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The Ramachandran plot is important to structural biology as it describes a peptide

backbone in the context of its dominant degrees of freedom – the backbone dihedral

angles φ and ψ (Ramachandran et al., 1963). Since its introduction, the Ramachandran plot

has been a crucial tool to characterize protein backbone features. However, the

conformation or twist of a backbone as a function of φ and ψ has not been completely

described for both cis and trans backbones. Additionally, little intuitive understanding is

available about a peptide’s conformation simply from knowing the φ and ψ values of a

peptide (e.g., is the regular peptide defined by φ = ψ = −100◦ left-handed or right-

handed?). This report provides a new metric for backbone handedness (h) based on

interpreting a peptide backbone as a helix with axial displacement d and angular

displacement θ, both of which are derived from a peptide backbone’s internal coordinates,

especially dihedral angles φ, ψ and ω. In particular, h equals sin(θ)d/|d|, with range [−1, 1]

and negative (or positive) values indicating left(or right)-handedness. The metric h is used

to characterize the handedness of every region of the Ramachandran plot for both cis (ω =

0◦) and trans (ω = 180◦) backbones, which provides the first exhaustive survey of twist

handedness in Ramachandran (φ , ψ) space. These maps fill in the ‘dead space’ within the

Ramachandran plot, which are regions that are not commonly accessed by structured

proteins, but which may be accessible to intrinsically disordered proteins, short peptide

fragments, and protein mimics such as peptoids. Finally, building on the work of Zacharias

and Knapp (2013), this report presents a new plot based on d and θ that serves as a

universal and intuitive alternative to the Ramachandran plot. The universality arises from

the fact that the co-inhabitants of such a plot include every possible peptide backbone

including cis and trans backbones. The intuitiveness arises from the fact that d and θ

provide, at a glance, numerous aspects of the backbone including compactness,

handedness, and planarity.
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ABSTRACT8

The Ramachandran plot is important to structural biology as it describes a peptide backbone in the

context of its dominant degrees of freedom – the backbone dihedral angles φ and ψ (Ramachandran

et al., 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein

backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not

been completely described for both cis and trans backbones. Additionally, little intuitive understanding

is available about a peptide’s conformation simply from knowing the φ and ψ values of a peptide (e.g.,

is the regular peptide defined by φ = ψ = −100◦ left-handed or right-handed?). This report provides

a new metric for backbone handedness (h) based on interpreting a peptide backbone as a helix with

axial displacement d and angular displacement θ , both of which are derived from a peptide backbone’s

internal coordinates, especially dihedral angles φ , ψ and ω . In particular, h equals sin(θ)d/|d|, with range

[−1,1] and negative (or positive) values indicating left(or right)-handedness. The metric h is used to

characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0◦) and trans

(ω = 180◦) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran

(φ ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions

that are not commonly accessed by structured proteins, but which may be accessible to intrinsically

disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on

the work of Zacharias and Knapp (2013), this report presents a new plot based on d and θ that serves

as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact

that the co-inhabitants of such a plot include every possible peptide backbone including cis and trans

backbones. The intuitiveness arises from the fact that d and θ provide, at a glance, numerous aspects of

the backbone including compactness, handedness, and planarity.
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INTRODUCTION30

The backbone of a protein (Fig. 1a) can twist and turn into numerous conformations (folds), in part31

due to the amino acid sequence that the protein displays. Understanding how a backbone twists is of32

great importance to the field of biochemistry, since understanding the structure of a protein goes a long33

way towards understanding how a protein functions (Alberts et al., 2002; Berg et al., 2010). While the34

conformation of a peptide backbone is dependent on a number of parameters (bond lengths, bond angles,35

and dihedral angles), Ramachandran et al. (1963) recognized that the twist of a peptide backbone can be36

described to a great degree by the dihedral angles φ and ψ (Fig. 1a).37

Today, two-dimensional (φ ,ψ) plots are called Ramachandran plots (or ‘maps’), and are introduced in38

undergraduate biology textbooks as a guide for understanding a peptide backbone’s general conformational39

state or ‘twistedness’ at a glance (Bragg et al., 1950; Pauling and Corey, 1951b; Pauling et al., 1951;40

Linderstrøm-Lang, 1952; Laskowski et al., 1993; Chothia et al., 1997; Hooft et al., 1997; Cooper and41

Hausman, 2013; Alberts et al., 2002; Laskowski, 2003; Ho et al., 2003; Eisenberg, 2003; Berg et al.,42

2010; Mannige et al., 2016). The Ramachandran plot is especially useful because (stable) proteins are43

hierarchical in structure (Linderstrøm-Lang, 1952): the final (tertiary) conformation of a structured protein44

is composed of discrete secondary structures – regular structures – that interact with each other and45

which are strung together by loops that are less regular (Alberts et al., 2002; Berg et al., 2010). Each46
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Figure 1. The backbone of a single residue (a) can be described by its dihedral angles φ and ψ (and in

smaller part, ω , which is predominantly trans or ∼ 180◦). The Ramachandran plot is important because a

number of regular conformations important to biology – secondary structures – are located at specific

regions of the plot (b). For the most part, regular peptide backbones twist in either a left-handed or

right-handed fashion; examples are shown in (c). As evidenced in (b), the -ve diagonal within the

Ramachandran plot (dashed line described by φ =−ψ) divides right-handed peptides from left-handed

peptides, which leads to the naı̈ve picture of handedness (d). Zacharias and Knapp (2013) showed that

this picture is over simplistic, however an in-depth characterization of the backbone in all regions was not

performed, and will be done here for both cis (ω = 0) and trans backbones (ω = π). Panel (a) is modified

from Mannige et al. (2016). Due to low incidence within the studied database (see Methods), the two

left-handed helices in (b) are arbitrarily marked and have no statistical significance. All molecular

representations in this text are shown in ‘licorice’ form, with the colors red, blue and white representing

oxygen, nitrogen and carbon atoms.

regular peptide structure describes a backbone whose per-residue (φ ,ψ) values are generally the same,47

and therefore their ‘locations’ on the Ramachandran plot act as structural landmarks (Fig. 1b).48

