e−ǫf(ǫ)dǫ, to

obtain the annihilation rate of holes with the trapping energy ǫ attributable to recombination,
(

G+

∫

∞

0
e−ǫf(ǫ)dǫ

)

krf(ǫ)

kt(N − n) + krn
. (12)

In the steady state, holes with the trapping energy ǫ generated by trapping should be balanced

with those annihilated by recombination and detrapping,

0 =

(

G+

∫

∞

0
e−ǫf(ǫ)dǫ

)

kt [Ng(ǫ)− f(ǫ)]− krf(ǫ)

kt(N − n) + krn
− e−ǫf(ǫ), (13)

where e−ǫf(ǫ) is the detrapping rate of a hole from a trap state with the trapping energy ǫ.

As already stated, all the rates including e−ǫf(ǫ) are normalized by νd.
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By integrating Eq. (13) over ǫ, we obtain

G =
2krn

(

G+
∫

∞

0 e−ǫf(ǫ)dǫ
)

kt(N − n) + krn
. (14)

Equation (13) can be rewritten by using Eq. (14) as

f(ǫ) =

(

kt
kt + kr

)

Ng(ǫ)

1 + exp [− (ǫ− ǫF )]
, (15)

where ǫF is given by

ǫF = ln

(

N

G

2kr
kt + kr

ρ

)

, (16)

and ρ represents the fraction of trap sites occupied by holes

ρ = n/N. (17)

Equation (15) represents the Fermi-Dirac distribution with the quasi-Fermi energy given by

ǫF . The quasi-Fermi energy is related to EF in Eq. (1) by ǫF = EF /kBT . By introducing Eq.

(15) into Eq. (8), we obtain, using Eqs. (17) and (7)

ρ =
kt

kt + kr

∫

∞

0
dǫ

g(ǫ)

1 + exp [− (ǫ− ǫF )]
. (18)

By expanding the integrand in terms of exp (ǫF ), Eq. (18) can be rewritten as

ρ =
kt

kt + kr

∞
∑

j=0

(−1)j exp (jǫF ) ĝ(j), (19)

where ĝ(j) denotes the Laplace transform of g(ǫ), ĝ(j) =
∫

∞

0 dǫ exp(−jǫ)g(ǫ). We note ĝ(0) = 1

from the normalization condition. We obtain ĝ(j) = α/(j + α) for the exponential trapping

energy distribution. By using this equation, Eq. (19) can be expressed as

ρ =
kt

kt + kr
2F1 (1, α, 1 + α,− exp (ǫF )) , (20)

where 2F1 (1, α, 1 + α,−x) is the hypergeometric function.35)

3.1 Partly trap filled regime

We consider the case exp (ǫF ) ≫ 1. The condition is equivalent to

2ktkr

(kt + kr)
2

N

G
≫ 1. (21)

When this condition is satisfied, by utilizing the asymptotic expansion of

2F1 (1, α, 1 + α,−x),35) we obtain

ρ ≃

(

πα

sin(πα)

kt
kt + kr

)1/(α+1) (kt + kr
2kr

G

N

)α/(α+1)

. (22)

Equation (22) shows that the number density of holes obeys the power law dependence on

light intensity. By introducing Eq. (22) into Eq. (16), the quasi-Fermi energy of a hole given

6/15



Jpn. J. Appl. Phys. Regular Paper

by Eq. (16) is expressed as

ǫF =
1

α+ 1

[

ln
( πα

sinπα

)

+ ln

(

2ktkr
(kt + kr)2

)

− ln(G/N)

]

. (23)

Essentially the same equation as Eq. (22) has been obtained by assuming that the detrap-

ping frequencies of holes and electrons are very different.24) Here, we show that power law

dependence of hole density on light intensity is given by the same exponent even when the

detrapping frequencies of holes and electrons are the same.

By substituting Eq. (23) into Eq. (3) and considering ǫF = EF /kBT , VOC is obtained as

VOC = c2 +

(

2

α+ 1

)

kBT

e
ln I, (24)

where c2 is a constant independent of light intensity. The slope of VOC against ln I could be

in the range between kBT/e and 2kBT/e in this case. A slope larger than kBT/e has recently

been reported for bulk heterojunction solar cells, where charge transport is trap-limited.36–38)

Recently, the relations given by Eq. (24) have also been found by numerical simulation.39)

In the simulation, the drift-diffusion equation was solved together with Poisson’s equation,

and the carrier density in the trap states, ρt, was approximated as ρt ∼ exp
(

−E′

f/E0

)

in

terms of the quasi-electrochemical potential E′

f determined self-consistently. The results were

interpreted using ρt given above with the spatially homogeneous E′

f .
39, 40) Here, we calculate

ρ and VOC analytically without assuming their forms.

