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Abstract  

 

This present work is focused on band-gap engineering of solid-solutions based on 

KNbO3, which was proposed as a promising photoferroelectric (Grinberg et al., 2013). 

The strategy to narrow the band-gap of the parent KNbO3 (3.22 eV), relies on replacing 

Nb5+ by lower valence transition metals (Me3+) and K+1 by cations which maintain the 

compositions stoichiometric. 

Ceramic processing of KNbO3 by conventional route was optimised in order to minimise 

K losses, which leads to the formation of a hygroscopic secondary phase, K4Nb6O17. This 

phase impairs the structural integrity of the samples. In addition, single-phase KNbO3 

ceramics have the tendency to absorb moisture from the environment, increasing its 

conductivity near room temperature. Subsequently, all solid-solutions presented in this 

work, (1-x) KNbO3-x Ba0.5Bi0.5Nb0.5Zn0.5O3 and (1-x) KNbO3-x BiMeO3 (Me= Mn, Co 

and Ni) systems in a compositional range of 0≤x≤0.25, 0.90 KNbO3-0.1 BaNb0.5Ni0.5O3 

and 0.98 K0.5Na0.5NbO3-0.02 BaNb0.5Ni0.5O3 compounds, were prepared by the same 

route as KNbO3. X-Ray Diffraction (XRD), Raman spectroscopy and Scanning Electron 

Microscopy (SEM) revealed compositionally inhomogeneities, suggesting difficulties in 

cation diffusion for low concentration of solutes by conventional routes. 

The systems evolve from orthorhombic (x=0) to pseudo-cubic symmetry with an increase 

of x, suggested by XRD, Raman spectroscopy, ferroelectric and dielectric response. 

Indeed, these two symmetries seem to coexist for intermediary concentrations. A 

solubility limit for orthorhombic KNbO3 phase is determined for each system. In addition, 

a continuous band-gap narrowing was observed in all systems.  

Nevertheless, (1-x) KNbO3-x BiFeO3 (0≤x≤0.25) system maintained the polar phase up 

to x=0.25 and its band-gap was narrowed down to 2.22 eV. Indeed, a photocurrent of 0.24 

µA/cm2 was measured for 0.75 KNbO3- 0.25 BiFeO3 which is higher than reported for 

the controversial 0.90 KNbO3-0.1 BaNb0.5Ni0.5O3 compound (Grinberg et al., 2013). The 

literature does not agree about its band-gap value, which varies from 1.3 eV to 3 eV. 

Hypothetically, the impossibility of preparing chemically homogenised samples by solid-

state reaction may lead to the occurrence of intraband states, which can be misinterpreted. 

Similar conclusions are reached for 0.98 K0.5Na0.5NbO3-0.02BaNb0.5Ni0.5O3.
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1. Introduction 

 

 

 

 

1.1 Perovskites 

 

1.1.1 Structural characteristics 

 

Perovskites have the chemical formula ABO3, where the A-site cations are typically larger 

than the B-site cations and similar in size to the O-2 anions.  

The name of this structure derives from the mineral CaTiO3 called perovskite, which was 

discovered by the geologist Gustav Rose in 1839 from samples found in the Ural 

Mountains and named after Count Lev Aleksevich von Perovski. (Hazen, 1988). 

Figure 1. 1 shows the structure of an ideal cubic perovskite. A-cations are located at the 

corners of the cube (blue spheres), and the B cation at the centre (orange sphere) with 

oxygen ions (red spheres) at the face-centred positions in octahedra coordination. The 

space group that describes the crystal symmetry of cubic perovskites is Pm3̅m (No 221). 

Table 1.1 details the atomic positions in cubic perovskites.  

https://en.wikipedia.org/wiki/Cation
https://en.wikipedia.org/wiki/Anion
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Figure 1. 1: Cubic perovskite unit cell. Blue spheres represent the A cations, the orange sphere represents 

the B cation, and red spheres represent oxygen anions (O) in octahedral coordination. 

Site Coordinates 

A cation (0, 0, 0) 

B cation (0.5, 0.5, 0.5) 

O anion (0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5) 

Table 1. 1: Equivalent positions of the atoms in cubic perovskites. 

The perovskite structure enables a wide range of physical phenomena, depending on the 

atomic species occupying the A and B-sites. Indeed, piezo- and ferroelectric, magnetic, 

catalytic, photovoltaic, ionic and electronic conduction properties can be observed in 

materials with this structure (Dogan, Lin, Guilloux-Viry, & Peña, 2015). Consequently, 

perovskites can be adapted to a wide range of applications such as electromechanical 

devices, transducers, capacitors, actuators, fuel cells, memory devices, transistors and 

sensors. 

The first reference found on the design of perovskite compounds was published in 1927 

by Goldschmidt, who is considered to be the founder of modern geochemistry and crystal 

chemistry. Goldsmith introduced important concepts such as the tolerance factor. 

Assuming an ideal cubic phase, a relation between the ionic radii and the lattice 

parameter, a, can be expressed as 𝑎 = 2𝑅𝑂 + 2𝑅𝐵, going through the centre, and as 

𝑎 = √2(2𝑅𝑂 + 2𝑅𝐴), through the diagonal. The relation between these expressions is an 

indicator of the stability and distortion of perovskite structures and it is expressed by 

Equation 1.1. 

https://en.wikipedia.org/wiki/Geochemistry
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𝑡 =
𝑅𝑂 + 𝑅𝐴

√2(𝑅𝑂 + 𝑅𝐵)
 

Eq. 1.1. 

Where t is the tolerance factor and RA, RB and RO, correspond to the ionic radii of A, B 

and O2- ions, respectively. A perovskite structure is considered stable when t varies from 

0.75 to 1. Many possible combinations of cations and anions have been designed using 

this expression (Bhalla, Guo, & Roy, 2000). 

Most compounds with the perovskite structure present distortions from the ideal cubic 

structure that lower the crystal symmetry. These deviations may have different origins, 

as for example, displacements of A or B cations (Jaffe, Cook, & Jaffe, 1971). An example 

of B-cationic displacement can be found in BaTiO3 at room temperature and it is 

accompanied with the appearance of spontaneous polarisation. Indeed, one of the most 

studied properties in perovskite oxides is the ferroelectricity, which will be described in 

detail below. 

 

1.1.2. Solid solutions 

 

Solid solution is a solid-state solution where one or more solutes coexist in a solvent. The 

solute-solvent coexistence is considered a solution, when the solvent structure remains 

unchanged by addition of solutes and it is still single phase. There are two types of solid-

solutions: substitutional (Figure 1. 2 (a)), where the atoms of the solvent are replaced by 

the atoms of the solutes, and interstitial (Figure 1. 2 (b)), where the atoms of the solutes 

fit into the space between solvent atoms. 

 

Figure 1. 2: Types of solid solutions: (a) Substitutional solid solution and (b) Interstitial solid solution 
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Both types of solid solution modify the properties of the material by distorting the crystal 

lattice and changing the physical and electrical properties of the solvent material 

(Groover, 1997). After the discovery and development of the perovskites in the 1950s, R. 

Roy and colleagues moved the research on these materials to the next level, by 

synthesizing the first substitutional solid solutions with perovskite structure (Roy, 1954). 

Later, this research group created maps with regions of stability, where it is possible to 

carry out ionic substitutions and correctly predict which polymorph forms. These maps 

are still used today, in order to validate or discard substitutions of a specific perovskite 

phase (Bhalla et al., 2000).  

Vegard’s law is an approximate empirical rule which holds that a linear relation exists, at 

constant temperature, between the lattice parameters of the solid solution and the solute 

content (Denton, 1991). In this work, it was used to study the formation of the solid-

solutions. 

Often, the creation of solid solutions is motivated by the improvement of specific 

properties of the solvent compound. An example, is the solid solution x PbTiO3-(1-x) 

PbZrO3 (PZT), which shows high piezoelectric coefficients (Cao & Cross, 1993). This is 

also the case of the materials prepared for this thesis, where the impact of different 

chemical substitutions into KNbO3 (KN), a well-known perovskite oxide, is investigated 

in particular the ferroelectric and optical properties.  

 

1.2. Dielectrics 

 

1.2.1 Definitions 

 

A dielectric material is defined as an electrical insulator that can store charge by applying 

an electric field (E). The polarisation vector, P (µC/cm2), that is induced in the material 

is given by Equation 1.2.: 

𝑃 = 𝜀0 · 𝜒 · 𝐸 Eq. 1.2. 

where 𝜒 (F m−1) is the dielectric susceptibility of the material and 𝜀0 is the dielectric 

permittivity of vacuum and it has a constant value of 8.854·10−12 F m−1. The total quantity 
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of charge density accumulated on the surface of the material when E is applied, is defined 

as the dielectric displacement vector, D (C m−2) (Equation 1.3.):  

𝐷 = 𝜀0 · 𝐸 + 𝑃   Eq. 1.3. 

Equation 1.4. is obtained by combining Eq. 1.2. and Eq. 1.3.:  

𝐷 = 𝜀0 · 𝐸 + 𝜀0 · 𝜒 · 𝐸 = 𝜀0 · (1 + 𝜒) · 𝐸 Eq. 1.4. 

where 𝜀 = 1 + 𝜒  is the dielectric permittivity of the material. This value gives 

information about how easily a material is polarised under an electric field. When a 

dielectric material is not able to withstand an electric field and electricity starts to flow 

through the material, it has reached the dielectric breakdown limit.  

 

1.2.2 Piezoelectrics 

 

Among dielectrics, there is a group of materials that develop electric displacements (in 

other words, spontaneous polarization) by the application of a mechanical pressure and 

they are known as piezoelectric materials. Piezoelectricity is an intrinsic property related 

with the crystal structure. There are 32 crystallographic point groups (Table 1. 2) 

depending on their symmetry characteristics, 11 of them possess a centre of symmetry 

and are non-polar. The remaining 21 point groups are non-centrosymmetric groups but 

only 20 exhibit piezoelectricity. Non-centrosymmetric point groups are further divided 

into polar (10) and nonpolar types (11). 

Materials that present temperature dependence of the spontaneous polarization are called 

pyroelectrics. In these materials, a change in temperature of the crystal produces electric 

charges on the surface of the crystal corresponding to a change of spontaneous 

polarization. 

https://en.wikipedia.org/wiki/Polar_point_group
https://en.wikipedia.org/wiki/Chirality_(mathematics)
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Table 1. 2: Classification according to crystal centrosymmetry and polarity. Inside the bold line are 

piezoelectrics (Uchino, 2009). 

 

1.2.3 Ferroelectrics 

 

Ferroelectric materials have all these properties explained above and furthermore their 

spontaneous polarization can be reversed by an external electric field. For determining 

ferroelectricity, it is required to apply an electric field to a pyroelectric material and 

experimentally observe the switching of the spontaneous polarisation without exceeding 

the dielectric breakdown limit. 

 

1.2.3.1 Historical background  

 

The first ferroelectric material, Rochelle salt, was discovered in 1922 by Valasek. 

Development of ferroelectric materials was driven by military applications during World 

War II in the early 1940s. Then, switchable orientation of BaTiO3 was reported for first 

time in 1949 (Grey, 1949) and by the mid-1950s, Pb(ZrxTi1-x)O3 (PZT) was already 

known. Since then, continuous innovation and improvement of materials and 

technologies has led to a large number of industrial and commercial applications, such as 

capacitors, actuators, sonars and transducers, among others (Haertling, 1999).  
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1.2.3.2. Phenomenology 

 

The polarisation response under an electric field can be plotted as a characteristic curve 

known as ferroelectric hysteresis loop. It is possible to observe an example in Figure 1. 

3. This behaviour is directly related with the switching of the domains. Once almost all 

domains are aligned, polarisation achieves its maximum value (PS) and it is maintained 

constant. It means the ferroelectric material is saturated. However, it is not possible to 

achieve complete alignment of the dipoles due to defects and impurities in the ceramic. 

At zero field, the ferroelectric material exhibits remament polarisation (Pr) and the field 

necessary to bring polarization to zero is called the coercive field, Ec. 
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Figure 1. 3: Ferroelectric (P –E) hysteresis loop. Spontaneous polarisation (Ps), remanent polarisation (Pr) 

and coercive field (Ec) are noted in the figure.(Pascual-Gonzalez et al 2016). 

One of the characteristics of ferroelectric materials is the formation of ferroelectric 

domains. These domains are crystal regions where the spontaneous polarization is 

orientated in the same direction. The interface between domains is called a domain wall. 

In the case of a well-known ferroelectric material, BaTiO3 (BT), that will be examined in 

detail in the next section, domain walls of 180 ° and 90° can be observed, which means 

the polarization vectors are either in completely opposite directions or at 90° angles, 

respectively. Figure 1. 4 shows an illustration of 90° and 180º domain walls (Fang et al., 
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2013) and a SEM (backscattered electron detector) image of BT microstructure where 

ferroelectrics domains can be detected (Cheng, Ho, & Lu, 2008). 

 

Figure 1. 4: (a) Representation of ferroelectric domains (180º and 90º) in different grains. (b) Backscattered 

electron SEM image of the BT polished. Ferroelectric domains of 90º and 180º are pointed in the image 

(Cheng et al., 2008). 

When cubic BT is cooled down, it acquires a ferroelectric phase and the polarisation 

vector could be oriented in any direction along the cubic axis of the structure (Figure 1. 

5). The electrical and mechanical boundary conditions are what really determine the 

direction at which the spontaneous polarisation will be established. In the phase transition 

when spontaneous polarisation starts to appear, some charge is accumulated on the 

surface of the material. It generates an electric field, also known as depolarising field Ed; 

and its direction is opposite to the spontaneous polarisation, Ps, as shown in Figure 1. 5. 

It may be the case that the depolarising field will be strong enough to fragment a single-

domain energetically unfavourable into many domains with oppositely oriented 

polarization (Damjanovic, 1998). This phenomenon is related with the creation of 180º 

domain walls. On the other hand, when a crystal is mechanically stressed along the [100] 

cubic direction and cooled down, the long axis (cT-axis in Figure 1. 5) of the tetragonal 

distortion will develop perpendicularly to the stress in order to minimize the elastic 

energy. 
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Figure 1. 5: Formation of 90º and 180º ferroelectric domain walls in a tetragonal perovskite ferroelectric, 

such as BaTiO3.(Damjanovic, 1998) 

The ferroelectric domains are randomly oriented due to the complexity of electric and 

elastic conditions in each grain (Figure 1. 6). Even if materials exhibit spontaneous 

polarisation locally, the net polarisation is zero. In order to reorient all domains and bring 

the ceramic to a polar state, it is necessary to apply an electric field strong enough to 

switch all dipoles. This process is called poling and usually is done at high temperature 

for increased domain wall mobility.   

 

Figure 1. 6: Ferroelectric ceramic with random orientation of grains before and after poling. 

 

1.2.3.3. Origin of ferroelectricity 

 

The origin of the ferroelectricity in perovskites may arise from different sources as: 

(i) Cation-displacements 

(ii) Lone pair electrons 

(iii) Geometry 
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(iv) Charge ordering 

 

(i) Cation-displacements 

Barium titanate, BaTiO3 (BT), is a classical ferroelectric material. From its discovery to 

the present, it has been extensively investigated, being possible to find a large number of 

works about its structure and properties in the literature (Ahn, Rabe, & Triscone, 2004; 

Cohen, 1992; Merz, 1954). 

With a tolerance factor of 1.06, BaTiO3 has a typical perovskite structure with a tetragonal 

distortion, space group P4mm (No. 99) as shown in Figure 1. 7 (a). 

 

Figure 1. 7: Displacement of the A and B cations in BaTiO3. Green spheres represent the A cations (Ba), 

the blue sphere represent the B cation (Ti), and red spheres represent oxygen anions in octahedral 

coordination (Tazaki et al 2009). 

Ferroelectricity arises by Ti off-centering, generating distortion and the appearance of 

spontaneous polarization in the material. 