So far, our understanding of the Ramachandran plot has been limited mostly to structured proteins that49

display stable conformations (Berman et al., 2000; Alberts et al., 2002). These types of proteins occupy50

only a limited region of the plot (dotted regions in Fig. 1b). The regular backbone conformations in these51

regions are well understood. For example, known regular structures that are to the right of the negatively52

sloping diagonal (dashed line in Fig. 1b; henceforth denoted as the ‘-ve diagonal’) are left-handed in53

backbone twist, while those that are to the left of the diagonal are right-handed (left- and right-handed54

regions are respectively shaded brown and gold1). For example, the position of the idealized left- and55

right-handed α-helices (Fig. 1c) – respectively denoted as αL and α in Fig. 1b – are on opposite sides56

of the -ve diagonal. The ‘naı̈ve view’ of handedness, obtained from looking only at structured proteins,57

would be the expectation that the -ve diagonal neatly separates the Ramachandran plot into regions of left-58

and right-handedness (Fig. 1d).59

However, structured proteins represent only a fraction of functional proteins. Indeed, up to 15%60

of mammalian proteins are completely disordered – they natively display multiple, often extended,61

conformations – and up to 50% of the mammalian proteins display large (> 30 residue) stretches of62

disorder (Iakoucheva et al., 2002; Ward et al., 2004; Orosz and Ovádi, 2011; Mannige, 2014). Interestingly,63

when compared to structured backbones, structurally degenerate or disordered backbones occupy many64

1Go Hillies!
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more regions within the Ramachandran plot (Beck et al., 2008).65

Additionally, a number of peptide mimics – especially peptoids (Sun and Zuckermann, 2013) – have66

been found to display novel secondary structures that occupy regions that are strictly disallowed by67

proteins due to steric clashes. For example, a ‘higher-order’ peptoid secondary structure – the Σ-strand68

(Mannige et al., 2015; Robertson et al., 2016) – is believed to sample regions of the Ramachandran plot69

(‘I’ in Fig. 1b) that are not permitted within natural proteins (this is because peptoid backbones lack70

hydrogen-bond donors). Another peptoid secondary structure – the ‘ω-strand’ (Gorske et al., 2016) –71

samples similarly historically uncharted regions of the Ramachandran plot (‘II’ in Fig. 1b). Importantly,72

backbone twist handedness plays a crucial part in explaining these new motifs: as one goes along the73

backbones of these secondary structures, alternating residues display backbone twists that are equal in74

magnitude but opposite in handedness [for this reason, the Σ-strand is relatively linear, albeit meandering;75

Mannige et al. (2015); Mannige et al. (2016)].76

Despite these recent discoveries of natively disordered proteins and novel peptidomimetic structures,77

a complete understanding of backbone conformations that stray from the ‘structured’ regions on the78

Ramachandran plot is missing, which impedes our ability to identify and explore such conformations.79

Towards filling this gap in understanding, this report outlines a detailed study of how regular backbones80

twist in every region of the Ramachandran plot for both cis and trans peptides. In particular, this report81

develops and explores a new metric for handedness (h) based on modeling a regular backbone (described82

below) as a helix (Shimanouchi and Mizushima, 1955; Miyazawa, 1961; Zacharias and Knapp, 2013).83

The metric is used to exhaustively chart the handedness of regular backbones. In doing so, this survey84

provides a new graphical format to explore new types of secondary structures being discovered (Mannige85

et al., 2015; Gorske et al., 2016). Also, this survey dispels the naı̈ve view of handedness (Fig. 1d)86

by showing that the distribution of handedness as a function of φ and ψ is more complicated than the87

distribution allowed by the naı̈ve view. Finally, the results also show that the Ramachandran plot whose φ88

and ψ values range between 0◦ and 360◦ is more intuitive and visually meaningful (compared to those89

that range between −180◦ and 180◦), particularly for cis backbones. This work builds on a previous90

report (Zacharias and Knapp, 2013) and helps complete our understanding of the ways in which a peptide91

backbone twists, which is a basic component of structural biology.92

METHODS93

While angular units in this report switch between radians and degrees, their units in any particular situation94

may be inferred by the presence or absence of the degree symbol (◦). All methods and materials re-95

quired to produce this manuscript are freely available at https://github.com/ranjanmannige/96

backbone_chirality.97

Deriving measures for backbone handedness98

Numerous metrics for molecular chirality and handedness have so far been discussed (Harris et al., 1999).99

For example, metrics for chirality have been introduced that focus on vector orientations (Kwiecińska100

and Cieplak, 2005; Kabsch and Sander, 1983; Gruziel et al., 2013), optical activity (Osipov et al., 1995),101

and molecular shape (Ferrarini and Nordio, 1998). However, this report will focus on a simpler metric102

for chirality associated with an idealized helix within which all (regular) backbone atoms of one type103

sit [Fig. 2; Shimanouchi and Mizushima (1955); Miyazawa (1961); Zacharias and Knapp (2013)]. Here,104

a ‘regular’ backbone indicates that each tunable parameter within a unit or ‘residue’ – say a particular105

dihedral angle – remains the same for all residues. Below, regular backbones are modeled in context of106

helical parameters that, when combined, form an intuitive metric for backbone handedness.107

Describing a regular backbone as a helix108

Interest in how a backbone may be represented as a helix emerged shortly after the first secondary109

structures were introduced (Pauling et al., 1951; Pauling and Corey, 1951b,a). In particular, Shimanouchi110

and Mizushima (1955) had derived a set of equations that fit a platonic helix to the atoms within a regular111

backbone. While the formalisms described by Shimanouchi and Mizushima (1955) [and later on by112

Miyazawa (1961), discussed below] apply to repeating linear polymers of arbitrary complexity, this report113

focuses specifically on how peptides may be modeled. Fig. 2 describes an arbitrary peptide backbone that114

may be represented either using internal coordinates (i) or helical coordinates (ii).115
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Figure 2. Internal coordinate (i) and helical coordinate (ii) representations of right-handed (a) and

left-handed (b) regular backbones. Internal coordinates are a function of bond lengths (e.g., v23), angles

(σ2), and dihedral angles (τ12), while helical coordinates are a function of displacement along the helical

axis (d12), angular displacement in the plane perpendicular to the helical axis (θ12) and shortest distance

of an atom of type i to the helical axis (ρi). Representations are derived from Figs. 1 and 2 in

Shimanouchi and Mizushima (1955).