3.2 Completely trap filled regime

Let us consider the limit exp (ǫF ) ≪ 1 that is equivalent to

2ktkr

(kt + kr)
2

N

G
≪ 1. (25)

This condition is satisfied at a high light intensity leading to the high carrier generation rate

G. Under this condition, we obtain from Eq. (19)

ρ ≃

(

kt + kr
kt

+
2kr ĝ(1)

kt + kr

N

G

)

−1

. (26)

In this limit, the number density saturates as the generation rate G increases. The fraction ρ of

trap sites occupied by carriers saturates when the light intensity is high. The saturation results

from the trap filling of the deep trap levels inside the band gap up to the shallow trap levels.

Note that Eq. (26) is derived without assuming any form of trapping energy distribution.

ĝ(1) = α/(1 + α) is obtained for the exponential trapping energy distribution. By using Eq.

(26), Eq. (16) can be expressed as

exp (ǫF ) ≃

[

ĝ(1) +
(kt + kr)

2

2ktkr

G

N

]−1

≃
2ktkr

(kt + kr)2
N

G
, (27)
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where Eq. (25) and 1 > ĝ(1) are used. As a result, ǫF is obtained as

ǫF ≃ ln

(

2ktkr
(kt + kr)2

)

− ln(G/N). (28)

By substituting Eq. (28) with Eq. (4) in Eq. (3), VOC is obtained using ǫF = EF /kBT as a

linear function of the logarithm of light intensity, I,

VOC = c1 + 2(kBT/e) ln I. (29)

Note that when the light intensity is high, this relation is derived without assuming any

specific forms of g(ǫ). The slope of VOC vs ln I is given by 2kBT/e regardless of the form of

g(ǫ) as a result of the trap filling effect. Equation (29) is the same as that known for a single

trap state both for a hole and an electron.38, 41, 42) When the light intensity is high, shallow

trap levels close to the conduction band are also occupied. Charges occupying in shallow trap

states are easily detrapped to the conduction band; thus, they behave similarly to quasifree

charges. Accordingly, ρ saturates when the light intensity is high. The trap filling effect is

important when the light intensity is high and the number of trap states is small.

4. Transient Photovoltage Decay

4.1 Under continuous light irradiation

Recently, the transient decay of photovoltage induced by a small perturbative light pulse

has been measured under open-circuit condition and continuous light irradiation. By pulsed

irradiation, the charge density is increased from that generated by continuous light irradiation.

Under the condition that a sufficiently small number of charges is generated by a light pulse

compared with that generated by continuous light, the pseudo-first-order decay of the per-

turbed density can be obtained. In this section, we study the decay rate as a function of light

intensity and the effect of the exponential trapping energy distribution on this relationship.

The transient photovoltage is obtained using Eq. (3) with the time-dependent quasi-Fermi

energy determined from the perturbed charge density.

After light pulse irradiation at time 0, the carriers decay to the steady state, Eq. (15),

with the quasi-Fermi energy given by Eq. (16). The quasi-Fermi energy is expressed using the

charge generation rate G under the continuous light irradiation. The equation describing the

transient decay of carriers is obtained by generalizing Eq. (13) to include the time dependence

as

∂f(ǫ, τ)

∂τ
=

(

G+

∫

∞

0
e−ǫf(ǫ, τ)dǫ

)

kt [Ng(ǫ)− f(ǫ, τ)]− krf(ǫ, τ)

kt(N − n) + krn
− e−ǫf(ǫ, τ). (30)

Following Ref. 7, we integrate Eq. (30) over ǫ and obtain

∂

∂τ
ρ(τ) =

kt − (kr + kt)ρ(τ)

kt + (kr − kt)ρ(τ)

G

N
−

2kr[ρ(τ)]
2Φ(τ)

kt + (kr − kt)ρ(τ)
, (31)
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where

Φ(τ) =

∫

∞

0
dǫ exp(−ǫ)f(ǫ, τ)/n(τ). (32)

One can calculate the decay kinetics of holes by solving Eqs. (31) and (32).