BT undergoes a series of phase transitions with temperature. Figure 1. 8 illustrates these 

successive phase transitions (Rhombohedral-to-orthorhombic, orthorhombic-to-

tetragonal, tetragonal-to-cubic) which are accompanied by dielectric anomalies. Above 

130ºC, the unit cell acquires a cubic form and consequently, spontaneous polarisation 

disappears. Overall, the transition from polar to non-polar phase in ferroelectrics occurs 

at certain temperature, also called Curie temperature and it is characteristic of each 
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material. At this temperature, dielectric permittivity presents a maximum value (Jona & 

Shirane, 1962). 

 

Figure 1. 8: The temperature dependence of the dielectric constant for BaTiO3 and the various phase 

transitions (Ito & Uchino, 2005). 

Lead titanate, PbTiO3, is also a well-known ferroelectric perovskite oxide (Arlt, 1990; 

Jaffe et al., 1971; Moulson & Herbert, 1990). The ferro- to paraelectric phase transition 

occurs at higher temperature than BaTiO3, around 490ºC (Sani, Hanfland, & Levy, 2002). 

This compound presents tetragonal structure (P4mm) at room temperature  and it is 

characterised as having high tetragonal distortion with c/a value of 1.064 (BaTiO3, 

c/a=1.01) (Cohen, 1992). The high tetragonality of this structure suggests a remarkable 

displacement of the cations, generating the appearance of a dipole moment in the direction 

of this axis (Rabe & Ghosez, 2007). 

(ii) Lone pair electrons 

BiFeO3 is possibly the only material that is both magnetic and a strong ferroelectric at 

room temperature and it was one of the first multiferroic materials with perovskite 

structure to be studied. 

BiFeO3 exhibits a rhombohedral structure (point group R3c) at room temperature 

(Moreau, Michel, Gerson, & James, 1971). From the electrical point of view, the main 

problem of this material is its high conductivity. First measurements gave small values of 

polarisation, between 3-6 μC / cm2 (Teague, Gerson, & James, 1970). However, an order 

of magnitude higher has been reported later on high quality thin films (Eerenstein, 

Mathur, & Scott, 2006; J. Wang et al., 2003; Xie et al., 2017), single crystals (Lebeugle 

et al., 2007) and ceramics (Shvartsman, Kleemann, Haumont, & Kreisel, 2007). 
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Ferroelectricity in BiFeO3 is originated by the lone pair electrons (s2) of Bi3+, which shifts 

Bi+3 to give rise to a spontaneous polarization along the [111] direction (Catalan & Scott, 

2009). The lone pair is visualized by red surface in Figure 1. 9. 

 

Figure 1. 9: Schematic representation of BiFeO3 showing that the lone pair (red surface) promotes the 

appearance of spontaneous polarisation (Fiebig, Lottermoser, Meier, & Trassin, 2016). 

 

(iii) Geometry 

Other mechanism that generates ferroelectricity is due to geometric factors (Spaldin, 

2017). Spontaneous polarisation in hexagonal RMnO3 (where R= Sc, Y, In or Dy) 

compounds arises from a tilt and deformation of MnO5 bipyramids, which shift the rare-

earth ions as pointed by the arrows on Figure 1. 10. 

 

Figure 1. 10: Schematic representation of YMnO3. Spontaneous polarisation (P) arises when the MnO5 

pyramids (yellow and red spheres represent manganese and oxygen respectively) tilts and therefore the Y 

ion (grey sphere) shifts towards one of the oxygens.(Fiebig et al., 2016). 
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(iv) Charge ordering 

Furthermore, the occurrence of ferroelectricity in LuFe2O4 is explained by other 

mechanism, charge-ordering (Ikeda et al., 2005). Fe2+ and Fe3+ ions are arranged in 

alternating chains in a superlattice. The spontaneous polarization arises between the two 

layers (Figure 1. 11).  

 

Figure 1. 11: Charge ordering is the source of an electric polarization in LuFe2O4, which is illustrated in 

this figure. Green, grey and red sphere represent Fe+2, Fe+3 and O, respectively. (Fiebig et al., 2016) 

Finally, an alternative way to induce ferroelectricity is the magnetic order. Spin 

interactions can drive to a non-polar state and it is related to the generation of  

multiferroicity (Cheong & Mostovoy, 2007; Mostovoy, 2006). 

 

1.2.4. Piezoelectricity in ferroelectrics 

 

The direct piezoelectric effect (Equation 1.5.) relies on the accumulation of electric 

charge density (D), which is generated by an applied mechanical stress (T). On the other 

hand, the indirect piezoelectric effect (Equation 1.6) occurs when an electric field (E) is 

applied on solids and causes stress, and consequently, a proportional strain (S). The basic 

relationships between the electrical and elastic properties can be represented as follows: 

𝐷 = 𝑑 · 𝑇 + 𝜀 · 𝐸 Eq. 1.5 

𝑆 = 𝑠 · 𝑇 + 𝑑 · 𝐸 Eq. 1.6 

Where d, s and 𝜀 are the piezoelectric charge coefficient, compliance coefficient and the 

permittivity characteristics of each material, respectively. 

In addition, electromechanical coupling factor, kT, is an indicator of how effective a 

piezoelectric material is in converting electrical energy into mechanical energy and vice 

versa. 
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Figure 1. 12 shows an illustration of a strain (S) versus electric field (E) curve for 

ferroelectrics. The shape looks like a butterfly, and it is usually known as the “butterfly 

loop”. 

 

Figure 1. 12: Typical strain- electric field response curve for a ferroelectric material. 

Firstly, strain increases with electric field (A). The dipoles of all the grains start to align 

with the electric field and the ceramic expands through the piezoelectric effect. The 

expansion continues until the maximum field is reached. When the field changes 

orientation, strain decreases more slowly due to the reoriented dipoles (B). As the field 

becomes negative the dipoles are forced away from their original orientation. At the 

critical point, the field is large enough to switch the direction of polarization (C). After 

polarization reversal (D), the crystal expands again until it reaches its physical strain limit. 

The electric field is again reversed, and the line E-F-G is analogous to that explained for 

B-C-D in the other direction. 

Among solid solutions with perovskite structure, a type of ferroelectric systems has 

emerged that have a morphotropic phase boundary (MPB). An MPB is defined as the 

compositional barrier between two phases, in a phase diagram with identical Gibbs 

energy (Cao & Cross, 1993) 

This phenomenon occurs in a solid solution between compounds that have different 

polymorphs derived from the perovskite structure. With the increase of substituted cations 

in the solid solution, the crystal structure of the solvent phase is distorted and a transition 

to the other polymorph happens. That composition or range of compositions in which the 

phase transition appears, is known as MPB. 

Even if the two phases involved in the MPB have similar energies, they have different 

elasticity, consequently the solvent phase tends to maintain its structure with the addition 
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of solute until it reaches the MPB. In this region, it is observed that electrical properties 

have a tendency to increase, achieving maximum values in parameters such as dielectric 

constant, piezoelectricity, electromechanical properties, spontaneous polarization and 

pyroelectric coefficient (Bhalla et al., 2000). 

One of the most investigated solid solutions that presents this phenomenon is x PbTiO3 - 

(1-x) PbZrO3 (PZT). This ferroelectric system exhibits the highest piezoelectric 

coefficients known in the MPB region (x ~ 0.47). Controversy about the origin of the high 

piezoelectric response in the MPB is found in the literature. Finally this behaviour in PZT 

was explained by Guo et al. in 2000 through the presence of a phase with monoclinic 

structure (space group Cm), which is considered intermediate between rhombohedral and 

tetragonal. Modifications on PZT phase diagram, after the discovery of the monoclinic 

phase is shown in Figure 1. 13. 

 

Figure 1. 13: PZT phase diagram around the MPB showing the monoclinic region (Guo et al., 2000) 

The electrostrictive effect is the non-linear deformation of a solid under an electric field 

(E). The induced strain (S) is proportional to the square of electric field (E) and it is 

expressed in the following Equations 1.7-8:  

𝑆 = 𝑄 · 𝑃2 Eq. 1.7. 

𝑆 = 𝑀 · 𝐸2 Eq. 1.8 

where Q and M are electrostrictive coefficients. According to Eq. (1.7.) and Eq. (1.8.), 

the electrostrictive coefficient Q can be calculated from the linear fitting of the strain-

polarization square (S-P2) curve (Li, Jin, Xu, & Zhang, 2014). A classic electrostrictive 

material is lead magnesium niobate (PMN), which exhibits large electrostriction strains 

(up to 0.1%) and is used widely in actuator applications (Figure 1. 14).  
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Figure 1. 14:  Electric field dependence of the strain in a PMN single crystal at various temperatures. 

(Nomura & Uchino, 1982). 

PMN electrostrictive ceramics belong to a class of relaxor ferroelectrics, materials which 

shows a strong dispersion of dielectric permittivity. TC can vary in a temperature interval 

of hundreds of degrees and the dielectric peak is broader than for normal ferroelectric 

(Figure 1. 15). However, the mechanism for this effect is still an open question (Cowley, 

Gvasaliya, Lushnikov, Roessli, & Rotaru, 2011). 

 

Figure 1. 15: Temperature dependence of the real part of the dielectric permittivity ε´ of PMN (Smolenskii, 

1970). 

 

1.2.5. Literature review of KNbO3 

 

KN is a well-known ferroelectric perovskite and it is the main compound of this study. 

Many fundamental and experimental investigations have been carried out since 

ferroelectricity was discovered in this compound (Matthias, 1949). At room temperature, 
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the KN crystal symmetry can be described with orthorhombic structure (space group 

Amm2). The orthorhombic Amm2 cell contains two KNbO3 units and the lattice 

parameters are a = 3.973 Å, b = 5.695 Å and c = 5.721 Å (Hewat, 1973).  

Shirane et al reported in 1954 a value of 41 2 µC/cm2 for the spontaneous polarisation 

of KN single-domain at room temperature. This large value is due to cation displacement 

of Nb+5 within the NbO6 octahedra. The distortion is generated by the hybridisation of 

the empty d-orbitals of Nb+5 with the O2- p-orbitals.  

Figure 1. 16 (a) and (b) shows the dielectric constant dependence with the temperature in 

a KN crystal (Shirane et al., 1954) and a ceramic (Birol, Damjanovic, & Setter, 2005) 

respectively. The Curie temperature of both, crystal and ceramics, for KN is about 410ºC. 

At −55 °C the crystal symmetry changes from rhombohedral (R3m) to orthorhombic 

(Amm2) and at 220 °C from orthorhombic to tetragonal (P4mm). The ferroelectric phase 

transition behaviour for KN single crystal and ceramic are analogous to BaTiO3 (Figure 

1. 8). 

 

Figure 1. 16: Evolution of the dielectric constant with the temperature in (a) a single crystal (Shirane et al., 

1954) and. (b) a ceramic (Birol et al., 2005) of KN. Dielectric anomalies are related with the phase 

transition. 

The dielectric constant for the single crystal exhibits maximum value of 4000 (6000 for 

ceramic) at the Curie temperature, although at room-temperature it is 1000. In ceramics, 

the room temperature value varies between ~300 - 1000 in the literature (Birol et al., 

2005; Ken-Ichi Kakimoto, Masuda, & Ohsato, 2005; Kim et al., 2014; Pascual-Gonzalez, 

Schileo, & Feteira, 2016). This discrepancy on dielectric constant values is related to the 

final microstructure of the ceramic, such as presence of porosity and different distribution 

of grain size. The different polymorphs of KN can also be distinguished by Raman 

spectroscopy (Figure 1. 17, Baier-Saip, Ramos-Moor, & Cabrera, 2005). 
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Figure 1. 17: Raman spectra of KNbO3. The temperature and the corresponding crystal phase are indicated 

for each spectrum (Baier-Saip et al., 2005) 

The cubic phase displays two large and broad bands. These bands persist in the tetragonal 

and orthorhombic phases, and they split in narrower modes, which become sharper as 

temperature decreases. Extra modes emerge in orthorhombic and rhombohedral phase. 

The intensity of the sharp mode near 192 cm-1 increases systematically with the decrease 

in temperature. Detailed description of Raman modes in KN will be given in Chapter 3. 

KN crystals exhibit unusual large mechanical coupling factors, kT, which presents a 

maximum value of 0.69 at 40.51º away from the polar axis (Figure 1. 18). This value is 

the largest kT  reported in literature among piezoelectrics (Rödel et al., 2009), the typical 

value for PZT is 0.5. Even with this great mechanical coupling value, no practical 

applications of polycrystalline KNbO3 piezoelectric ceramics have been found and only 

few studies about electrical properties of this material have been reported due to 

difficulties on its densification. 
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Figure 1. 18: The mechanical coupling factor in KN single crystals. The angle θ specifies the rotation away 

from the polar axis of the pseudocubic system. The largest KT (0.69) value is obtained at 40.51º (Rödel et 

al., 2009).  

The preparation of KN by conventional ceramic processing is challenging because of 

different issues. The evaporation of potassium during the heat treatments of the synthesis 

and sintering prevent KN ceramics from being fully densified. When the ratio K/Nb 

differs from unity, an unstable secondary phase, K4Nb6O17 (or 2K2O-3Nb2O3) is easily 

formed. This phase affects the stability of the KN ceramic when exposed to humid 

environment. Furthermore, other problem that affects the KN preparation is its low 

melting point (1039 ºC) which is very close to the sintering temperature, as shown by the 

Reisman and Holtzberg’s phase diagram (Figure 1. 19). These problems are approached 

in Chapter 3. 

 

Figure 1. 19: Phase diagram of Nb2O5-K2CO3 system. The melting point of KN is indicated at 

1039ºC.(Reisman, Holtzberg, Triebwasser, & Berkenblit, 1956) 
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However, Birol et al. achieved to prepare KN ceramics with high relative density (93.9%) 

after firing the green bodies at 1035 ºC in oxygen. The same study shows hysteresis loop 

of KN at room temperature (Figure 1. 20 (a)). The ceramic was able to withstand an 

electric field of 80 kV/cm and exhibited a maximum spontaneous polarisation value of 

25 µC/cm2 and a coercive field of 15 kV/cm. Kakimoto et al obtained a density of 4.49 

g/cm3 (97.4%) for KN ceramics which were sintered at 1020 ºC in a potassium rich 

atmosphere provided by covering the green body with additional KN powder. This study 

also reported an enhancement of the ferroelectric properties for (1-x) KNbO3-x LaFeO3 

(Figure 1. 20 (b)) with increasing x content. 

 

Figure 1. 20: Hysteresis loop of polycrystalline KN ceramic at room temperature reported by (a) Birol and 

(b) (1-x) KNbO3-x LaFeO3 Kakimoto et al. 

In addition, KN also presents promising optical properties, such as nonlinear optics 

(Pliska, Fluck, Günter, Beckers, & Buchal, 1998), electro-optical coefficients and high 

refractive indices (Reeves, Jani, Jassemnejad, & Powell, 1991). Indeed, KNbO3 is a good 

candidate for photorefractive materials (Ryf, Montemezzani, & Günter, 2001; Yan et al., 

2013), electro-optic devices, optical waveguides, optical parametric oscillator (Zaitsev, 

Kuznetsova, & Joshi, 2001), frequency doublers, sensing, imaging applications (Ladj et 

al., 2013), cryptography (Montemezzani & Günter, 1990), signal processing circuits, 

photocatalytic (R. Wang et al., 2013), photovoltaic (Ilya Grinberg et al., 2013) and 

holographic memory storage devices (Buse, 1993). Due to this wide spectrum of optical 

applications, the band-gap of KN has been largely reported, that will be shown later, in 

section 1.4 (Band-gap narrowing). 
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1.2.6. Applications of piezo- and ferroelectrics 

 

This section provides a general overview about piezo- and ferroelectric applications 

without going into many details. From their discovery to the present, FE materials have 

been implemented in wide range of applications. Depending on the application 

ferroelectrics can be prepared as bulk ceramics or thin films. Figure 1. 21 illustrates the 

temperature dependence of the spontaneous polarisation (Ps), dielectric constant (ε) and 

its inverse (1/ε). Schematically the classic applications of ferroelectrics are indicated in 

this graph in function of the physical properties required and the operational temperature. 

 

Figure 1. 21: Spontaneous polarization, permittivity and inverse permittivity in a ferroelectric material. (a)–

(f) indicate the temperature ranges for each application (Uchino, 2009). 