Internal coordinates are associated with stereochemical terms: bond lengths (vi j) between adjacent116

atoms i and j, bond angles (σi) between the two bonds adjacent to atom i, and dihedral or torsion angles117

(τi j), which involve atoms associated with the bond i− j and the two adjacent atoms. Helical coordinates118

(Fig. 2(ii)) are described using measures of axial displacement between two successive atoms of the same119

type (d; this is related to the pitch of a platonic helix), angular displacement between two successive atoms120

of the same type (θ ), and the radius of the helix (ρi) that hosts all backbone atoms of type i. Therefore,121

the single cylinder shown in Fig. 2 is too simplistic as there should be one distinct cylinder or radius per122

atom type.123

Given that there are three backbone atoms associated with a residue (Fig. 1a), d = dn,α+dα,c +dc,n124

and θ = θn,α+θα,c +θc,n. Here, di, j and θi, j respectively refer to the axial and angular displacement125

between adjacent atoms i and j. Subscripts ‘n’, ‘α’, and ‘c’ respectively refer to the backbone nitrogen,126

α-carbon and carbonyl carbon atoms (Fig. 1a). The notation used by Shimanouchi and Mizushima (1955)127

was in terms of matrices, which were then simplified by Miyazawa (1961) into trigonometric terms.128

In particular, Miyazawa (1961) noted that the total residue-residue axial displacement (d) and angular129

displacement (θ ) may be retrieved using the following two equations.130
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The ranges for d and θ , respectively, are [−λ ,+λ ] and [0,2π) (the positive limit λ is defined by allowed131

values for the various internal coordinates). As above, subscripts ‘n’, ‘α’, and ‘c’ respectively refer to the132

backbone nitrogen, α-carbon and carbonyl carbon atom types. The dihedral angles φ , ψ , and ω represent133

the traditional symbols for backbone dihedral angles, which may be otherwise denoted as τn,α, τα,c, and134

τc,n(+1), respectively.135

Finally, for any type of atom (say α-carbons), the radius or distance from the helical axis ρα is defined

by

2ρ2
α
[1− cos(θ)]+d2 = v2

α,c + v2
c,n + v2

n,α−2vc,n [vα,c cos(σc)+ vn,α cos(σn)]

+2vα,cvn,α [cos(σc)cos(σn)− sin(σc)sin(σn)cos(τc,n)] (3)

Miyazawa (1961) noted that the right-hand side of Eqn. 3 is also the squared distance between adjacent

atoms of the same type (denoted here as d2
α

for α-carbons), which allows for a more simplified form

ρα =

√

d2
α
−d2

2−2cos(θ)
(4)

The distance between adjacent α-carbons (dα) is ∼ 3.8Å for trans peptides and ∼ 3Å for cis peptides.136

Other radii (ρc,ρn) can be obtained by cycling through (α,c,n) subscripts within Eqns. 3 and 42. Note137

that all ρi’s are functions of θ and d (along with other internal coordinates), and so one may use two of138

the three terms in (d,θ ,ρi) – to describe the helical state of a peptide. Since there is only one d and θ per139

backbone (compared to three ρi’s, one per atom type), this report utilizes d and θ as the two descriptors140

[other discussions on this choice have also been made by Zacharias and Knapp (2013)].141

Eqns. 1 and 2 may be substantially simplified (Miyazawa, 1961), given that backbone bond lengths

and angles are much less ‘tunable’ when compared to dihedral angles (Ramachandran et al., 1963; Improta

et al., 2015a; Esposito et al., 2013; Improta et al., 2015b). In particular, most backbone bond lengths and

angles display one equilibrium value (Improta et al., 2015a; Esposito et al., 2013; Improta et al., 2015b),

while the backbone dihedral angles φ and ψ occupy a range of possible values and minima, e.g., regions

in the Ramachandran plot that describe α-helices and β-sheets (Fig. 1b). With this in mind, Miyazawa

(1961) set ω = π (trans) and substituted average (equilibrium) values for bond angles and lengths into

Eqns. 1 and 2 to arrive at a simpler equation for trans backbones. Zacharias and Knapp (2013) published

an updated version of this set of equations, which follows3.

cos

(

θ

2

)

=− 0.8235 sin

(

φ +ψ

2

)

+0.0222 sin

(

φ −ψ

2

)

, (5)

d sin

(

θ

2

)

= 2.9986 cos

(

φ +ψ

2

)

−0.6575 cos

(

φ −ψ

2

)

. (6)

This equation is especially relevant to peptides as they occur predominantly in trans conformations

(ω = π). However, given the prevalence of cis backbones in peptide mimics such as peptoids (Mirijanian

2ρc and ρn are obtained by the following subscript conversions: (α→ c, c → n, n → α) and (α→ n, c → α, n → c).
3The values used by Zacharias and Knapp (2013), taken from Engh and Huber (1991, 2006), are:

vn,α = 1.459Å, vα,c = 1.525Å, vc,n(+1) = 1.336Å, σα = 111.0, σc = 117.2◦, and σn = 121.7◦.

For reference, Miyazawa (1961) originally used the following values:

vn,α = 1.470Å, vα,c = 1.530Å, vc,n(+1) = 1.320Å, σα = 110.0, σc = 114.0, and σn = 123.0.
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et al., 2014; Gorske et al., 2016), for completeness, the corresponding relationships for a cis (ω = 0)

backbone follows.

cos

(

θ

2

)

= 0.4052 cos

(

φ +ψ

2

)

−0.4932 cos

(

φ −ψ

2

)

, (7)

d sin

(
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2

)

= 2.3093 sin

(

φ +ψ

2

)

+0.0028 sin

(

φ −ψ

2

)

. (8)

Note that Eqns. 5 through 8 are simplifications of Eqns. 1 and 2, and are therefore prone to some142

limitations that are not present in Eqns. 1 and 2. For example, bond lengths (Improta et al., 2015a) and143

bond angles (Esposito et al., 2013; Improta et al., 2015b) display some dependence on local backbone144

conformation. These subtle variations have great implications when dealing with a large number of145

residues, especially when considering bond angles. For example, when attempting to recreate a protein146

conformation from an original conformation’s φ and ψ values (ignoring deviations in ω , bond angles, and147

lengths), the original and recreated conformations tend to deviate dramatically due to an accumulation148

of errors [by up to 22Å in root mean squared deviation; Tien et al. (2013)]. However, when studying149

changes in conformationally regular and local stretches of peptides, such deviations are not likely to150

change relevant features such as handedness and extent of twistedness. If circumstances indicate that151

the backbone values for bond angles and ω may be strained from their equilibrium values (e.g., due to152

bulky sidechains), only Eqns. 1 and 2 can be expected to faithfully (and perfectly) represent backbone153

features such as handedness of twist. However, the approximations of Eqns. 5 through 8 are sufficient154

for the purposes of this report, given that this report primarily discusses features within platonic regular155

backbones.156

On the one-to-one correspondence between (((φφφ ,,,ψψψ,,,ωωω))) and (((ddd,,,θθθ)))157