We consider the case in which the recombination rate constant is much smaller than the

trapping rate constant. In organic solar cells, recombination should be suppressed and this

case is practically important. If the intrinsic recombination rate constant kr is much smaller

than the trapping rate constant kt, the effect of recombination on the distribution of holes

among trap sites with different trapping energies is small. The distribution f(ǫ, τ) is well

approximated by a Fermi distribution with a quasi-Fermi energy ǫF (ρ), which depends on the

fraction of trap sites occupied by holes, ρ(τ),

f(ǫ, τ) =
Ng(ǫ)

exp {−[ǫ− ǫF (ρ(τ))]} + 1
. (33)

By using the above equation, the factor
∫

∞

0 exp(−ǫ)f(ǫ, τ)dǫ in Eq. (32) is expressed as7)

∫

∞

0
dǫ exp (−ǫ) f(ǫ, τ)/N = exp[−ǫF (ρ(τ))] (1− ρ(τ)) . (34)

By substituting the above equation, Eq. (31) becomes

d

dτ
ρ(τ) =

kt − (kr + kt)ρ(τ)

kt + (kr − kt)ρ(τ)

G

N
− 2kr exp[−ǫF (ρ(τ))]

ρ(τ)(1− ρ(τ))

kt(1− ρ(τ)) + krρ(τ)
. (35)

If kr is much smaller than kt and if 1 − ρ is not smaller than ρ, the above equation is

approximated as

d

dτ
ρ(τ) ≈ (G/N)− k[ρ(τ)]ρ(τ), (36)

where the apparent rate constant k[ρ] is given by

k[ρ] = 2(kr/kt) exp[−ǫF (ρ)]. (37)

The apparent rate constant k[ρ] depends on the fraction of trap sites occupied by holes

through the Fermi energy. The relationship between the quasi-Fermi energy and the fraction

of trap sites occupied by holes is given by
∫

∞

0
dǫ

g(ǫ)

exp[−(ǫ− ǫF (ρ))] + 1
= ρ. (38)

As in Eqs. (20) and (22), the left-hand side of Eq. (38) can be expressed in terms of the

hypergeometric function and can be approximated as

πα

sin(πα)
exp[−αǫF (ρ)] = ρ, (39)

from which we obtain

ǫF (ρ) = −
1

α
ln

(

ρ
sin(πα)

πα

)

. (40)

9/15
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The substitution of the above equation in Eq. (37) yields

k[ρ] = 2(kr/kt)

(

ρ
sin(πα)

πα

)1/α

. (41)

According to Eq. (41), the apparent rate constant is proportional to the 1/α-th power of the

fraction of trap sites occupied by holes. The power law dependence with the unique exponent

arises because the detrapping rate depends on the quasi-Fermi energy which in turn changes

with the fraction of trap sites occupied by holes.

We consider a small perturbation δρ from ρ0 under continuous light irradiation.

ρ(τ) = δρ(τ) + ρ0, (42)

where ρ0 is the steady state charge density obtained in the previous section, Eq. (22). When

δρ ≪ ρ0, the solution of Eq. (36) with Eq. (41) is obtained as

δρ(τ) = δρ(0) exp (−kPV τ) , (43)

where the pseudo-first-order rate constant is

kPV =
α+ 1

α

(

2kr
kt

)α/(α+1) (sin(πα)

πα

)1/(α+1) (G

N

)1/(α+1)

. (44)

By using Eq. (40), the quasi-Fermi energy as a function of time becomes

ǫF = −
1

α

{

ln

(

ρ0
sin(πα)

πα

)

+ ln

(

1 +
δρ(τ)

ρ0

)}

,

≃ −cF −
1

α

δρ(0)

ρ0
exp (−kPV τ) , (45)

where cF is a constant independent of time. By combining Eqs. (45) and (3), we obtain the

following using ǫF = EF /kBT :

VOC(τ) = c0 +
2

α

(

kBT

e

)

δρ(0)

ρ0
exp (−kPV τ) (46)

where c0 is a constant independent of time. The transient photovoltage follows an exponential

decay and the rate is given by Eq. (44).

When the charge generation rate G is proportional to the light intensity I, the decay rate

of transient photovoltage is expressed as

ln kPV ∼ cI + [1/(α + 1)] ln I, (47)

where cI is a constant independent of light intensity. The decay rate as a function of light

intensity depends on the dispersion parameter. By using Eq. (24), Eq. (47) can be rewritten

as

ln kPV ∼ cV + [e/(2kBT )]VOC, (48)

where cV is a constant independent of light intensity. The decay rate as a function of VOC

is independent of the dispersion parameter in sharp contrast to the expression of the light

10/15
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intensity dependence.

4.2 Under the dark

Before closing this section, we consider the opposite limit which is the decay of the fraction

of trap sites occupied by holes in the dark. The solution of Eq. (36) with Eq. (41) is obtained

as7)

ρ =
ρ0

[1 + (1/α)[ρ0 sin(πα)/(πα)]1/α(2kr/kt)τ ]α
. (49)

For long times, ρ(τ) is further approximated as

ρ ≃
πα

sin(πα)

(

αkt
2kr

)α

τ−α. (50)

The recombination kinetics in this case exhibits dispersive kinetics. Essentially the same equa-

tions as Eqs. (49) and (50) have been obtained by assuming that the detrapping frequencies

of holes and electrons are different.7) Here, we show that the power law dependence of hole

density on time is given by the same exponent even when the detrapping frequencies of holes

and electrons are the same.