Capacitors (a) need to be easily polarised under an electric field, then they will work in 

the maximum value of dielectric constant close to the transition (Tc). In memory devices 

(b) the materials must be FE at RT. Pyroelectric sensors (c) are based on the large 

temperature dependence of the spontaneous polarisation below TC.  

Piezoelectrics are more utilised as sensors and actuators (e). A requisite of these 

applications is to exhibit high values of TC. Direct piezoelectric effect is used in sensors 

devices that measure force, pressure, vibration or acceleration. Indeed, conventional 

piezovibrators have already been installed in different equipment such as precision 

positioners and pulse drive linear motors. Recently, piezoelectric energy harvesting 

systems have attracted attention. Waste mechanical energy such as noise vibration, wind, 

and human walking can be transformed into electrical energy and can be used directly for 
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signal transmission or to charge up batteries for portable electronics (Mitcheson, 

Yeatman, Rao, Holmes, & Green, 2008). The indirect piezoelectric effect is used in 

actuators to generate a force, vibration or an acoustic wave. Both effects can be employed 

in a device to combine actuation and sensing. Finally, TC for electro-optic (d) and 

electrostrictive (f) devices are lower than RT to use their paraelectric state.  

 

1.3. Photoferroelectrics 

 

1.3.1. Electronic band structure of solids 

 

A solid is a set of ions and electrons at different energy levels in thermodynamic 

equilibrium and its band structure gives the allowed and forbidden energy ranges that an 

electron can have within the solid and consequently informs of many physical properties.  

In quantum mechanics, a Hamiltonian (H) is a mathematical operator that corresponds to 

the total energy in a system. Taking in consideration all the ionic and electronic 

interactions into the solid, the formulation of the Hamiltonian becomes very complex. In 

order to make this task easier some approximations are considered: (i) ions are at rest, 

then ion’s kinetic energy term is zero; (ii) ions are fixed, interaction ion-ion term is 

discarded; and (iii) each electron does not perceive an individualized interaction of each 

ion and electron, but a resulting effective potential generated by all electrons and ions, 

𝑉(𝑟𝑖).  

Considering the previous approximations for the Hamiltonian, the evolution over time of 

an electron is given by the Schrödinger equation (Eq. 1.9).  

Η̂𝜓(𝑟, 𝑡) = ∑ {−
ℏ2

2𝑚
∇𝑖 + 𝑉(𝑟𝑖)} · 𝜓𝑖(𝑟𝑖, 𝑡)

𝑖

 
Eq. 1. 9 

The first term represents the kinetic energy of the electrons, where 𝑖 is the number of 

electrons, 𝑚 is the electron mass, ℏ is the Planck constant (6.58212·10-16 eV·s/rad), ∇𝑖 is 

the gradient operator and 𝜓𝑖(𝑟𝑖, 𝑡) is the electron wave function. The resulting effective 

potential (𝑉(𝑟𝑖)) is assumed to be a periodic potential of period a and consisting of an 

infinite series of potential barriers of height V0, wide b and separated by a distance a-b 

(Model Kroning-Peney). (Figure 1. 22). 
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Figure 1. 22: Schematic representation of idealized quantum-mechanical system that consists of an infinite 

periodic array of rectangular potential barriers. 

The solution of the Schrödinger equation for this model is given by the Bloch functions. 

A 1 dimensional chain of atoms (x direction) separated by a lattice spacing a, is 

considered (Eq. 1.10). 

Ψ(𝑟𝑥) = 𝑢(𝑟𝑥) · 𝑒𝑖𝑘𝑟𝑥 Eq. 1.10 

The wavefunction Ψ(𝑟𝑥) is a combination of the periodic potential 𝑢(𝑟𝑥) of each atom 

with an exponential term that varies with the wavenumber 𝑘. The wavefunction is 

continuous and periodic (Eq. 1.11).  

Ψ(𝑟𝑥) = Ψ(𝑟𝑥 + 𝑎) Eq. 1.11. 

It is convenient to work with wavenumbers, k, instead of time to approach the Schrödinger 

equation, because k always presents discrete values (Eq. 1.12). 

𝑘 = (
2𝜋

𝑎
) 𝑛 

Eq. 1.12 

Where n is an integer number. 

Assuming all the considerations detailed above, the Schrödinger equation can be ‘easily’ 

resolved, obtaining the energy as a function of wavenumbers, E (k), also known as "band 

energy diagram". In this case, the solution, E (K), is a parabola, except for certain energy 

ranges where the solution does not exist (black curve, Figure 1. 23). 
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Figure 1. 23: Representation of the band structure E(K). Black curve is the solution assuming a periodic 

potential (Model Kroning-Peney). and green curve is for a free electron model.   

By inspection of the energy band structure we can determine the valence and conduction 

bands. The valence band (VB) is where the electrons that form the atomic bonds can be 

found. Nevertheless, there are electronic states with higher energy that form the 

conduction band (CB). If one electron occupies one of this energy levels, it is not linked 

to an atom but to all atoms at the same time and the electron can move freely. The range 

of energy (or band), where electron states cannot be found, is defined as the ‘band-gap’. 

This interval is defined between the VB and the CB (Figure 1. 24). Depending on the 

value of the band- gap, the material can be classified as metallic (VB and CB are 

overlapping), semiconductor (~1eV) or insulator (≥ 9 eV). If the maximum of the VB 

(MVB) and the minimum of the CB (mCB) are at the same wavenumber, k, it is called 

direct band-gap. Otherwise, it is called indirect band-gap. (Figure 1. 24). In this type of 

band-gap, an electron cannot be excited from the MVB to mCB without a change in 

momentum. This process requires the absorption of a phonon for conservation of 

momentum. This distinction is important in solar cells because the semiconductors with 

direct gap absorb more photons than indirect gap. 
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Figure 1. 24: Energy (E) versus momentum (k) plot. Schematic representation of direct and indirect band-

gaps. 

However, real band structure in solids must consider orbital interactions in 3 dimensions 

arising from s, p, d, and f orbitals on each atom. This leads to complex energy diagrams 

with many bands. Thus, the calculation of E(k) is unfeasible and requires computational 

programs. Extending the system to 3 dimensions, the k vectors comprise the first Brillouin 

zone of the crystal. Before going deeper in this, it is necessary to explain some crucial 

concepts. Due to the periodic properties of the lattice and the Bloch functions, every k 

vector in the real space is equivalent to a k vector inside this Brillouin Zone (also called 

k-space). Figure 1. 25 shows the Brillouin Zone of a face-centered cubic (FCC) lattice 

where b1, b2, and b3 are the reciprocal vectors and the red points labelled (Γ, L, K, W, X, 

U) correspond to high symmetry points in the Brillouin Zone. 

 

Figure 1. 25: The Brillouin zone of FCC lattice showing the reciprocal vectors and the high symmetry lines 

and points. 

Then the electronic band structure (E(k)) is directly obtained by calculating energies in 

the high symmetry points in the Brillouin Zone, which is the easiest way from a point of 

view of the calculations (using symmetry conditions). As an example, Figure 1. 26 shows 
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band diagrams of (a) GaAs (direct band-gap) and (b) Si (indirect band-gap) which are the 

preferred materials for conventional solar cells. The band-gaps are 1.43 eV and 1 eV, 

respectively. 

 

Figure 1. 26: Electronic band structure of (a)GaAs, which exhibits direct band-gap (1.43 eV) and (b) Si 

with an indirect band-gap of 1 eV.(Rohlfing, Krüger, & Pollmann, 1993). 

 

1.3.2. Photovoltaic effect 

 

As mentioned previously, semiconductors exhibit band-gaps of ~1eV which promotes 

the absorption of sunlight due to the matching in energy with the solar spectrum, which 

mostly emits in the visible range (400-700 nm). When the light is absorbed by a 

semiconductor material, photons transfer the energy to the valence electrons producing 

the excitation of these from the VB to the CB. This process creates holes in the VB and 

electrons in the CB (electron-hole pair). After some time, electrons go back to their 

original electronic state, emitting photons or phonons. This procedure is called 

recombination. However, if there is an electric potential across the material, it will 

promote a net flow of photogenerated electrons and holes (photocurrent). The creation of 

electric current in a material under sunlight illumination is what is known as ‘photovoltaic 

effect’.  

The photovoltaic effect was discovered by A. E. Becquerel in 1839. In the first 

photovoltaic systems, the charge separation was obtained by the introduction of a 

selenium layer (Nelson, 2003). In the 1950’s a new method for creating asymmetry in the 

electric potential was presented, just doping different regions of a single piece of silicon 
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with phosphorous and boron. This procedure generates an intrinsic electric field (p-n 

junction) in the material that separates the photocarriers.  

The power conversion efficiency (𝜂) of incident light power (𝑃𝑖𝑛) to electricity is 

proportional to the open-circuit voltage (𝑉𝑜𝑐), short-circuit current (𝐽𝑠𝑐) and to the fill-

factor (FF) is given by Eq. 1.13. 

𝜂 =
𝑉𝑜𝑐𝐽𝑠𝑐𝐹𝐹

𝑃𝑖𝑛
  

Eq. 1.13. 

The maximum voltage which can be generated by conventional semiconductors (𝑉𝑜𝑐) is 

limited by the band-gap of the material. The photocurrent (𝐽𝑠𝑐) is measured when 𝑉𝑜𝑐=0 

and it is determined by the portion of solar spectrum that the material absorbed. In an 

ideal solar cell, the power generation would be equal to the product 𝐽𝑠𝑐·𝑉𝑜𝑐. Real solar 

cells show a different maximum power point (MPP) (Figure 1. 27). To evaluate the 

quality of a solar cell the fill factor (FF) is calculated, which is given by the ratio of the 

products of the current and the voltage at MPP and of 𝑉𝑜𝑐 and 𝐽𝑠𝑐. 

 

Figure 1. 27: Photovoltaic characteristic curve(I-V). Green square represents the ideal conversion power in 

a solar cell and the red one the real maximum power. The relation of this quantities gives the fill factor 

(FF). 

A theoretical calculation determines that only 33.7% of the total solar energy can be 

converted into electric energy in a solar cell with a single p-n junction (Shockley & 

Queisser, 1961). Nevertheless, this limit can be surpassed by cells with other architectures 

as shown on the NREL chart (2017) (Figure 1. 28). The multijunction cells are able to 

reach efficiencies up to 46%. In addition, it is noted that perovskite cells have experienced 

a promising growth over the last few years. Since 2009, the efficiency of perovskites has 

increased from 3.8% to 22.1%. One of the biggest problems that presents these cells are 

the stability and the rapid degradation.  
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In academia, photoferroelectrics are presented as potential candidates for using in 

photovoltaic devices due to their anomalous photovoltaic response that will be detailed 

in the next section. Anyway, these materials do not appear in the NREL chart because of 

their extremely low efficiency.  

 

Figure 1. 28: NREL chart show cells efficiencies from 1975 to 2017.  

 

1.3.3. The anomalous photovoltaic effect in ferroelectrics 

 

1.3.3.1. Introduction 

 

Anomalous photovoltaic effect in polar materials was discovered in early 70’s (V. M. 

Fridkin et al., 1974; Grekov, Malitskaya, Spitsina, & Fridkin, 1970). The first explanation 

of the photovoltaic effect based on the asymmetry of Fe+2-doped LiNbO3 was reported 

by Glass in 1974. Since then, photo-response on thin films of classical ferroelectrics have 

been investigated, such as PZT (Kholkin, Boiarkine, & Setter, 1998) and BaTiO3 

(Dharmadhikari & Grannemann, 1982). Moreover, different theoretical studies have been 

developed (Sturman & V. M. Fridkin, 1992; Young & Rappe, 2012; Young, Zheng, & 

Rappe, 2012). In the last 10 years photovoltaic properties in non-centrosymmetric crystals 

have attracted renewed attention (Choi, Lee, Choi, Kiryukhin, & Cheong, 2009; Ilya 

Grinberg et al., 2013; Kreisel, Alexe, & Thomas, 2012; Yang et al., 2010).  
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Different explanations have been proposed to explain the nature of anomalous 

photovoltaic effect in polar materials. However, all have one point in common: photo-

response in ferroelectric is generated by completely different mechanism than observed 

in non- polar structures such as p-n junctions.  

Photovoltages in ferroelectrics can exceed several times their band gaps values, in 

contrast to conventional semiconductors. Spontaneous polarisation in non-

centrosymmetric materials provides an alternative way to separate the photoexcited 

carriers.  

 

1.3.2.2. Origin of the photoresponse in ferrolectrics 

 

As was introduced, the origin of the bulk photovoltaic effect (BPE) was explained for 

first time more than 40 years ago (Glass, von der Linde, Auston, & Negran, 1975) and it 

has been recently reviewed in BaTiO3 thin films (Zenkevich et al., 2014).  

The microscopic mechanism that promotes BPE in Fe doped LiNbO3 was directly related 

to asymmetric scattering of excited electrons, in this case due to the ‘iron defects’ (Glass 

et al., 1975). When some lithium cations (Li+1) are substituted by iron cations (Fe+2) in a 

LiNbO3 array, the results are that the potentials barriers for electrons are not equal in all 

directions (Figure 1. 29(a)). If an electron is excited from the ground state (E0) to an 

energy level E1, the electron remains trapped in the potential well. Nevertheless, if the 

electron is excited to E2 level then it will be scattered in a certain direction. Always there 

is a preferred orientation from a statistic point of view (possible tunnelling) which leads 

to the presence of more electrons with certain momentum vector value, k. This imbalance 

gives rise to the appearance of a net flow of electrons in the same direction. These 

electrons will travel 𝑙0 distance in space before losing their energy and decay to the lowest 

level of the conduction band (Figure 1. 29 (b)). 
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Figure 1. 29: (a) Asymmetric potential well which leads the asymmetric scattering of the excited electrons 

(Butler, Frost, & Walsh, 2015)(b) While photoelectrons in a centrosymmetric crystals (i) present an 

homogeneous momentum distribution, in a noncentrosymmetric crystal (ii) a photocurrent appears under 

illumination due to the asymmetric momentum distribution (Zenkevich et al., 2014a). 

However, noncentrosymmetric materials without impurities also exhibit photoresponse 

under illumination. Fridkin explained in his book ‘Photo-ferroelectrics’ (1979) in a 

contrived manner and difficult to understand that there are several microscopic 

mechanisms that can contribute to the photocurrent such as impurity centres and 

photoinduced fluctuations. In subsequent works, Fridkin directly attributed ‘the violation 

of the principle of the detailed balancing for photoexcited (non-equilibrium) carriers in 

noncentrosymmetric crystals’ to the generation of photocurrent. This mechanism would 

be analogous to the Glass model (explained above) but without making clear the origin 

of asymmetric scattering of excited electrons. 

 

1.3.2.3. Experimental measurements 

 

The photoresponse in ferroelectrics is measured in the same way as conventional 

photovoltaics. A homogeneous polar medium with short-circuited electrodes is uniformly 

illuminated, thus the photocurrent (JSC) is generated. On the other hand, the photovoltage 

(UPh) is measured in open-circuit conditions (Figure 1. 30). 
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Figure 1. 30: Schematic representation of measurements of the photovoltaic current J and photovoltage Uph 

Initially, the Glass model considered that the photovoltaic current was proportional to the 

intensity of the monochromatic incident light (Eq. 1.14). 

𝐽𝑠𝑐 = 𝜅1𝛼𝐼 Eq. 1.14 

where 𝛼 is the absorption coefficient and 𝜅1 is a coefficient that relies on the nature and 

concentration of the impurity centres and the energy of the incident photons. Afterwards 

quantum mechanics was incorporated to this model for describing the asymmetric 

scattering of excited electrons in ferroelectrics (von Baltz & Kraut, 1978). However, this 

model did not consider the dependence of photocurrent with the rotation of the 

polarization of the incident light. Hence, the expression of the photocurrent was described 

with a third rank tensor (Eq. 1.15) (V. M. Fridkin, 2001; Kraut & Von Baltz, 1979; 

Sturman & V. M. Fridkin, 1992; Von Baltz & Kraut, 1981).  