Given a particular value of ω , every (φ ,ψ) pair points to exactly one (d,θ). However, when using Eqns. 1

and 2, one value of ω can not be replaced with a periodically equivalent version of ω (the same can be

said for φ and ψ). For example, using ω = x+2π instead of ω = x will maintain the magnitude of d and

θ , but the signs will not remain conserved. This is because every summand in Eqns. 1 and 2 contains

either a sine or cosine of [±φ ±ψ ±ω]/2. The issue arises because of the ‘2’: even though the angle

x is considered to be equivalent to the angle x+ 2π, and even though cos(x+ 2π) equals cos(x) (due

to angle periodicity), cos([x±2π]/2) = cos(x/2±π) =−cos(x/2) (note the negative sign). Similarly,

sin([x± 2π]/2) = −sin(x/2). Therefore, even though the angles ω and ω + 2π may be considered to

be equivalent angles, expressions such as cos([x−ω + 2π]/2) and cos([x−ω]/2) are only equal in

magnitude and not in sign. I.e., a one-to-one correspondence between (φ ,ψ) and (d,θ) is only possible if

one insists on specific values for ωs. For this reason, this report proposes to wrap the value of an amide

backbone ω ′ between [∆,∆+360◦) using

ω = (ω ′−∆)%360+∆, (9)

where % represents the modulus function, and ∆ describes the start of the range [∆,∆+2π). Choosing158

∆ = −90◦ would ensure that the distribution of both cis (ω = 0± 5◦) and trans (ω = 180± 5◦) will159

remain contiguous. Using this system, cis and trans backbones are respectively represented by ω = 0160

(and not 2π) and ω = π (not −π) for trans backbones. The rest of this report assumes these values of ω161

for cis and trans backbones.162

These points lead to the conclusion that a strict one to one-to-one correspondence between (φ ,ψ,ω)163

and (d,θ) does not exist, since multiple sets of the former may be backmapped from the latter (by164

reconfiguring Eqns. 1 and 2). Yet, a one-to-one correspondence may be ensured by discarding as solutions165

all but the one set of (φ ,ψ,ω), whose φ and ψ lie within a preset range – e.g., [0,2π) or [−π,π) – and166

whose ω does not change after being wrapped by Eqn. 9.167

Introducing an equation for backbone handedness168

The helical parameters d and θ host a wealth of information, some of which is discussed in the Results169

section. For the purpose of developing an equation for backbone handedness, it is only important to170

recognize, as was done before (Zacharias and Knapp, 2013), that θ and d together are instrumental in171

describing backbone handedness.172

6/17

PeerJ reviewing PDF | (2017:01:15478:2:1:NEW 15 Apr 2017)

Manuscript to be reviewed



 

1

2

θ-2π

d < 0; θ < π

d

θ-2π
1

θ
2

d

d > 0; θ > π

1
2

d > 0; θ < π

d

θ
2

1

d < 0; θ > π

d

left-handed (L) left-handed (L)right-handed (R) right-handed (R)

a. b. c. d.

Figure 3. The handedness of a helix is a function of angular displacement θ perpendicular to the helical

axis (green curved arrows) and linear displacement d along the helical axis (blue, vertical arrows). Note

that left-handed (L) and right-handed (R) backbone twists are respectively associated with the L and D

chiralities within the Fisher Projection system and S and R chiralities within the Cahn–Ingold–Prelog

system (Cross and Klyne, 2013); however, as discussed in the Methods section, this report makes a

distinction between helix handedness and molecular chirality.

The relationship between handedness and (d,θ) is shown in Fig. 3. While θ indicates the extent to173

which a regular backbone curves along a helical path, the handedness of a backbone is dependent on both174

θ and d. This is because the sign of d provides a frame of reference for interpreting θ . In particular, if d is175

negative, then 0 < θ < π indicates left-handedness (Fig. 3a), while π< θ < 2π indicates a right-handed176

helix (Fig. 3b). However, if d is positive, then the manner in which the helix is ‘built’ reverses, and177

0 < θ < π indicates right-handedness (Fig. 3c), while π< θ < 2π indicates left-handedness (Fig. 3d).178

Given these relationships, this paper proposes a new metric for backbone handedness that depends on

the sign of d and the value of θ :

h =
d

|d|
sin(θ). (10)

The range of h is [−1,1], with negative (or positive) values indicating that the overall twist of the backbone179

is left(or right)-handed. Also, |h| is proportional to the extent to which the backbone is twisted. Note180

that d/|d| is related to the traditional sign function sgn(d), but deviates at d = 0, where the former term181

is undefined while the latter term is 0. Additionally, h will equal 0 if d = 0 or if θ = xπ (where x is an182

integer); for more on the meaning of d and θ in context of handedness and peptide geometry, please refer183

to the Results and Discussions section and Fig. 4 in particular.184

Alternative measures of handedness185

Two estimates for chirality, χ1 and χ2, used to validate the new measure of handedness h (Eqn. 10), were

previously used by Kwiecińska and Cieplak (2005) and Kabsch and Sander (1983), respectively. The

equations are:

χ1 =
1

N

N−2

∑
i=2

(vi−1 × vi) · vi+1

vi−1vivi+1
, (11)

χ2 =
1

N

N−2

∑
i=2

arctan2(vivi−1 · vi × vi+1,vi−1 × vi · vi × vi+1) . (12)

Here, N is the peptide length, i is the peptide residue number and the position of each α-carbon is186

Ni, with vector vk ≡ Nk+1 −Nk. The scalar component of the vector vi is denoted as vi. Eqn. 11 has187

range [−1,1]. Eqn. 12, also used by Gruziel et al. (2013), is the dihedral angle associated with the four188

contiguous α-carbons (one preceding and two succeeding the residue i), and ranges between [−π,π]189
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radians. For both metrics, values deviating more from 0 are more chiral (or ‘twisted’ or ‘handed’), and190

left-handed twists are negative while right-handed twists are positive. Only α-carbon atom positions are191

used for the calculation.192

Finally, a more backbone-agnostic metric of chirality has been introduced by Solymosi et al. (2002),

which is replicated here purely for completeness:

χ3 =
4!