Finally, we consider the decay of VOC in the dark. By combining Eqs. (40) and (3), we

obtain the following using ǫF = EF /kBT :

VOC(τ) = c3 − 2 ln

[

1 +
1

α

(

ρ0
sin(πα)

πα

)1/α 2kr
kt

τ

]

(51)

≃ c4 − 2 ln (τ) , (52)

where c3 and c4 are constants independent of time. Equation (49) is introduced to obtain

the first equality and Eq. (50) is introduced to obtain the second equality. The decay of the

open-circuit voltage is not affected by the dispersion parameter unlike the charge density. In

this sense, the kinetic measurement of VOC in the dark is not useful for extracting the trapping

energy distribution of trap states at least for the exponential trapping energy distribution.

5. Conclusions

The MT model is a powerful theoretical model used to investigate analytically bulk recom-

bination between electrons and holes in semiconductors that possess energetic disorder. The

key parameter in the MT model is the dispersion parameter α given by the ratio of thermal

energy to the characteristic energy of trap states. When α is small, detrapping supported by

thermal energy is suppressed.

We have studied the MT model in the case when kinetic parameters of holes and electrons

are the same. Previously, the MT model was formulated in the case when the detrapping

frequencies of holes and electrons are different.7, 24) In our previous work, the power law

dependence of carrier density on excitation light intensity was obtained and the exponent was

related to the dispersion parameter of carriers with a high detrapping frequency.24) In this
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work, the exponent is given by the same function using the dispersion parameter α when the

detrapping frequencies of holes and electrons are the same. In the case of transient kinetics, the

asymptotic decay of carriers is given by the power law as a function of time, and the exponent

as a function of the dispersion parameter is again the same as that obtained by assuming that

the detrapping frequencies of holes and electrons are different.7) We may conclude that the

exponents of power law as functions of light intensity and time are not affected by the ratio

of the detrapping frequency of holes to that of electrons. The exponents are given in terms of

the dispersion parameter of carriers with a high detrapping frequency if they are different.

By using the MT model, we show that the open-circuit voltage VOC depends linearly on

the logarithm of light intensity and that the slope is in the range between kBT/e and 2kBT/e

depending on the dispersion parameter.

Under continuous light irradiation, the photovoltage response to the weak perturbation

by a light pulse obeys pseudo-first-order decay. The logarithm of the rate as a function of VOC

has a slope given by e/(2kBT ), which is independent of the dispersion parameter. At room

temperature, the slope is 19 V−1 when VOC is expressed by voltage. The measured slope of

16 V−1 is 20% lower than the above value.27) The slight decrease in the slope may partly be

attributed to the temperature larger than 300 K.

Although the decay rate as a function of VOC is independent of the dispersion parameter,

the decay rate as a function of the intensity of continuous light depends on the dispersion

parameter. The decay rate as a function of light intensity obeys the power law and the expo-

nent is given by 1/(1 + α). By combining the steady state result of VOC as a function of light

intensity and the result obtained by the kinetic measurement, the dispersion parameter can

be determined consistently. By further changing the temperature, we can study the linearity

of the dispersion parameter as a function of temperature predicted by using the exponential

trapping energy distribution. If the linearity holds, the characteristic trapping energy E0 can

be estimated from the slope of the dispersion parameter against temperature. Such analysis

has been performed using charge densities in bulk heterojunction photovoltaic composites

measured by light-induced electron spin resonance (LESR) techniques.24)

In the absence of the deep trap states expressed by the exponential trapping energy

distribution, the rate of photovoltage decay as a function of light intensity obeys the power law

with the exponent 1/2. In this case, the exponent is independent of temperature. The change

in the photovoltaic decay under continuous light irradiation with temperature indicates the

presence of trap states with the distribution of trapping energies.

In an experiment, the application of a weak light pulse gives rise to the multiexponential

decay of photovoltage under the continuous irradiation of strong light.28) The reason for this

is not clear but the multiexponential decay could be obtained in the MT model if there are

separate regions described by independent trapping, detrapping, and recombination processes
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with different trapping energy distributions. In this case, the photovoltage decay can be de-

scribed by the weighted sum of the exponential decay with the rate given by Eq. (47), where α

is the dispersion parameter of each region. The weights could be independent of light intensity

and temperature.
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