𝐽𝑆𝑐
𝑖 = 𝛼𝛽𝑖𝑗𝑙𝑝𝑗𝑝𝑙𝐼0 Eq. 1.15 

where 𝑝𝑗 and 𝑝𝑙 are the components of the light polarization vector, 𝐼0 is the amplitude 

of the light and the scalar value of the tensor 𝛽𝑖𝑗𝑙 expressed in terms of microscopic 

quantities is given by Eq. 1.16. 

𝛽 =
𝑒 𝑙0𝜉𝜑

ℏ𝜔
 

Eq. 1.16 

where e is the elementary charge of the electron, 𝑙0 is the shift of excited electrons, 𝜑 is 

the quantum yield, ℏ𝜔 is the energy of the photons and 𝜉 is a parameter that characterises 

the shift of the electrons in an anisotropy direction. 

Currently, the efficiency of conversion of light into electricity through the BPE is 

extremely low compared with actual commercial values. For example, in the case of 

BaTiO3 bulk crystals, the efficiency η was estimated ∼ 10−7 (Koch, Munser, Ruppel, & 

Würfel, 1975). Recently, this value has been surpassed in BaTiO3 thin films, as will be 
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explained later (Zenkevich et al., 2014). Until few years ago, the highest efficiency 

(0.28%) among FEs materials was reported in La-doped PZT thin film (Qin, Yao, & 

Liang, 2008).  

Different studies showed that if the thickness of the polar materials, l, is in the same order 

of magnitude or less than the shift in the nonthermalized electrons l0, the photoinduced 

electric field and the conversion efficiency become much higher.  

Zenkevich et al. reported a greatly enhancement of photoinduced electric field (EPV) when 

the thickness of the BaTiO3 films was reduced to few tens of nanometres. Figure 1. 31 

shows the I-V measurements for 50-nm (a) and 20-nm (b) BaTiO3 films at different 

illumination intensities. UPV values are practically equal to both thicknesses. 

Consequently the EPV values surpass by 4 orders of magnitude those reported for the bulk 

crystals (Sturman & V. M. Fridkin, 1992). 

 

Figure 1. 31: Photocurrent at different light intensities (1: dark current; 2: I = 1.5×10−1 W/cm2; 3: I = 

3×10−1 W/cm2; 4: I = 4.5×10−1 W/cm2; and 5: I = 7.5×10−1 W/cm2) measured on two thin-films of 

thickness: (a) l = 50 nm and (b) l = 20 nm in Pt/BaTiO3/Pt sample. 

However, Yang et al. described a new mechanism for explaining the nature of the 

photovoltaic effect in BiFeO3 thin film and completely refused the BPE detailed above. 

Linear increase of the photovoltage was observed with the increase of electrode spacing, 

d (inset Figure 1. 32). This suggests the important role of domain walls in creating the 

anomalous photovoltages. Authors rejected the BPE due to insignificant values of 

photovoltage measured in a high purity single domain of BiFeO3 (Figure 1. 32). 
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Figure 1. 32: Evolution of VOC versus electrode spacing (inset) for four t samples of high purity BiFeO3 

film with different thicknesses of 100 nm (red), 200 nm (blue) and 500 nm (green) and monodomain 

(black)(Yang et al., 2010).  

The new mechanism proposed for the photovoltaic effect in BiFeO3 thin films is related 

with the presence of the 71° (Figure 1. 33 (a)) and 109° domain walls. Separation of 

photoexcited carriers occur at the ferroelectric domain walls, where the gradient of 

polarisation gives rise to an internal electric field. Then photoelectrons move to one side 

of the wall while holes move to the other side (Figure 1. 33 (d)). Indeed, an accumulation 

of charges is created close to the domain wall under illumination. Figure 1. 33 (b) and (c) 

show the band diagrams under dark and illumination conditions. So, the net photovoltage 

is generated across all the sample, resulting from the combined effect of the domain walls 

and the excess charge created by illumination. 

 

Figure 1. 33: (a) Schematic illustration of ferroelectric domains and 71º domain walls in BiFeO3. (b) Band 

diagram showing the valence band (VB) and conduction band (CB) across these domains and domain walls 

in the dark and (c) under illumination.(d) Mechanism of photo excited charges at a domain wall. (Yang et 

al., 2010). 
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Even if the separation of the carriers at the domain wall is quite similar to the separation 

at the p-n junction, the main difference resides in the magnitude of the electric field that 

drives the charge separation, conventional Si systems exhibit 7 kV/cm compared with 

BiFeO3 that presents 50 kV/cm. 

However, this model has created controversies in the literature, indeed several studies 

clearly validated both models (Alexe, 2012; Alexe & Hesse, 2011; Bhatnagar, Ayan, 

Young, Hesse, & Alexe, 2013; Ji, Yao, & Liang, 2011).  

In conclusion, the origin of the photocurrent is not generally understood, and it is even 

difficult to determine whether the effect is due to BPE or domain wall mechanism. 

 

1.4. Band-gap engineering 

 

To enhance the photovoltaic efficiency, the band-gap of ferroelectrics (FE) must be 

narrowed while maintaining their polar nature. Indeed, band-gaps of FE usually present 

values above 3 eV (Table 1. 3), which limits their light absorption mostly to the ultraviolet 

(UV) region that it is equivalent to absorbing only 8% of the solar spectrum. The wide 

optical bandgaps in oxide FE perovskites arise from the nature of the bonding between O 

and B ions. Indeed, the large differences in electronegativity between the O and the B 

ions lead to the valence band to be formed by the 2p O states and the conduction band by 

the d states of the B transition metals sitting within the O octahedra. 

Ideally, a photovoltaic material should have a band gap in between 1.0–1.8 eV in order 

to match with the maximum emission of the solar spectrum which is the visible range 

(400-800 nm).  

FE material Band-gap (eV) Reference 

BaTiO3 3.34 (Wemple, 1970) 

PbTiO3 3.88 (Zelezny et al., 2016) 

LiNbO3 3.78 (Dhar & Mansingh, 1990) 

KNbO3 3.24 (T. Zhang et al., 2013 

BiFeO3 2.67 (Hung et al., 2012) 

Table 1. 3: Band-gap values of classic ferroelectric materials. 



Chapter 1  Introduction 

 
35 

In this section, two strategies and several studies on bandgap engineering in ferroelectrics 

are described.  

First approach to narrow the band-gap is by controlling the chemical order of the species. 

As shown on Table 1. 3, BiFeO3 exhibits the narrowest band-gap (2.67 eV) among 

ferroelectrics. However, it is only able to capture 20% of the solar spectrum. The 

modification of Fe/Cr cationic order into parent BiFeO3 has been related with lower band-

gaps. Theoretical studies predicted a band gap range of 1.4–2.0 eV in BiFe0.5Cr0.5O3 

(BFCO) compounds (Zhao, Wen, Wang, Guan, & Liu, 2008), and it was experimentally 

validated by Nechache et al. in 2011. In this study, a PV power conversion efficiency of 

6.5% for red laser was reported in BFCO thin films with a photovoltaic current density 

of 0.99 mA cm−2, one of the largest recorded at the time. More recently, the same authors 

obtained an efficiency of 8.1% for optimised multilayer system of BFCO (Figure 1. 34 

(a)), the highest efficiency ever recorded on conventional ferroelectrics. Each layer 

absorbed a different part of the solar spectrum. The tunability of the bandgap in each layer 

arises from the interaction between Fe and Cr with different oxidation states, alternating 

at B sites of the perovskite. By inspection of Figure 1. 34 (b) the band-gaps are determined 

from 1.4 to 3.2 eV (from 885 to 388 nm) which covers wide range of solar spectrum. 

 

Figure 1. 34: (a) Illustration of the tested BFCO multilayer structure. (b) (αE)2 as a function of photon 

energy, in arbitrary units (a.u.). 

In addition, Zhang et al. reported a new FE compound, KBiFe2O5, which presented a 

band-gap down to 1.6 eV and obtained photovoltage and photocurrent values comparable 

to those described for BiFeO3. 
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Second route to reduce the band-gap would be chemical engineering. Indeed, solid 

solutions permit the properties of different compounds to be adapted. 

This thesis is devoted on band-gap engineering for solid solutions based on KNbO3.  

Different electronic band diagrams of KNbO3 along the symmetry lines of the Brillouin 

zone are shown in Figure 1. 35. Both, Okoye and Sinha et al. calculations are in agreement 

for cubic KNbO3, as shown in Figure 1. 35 (a) and (c). The indirect band gap appears 

between the top valence band at the R point and the bottom of the conduction band at the 

Γ point. However, Xu et al reported that KNbO3 exhibits the valence-band maxima at R 

points and the conduction-band minima at G points, indicating again indirect band-gap 

(Figure 1. 35 (b)). In contrast, Modak & Ghosh obtained direct band-gap (Figure 1. 35 

(d)). Table 1. 4 and Table 1. 5 show theoretical and experimental band-gap values for KN 

reported in literature. 

 

Figure 1. 35: (a), (b), (c) and (d): Different models for the electronic band structure of cubic KNbO3 along 

the symmetry lines of the Brillouin zone. 
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 Methods Band-gap (eV) References 

Direct 

Band-gaps 

LDA 1.98 

(Fenggong Wang 

& Rappe, 2015; 

Xu, Wu, Zhang, 

Wu, & Ding, 

2017a) 

PBE 1.98 

HSE06 3.83, 3.10 

GWO 3.89 

FPLAP 1.58 

Indirect 

Band-gaps 

LDA 1.43 

PBE 1.42 

HSE06 3.24 

GWO 3.28 

Table 1. 4: Calculated direct and indirect band-gaps gaps of KNbO3 with LDA, PBE, HSE06, and GW0. 

Methods Band-gaps References 

Absorbance 

Spectroscopy 

3.24 (T. Zhang et al., 2013) 

3.14 (Liu, Chen, Li, & Zhang, 2007) 

Ellipsometry 

spectroscopy 

3.95 (Tyunina et al., 2015) 

3.80 (Ilya Grinberg et al., 2013) 

Diffuse reflectance 

spectroscopy 
3.10 

(Eng, Barnes, Auer, & 

Woodward, 2003) 

Table 1. 5: Experimental band-gaps of KNbO3, measured by absorbance, ellipsometry and diffuse 

reflectance spectroscopy. Authors do not differentiate between direct and indirect band-gaps. 

The interest in KN in this work arises from a crucial study (I. Grinberg et al., 2013) which 

reported high polarization (20 µC/cm2, Figure 1. 36 (a)) and narrow band gap never 

described before (1.1 eV for x=0.2) (Figure 1. 36 (b)), in (1-x) KNbO3-xBaNi0.5Nb0.5O3-

δ (KN-BNN) 20 µm thick- film. F.Wang & Rappe elucidated the origin of this band-gap 

narrowing by first principle calculations. Maximum valence band is composed by 

hybridized Ni 3d and O 2p orbitals, while the minimum conduction band occupied by Nb 

4d states. Hence, they suggested that the filled Ni 3d gap states in the KN-BNN ceramics 

play an important role in narrowing the bandgap, which provides a guide for designing 

and optimising new FE photovoltaic materials.  
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Figure 1. 36: (a) Ferroelectric loops for a thick film KN-BNN x=0.01 at 10-7 torr and 77–170K (b) 

Ellipsometry measurements for KN-BNN x=0.0–0.5 reveal a bandgap narrowing from 3.8 eV to 1.18 eV  

(I. Grinberg et al., 2013) 

Consequently, this composition, KN-BNN, has been largely investigated in the last four 

years. Two studies reported similar band gap narrowing in the ceramic KN-BNN system 

and both showed the lowest band-gap (1.18 eV) corresponds to x=0.2 (Figure 1. 37 (a) 

and (b)) (Song et al., 2017). It was also suggested that KN-BNN exhibits ferromagnetism 

at RT which would offer great potential in multiferroic applications (Zhou, Deng, Yang, 

& Chu, 2014). 

 

Figure 1. 37: :(a) Absorption spectra and (αhυ)2versus hυ (inset) of KN-BNN bulk ceramics (x=0, 0.1 ,0.2, 

0.3) (Zhou et al., 2014) (b)(αhυ)2versus photon energy in KN-BNN (x=0, 0.1 ,0.2, 0.3, 0.4 and 0.5) bulk 

ceramics sintered by solid stat reaction (Song et al., 2017) Both show the narrowest ban-gap (~1 eV) for 

x=0.2. 

Zhang et al reported a narrow band-gap (up to 1.39 eV) and P-E loop (Pr =1.4 C/cm2) in 

KN-BNN thin films prepared by PLD (Figure 1. 38. (i) and (ii)). The band gap reduction 

of KN-BNN was attributed to the emergence of Ni 3d gap states. Furthermore, authors 

proposed a linear dependence between optical band-gap and the Ni content (Figure 1. 38. 

(i) (c)). 
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Figure 1. 38: (i) (a) Absorption spectra and (b) absorption coefficient square (𝛼ℎ𝜐)2
 vs. Photon energy 

(h) plots of KN-BNN films deposited at different O2 pressures. (c) The bandgap of the films as a function 

of the Ni content. (ii) P-E loops for KN-BNN thin films deposited at O2 pressures of 0.01, 0.1, and 0.5 Pa. 

Bai et al studied optic and ferroelectric properties of KN-BNN bulk ceramic with x=0.01, 

stoichiometric (CI) and non-stoichiometric (CII) created by a potassium deficiency. 

Figure 1. 39 (a) and (b) illustrate absorbance and photon energy for both materials. The 

authors affirmed that measuring absorbance (Figure 1. 39 (a)) is not a reliable method to 

determine the band-gap in solid samples. Then they decided to measure diffuse 

reflectance and to plot the function (F(R)·hv)2 (being F(R) Kubelka-Munk formula) to 

determine the band-gaps of KN-BNN (Figure 1. 39 (b)). The samples CI and II exhibit 

band gaps of 1.40 eV and 1.48 eV, respectively. Worth to mention, the sample CI was 

able to withstand an electric field up to 80 kV/cm (Figure 1. 39 (c)). 

 

Figure 1. 39: (a) Absorption spectra and (b) (F(R) hυ)2 versus hυ for KN-BNN (x=0.01) bulk ceramic (C1 

stoichiometry and CII non- stoichiometry. (c) P-E loop of KN-BNN (x=0.01) at RT.(Bai, Siponkoski, 

Peräntie, Jantunen, & Juuti, 2017). 
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Very recently, a study has been published by the same author (Bai, Tofel, Palosaari, 

Jantunen, & Juuti, 2017) that compares (K0.5Na0.5)NbO3 (KNN) and 0.98 

(K0.5Na0.5)NbO3- 0.02 Ba(Ni0.5Nb0.5)O3 (KNN-BNNO) ceramics. This last compound 

revealed large ferroelectric (26 µC/cm2) and piezoelectric (100 pm/V) properties (Figure 

1. 40 (b)) accompanied with a surprising narrow bandgap (1.6 eV). 

 

Figure 1. 40: (a) Absorption spectra and Tauc plot of the thick-film KN-BNN. (b) Ferroelectric loop for 

KN-BNN ceramic and thick-film. (Bai, Siponkoski, et al., 2017) 

However, contradictory results for KN-BBNZ band gap are found in literature. (Zhou, 

Deng, Yang, & Chu, 2016). Figure 1. 41 (a) illustrates the absorption spectra and the 

(F(R) hυ)2 versus the photon energy of KN-BNN thin film. The two slopes pointed at 

1.85 eV (2) and at 2.51 eV (1), are attributed, respectively, to intraband transition of Ni 

3d orbitals and band-to-band transition from hybridized Ni 3d and O 2p to Nb 4d states 

Figure 1. 41 (b). 