3N4 ∑
i, j,k,l∈N

((vi j × vkl) · vil)(vi j · v jk)(v jk · vkl)
(

vi jv jkvkl

)2
vil

. (13)

χ3, of arbitrary range, is known as the chirality index G0S in Solymosi et al. (2002) and Neal et al. (2003).193

(i, j,k, l) are exhaustive permutations of {1,2, . . . ,N}. This metric qualitatively matches the values of194

Eqns. 11 and 12, and, while not shown, the relationship between (φ ,ψ) and χ3 is available in the online195

GitHub repository.196

Backbone structure generation197

The metric h (Eqn. 10) is purely analytical and does not need structures to be computationally generated,198

since Eqns. 5 through 8 that provide d and θ require only pairs of φ and ψ angles. However, if values199

for bond angles, lengths and dihedral angles are expected to deviate greatly from equilibrium values, θ200

and d can only be obtained from the more detailed Eqns. 1 and 2, whose parameters would likely be201

obtained from a structure. On the other hand, as χ1 (Eqn. 11) and χ2 (Eqn. 12) work explicitly with atom202

positions, these metrics explicitly need the generation of structures. In order to use these metrics, peptides203

(poly-glycines) of arbitrary length were generated using the Python-based PeptideBuilder library (Tien204

et al., 2013). Analysis was performed using BioPython (Cock et al., 2009) and Numerical Python (Van205

Der Walt et al., 2011). Ramachandran plots that describe chirality (e.g., Fig. 5a) were generated using a206

grid spacing (in degrees) of φ ,ψ ∈ {−180,−178, . . . ,178,180}.207

Obtaining secondary structure statistics208

Statistics about secondary structures – particularly α-helices, 310-helices and β -sheets – were identified209

using the DSSP algorithm (Kabsch and Sander, 1983), although the STRIDE algorithm (Frishman and210

Argos, 1995) provides qualitatively identical distributions. The DSSP algorithm was applied to a database211

of 13,760 three-dimensional protein conformations (one domain per conformation) with lower than 40%212

sequence identity, obtained from the Structural Classification of Proteins or SCOPe website [Release213

2.06; Fox et al. (2014)]. This database is currently available as: http://scop.berkeley.edu/214

downloads/pdbstyle/pdbstyle-sel-gs-bib-40-2.06.tgz.215

Backbone chirality 6 6 6=== backbone handedness216

Finally, it is important to recognize the distinction between backbone (twist) handedness and backbone217

(molecular) chirality. Naı̈vely, chirality is a simple concept: a molecular conformation is achiral if its218

mirror image can be superimposed onto itself, otherwise that conformation is chiral (Gold et al., 1997)219

(alternatively, and less commonly, achiral molecules possess inversion centers). Despite this intuitive220

definition, chirality has remained a confusing concept ever since its introduction (Bentley, 2010; Wallentin221

et al., 2009), which is possibly due to the fact that ‘context’ is very important when discussing chirality222

(Mislow, 2002). For example, when looking at a peptide at the residue or ‘local’ level, every amino223

acid (excepting glycine) is chiral due to the presence of a chiral α-carbon (its mirror image can not be224

superimposed onto itself). Yet, at the macromolecular level, even an all-glycine (and therefore locally225

achiral) peptide will display conformations that are not superimposable onto each other, and so such226

conformations would be chiral. Alternatively, when considering handedness, if a backbone is completely227

flat (say, a ring, where d = 0), handedness (h) will be undefined, and so one can not speak of handedness228

of the twist. Yet, the backbone may still remain chiral; e.g., cisplatin and transplatin are planar molecules229

that are nonetheless chiral opposites (Testa, 2013). It is for this reason that this report chooses to be230

careful to not claim that Eqn. 10 is a metric for peptide/backbone chirality, but of peptide backbone twist231

handedness. However, estimates for backbone chirality (e.g., Eqns. 11 and 12) may be used as surrogates232

for twist chirality to validate h (Eqn. 10), as both are related but not the same.233
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Figure 4. Further discussion on the meaning of d and θ . As shown in Fig. 3, axial separation d and

angular separation θ between adjacent atoms of the same type combine to define handedness. The brown

(dark) and gold (light) shaded quadrants within the graph show the distribution of handedness as a

function of d and θ . The relevant boundaries – θ = xπ (where x is a non-negative integer) and d = 0 –

separate the map into four quadrants of left- and right-twisting backbones (‘L’ and ‘R’, respectively).

Geometric interpretations of various boundaries, discussed in the text, are shown to the top and left of the

graph as three scenarios. The toroid enclosed by two solid lines (and shaded white) represents all possible

conformations for trans peptides (ω = 180±5◦). Similarly, the region allowed for cis peptides

(ω = 0±5◦) are bound by the two dashed contours.

RESULTS AND DISCUSSION234

Relevance of θθθ and ddd235

When discussing peptide backbones, two possible definitions of backbone ‘flatness’ (or linearity) are236

possible: flatness at a residue level and flatness at the atomic level. In the former, all atoms of the same237

type are coplanar (examples of atom types are the backbone nitrogens, carbonyl carbons, α-carbons, or238

even sidechain β-carbons). In the latter definition of flatness, all atoms within the backbone are coplanar.239

For the discussions below, since the residue-by-residue behavior of the peptide is of primary relevance,240

the former definition is chosen as the relevant scope for flatness.241

As described in Fig. 3, the helical parameters d and θ respectively refer to an axial displacement along242

the helical axis and an angular displacement in a plane perpendicular to the helical axis. For example,243

d = 0 indicates a helix flattened along its helical axis (Fig. 4, Scenario 1). This means that all regular244

peptides with d = 0 will be ring-like at some peptide length (shown in a following figure for a range of245

peptides). As expected from Eqn. 10, at d = 0, one can not tell how the helix was built, since coplanar246

peptides can not be described as either left- or right-twisting. Therefore, even though d = 0 indicates247

highly twisted peptides, these twists do not possess handedness. This shows up in the h metric because, at248

d = 0, |d|−1 is undefined.249

Additionally Fig. 4 describes two important values for θ : eπ (Scenario 2) and oπ (Scenario 3), where250

e and o are even and odd integers. In particular, for any d, θ = eπ indicates zero angular displacement251

along the axis, which puts all atoms of the same type on the same line parallel to the helical axis (Fig. 4,252