 

Figure 1. 41: (a) Absorption spectra of the KN-BNN film on Pt(111)/Ti/SiO2/Si(100) substrate and a plot 

of (F(R) hυ)2 as a function of hυ (inset). (b) A schematic illustration of intraband electronic transition in 

KN-BNN. (Zhou et al., 2016). 
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Moreover, Wu et al. synthesised KN-BNN (0≤x≤0.4) nanocrystals fabricated by sol-gel 

based on Pechini method and showed that Ba and Ni modifications slightly narrow the 

original band-gap of KN, only 0.15 eV smaller than KN (Figure 1. 42 (b)). Three broad 

absorption bands (beside the band-gap) can be found in the absorbance spectra at 450 nm 

(2.75 eV), at 720 nm (1.72 eV) and at 1150 nm (1.07 eV) (Figure 1. 42 (a)). and attributed 

to d-d transitions created by Ni+2 ions in the crystal of KN-BNN. Authors concluded that 

previous reports which gave band gap values of 1.1-1.5 eV of KN-BNN may be 

misinterpreting the 720 nm absorption band in KN-BNN as the intrinsic band-gap 

absorption 

 

Figure 1. 42: Absorption spectra of KNbO3 (x = 0) and KN-BNN (x = 0.1–0.4); (b) plots of (F(R) hυ)2-hυ 

(inset). (Wu et al., 2016) 

These studies gave a boost to develop theoretical and experimental works based on the 

band-gap tunability of the compounds based on KN. Systematic band-gap narrowing was 

reported in different solid solutions based on KN, such as (1-x) KNbO3-x 

Ba(Co0.5Nb0.5)O3-δ (KBCNO) which shifts down to 2.4 eV (Limin Yu, Jia, Yi, Shan, & 

Han, 2016). Very recently systems that has been studied include KNb1-xFexO3− δ (Nie et 

al., 2017) and (1-x) KNbO3-xBa(Nb0.5Fe0.5)O3 (KBNFO) which show a reduction of the 

band gap from 3.2 eV down to 1.74 eV (Lu Yu, Deng, Zhou, Yang, & Chu, 2017). 

 

1.5. Motivations 

 

These new ferroelectric oxides based on KNbO3 with lower band-gaps rely on the 

presence of a large concentration of oxygen vacancies. This fact critically affects the 
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polarization switching and can also trap the photo-excited carriers and consequently 

increase the charge recombination rate. Hence, oxygen vacancies are detrimental to 

ferroelectric and photovoltaic properties. First principle calculations estimated the 

bandgaps and spontaneous polarisation for vacancy-free KNbO3 co-doped with Zn+2 in 

B-site and A1
+2 and A2

+3 substitution on the A-site (A1
+2= Pb2+, Ba2+, Sr2+; A2

+3= La3+, 

Bi3+) in order to achieve charge neutrality. The calculated band-gaps for these systems 

present values between 2.92 eV and 2.11 eV (F Wang, Grinberg, & Rappe, 2014).  

This motivates us to investigate alternative strategies to lower band-gap while preserving 

ferroelectricity and without creating oxygen vacancies. The approach to reduce the band-

gap of parent KN in this work relies on replacing Nb5+ cations by lower valence transition 

metals (Me3+) dopants. The transition metals were selected following the periodic table 

order (Mn, Fe, Co and Ni). Furthermore K+1 will be substituted by Bi+3 in order to 

maintain the compositions stoichiometry. The mechanism which leads to the band-gap 

narrowing is the repulsion between non-bonding 3dn orbitals of the Me3+ and 2p6 orbitals 

of O2-  upshifting the VBM. 

 

1.6. Aims and Objectives 

 

1.6.1. Aims 

 

Growing concerns about the impact of burning fossil fuels on the environment and our 

dependence on these limited resources, it is driving the development and the research of 

sustainable energies. Among others, the sun is the most abundant supplier of energy on 

Earth and promising long-term source to replace the traditional fossil fuels. Very recently, 

ferroelectric materials have emerged as potential candidates as photovoltaic materials. 

This work aims to provide fundamental knowledge and experimental evidence of the 

mechanisms which leads to band gap narrowing in ferroelectrics. In more detail, this 

investigation is focused on systems based on well-known ferroelectric perovskite, 

KNbO3. Moreover, one of the aims of this investigation is to contribute to the scientific 

community the good practice of preparing KNbO3 by conventional routes and to fill the 

gap that exists in the literature about the electric properties of this compound, due to 

difficulties in its preparation and low densification. 
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1.6.2. Research objectives 

 

To address the key aims, this research has the following objectives: 

 To determinate the current state of the art knowledge in photo-ferroelectrics and 

band-gap engineering in ferroelectrics oxides. 

 To develop a strategy to narrow band-gaps in FE, avoiding oxygen vacancies. 

 To prepare bulk ceramics by solid state reaction for all the systems explored in 

this work and to optimise their processing. 

 Experimental validation of theoretical predictions and controversies in the 

literature. 

 To investigate the impact of BiMeO3 (with Me= Mn, Fe, Co and Ni) doping on 

the structure, dielectric, ferroelectric and optical properties of KNbO3. 

 To prepare thin films by pulsed laser deposition. 

 To measure photoresponse along the materials which present the most promising 

characteristics (low band-gaps and ferroelectricity). 

 Extract significant outcomes regarding the ability to control the band-gap while 

maintaining the spontaneous polarisation in these compounds. 

 

1.6.3. Thesis overview  

 

The thesis structure is organised as follows: 

In Chapter 1 the bases required to understand this research work even if someone is 

specialised on another discipline, have been explained. Furthermore, previous studies in 

this research topic have been reviewed. 

Chapter 2 describes the techniques and methods used to prepare and characterise the 

samples which are the object of this work. 

The first part of Chapter 3 is focused on the optimisation of synthesis and sintering of 

KNbO3. In addition, the second part shows the complete characterisation of KN. 
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Chapter 4 shows the complete characterisation of (1−x) KNbO3-x (Ba0.5Bi0.5) 

(Zn0.5Nb0.5) O3 (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) system. Experimental results are 

compared with the predictions of first principles calculations.  

Chapters 5,6,7 and 8 include the main results corresponding to the binary systems (1-x) 

KNbO3-x BiMeO3 being Me=Fe, Mn, Co and Ni with x=0, 0.05, 0.10, 0.15, 0.20 and 

0.25, from the point of view of ceramic processing and structural, dielectrical and optical 

characterisation. 

Chapter 9 addresses the controversy found in the literature about the band-gap of KN-

BNN and KNN-BNN.  

Chapter 10 and 11 contain the discussion and the main conclusions of this research work, 

respectively.  
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2. Methodology 

 

 

2.1. Introduction 

 

This chapter describes the techniques and methods used to prepare and study the materials 

in this work. Ceramics were synthesised by solid state reaction and pressureless sintered.  

Techniques employed for chemical and structural characterisation included powder X-

ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM) 

combined with energy-dispersive X-ray spectroscopy (EDX). Dielectric and 

electromechanical measurements were performed on ceramics. Optical characterisation 

was carried out by diffuse reflectance spectroscopy. 

Thin films of 0.75 KNbO3- 0.25 BiFeO3 (KNBF x=0.25) were prepared by pulsed laser 

deposition (PLD), but finally, photo-response was measured on KNBF x=0.25 coated 

cell.  

 

2.2. Ceramic processing 

 

Ceramic materials are polycrystalline materials obtained by a process that classically is 

divided into three steps: powder synthesis (Figure 2. 1. (a)), preparation of the ‘green 

body’ (Figure 2. 1. (c)) and sintering (Figure 2. 1. (b)). 
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Figure 2. 1.: Schematic representation of (a) powder synthesis and (b) sintering evolution from compact 

powder to densified ceramic (Carter & Norton, 2007). (c) Picture of green and fired body. 

 

2.2.1. Powder Synthesis: Solid State Reaction 

 

All compositions of the present work were synthesised following the conventional Solid-

State Reaction (SSR) method, as detailed below. 

First, oxides and carbonates were pre-dried in a drying oven at 200ºC for 24 hours to 

avoid any unwanted moisture. The chemicals were weighed in the required molar ratios, 

in order to produce 15 g of each composition. The mixture was placed into a polyethylene 

bottle containing propanol (up to 50 ml) and zirconia media. Then, the bottle was 

transferred into a ball mill and rotated overnight (for 24 hours) for effective mixing of the 

reactants. 

After milling, the slurry was moved into a stainless-steel pan, which was placed into the 

drying oven at 100ºC. The dried slurries were passed through a 250 µm mesh sieve, to 

obtain very fine powders. Sieved powders were placed into covered alumina crucible and 

fired in air for reaction for 4 hours using a heating rate of 3ºC/min. The powders were re-

milled and the calcination repeated until there was no change in the XRD data. The end 

of the processing was considered when no change in the XRD data were observed.  

Chapter 3 of this work addresses the optimisation of the ceramic processing for KNbO3. 

However, the solid-solutions based on KNbO3 present some modifications on the 

synthesis and sintering routes. 



Chapter 2  Methodology 

 
60 

 

2.2.2. Raw materials 

 

All the materials presented in this study were prepared from the oxides and carbonates 

listed in Table 2. 1. 

 

 

2.2.3. Sintering 

 

Pellets of 10 mm in diameter and approximately 2 mm in thickness were fabricated by 

uniaxial pressing of ~ 1 g of powder. Applied pressure was less than 1 ton. Higher applied 

pressure would lead to the appearance of cracks in the pellets. Green bodies were 

thermally treated at high temperatures in order to obtain dense ceramics. The thermal 

treatments were carried out in a range of temperatures from 1070ºC to 1185ºC (depending 

on the composition, Table 2. 2) for 4-12 hours and the heating rate was 3ºC min-1. 

  

Compound formulae Supplier Lot nº Purity 

K2CO3 Sigma-Aldrich 069K1682 ≥99% 

Nb2O5 Aldrich MKBN8594V 99.9% 

BaCO3 Sigma-Aldrich BCBM2121V ≥99% 

Na2CO3 Sigma-Aldrich 040M0040 ≥99% 

Bi2O3 Fluka Analytical BCBC0495V 98% 

ZnO Sigma-Aldrich BCBC7947V ≥99% 

Fe2O3 Sigma-Aldrich MKB56874V ≥99% 

Co3O4 Aldrich MKBB0427V 99% 

Mn2O3 Aldrich MKBB0427V 99% 

NiO Sigma-Aldrich BHCF3223V 99.9% 

Propanol Fischer 1421368 ≥99.5% 

Table 2. 1.: List of reactants used in this study.   



Chapter 2  Methodology 

 
61 

2.2.4. Density of materials 

 

Usually, bulk density of sintered pellets is measured by Archimedes method. A liquid 

displacement method was rejected due to the high sensitivity of the samples to moisture 

from the environment, as will be described in detail later. In this thesis, the density of 

sintered pellets was estimated from the sample mass and volume. The mass, M, was 

measured using a digital balance (Δ𝑀=0.001g) and sample volume was calculated from 

the external dimensions of the samples, diameter, d, (Δ𝑑=0.01 mm) and thickness, t, 

(Δ𝑡=0.01 mm), using a micrometre. Bulk density was calculated by the weight of the 

ceramic sample divided by its volume, without considering open pores (Eq. 2.1.). The 

total error for density (Eq. 2.4.) is given by experimental error (Eq. 2.2.) and statistical 

error (Eq. 2.3).  

𝜌 =
𝑀

𝑡 · 𝜋 ·
𝑑
4

2 
Eq. 2.1. 
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Eq. 2.2. 

 

Δ𝜌𝑠𝑡𝑎 = (
∑ (𝜌̅ − 𝜌𝑖)2𝑁

𝑖=1

𝑁
)

1/2

 
Eq. 2.3. 

 

Δ𝜌𝑡𝑜𝑡 = √Δ𝜌𝑒𝑥𝑝
2 + Δ𝜌𝑠𝑡𝑎
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Eq. 2.4. 
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2.2.5. Fabricated compositions  

 

The nominal compositions studied in this work with corresponding temperatures for 

calcination and sintering, are listed in Table 2. 2.  

Systems x 

Calcination 

Temperatures 

(ºC) 

Sintering 

Temperature 

(ºC) 

KNbO3 - 850+850 1085 

K0.95NbO3 - 850+850 1080 

KNb0.95O3 - 850+850 1070 

(1-x) KNbO3- x 

Ba0.5Bi0.5Nb0.5Zn0.5O3 

0.5, 0.10, 

0.15, 0.20, 

0.25 

850+850 1100 

(1-x) KNbO3- x BiFeO3 

0.5, 0.10, 

0.15, 0.20, 

0.25 

850+850 1080-1085 

(1-x) KNbO3- x BiMnO3 

0.5, 0.10, 

0.15, 0.20, 

0.25 

800+900 1070-1080 

(1-x) KNbO3- x BiCoO3 

0.5, 0.10, 

0.15, 0.20, 

0.25 

850+850 1080-1090 

(1-x) KNbO3- x BiNiO3 

0.5, 0.10, 

0.15, 0.20, 

0.25 

850+850+850 1070-1085 

(1-x) KNbO3- x BaNb0.5Ni0.5O3 0.10 850+850 1085 

K0.5Na0.5NbO3 - 850+850 1100 

(1-x) K0.5Na0.5NbO3- x 

BaNb0.5Ni0.5O3 
0.02 850+850 1185 

Table 2. 2.: Fabricated compositions object in this research. Calcination and sintering temperatures are also 

included in the table. 
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2.3. Film preparation 

 

2.3.1. Pulsed laser deposition (PLD) 

 

0.75 KNbO3- 0.25 BiFeO3 films were grown on STO (001) and MgO (001) substrates by 

Pulsed laser deposition (PLD) at temperatures of 600 and 650ºC, at the Universitat de 

Barcelona with the collaboration of Institut de Ciència de Materials de Barcelona 

(ICMAB-CSIC), Barcelona, Spain. 

Schematic representation of the pulsed laser deposition is shown in (Figure 2. 2.(a)). Once 

starting configurations were set up (vacuum, oxygen pressure and substrate temperature), 

the high-energy pulsed laser beam passed through a series of lenses, in order to be focused 

on the target, inside the vacuum chamber. Subsequently, the sample target starts to 

instantaneously vaporise and ionise, generating plasma that contains atoms, molecules, 

ions, and neutral particles. Then, the plasma is ejected perpendicular to the target surface, 

forming a plasma plume. In the diffusion process, the plume interacts with the oxygen 

atmosphere, which increases the ionization process, and thereby promotes the collisions 

among the components of the plasma. Finally, the atoms from the target are sprayed onto 

a substrate placed on a heater. By optimizing the factors such as laser density, pressure of 

the atmosphere, and heating temperature, epitaxial thin films can be prepared with the 

same composition as the target (Chrisey & Hubler, 1994; Martin, Chu, & Ramesh, 2010; 

Martín et al., 1997). Figure 2. 2.(b) and (c) illustrate the PLD equipment used in this work 

at the Universitat de Barcelona, Barcelona, Spain. The chamber was evacuated by an ion 

pump to a base pressure of ~10-5 mBar. Pulsed KrF excimer laser was operated at a 

repetition rate of 5 Hz. The laser energy density was about 2 J/cm2. In this work, results 

are presented for only one composition, 0.75 KNbO3-0.25BiFeO3. A dense ceramic of 2 

cm of diameter prepared at Sheffield Hallam University, was used as the target. The 

substrate holder was placed at 50 mm from the target, which was rotated at 5 rpm to 

prevent holes formation in the target and to ensure uniform ablation. The 0.75 KNbO3-

0.25BiFeO3 films were deposited on STO (001) and MgO (001) substrates, at 

temperatures of 600 and 650ºC under oxygen pressure of 0.1 mBar and 0.75 mBar for 20 

minutes. 
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Figure 2. 2.: (a) Schematic representation of operational pulsed laser deposition (PLD) equipment. Pictures 

of (b) the interior of the chamber and (c) the complete equipment for PLD at the Universitat de Barcelona, 

Barcelona, Spain. 

 

2.3.2. Photoresponse measurements 

 

The photoresponse of 0.75 KNbO3-0.25 BiFeO3 was measured at the Universidade 

Federal de Pelotas, Pelotas, Brasil, where the ferroelectric cell was also fabricated. 

First, a ferroelectric paste was prepared, mixing 0.3 g of KNbO3-0.25BiFeO3 powder,15 

µL of ethylene glycol, 15 µL of Triton-X (adherent) and 100 µL of ethanol (dispersant). 

This solution was mixed in Vortex mixer (~5 minutes), homogenized in ultrasound bath 

(~30 minutes) (Figure 2. 3). 
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Figure 2. 3.: Preparation of the ferroelectric phase. 

Secondly, the fabrication of the cell was performed. Electrodes were prepared on FTO 

coated glass. The counter-electrode was made with carbon (pencil) (Figure 2. 4 (a)). The 

photoelectrode (FE paste) was deposited by casting (Figure 2. 4 (b), (c) and (d)). After 

deposition, the photoelectrode was thermally treated first, at 125 ºC for 5 minutes and 

then at 450 ºC for 30 minutes in a tubular furnace to eliminate organic compounds from 

FE paste. Finally, the sealing gasket was made with one thermoplastic polymer. 

 

Figure 2. 4. Components on the FEPV cell: (a) the counter-electrode. (b),(c) and (d) deposited 

photoelectrode and (e) sealing gasket. 

Third, all components are set together (counter eletrode + sealing gasket + 

photoelectrode) and sealed with epoxy resin (Scotch Mix transparent epoxy adhesive) 
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(Figure 2. 5). After 24 hours, an electrolyte was inserted (redox couple I-/I3-) through the 

small hole in counter electrode side in order to favour the transport of the photo-charges. 

 

Figure 2. 5: (a) Schematic representation of the setting and components of photo-ferroelectric cell. (b) 

Final aspect of cell by both sides. 

The photoresponse of KNBF x=0.25 was measured under white light (210-1500nm) and 

in the dark. The active area of cell is 1 cm2. 

. 

2.4. Chemical and structural characterisation 

 

2.4.1. X-ray diffraction (XRD) 

 

Geometrically, it is possible to think of a crystal as different families of parallel atomic 

planes  (Kittel & Hellwarth, 1957), as shown in Figure 2. 6. All the atoms are placed in a 

regular periodic array. Each family of atomic planes is determined by three integers (h, l, 

k) also denominated Miller indices. From them, it is possible to calculate the interplanar 

spacing, dhkl. 
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Figure 2. 6.: Schematic representation of Bragg’s law (Cullity, 2014). 

When an X-ray beam interacts with a single-crystal, diffraction occurs, because the 

wavelength, λ, of the incident beam is on the same order as the spacing between atoms 

(~1Å). Diffracted rays produce interference phenomena, most of them destructive. 

However, constructive interference also occurs. Indeed, it is possible to detect a 

diffraction beam with sufficient intensity, if the incident beam and the detector are placed 

in a specific Bragg angle, as discussed below. 

The assumption made in deriving the Bragg equation is that the planes of atoms 

responsible for a diffraction peak behave as a specular mirror, so that the angle of 

incidence is equal to the angle of reflection. Constructive interference of beam 1 and 2 

(Figure 2. 6) is produced when they are in phase after reflection. Then the extra-distance 

that beam 2 travels (FG+GH) must be an integer number of wavelength λ. FG and GH 

paths are easily calculated by trigonometry. A relationship between the X-ray wavelength 

λ, the spacing d between lattice planes, d, and the angle of incidence θ, is derived and 

known as Bragg’s law (Eq. 2.5)(Waseda, Matsubara, & Shinoda, 2011): 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛θℎ𝑘𝑙     Eq. 2. 5 

Where n is taken as integer number. Summarising, the Bragg angle (θℎ𝑘𝑙 ) depends on the 

inter-plane spacing dhkl, which itself depends on the size of the atoms/ions building up the 

structure. From the X-ray powder diffraction pattern, it is possible to extract useful 

information about the crystal structure, such as the symmetry and the dimensions of the 

unit cell. Furthermore, the intensity of the peaks in the diffraction pattern is related with 

the atoms nature and their position, so it is also possible to obtain information about the 

internal structure of the crystal. 

In this work, powder X-ray diffraction (XRD) analyses were used to study the crystal 

structure and the purity of the prepared materials. Measurements were carried out at room 

temperature with a diffractometer (model: Empyrean XRD, PANalytical™, Almelo, The 
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Netherlands) (Figure 2. 7 (a) and (b)) equipped with a Cu (λ = 1.5418 Å) and Co (λ = 

1.7890 Å) tube operated at 40 kV and 40 mA, normallyin the 2 range between 20 and 

80, with 2θ increments of 0.013º and counting time of ~70 s per step. Both powders and 

pellets were analysed using the reflection spinner sample holder, which spins at 0.25 Hz. 

Lattice parameters were calculated from Rietveld refinement of XRD data using the 

X'Pert High Score software (produced by: PANalytical B.V., Almelo, The Netherlands, 

license number: 42001164). 

 

Figure 2. 7.: (a)Panalytical Empyrean X-Ray diffractometer. (b) Internal structure. 

 

2.4.2. Rietveld Refinement 

 

Rietveld method calculates X-ray diffraction pattern of a specimen and compares it to the 

measured pattern. It is important to note that this method is a refinement, not a solution 

method, because the structure of the model must be known in advance.  

The peak profile function is used to model the shape of diffraction peaks. The most 

common peak profile functions are: Gaussian (Equation 2.6), Lorentzian (Equation 2.7), 

modified Lorentzian, Pearson VII and pseudo-Voigt (Equation 2.8). However, the best 

option has long been established to be the pseudo-Voigt (Young & Wiles, 1982), which 

is a linear combination of Gaussian and Lorentzian functions: 
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𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛: 𝐺 =
𝑒

−
𝑥2

2𝜎2

𝜎√2𝜋
 

 

Eq. 2. 6 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛: 𝐿 =
𝛾

𝜋(𝑥2 + 𝛾2)
 

 

Eq. 2. 7 

𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑉𝑜𝑖𝑔𝑡: 𝜂𝐿 + (1 − 𝜂)𝐺 

 

Eq. 2. 8 

The calculated pattern is fitted to the experimental pattern by changing various refinable 

parameters, such as atomic positions, site occupancies, peak shape parameters, etc., until 

a best-fit match is obtained with the measured pattern. The purpose of the fitting is to 

minimize the following difference, Sy. (Equation 2.9): 

𝑆𝑦 = ∑
1

𝑦𝑖
(𝑦𝑖,𝑜𝑏𝑠 − 𝑦𝑖,𝑐𝑎𝑙𝑐)

2
𝑛

𝑖=1

 
Eq. 2.9 

The quality of the fitting is determined by the visual check of the difference between the 

calculated and the experimental pattern; There are also quantitative indicators: the 

weighted-profile R value (Rwp) (Equation 2.10) and the expected residual value (Rexp) 

(Equation 2.11): 

𝑅𝑤𝑝 = √
∑ 𝑤𝑖(𝑦𝑖,𝑜𝑏𝑠 − 𝑦𝑖,𝑐𝑎𝑙𝑐)

2
𝑖

∑ 𝑤𝑖(𝑦𝑖,𝑜𝑏𝑠)
2

𝑖

 

Eq. 2. 10 

𝑅𝑒𝑥𝑝 = √
𝑁 − 𝑃

∑ 𝑤𝑖(𝑦𝑖,𝑜𝑏𝑠)
2

𝑖

 

Eq. 2. 11 

where N is the number of observations and P the number of parameters. Rwp is therefore 

the ratio of the difference between the two patterns to the observed pattern, whereas Rexp 

is a measure of the quality of the data (statistically). The ratio between Rwp and Rexp is 

often given as a measure of the goodness of fit (GOF, or χ2). (Equation 2.12): 

𝐺𝑂𝐹 = 𝜒2 = (
𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
)

2

 
Eq. 2. 12 

If the experimental pattern has more data points than needed, χ2 can be much larger than 

1, whereas if the data points are not sufficient (i.e. low sensitivity of the detector or scan 

time too short), χ2 can be even smaller than 1, which is an indication that the data 
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acquisition should be repeated (McCusker, Dreele, Cox, Lou\er, & Scardi, 1999). 

However, as for every empirical manipulation of data, the results must make physical 

sense, no matter how good the fitting is (Buchsbaum & Schmidt, 2007). 

Rietveld Refinement was used to determine the lattice parameters of each composition 

and for monitoring the evolution of the crystal structure upon doping. 

 

2.4.3. Raman Spectroscopy 

 

Raman spectroscopy permits the measurements of vibrational transitions by observing 

inelastically scattered radiation. In general, every molecule has unique Raman response, 

which is a finger print of the material and allows identifying or measuring properties of 

its own nature, including the effects of composition and temperature on phase 

transformations (Perry & Hall, 1965). The intensity of the inelastically scattered light is 

graphically represented as a function of Raman shift of the light (wavenumbers).  

The electric field of the incident light makes the electron cloud oscillate around the 

molecule (in simpler words, electrons get polarised). Therefore, electrons go up to a 

virtual vibrational state. Rayleigh scattering occurs when electrons go down to the same 

vibrational level, which means there is no loss of energy (elastic scattering). However, 

Raman scattering involves a shift in the vibrational energy level of the emitted radiation 

(and therefore in its wavelength) (Figure 2. 8.) This is due to a sizeable change of the 

electronic polarisation of the molecule during the vibration. Considering the symmetry 

properties of a molecule, the vibrations that transform similarly to the products of the x, 

y or z coordinates (i.e. xx, yy, zz, xy, xz, yz) can be observed in the Raman spectrum. 

Raman activity is determined by inspection of the character tables usually reported in the 

vibrational spectroscopy books for each symmetry point group.  
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Figure 2. 8.: Vibrational energy level diagram showing the state involved in Raman spectra. 

 

Lattice vibrations in crystalline solids can be transverse (if the polarization is 

perpendicular to the direction of propagation) or longitudinal (if polarization and 

propagation vectors are parallel); each of these modes can be acoustic (atoms moves in 

phase) or optical (adjacent atoms are out-of-phase) (Figure 2. 9). 

 

Figure 2. 9.: Schematic representation of phonon modes, or lattice vibrations (LA =longitudinal acoustic, 

LO = longitudinal optical, TA = transverse acoustic, TO =transverse optical). 

Depolarised Raman spectra were recorded in backscattering geometry with a 

spectrometer (Thermo Scientific DXR2) equipped with a microscope objective of 10x 

magnification and using the 520 nm laser (Figure 2. 10.). 

The laser enters the main compartment and is guided through mirrors to the sample. The back-

scattered radiation is collected and re-enters the main compartment through a filter that cuts 

off the Rayleigh scattering (thus enabling us to see the much weaker Raman signal) up to 50 

cm-1 above the laser frequency. A diffraction grid rotates to bring the intensity of separate 

wavelengths to the CCD detector, which finally converts the incoming photons into electrons 

to be stored digitally in a PC. 
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Figure 2. 10.: (a) The Raman instrumentation is a Thermo Scientific DXR2. (b) schematic representation  

 

2.4.4. Scanning Electron Microscopy 

 

Scanning electron microscopy (SEM) provides information relating topographical 

features, morphology, phase distribution and compositional differences. This technique 

is able to analyse materials that cannot be observed with the resolution offered by optical 

techniques. 

During SEM study, a variety of signals are produced by accelerated electrons with 

significant amounts of kinetic energy interacting with the specimen. These signals 

include: secondary electrons, backscattered electrons, X-rays, photons, visible light and 

heat. Secondary electrons and backscattered electrons are commonly used for imaging 

samples. In this investigation, samples are examined by secondary electron detector 

which is more valuable for showing morphology and topography on samples and present 

greater resolution. 

Figure 2. 11 (a) and (b) shows the scanning electron microscope (SEM) and the internal 

structure representation of a conventional SEM, respectively. 

Firstly, the electron gun (top of the column), produces the electrons and accelerates them. 

The diameter of electron beam produced is too large to form a high-resolution image. 

Hence, electromagnetic lenses and apertures are used to focus and define the electron 

beam and to form a small focused electron spot on the specimen. Then, high-vacuum 

environment allows electrons to travel without scattering by the air. Finally, the specimen 
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stage, electron beam scanning coils, signal detection, and processing system provide real-

time observation and image recording of the specimen surface. 

Ceramic microstructures were examined using scanning electron microscope (model: 

Nova Nano 200, FEI, Brno, Czech Republic). The samples were carbon coated before 

SEM inspection, in order to avoid charging. Scanning electron images were taken with 

the following parameters: voltage of 15 kV, working distance of 5 mm and spot size 4. 

 

Figure 2. 11.: (a) Actual picture and (b) schematic representation of the internal structure of the FEI Nova 

Nano 200 Scanning electron  

 

2.4.5. EDX 

 

Energy-dispersive X-ray spectroscopy (EDX), is a technique used for elemental analyses 

and chemical characterization of a specimen. 

As mentioned previously, X-ray are also produced by the interaction of the primary 

electrons with the specimen. This radiation is generated when the incident electron beam 

excites an electron of the specimen in an inner shell, ejecting it from a discrete level of 

energy while creating an electron hole. An electron from a higher energy level then fills 

the hole, and the energy difference in between the levels may be released in the form of 

an X-ray. The emitted characteristic X-ray energies for elements will generally be 

https://en.wikipedia.org/wiki/Electron_hole
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different from element to element with only a few spectral peaks overlapping. If the 

identification of one peak is ambiguous, other peaks or limited knowledge of the sample 

history will often allow a reasonable elemental identification of the peak.  

 

2.5. Electrical characterisation 

 

In order to measure the electrical properties, parallel plate capacitors were fabricated 

(Figure 2. 12.). The ceramic discs were polished and thinned down to ~1 mm of thickness. 

Then, Pt electrodes were applied and treated at 600ºC for 30 min, to improve the 

mechanical and electrical properties of the electrode and the interface with the ceramic. 

 

Figure 2. 12: Capacitor fabricated for electrical measurements. Electric dipoles aligning themselves with 

the electric field E 

 

2.5.1. Dielectric response 

 

The relative permittivity was calculated from the capacitance (C) measurements of the 

capacitor under an AC electric field at the University Sheffield, Sheffield, United 

Kingdom. The capacitance values were then converted to relative permittivity using the 

formula (Equation 2.13).: 

𝜀𝑟 =
𝐶𝑡

𝜀0𝐴
 

Eq. 2. 13 

where ε0 is the dielectric permittivity of vacuum (8.85.10-12
 F/m), A and t, the area and the 

thickness of the parallel plate capacitor fabricated, respectively. 
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Dielectric loss (tanδ) was measured and it is very useful to verify the quality of the 

capacitor. This value is highly dependent on the frequency because of different types of 

polarization can occur. Capacitance measurements in the frequency range 10 kHz to 1 

MHz were carried out in unpoled ceramics using an LCR meter coupled with a furnace 

applying a heating/cooling rate of 1 C°/min. 

 

2.5.2. Ferroelctric and piezoelectric measurements 

 

To study the ferroelectric properties, polarization-electric field (P-E) hysteresis loops 

were measured at room temperature. The polarization (P) of the ferroelectric material is 

calculated by measuring the stored electric charge in the system (Q), by using the 

following expression (Equation 2.14), also including the area of the capacitor (A): 

𝑃 = 𝑄/𝐴 Eq. 2.14 

By the observation of the P-E hysteresis loop, the identification of ferroelectric materials 

was possible, as well as the determination of the spontaneous (PSat) and remanent (Pr) 

polarizations and the coercive field (EC) of the different ferroelectric compositions of the 

system (Figure 2. 13.)  

 

Figure 2. 13.: P-E hysteresis loop parameters for a ferroelectric material. 
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The strain field loops, S-E (typical plot for ferroelectrics is shown in Figure 1.12), are 

derived from sample displacement data, which are measured by a laser interferometer. 

The displacement is measured by splitting a monochromatic light source (helium neon 

laser) into two beams. One beam acts as a reference beam following a fixed path, and the 

second measuring beam goes to the sample and returns to join the reference beam. The 

interference fringes created are used to determine the displacement. 

For the acquisition of a P-S-E loops, the initial triangle wave is formed by the generator, 

which is then amplified by the high voltage amplifier, and sends the amplified waveform 

to the sample. The current passing through the sample determinates the charge 

accumulated on the surface of the capacitor. The P-E data are then sent to the PC for 

subsequent analysis. 

These measures were performed using a ferroelectric tester (TF Analyzer 2000 E) (Figure 

2. 14) and a high voltage amplifier. AixPlorer Software was used to acquire, interpret, 

and review measurement data. 