Scenario 2). Similarly, θ = oπ indicates that every alternate atom (of the same type) along the backbone253

will be linear, and every adjacent atom will be diametrically opposite to each other (Fig. 4, Scenario 3);254

i.e., θ = oπ indicates that all atoms of the same type will lie on a plane that is parallel to the helical axis.255

In short, θ = 0 codes for backbones that are linear (optimally extended for a fixed d) and θ = π describe256

peptides that zig-zag along a plane perpendicular to the helical axis (for a fixed d). Finally, as is evident257
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Figure 5. The handedness of an ordered trans peptide within the Ramachandran plot. Panel (a) displays the relationship

between backbone parameters (φ ,ψ) and the associated helix parameters of curvature sin(θ) (top; Eqn. 1) and axial

displacement d (bottom; Eqn. 2). As shown in Fig. 3, the handedness of a helix is a function of these two variables (h;

Eqn. 10). Panel (b) is a map of backbone chirality (h) as a function of φ and ψ . The boundaries, θ = π (‘ ’) and d = 0

(‘ ’), correspond to backbones that are equally flat, but which are respectively optimally extended and curved (see

discussion in text). Panel (b) shows that the naı̈ve expectation of handedness in a Ramachandran plot (Fig. 1d) is inaccurate.

Interestingly, our naı̈ve expectations would be upheld if one were only to have sampled regions of the Ramachandran plot

dominated by known proteins (a; regions enclosed by ‘ ’ indicate 90% occupancy). An example of the behavior of one

‘slice’ of (b) is shown in (c). Each snapshot represents a peptide backbone that is either in a distinct region of handedness or

at a boundary.

in Fig. 4, θ = eπ conformations are not available to peptide backbones. Therefore, θ = oπ (e.g., π or258

180◦) will be the most extended type of backbone (for a fixed d). These relationships show how, a priori,259

the curve of a backbone with particular (d,θ) may be interpreted.260

Finally, θ may serve as an important single-number metric for describing backbone configurations.261

Mannige et al. (2016) developed one such number – a Ramachandran number (R) – that is a structurally262

meaningful combination of φ and ψ . This number depends on the fact that structural features of the263

backbone (e.g., radius of gyration) vary least when one slices through the trans Ramachandran plot along264

negative-sloping lines that conserve φ +ψ (Ho et al., 2003; Zacharias and Knapp, 2013; Mannige et al.,265

2016). Interestingly, θ follows that trend too, which – in combination with the fact that regions of the266

Ramachandran plot are sparse (Mannige et al., 2016) – means that θ and its derivatives (e.g., h) are267

universal Ramachandran numbers. The universality arises from the fact that cis Ramachandran plots do268

not conserve structure along lines that conserve φ +ψ (and so R only works for trans backbones), yet269

any two backbones with nearly identical θ ’s will also be conserved in structure (see, e.g., Fig. 5a, top).270

This feature of θ will be true irrespective of the nature of the amide dihedral angle ω (Eqn. 1).271

Handedness of trans backbones272

Fig. 5a describes the behavior of sin(θ) and d as a function of φ and ψ (assuming an all-trans backbone;273

ω = π or 180◦). Fig. 5b describes the behavior of backbone handedness (h; Eqn. 10) as a function of φ274

and ψ . This map is a complete description of the handedness of an all-trans (regular) peptide backbone.275

Fig. 5c describes some structures at various regions within the plot. As discussed above, d = 0 (‘✾)276

indicates that each residue is at the same ‘altitude’, i.e., the helix is perfectly flat and maximally curved277

(at that particular θ ). Note that any path on the Ramachandran plot that transitions from negative to278

positive d will encounter an infinitesimal region in its path where d = 0 and so h is undefined. This, along279

with the recognition that d = 0 indicates highly curved backbones, means that such transitions would be280

concomitant with a sharp change in handedness. When θ = π, then the backbone is also flat (see ‘✽’ in281

Fig. 5c); however, atoms of the same type lie in a single plane that is perpendicular to the helical axis282

(Fig. 4). In short, within the Ramachandran plot, d = 0 (‘ ’) and h = π (‘ ’) code for flat backbones283

that are respectively either optimally curved (at a given θ ) or optimally extended (at a given d). A future284

report will discuss how these simple rules may be combined to make conjectures about novel secondary285

and tertiary structures.286
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Figure 6. Panels (a) and (b) describe the handedness of backbone twists whose amide dihedral angles are trans (ω = π)

and cis (ω = 0), respectively. Column (i) describes handedness (h; Eqn. 10), which does not require structures to be

computationally generated. Columns (ii) and (iii) respectively show vector-based estimates of backbone handedness – χ1

(Eqn. 11) and χ2 (Eqn. 12) – which are calculated from computationally generated peptides (see Methods). Regions of left-

and right-handedness are identical for all measures (i–iii). A cartoon representation of distinct regions of handedness is

shown in (iv). Finally, Panel (c) displays a range of regular cis peptide backbones with d ≈ 0. As explained in Fig. 4, d = 0

indicates a flat backbone that lies perpendicular to the helical axis, which results in ring-like peptides. Interestingly, a point

in the Ramachandran plot exists exclusively for cis peptides, where d = 0 and θ = π: φ =−ψ =±36◦ [‘✾’ in

Panels(b)-(iv) and (c)].

Fig. 6a shows that the equation for h match other metrics for handedness, as interpreted by other287

metrics for chirality (Kwiecińska and Cieplak, 2005; Kabsch and Sander, 1983; Gruziel et al., 2013). In288

particular, Fig. 6a displays the Ramachandran plot colored by h [(i); Eqn. 10] next to estimates calculated289

using χ1 [(ii); Eqn. 11] and χ2 [(iii); Eqn. 12]. Each panel describes identical regions of left- and290

right-handedness, which is shown as a cartoon in (iv). However, given that χ1 and χ2 are estimates of291

chirality and not backbone handedness, their exact values differ from the primary metric for handedness292

(h) provided here.293

Handedness of cis backbones294

In the same vein as Fig. 6a, Fig. 6b displays h, χ1 and χ2 as a function of φ and ψ for all-cis regular295

backbones. This appears to be the first complete description of chirality of an all-cis backbone (ω = 0).296