 

Figure 2. 14.: Image of the ferroelectric tester (TF Analyzer 2000 E) 
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2.6. Optical characterisation 

 

2.6.1. Diffuse reflectance spectroscopy 

 

When a beam of light impacts on a flat polished surface of a single crystal is partly 

reflected and partly refracted following Fresnel equations. In absorbing materials, the 

incident beam light is absorbed according the Lambert absorption law (Eq. 2.15): 

𝐼 = 𝐼0𝑒−𝐾𝑥 Eq. 2.15 

Where I is the transmitted flux, I0 is the initial flux, x is the thickness of a medium with 

an absorption coefficient, K. In polycrystalline materials, diffraction phenomena also 

occur. In powders of randomly oriented particles, part of the incident light goes back at 

all angles. If the particle size is similar or smaller than the wavelength () of the beam, 

the light is scattered. The scattered light by a single particle has no isotropic distribution 

(Mie's theory). However, some investigations have shown, an isotropic distribution arises 

from the material with sufficiently large number of particles and layer thickness (x) and 

is defined as diffuse reflectance (Kortum 1969). The incident light is scattered according 

the Equation 2.16. 

𝐼 = 𝐼0𝑒−𝑆𝑥 Eq. 2.16 

Where S is the scattering coefficient. Kubelka and Munk (K-M) proposed a system of 

differential equations based on the model of light propagation in plane-parallel 

homogeneous layer of thickness x. K-M model is based on assuming perfectly diffuse 

light incident and the only interactions of the light with the medium are scattering and 

absorption. The diffuse radiation flux in the negative and positive x directions are 

designed I and J, respectively (Figure 2. 15.). 

 

Figure 2. 15.: Cross sectional of a powder layer. 
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While the downward flux, I, passes through dx, it is decreased by amounts of KIdx and 

SIdx by the absorption and the scattering, and increased by an amount SJdx by scattering, 

and a similar reasoning is made for the upward flux J, then the following differential 

equations (Eq. 2.17 and 2.18) can be derived: 

−
𝑑𝐼

𝑑𝑥
= −(𝐾 + 𝑆)𝐼 + 𝑆𝐽 

Eq. 2.17 

𝑑𝐽

𝑑𝑥
= −(𝐾 + 𝑆)𝐽 + 𝑆𝐼 

Eq. 2.18 

where K and S the absorption and scattering coefficient of the sample, respectively. 

Kubelka (1948) obtained explicit hyperbolic solutions to these equations that were later 

discussed in detail by Wyseck and Stiles (1982) and gave a solution in term of reflectance 

(R) (Eq. 2.19). 

𝑅 =
1 − 𝑅𝑔(𝑎 − 𝑏𝑐𝑜𝑡ℎ𝑏𝑆𝑋)

𝑎 − 𝑅𝑔 + 𝑏𝑐𝑜𝑡ℎ𝑏𝑆𝑋
 

Eq. 2.19 

where Rg is background reflectance, cothbSX the hyperbolic cotangent of bSX, a=1+K/S, 

and b=(a2-1)0.5. If layers are thick enough to ensure that a further increase in thickness 

does not change the reflectance, we can suppose that 𝑥 → ∞. Under these conditions, the 

reflectance is given by 𝑅∞and the Eq. 2.20 yields: 

𝐾

𝑆
=

(1 − 𝑅∞)2

2𝑅∞
= 𝐹(𝑅∞) 

Eq. 2.20 

where 𝐹(𝑅∞) is K-M function. 

In this work, band-gaps were determined from Tauc plots obtained from diffuse 

reflectance data. K-M function is proportional to the optical absorption. Hence the 

absorption coefficient, α, can be substituted by 𝐹(𝑅∞) in the Tauc equation (Eq. 2.21). 

(ℎ𝜈𝛼)1/𝑛 = [ℎ𝜈𝐹(𝑅∞)]1/𝑛
 Eq. 2.21 

where h is the Planck constant and 𝜈 frequency of vibration. The value of n denotes the 

nature of the sample transition. For the direct band-gap, the allowed transition is n=1/2, 

whilst for the indirect band-gap, the allowed transition is n=2. Subsequently, [ℎ𝜈𝐹(𝑅∞)]2 

and [ℎ𝜈𝐹(𝑅∞)]1/2 curves were plotted against the photon energy, ℎ𝜈. The intersection 

point of the curve’s tangent with horizontal axis determinates band-gap value of the 

sample. The Tauc method cannot determine conclusively if a band structure is direct or 

indirect.  
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Diffuse reflectance ultraviolet and visible (DRUV-VIS) spectra of ceramics were 

acquired at RT in the range 200-1600 nm using UV-VIS-NIR spectrometer (Shimadzu 

UV-3600) (Figure 2.16.) at Greatsolarcell, Manchester, United Kingdom. 

 

Figure 2. 16.: Image of UV-VIS-NIR spectrometer (Shimadzu UV-3600) at Greatsolarcell, Manchester, 

United Kingdom. 
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3. Processing and Characterisation of KNbO3 

ceramics. 

 

 

3.1. Introduction 

 

The first part of this chapter is focused on the processability (powder synthesis and 

sintering) of KNbO3 (KN) ceramics. Difficulties associated with the preparation of dense 

KN ceramics often limit the ability to fully characterise their electrical properties and rule 

out many technological applications of this material. Subsequently, the second part of this 

chapter is devoted to the dielectric, ferroelectric and optical characterisation of dense KN 

ceramics.  

Potassium presents high volatility at 800 ºC and its evaporation from the system is 

accelerated by moisture in the environment (Flueckiger & Arend, 1977). Potassium losses 

during ceramic processing make difficult the control of the stoichiometry in KN ceramics. 

As mentioned in Chapter 1, a secondary phase, K4Nb6O17 (ICDD#: 00-031-1064), is 

easily formed due to potassium loss. This hygroscopic phase often leads to disintegration 

of non-fully dense ceramics due to absorption of atmospheric moisture. Another problem 

affecting the preparation of dense KN ceramics is the sintering temperature, which is very 

close to the melting point of this perovskite. 

Various publications deal with the above shortcomings and proposed specific ceramic 

processing conditions. Table 3. 1 and Table 3. 2 list some of the investigations based on 

single and double calcination procedures, respectively. Moreover, it has been shown that 

the introduction of additives, such as LaFeO3 (K. I. Kakimoto, Masuda, & Ohsato, 2003), 

CuO (Kim et al., 2014) and ZnO (Lv, Li, Wu, Xiao, & Zhu, 2016) among others, enhance 

density and electrical properties of KN ceramics. Kakimoto et al obtained high density 
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(98.8%) by substituting 0.2 % of LaFeO3 into KN ceramics, which were sintered at 1020 

ºC in a potassium rich atmosphere provided by covering the green body with additional 

KN powder. In 2007, Matsumoto et al reported a density of KN as high as 96.3% when 

calcining two times and sintering at 1050 ºC. In addition, the same authors also 

demonstrated that the addition of 1.2 wt% of MnCO3 promotes the reduction of the 

electrical conductivity and enhances densification. This work shows a reputable 0.22% 

electric-field induced strain under unipolar field of 80 kV/cm (K Matsumoto, Hiruma, 

Nagata, & Takenaka, 2008). In 2016 Lv et al showed that the addition of ZnO to KN 

improves the electrical resistance and the stability in moisture. 

Nevertheless, only few works reported on electrical properties of undoped KN ceramics, 

mainly due to the poor densification (H Birol, Damjanovic, & Setter, 2005; Dubernet & 

Ravez, 1998). In contrast, literature on the electric properties of KNN ceramics is vast, 

because those are more amenable preparation (Hansu Birol, Damjanovic, & Setter, 2006; 

Egerton & Dillon, 1959; Uniyal et al., 2003). 

In this study, stoichiometric (KNbO3), K-deficient (K0.95NbO2.975) and K-excess 

(KNb0.95O2.875) samples were prepared in order to evaluate the impact of an eventual 

potassium volatilisation during the processing. Moreover, two batches of KNbO3, 

K0.95NbO2.975 and KNb0.95O2.875 ceramics were prepared by solid-state reaction following 

two different routes: standard (method 1) and optimised (method 2) ceramic processing. 

The two methods selected consist of two calcination steps, which allegedly are more 

effective in obtaining dense KN ceramics. Method 1 and method 2 are mainly inspired by 

the works of Matsumoto et al and Kakimoto et al, respectively. 

The main findings in terms of purity, crystal structure and stability comparing both 

methods are presented in the first part of this chapter. Later, crystal structure, lattice 

dynamics, microstructure, stability of dense KN ceramics were investigated. The second 

part reports the dielectric, ferroelectric and optical properties for the stoichiometric 

composition. In addition, the optical properties of stoichiometric and non-stoichiometric 

were measured and compared.  

  



 

 

 

 

Reference 
Calcination 

conditions 

Sintering 

conditions 

Relative 

densities (%) 
𝜺𝒓 𝑻𝑪(ºC) 𝑷𝑺 𝑺𝒎𝒂𝒙 

(Tashiro, Nagamatsu, 

& Nagata, 2002) 
900 ºC (2h) 1090 ºC-1170 ºC 96.2 ~4000 ~400 

20µC/cm2 

at 30 kV/cm 
- 

(H Birol et al., 2005) 
625ºC (4h) 

3ºC/min 
1035 ºC 94 ~3500 410 

25µC/cm2 

at 80 kV/cm 
- 

(Acker, Kungl, & 

Hoffmann, 2013) 
775ºC (5h) 1060ºC ~85 - - - - 

(Lv et al., 2016) 800ºC (4h) 1020ºC (1-6 h) - ~4000 430 
23µC/cm2 

at 30 kV/cm 
 

(Park et al., 2017) 950ºC (3h) 960ºC (1-8 h) 98 ~4000 406 
26 µC/cm2 

at 80 kV/cm 

0.17% 

at 80 kV/cm 

Table 3. 1: KN ceramic processing methods in the literature using a single stage calcination step. Also, experimental relative permittivity (𝜀𝑟), Curie temperature (𝑇𝐶), 

spontaneous polarisation (𝑃𝑆) and maximum strain (𝑆𝑚𝑎𝑥) values are included in this table. 



 

 

Table 3. 2: KN ceramic processing in the literature using a double calcination step. Also, experimental relative permittivity (𝜀𝑟), Curie temperature (𝑇𝐶), spontaneous polarisation 

(𝑃𝑆) and maximum strain (𝑆𝑚𝑎𝑥) values are included in this table. 

Reference 
Calcination 

conditions 

Sintering 

conditions 

Relative 

densities 

(%) 

𝜺𝒓 𝑻𝑪(ºC) 𝑷𝑺 𝑺𝒎𝒂𝒙 

(K. Kakimoto, Masuda, & 

Ohsato, 2005) 

820ºC (4h)  

+ 850ºC (4h) 
1020ºC-1280ºC 90 ~1200 420 

7 µC/cm2  

at 40 kV/cm 

0.02%  

at 40 kV/cm 

(Kenji Matsumoto, Hiruma, 

Nagata, & Takenaka, 2007) 

600ºC (4h) 

 + 1000ºC (4h) 
1055ºC-1060ºC (2h) 96.2 - - - - 

(Hajime Nagata, 

Matsumoto, Hirosue, 

Hiruma, & Takenaka, 

2007) 

600ºC (4h) 

 + 1000ºC (4h) 
1055ºC (2h) >96 ~3800 424ºC - - 

(Kim et al., 2014) 
600ºC (4h)  

+ 1000ºC (4h) 
940ºC-980ºC (2h) <70 - - - - 

Method 1 

This study 

625ºC (4h) 

 + 1000ºC (4h) 
1070 (4h) - - - - - 

Method 2 

This study 

850ºC (4h) 

 + 850ºC (4h) 
1085 (4h) >94 ~2600 398ºC 

17µC/cm2  

at 80 kV/cm 

0.092%  

at 80 kV/cm 
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3.2. Method 1 

 

3.2.1. Purity and crystal structure 

 

A series of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 powders and ceramics were prepared 

by the conventional solid-state reaction method, following the two step calcination, 

proposed by Matsumoto et al, 2007.  

Starting materials, were dried potassium carbonate (K2CO3) and niobium oxide (Nb2O5) 

weighed in required ratio, were mixed overnight in polyethylene bottles with zirconia 

milling media and using propan-2-ol as the milling medium. K2CO3 powder is 

hygroscopic and tends to absorb water when left open in air. Therefore, exposion of raw 

materials was kept to a possible minimum. The obtained slurries were dried, sieved and 

calcined, first at 625 ºC and then at 1000ºC, both for 4 hours with a heating rate of 

3℃/min. Synthesis and sintering process was handled very carefully in order to avoid 

material losses, which would affect the sensitive stoichiometry of KNbO3. Subsequently, 

purity and crystal structure were examined by X-ray diffraction. Figure 3. 1 shows XRD 

patterns of KNbO3 and non-stoichiometric KNbO3 powders calcined at 625ºC and 

1000ºC. 
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Figure 3. 1: XRD data of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 powders after calcination at 625ºC and 

1000ºC (Method 1). Red symbols indicate small amount of K4Nb6O17. 
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XRD patterns of the three compounds look similar and can be ascribed to an orthorhombic 

perovskite. A small amount of secondary phase (K4Nb6O17) appears in both 

stoichiometric and K-deficient powders, as indicated by the red circles. Differences on 

the degree of splitting of the quadruplet (131), (313), (022) and (202), suggest that a 

variation on the K/Nb ratios of the initial batches directly affect the purity but also the 

crystallisation of KNbO3. Higher degree of crystallinity is obtained for the K-excess 

composition (APPENDIX A). 

Birol et al. reported that compact pellets should be fired at 1035ºC in oxygen rich 

atmosphere. The furnace used in the present work is not equipped to control the firing 

environment. Samples fired at 1035ºC were far from being densified. Hence, 

measurements of the shrinkage of pure KN after firing at different temperatures, was 

employed to experimentally determine the sintering temperature (Figure 3. 2). 
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Figure 3. 2: Radial shrinkage as a function of the temperature for stoichiometric KN prepared by method 

1. 

The radial shrinkage of the pellet systematically increases with increasing firing 

temperature. From 1060ºC to 1070ºC its value is practically constant (~14.5%). At 

1075ºC the sample melts. Figure 3. 3 shows the room temperature X-Ray Diffraction data 

for KNbO3 and non-stoichiometric KNbO3 ceramics sintered at 1070ºC. 



Chapter 3 Processing and Characterisation of KNbO3 ceramics 

 
88 

20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

 KNbO
3

 K
0.95

NbO
3-

 KNb
0.95

O
3-

In
te

n
s
it
y
 (

a
.u

.)

2(º)

K
4
Nb

6
O

17

(0
0
2
)(2

2
0
)

 

(1
3
0
)

(2
2
1
)

(1
1
2
)

(1
3
1
) (3

3
1
)

(0
2
2
)

(0
2
2
)

(1
1
0
)

(0
0
1
) (0

2
0
) (2

0
0
)

(1
1
1
)

(0
2
1
)

 

Figure 3. 3: XRD data of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 pellets after sintering (method 1). Red 

symbols indicate the presence of K4Nb6O17. 

At first glance, it is apparent that the amount of secondary phase (K4Nb6O17) in 

K0.95NbO2.975 and KNbO3 increases considerably after sintering. As aforementioned this 

phase shows deliquescence when exposed to moisture. After sintering, K-deficient 

sample exhibits slightly higher concentration of this second phase. This fact leads to 

suggest that K losses are accelerated at high temperature in K-deficiency conditions. The 

5 mol% of extra K in KNb0.95O2.875 samples seems to compensate for the losses during 

the processing, obtaining single-phase KN ceramics. 