Interestingly, the boundaries for d = 0 and θ = π switch in cis backbones, with the -ve diagonal and297

curved boundaries being caused by d and θ , respectively. Additionally, Fig. 6a reiterates the idea that298

cis peptides are quite different when compared to trans peptides: the regions and boundaries of left- and299

right-handedness within the Ramachandran plot differ for cis versus trans.300

Finally, points on the cis map (φ =±36◦, ψ =∓36◦) exist where d = 0 and θ = π. An example of301

this, along with other d = 0 configurations, is shown in Fig. 6c for a six-residue peptide. At first glance,302

this appears to be contradiction, because d = 0 indicates the most curved backbone at a fixed θ , and303

θ = π indicates the most linear backbone at a fixed d; however, it is purely due to the nature of the cis304

backbone that this indeed is possible. Of course, this structure would only be possible for cyclic peptides305
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Figure 7. The landscape of backbone chirality as a function of amide dihedral angle ω . As ω is

changed, the features of the landscape smoothly transform from the landscapes of ω =±π to ω = 0. For

all values of ω , it is evident that the naı̈ve view of chirality (Fig. 1d) is wrong: at least four distinct

regions of chirality (separated by boundaries d = 0 and θ = π) are evident in each scenario. Although

only five snapshots (values of ω) are shown, all integer values of ω were tested, which corroborates the

fact that the naı̈ve view of backbone handedness (Fig. 1d) is universally incorrect.

with length two, given that any peptoid of length greater than two would result in overlapping atoms.306

However, such a structure (one with d = 0 and θ = π) is not possible in trans peptides, even in theory,307

because the boundaries associated with d = 0 and θ = π do not intersect (Fig. 6a); this is also evident in308

Fig. 4, where trans peptides are shown to not occupy regions of (d,θ) = (0,π), while cis peptides do.309

The exhaustive survey of regular cis (ω = 0) and trans (ω = π) peptides (Fig. 6) proves that the naı̈ve310

picture of chirality – that the -ve diagonal separates the right-twisting backbones from the left-twisting311

backbones (Fig. 1d) – is wrong. However, deviations from ω = 0 or π are evident in the Protein Databank;312

see, e.g., discussions by Improta et al. (2011). This raises the question: how does varying ω through313

non-traditional values change the handedness landscape? Fig. 7 describes Ramachandran plots that show314

handedness in terms of varying ω , which shows that this complicated separation of handedness in cis315

and trans backbones also holds for other values of ω . Therefore, the naı̈ve expectation of handedness316

(Fig. 1d) is too simple, irrespective of amide dihedral angle.317

[−−−π,π) or [000,222π): which frame of reference to use?318

In structural biology, φ and ψ within the Ramachandran plot has been historically set to range between319

the values [−π,π) radians [see, e.g., textbooks by Berg et al. (2010) and Alberts et al. (2002)]. However,320
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Figure 8. The two frames of reference (or ranges) for the Ramachandran plot for trans and cis

backbones. Both ranges [−π,π) and [0,2π) yield similar trends for trans backbones (a,b); however, for

cis backbones, the latter frame of reference (d) appears to more neatly apportion the handedness of the

backbone rather than the traditional frame of reference (c). As in Figs. 5 and 6, ‘ ’ and ‘ ’

respectively correspond to boundaries defined by θ = π and d = 0. Also, regions bound by dotted

contours indicate dominant regions within which proteins reside (p = 0.9).
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Figure 9. Alternative representations of the Ramachandran plot. While the Ramachandran plot is useful to map

characteristics of secondary structures (a), it is not intuitive. For example, the relationship between the Ramachandran

parameters (φ ,ψ) and the handedness of a backbone is not obvious (see, e.g., the non-obvious distribution of left- and

right-handed peptides as a function of φ and ψ). For this reason, Zacharias and Knapp (2013) introduced a graphical format

involving the helical parameters d and θ in polar coordinate space (b), where the regions of left- and right-handedness are

obvious [their format differs from (b) in that their θ increases in counter-clockwise fashion]. Panel (c), which is an

extension of Fig. 4, introduces another graphical representation of backbone degrees of freedom based on (θ ,d), but in

Cartesian space. While both (b) and (c) are equally useful in understanding regions available to a protein, the text discusses

some benefits of (c) as a universal map for exploring new conformations and secondary structures. Excepting the

left-handed helices (αL-, 310L-helices; see Methods), each secondary structure has two contours signifying p = 0.5 and 0.8.

Ramachandran et al. (1963) had originally used the range of [0,2π). Today, the range [−π,π) is used321

predominantly by structural biologists (Laskowski et al., 1993; Laskowski, 2003; Zacharias and Knapp,322

2013), while some have turned to [0,2π) as the norm (Némethy et al., 1966; Voelz et al., 2011).323

Given the periodicity of the Ramachandran plot, the two frames of reference are scientifically identical;324

however the value of the Ramachandran plot lies in its utility as a map: it is a map of important features of325

proteins relative to the various regions, quadrants, and diagonals in the map [see, e.g., discussions by Beck326

et al. (2008)]. The Ramachandran plot’s value lies in being able to convey large amounts of information327

in easy to read pictograms. For that reason, switching the map from one range to another means that the328

two types of scientists – each used to a distinct range – will not be able to converse as seamlessly.329

Therefore, the following question must arise: which range – [−π,π) or [0,2π) – is able to convey330

more information with the least amount of effort? Fig. 8 shows the handedness of a trans backbone (a,b)331

and cis backbone (c,d) in the two frames of reference. From (a) and (b) it is evident that general trends in332

the map for trans backbones remain the same in both frames of reference: the negative diagonal (θ = π)333

locally separates right-handed regions from left-handed regions, while the curved line (d = 0) – which334

also separates handedness – also appears to be in generally the same regions (albeit inverted in curvature).335

The cis backbones, however, look dramatically different in the two frames of reference: the range [−π,π]336

separates handedness in a more complicated manner (c), while, for the most part, the -ve diagonal appears337

to meaningfully separate handedness when the plot ranges from 0 to 2π (d). For this reason, purely when338

looking at handedness, and especially in the case of cis backbones, the Ramachandran plot that ranges339

between 0 and 2π appears to be more meaningful.340

A universal alternative to the Ramachandran plot341

While the Ramachandran plot is useful enough to earn a place in undergraduate-level biology textbooks342

(Berg et al., 2010; Alberts et al., 2002), as discussed throughout this report, it is not easy to estimate343

features of a peptide backbone just from its (φ ,ψ) angles (Fig. 9a). This prompted Zacharias and344

Knapp (2013) to introduce a new representation for backbone degrees of freedom in the form of a345

polar graph. In this polar representation, the θ is the angular coordinate (azimuth) and d is the radial346

coordinate. An example of one such representation is shown in Fig. 9b, with the direction of increasing θ347

reversed (compared to the cited report) to maintain relative positions of secondary structures within the348

Ramachandran plot (Fig. 9a). Zacharias and Knapp (2013) stated an additional reason for the introduction349
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of the polar representation (Fig. 9b): θ , which is an angle and therefore periodic, can remain periodic as350

the angular coordinate in the graph.351

However, the format proposed by Zacharias and Knapp (2013) (Fig. 9b) is incomplete for a few352

reasons: 1) d < 0 peptides (the bottom-left and top-right regions of Fig. 5a, bottom) will never be observed353

in this map since only structures with d ≥ 0 are allowed; 2) all peptides with d = 0 (marked by ‘ ’354

in every preceding Ramachandran plot) will be compressed into one point at the center, even though355

Fig. 6c shows a range of legitimate d = 0 conformations; 3) while the graph is θ -periodic, the values for356

θ in peptides are constrained within one [0,2π] period (peptides range between θ = π/4 and 2π−π/4;357

vertical dotted lines in Fig. 4); i.e., periodicity in θ is not required for the faithful representation of358

peptides. Fortunately, even though this system is not universal (again, since d < 0 structures are not359

accommodated), most conformations in globular proteins display positive d, and so the representation360

presented by Zacharias and Knapp (2013) is a reasonable one for most proteins with known structure.361

Interestingly, Fig. 9c – which arranges the parameters θ and d along Cartesian axes – serves as both a362

universal and intuitive map for peptide backbone geometry. This is because: 1) as shown in Fig. 4, such363

maps reveal a wealth of information about the peptide backbone, 2) both positive and negative values of d364

are allowed (compared to Fig. 9b), due to the shift in the coordinate system from polar to Cartesian, and365

3) this format accommodates every type of peptide conformation: any peptide (or its mimic) has a place366

in this map irrespective of whether the amide backbone is cis or trans or any other value; additionally,367

if the backbone is distorted, such distortions can also be accounted for since d and θ account for such368

distortions (Eqns. 1 and 2). This is impossible to do using a single Ramachandran plot without making369

sweeping assumptions about backbone parameters that are not φ and ψ . The (θ ,d) plot opens up the370

possibility for a new, intuitive, and universal kind of graphical representation as a supplement to the371

Ramachandran plot.372

A departure from perfect regularity373

So far, this report has focused on regular or simple backbone conformations, i.e., those that are formed374

from the same φ and ψ angles repeated along the backbone. This is particularly because a simple and375

visually intuitive correspondence exists (Figs. 3 and 4) between a regular backbone (described by myriad376

internal coordinates) and a helix that is described simply by (d,θ). However, there is a possibility that d377

and θ are useful even in isolation, when the unreasonable constraint of perfect backbone regularity is378

lifted. An example of such a departure from regularity follows.379

Some secondary structures are characterized by the regular combination of two or more sets of380

[φ ,ψ] (Pauling and Corey, 1951b,a; Armen et al., 2004; Daggett, 2006; Hayward and Milner-White,381

2008; Mannige et al., 2015, 2016). For example, the Σ-strand is constructed by alternating between382

two backbone states (φ ,ψ,ω) = (−A,B,180◦) and (−B,A,180◦), where A ≈ 120 and B ≈ 90 [Fig. 4h in383

Mannige et al. (2015)]. It was found that the two states are similar in the extent to which the backbone384

twists, but opposite in handedness, which allows for these secondary structures to remain linear, albeit in a385

meandering way (Mannige et al., 2015). Eqn. 10 also describes these two states as opposite in handedness386

and similar in twist extent: the h for the two states are −0.34 and 0.51, respectively (the difference in387

magnitude is within the range of the standard deviation in h [0.391] for the β-sheet). Similarly, the α-sheet388

proposed by Pauling and Corey (1951a) is constructed by alternating between α(D) and αL backbone389

states, yet this motif is linear because each state describes equal but opposite handedness h = ±0.41.390

These points raise the possibility that, even in the absence of perfect backbone regularity, the values d,391

θ , and h may be considered to be residue-specific properties that may be combined to readily provide392

insights about higher order structures.393

CONCLUSIONS394

This report introduces a metric for backbone handedness (h) that is based on modeling the backbone as395

a helix [Fig. 2; Miyazawa (1961)]. In particular, h, which is a combination of the helical parameters θ396

(angular displacement) and d (axial displacement), ranges from -1 and 1, and is negative (or positive)397

when the backbone twist is left(or right)-handed (with larger |h| indicating greater extent of twistedness).398

This metric (h) was used to characterize every regular backbone’s twist within the Ramachandran plot,399

for both cis and trans peptides. In doing so, this report dispels a naı̈ve view of handedness (Fig. 1d),400

which states that backbone handedness in the Ramachandran plot is separated by the negative-sloped401

(-ve) diagonal. Interestingly, the reason for the naı̈ve view makes senses when considering only trans402
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peptides: the -ve diagonal (‘ ’ in Figs. 5a) separates D and L twists if one considers only the regions403

dominantly occupied by structured proteins (‘ ’ in Figs. 5a). Plotting the backbone handedness (h) in the404

two common frames of reference – φ ,ψ ∈ [−π,π) and [0,2π) – indicates that the less commonly used405

frame [0,2π) may be more appropriate for interpreting cis backbones (Fig. 8).406

The behavior of a backbone in cis and trans Ramachandran plots look dramatically different (Fig. 6),407

and so scientists dealing with new structures that have a combination of cis and trans backbones can408

not use one Ramachandran plot to faithfully describe these structures. Interestingly, the parameters θ409

and d combine all features (internal coordinates) of a contorting backbone, including the amide dihedral410

angle ω , which means that (θ ,d) can describe any peptide backbone, irrespective of ω . Therefore, the411

Cartesian plot with θ and d as the x- and y-axis, respectively, serves as a unique plot for any peptide412

backbone (Fig. 9), with specific values and boundaries containing deep structural meaning (Fig. 4). These413

discussions, the author hopes, clarify a number of concepts associated with the Ramachandran plot, while414

providing new insights into how to interrogate the features of new protein and protein-like structures.415
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