Peak splitting is better discernible in XRD patterns of KNbO3 and KNb0.95O2.875 because 

of enhanced crystallisation. K-deficient samples may require higher firing temperature 

for better crystallisation, however they melt at 1075ºC prior to full densification. The 

presence of K4Nb6O17 phase, the accelerated K losses at high temperatures and the low 

melting temperature hinders the densification for K-deficient samples. Table 3. 3 shows 

the unit cell dimensions calculated by Rietveld refinements. However, experimental and 

relative densities were not measured because they were extremely low at first glance.  
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 KNbO3 K0.95NbO2.975 KNb0.95O2.875 

Space 

Group 

89.4(5)% 

Amm2 

10.6(3) % 

Pna21 

84.9(5) % 

Amm2 

15.1 (4) % 

Pna21 
Amm2 

Density 

(calculated) 

(g/cm3) 

4.6121(1) 3.9080(1) 4.5739(4) 3.9123(1) 4.5077(4) 

a (Å) 3.9759(1) 33.0280(1) 3.9737(1) 33.019(2) 3.9734(1) 

b (Å) 5.6961(1) 6.4861(1) 5.6924(1) 6.4828(6) 5.6951(1) 

c (Å) 5.7225(1) 7.8204(1) 5.7187(2) 7.8178(8) 5.7216(1) 

V/106 (pm3) 64.799(2) 1675.3(1) 64.678(1) 1673.46(3) 64.7370(1) 

Rexp 1.62276 1.53789 1.56951 

Rprofile 3.28346 3.28856 3.28807 

Rwp 4.31841 4.24442 4.45203 

GOF 7.08174 7.61707 8.04612 

Table 3. 3: Theoretical density, lattice parameters and agreement indices for KNbO3, K0.95NbO2.975 and 

KNb0.95O2.875 calculate by Rietveld Refinement. 

 

3.3. Method 2 

 

3.3.1. Purity and crystal structure 

 

A second series of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 powders and ceramics was 

prepared by the solid state reaction method, but in this case following the route suggested 

in the literature by Kakimoto et al (method 2). Powders were compacted into big pellets 

of ~5 g each and calcined twice at 850ºC (4h). After that, the pellets were crushed using 

a mortar and pestle until a very fine powder was obtained. XRD data of calcined powders 

for the three compositions prepared by Method 2 are shown in Figure 3. 4. 
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Figure 3. 4: XRD data of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 powders after calcining two times at 

850ºC (Method 2). 

After calcination, all XRD data for KNbO3, K0.95NbO2.975 and KNb0.95O2.875 exhibit well 

defined peaks and similar patterns. Reflections of the three compositions can be attributed 

to orthorhombic phase (Amm2 space group). Unexpectedly, K4Nb6O17 secondary phase 

is not detected in the potassium deficiency composition. Peak splitting in KN is not as 

noticeable as in the other compositions. 

For sintering, pellets were uniaxially pressed under 1 tonne and buried in powder of the 

same composition in a covered alumina crucible in order to inhibit volatilization of K. 

For this method, the pellets are not successfully densified at 1070ºC. In the same way as 

in method 1, the monitoring of the radial shrinkage of the sample permits to determine 

the optimum sintering temperature of KN. Figure 3. 5 illustrates the evolution of the radial 

shrinkage of KN with the sintering temperature, from 1070ºC to 1085ºC (the sample melts 

at 1090 ºC). 
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Figure 3. 5: Radial shrinkage versus sintering temperature for stoichiometric KN ceramics prepared by 

method 2. 

Optimal sintering temperature for stoichiometric composition is 1085ºC with a radial 

shrinkage of ~16.5%. However, K0.95NbO2.975 and KNb0.95O2.875 melt at lower 

temperatures than pure KN. Table 3. 4 shows the sintering and melting temperatures for 

the three compounds. 

Compound Sintering Temperature (ºC) Melting Point (ºC) 

KNbO3 1085 1090 

K0.95NbO2.975 1080 1085 

KNb0.95O2.875 1070 1075 

Table 3. 4: Sintering and melting temperatures for KNbO3, K0.95NbO2.975 and KNb0.95O2.875 prepared 

following method 2. 

Figure 3. 6 shows the room temperature XRD data for KNbO3 and non-stoichiometric 

KNbO3 ceramics sintered at 1070ºC-1085ºC for 4 hours. 
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Figure 3. 6: XRD data of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 pellets after sintering (method 2). Red 

symbols indicate reflections from K4Nb6O17. 

The stoichiometric and K-excess ceramics appear to be single-phase within the detection 

limits of the technique, whereas K-deficient K0.95NbO2.975 sample exhibits the presence 

of K4Nb6O17 as a secondary phase after sintering. These results show how prone are KN 

ceramics to exhibit secondary phases when the K/Nb ratio is lower than 1. 

Patterns for KNbO3 and KNb0.95O2.875 were refined in the Amm2 space group and unit 

cell dimensions were calculated (Table 3. 5). A two-phase refinement was carried out for 

XRD data of K0.95NbO2.975 ceramics, using the Amm2 space group to model the 

orthorhombic KNbO3-based phase and the Pna21 space group to model the K4Nb6O17 

phase. The relative amounts of those two phases were calculated as ~65% and ~35%, 

respectively. 
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Experimental density is estimated by the geometric method as explained in Chapter 3. 

Archimedes method is not suitable for this composition because of high sensitivity to 

water. Relative density is obtained comparing with the density calculated by Rietveld 

refinement. Stoichiometric samples present densities above 90%. In contrast, K- 

excess and K-deficient compositions presents low densities (~86% and ~79%, 

respectively). Lattice parameters of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 are similar 

up to the third decimal and consequently they exhibit very similar volume values of 

the unit cells. Table 3. 5 also shows some indices that inform about the quality of the 

refinements. The reader is strongly encouraged to refer Appendix A where additional 

information is provided. Figure 3. 7 shows XRD pattern evolution of sintered KN pellet 

from RT up to 500ºC. From 30ºC to 150ºC, the pattern is well ascribed as orthorhombic 

 
KNbO3 K0.95NbO2.975 KNb0.95O2.875 

Space Group Amm2 
64.8(5) % 

Amm2 

35.1 (6) % 

Pna21 
Amm2 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 3.62(10) 3.87(5) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.3388(4) * 4.5077(4) 

Relative Density 

(%) 
94(1) 83(2) * 86(1) 

a (Å) 3.9711(1) 3.9729(1) 32.995(3) 3.9705(2) 

b (Å) 5.6909(1) 5.6905(2) 6.4773(7) 5.6905(3) 

c (Å) 5.7158(1) 5.7175(2) 7.8207(4) 5.7173(2) 

V/106 (pm3) 64.576(2) 64.630(4) 1671.4(3) 64.589(5) 

Rexp 1.26460 1.47829 0.90713 

Rprofile 2.97912 4.11528 5.02131 

Rwp 4.65175 6.02513 9.53967 

GOF 13.53086 16.61173 11.59170 

Table 3. 5: Experimental and theoretical density, lattice parameters and agreement indices for KNbO3, 

K0.95NbO2.975 and KNb0.95O2.875 calculate by Rietveld Refinement. * Weighted averaged of the two phases. 
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phase (Amm2). From 200ºC to 400ºC, KN is tetragonal (P4mm) and over 400ºC, cubic 

(Pm-3̅m).  
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Figure 3. 7: Temperature dependence of XRD pattern of KN sintered ceramic from 30ºC to 500ºC. 

 

3.4. Comparison between method 1 and 2 

 

3.4.1. X-Ray diffraction data 

 

The purpose of this section is to compare in terms of purity and stability KN and non-

stoichiometric ceramics prepared by method 1 and method 2. Differences on purity and 

crystallinity will be highlighted and the potential origins for those will be discussed. 

Figure 3. 8 shows the XRD pattern of pure KN (a), K-deficient (b) and K-excess (c) 

prepared by method 1 and 2. 
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Figure 3. 8: Comparison of method 1 and 2 by inspection of XRD data of pure KN (a), K deficient (b) and 

K excess (c). 

K losses in KN compounds are more remarkable when the materials are prepared by 

method 1. The only composition that is single phase is KNb0.95O2.875, because the K 

excess compensates for its losses during processing (Figure 3. 8 (c)). On the other hand, 
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both XRD data for pure KN and K0.95NbO2.975 reveal the presence of a secondary phase 

(K4Nb6O17) which is strictly related with the loss of K, as explained above. 

Method 2 appears to be an appropriate choice to prepare compounds based on KN. Its 

success may rely on: (1) the calcination of compacted powders and (2) imbedding pressed 

pellets into “atmospheric powder’’ during the sintering. 

The use of atmospheric powders has been reported in the literature as a solution for 

inhibiting the volatility of some atomic species during ceramic processing, such as, Pb in 

PZT (Kingon & Clark, 1983) and KNN, among others. The atmospheric powder, also 

known as sacrificial powder, must be the same composition as the sintered sample. Some 

authors reported this procedure to increase densities (Zhen & Li, 2006), others observed 

only enhancements in the grain size distribution (Pavlič, Malič, & Rojac, 2014).  

 

3.4.2. Stability in water 

 

In the previous sections it was shown that the high volatility of potassium prevents control 

of the stoichiometry in KNbO3 ceramics during sintering process. This leads to poor 

densification and the formation of an unstable secondary phase, K4Nb6O17, which causes 

disintegration of the ceramics when they are exposed to humidity.  

Figure 3. 9 (a) and (b) show top external view of KNbO3 ceramics pellets (KN1 and KN2) 

sintered by solid state reaction following method 1 and 2. 
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Figure 3. 9: KNbO3 ceramic pellets immersed in water, prepared by method 1(KN1) and method 2 (KN2). 

When sample KN1 is immersed in water (Figure 3. 9 (a) (i)), the sintered body starts 

immediately to crack. After 5 minutes (Figure 3. 9 (a) (ii)), the sample is disintegrated. In 

contrast, the sample KN2 shown in Figure 3. 9 (b) (i) and (ii) showed no reaction under 

water.  

Figure 3. 10 (a) and (b) show the behaviour of K0.95NbO2.975 ceramics in water (K0.95N1 

and K0.95N2) prepared by method 1 and 2, respectively. Both K0.95N1 and K0.95N2 

samples are unstable in water. K0.95N1 showed in Figure 3. 10 (a) (i) and (ii) is 

decomposed in similar manner as KN1 after 1 minute. The other specimen (K0.95N2) 

immediately exhibits high hygroscopic behaviour (Figure 3. 10 (b) (i) and (ii)). The pellet 

dissolves into water and the surroundings got muddy at the same time. 
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Figure 3. 10: K0.95NbO2.975 ceramic pellets immersed in water. Both K095N1((a) (i) and (ii)) and K095N2((b) 

(i) and (ii)) dissolve in water after few seconds. 

Finally, the stability in water is checked for KNb0.95O2.875 samples (KN0.951 and 

KN0.952) (Figure 3. 11 (a) and (b)) prepared by method 1 and 2. 

 

Figure 3. 11: KNb0.95O2.875 ceramic pellets immersed in water. Both KN0951((a) (i) and (ii)) and KN0952((b) 

(i) and (ii)) dissolve in water after few seconds. 

KN0.951 sample is stable in water after 3 hours. On the other hand KN0.952 dissolved in 

water, probably due to its low density (85%). 
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Both method 1 and method 2 followed rigorous procedures for each processing step to 

reduce the reaction with environmental humidity and to avoid contamination. However, 

samples prepared by method 1 reveal larger potassium loss during the ceramic processing 

than samples prepared by method 2, leading to the appearance of K4Nb6O17, a very 

hygroscopic phase.  

The differences between the two methods concern heat treatment conditions. Firstly, 

second calcination in method 1 occurs at higher temperature than in method 2, which may 

lead to higher potassium volatility. Secondly, powders are compacted before calcination 

(method 2) instead of being directly heat treated (method 1). Thirdly, in method 2 the 

sintering is carried out under enriched potassium environment produced by a combination 

of using sacrificial powder and in addition covering the species with alumina crucibles. 

In contrast, sintering in method 1 is performed under room atmosphere.  

These steps undertaken in method 2 effectively suppressed potassium losses during the 

ceramic processing. On the other hand, method 1 is suitable if extra quantity of K is added 

to the starting powder mixture to compensate the K evaporation. Due to high sensitivity 

of the stoichiometry in this system, it is considered more appropriate to follow the route 

suggested by method 2. All systems in the present study were prepared using at least two 

calcinations at temperatures no greater than 850ºC. 

 

3.5. Structural and chemical characterisation 

 

3.5.1. Raman Spectroscopy 

 

Room-temperature Raman spectra for KNbO3, K0.95NbO2.975 and KNb0.95O2.875 powder 

and sintered pellets prepared by method 2, are presented in Figure 3. 12 and Figure 3. 13, 

respectively. The three compositions exhibit analogous Raman spectra for powders and 

pellets. Consequently, the following analysis can be applied in both cases. 

Orthorhombic KNbO3 exhibits 12 Raman active optical modes of 4A1 + 4B1 + 3B2+ A2 

symmetries from group theory analysis. Modes in the following Raman spectra are 

labelled according to the single-crystal assignment by Quittet (1976): (i) a mixed sharp 

mode at 192 cm-1; (ii) a Fano-type interference dip at 197 cm-1; (iii) a broad B1 (TO) mode 



Chapter 3 Processing and Characterisation of KNbO3 ceramics 

 
100 

centered at 250 cm-1; (iv) a B1 (TO) at 272 cm-1; (v) a sharp mode at 278 cm-1; (vi) another 

mode at 294 cm-1; (vii) a B1(TO) mode at ∼ 532 cm-1; (viii) a A1(TO) mode at ∼ 600 cm-

1 and (ix) a low intensity A1(LO) mode at 831 cm-1.  

The sharp mode at 192 cm -1 is a mixed B1(TO), A1(TO), A1(LO) and B2(TO) mode. 

Similarly, the mode at 278 cm-1 is due to a broad A1(TO) combined with a sharp A2, 

whilst the sharp mode at 294 cm-1 is due to A1(LO) and A1(TO), associated with a BO6 

bending vibration (Zhou, Deng, Yang, & Chu, 2014). However, because of the resolution 

limit of the instrument they all appear merged as a single peak 

The occurrence of long-range polarisation in KNbO3 is ultimately associated with the 

presence of the (i), (ii) and (vi) modes, which will therefore be used in this work to 

monitor the polar nature of KN-based solid solutions, (Luisman, Feteira, & Reichmann, 

2011). 
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Figure 3. 12: Room temperature Raman Spectra of KNbO3 and non-stoichiometric powders calcined twice 

at 850ºC for 4 hours. 
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Figure 3. 13: Room-temperature Raman spectra of KNbO3 and non-stoichiometric sintered pellets. 

 

3.5.2. SEM 

 

Scanning electron microscopy images of unpolished surfaces for stoichiometric, K-

deficient and K-excess KNbO3 sintered ceramics are shown in Figure 3. 14. 

Stoichiometric KN ceramic (a) exhibits the largest grain size (3-5 µm) among the rest of 

the microstructures. The grains are cubic shaped. In addition, the almost complete absence 

of porosity suggests high density, as was estimated in the previous section. On the other 

hand, microstructure of K-excess composition (b) exhibits a bimodal grain size 

distribution. Grains can be divided in two different categories: very small ones (~700 

nm) and larger grains of maximum size of 1.5 µm. The grains maintain the cubic shape 

in K-excess composition. Finally, the microstructure of K0.95NbO2.975 (c) is significantly 

different of previous two. Grains do not present a homogeneous morphology, acquiring 

different polyhedral shapes. K0.95NbO2.975 ceramics seems to have finer grains sizes than 

KNbO3 (a). In addition, (d) shows microstructure for K-deficient ceramics after one week 

left in air. The facility of absorbing moisture in this sample leads to the formation of a 

weak fused layer that covers the grains. 
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Figure 3. 14.: SEM images of unpolished surfaces for (a) KNbO3 (b) K0.95NbO2.975, (c) KNb0.95O2.875 and 

(d) after one week KNb0.95O2.875 sintered pellets. 

 

3.5.3. EDX 

 

Table 3. 6 shows the experimental ratio between K and Nb for KNbO3, K0.95NbO2.975 and 

KNb0.95O2.875, calculated from energy-dispersive X-ray spectra (EDX data). This table 

includes the theoretical ratio for each composition. 

Compound 
𝑲

𝑵𝒃⁄
𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

 𝑲
𝑵𝒃⁄

𝑺𝒕𝒐𝒊𝒄𝒉𝒊𝒐𝒎𝒆𝒕𝒓𝒊𝒄
 Relative Error (%) 

KNbO3 1.03(3) 1.00 ~3% 

K0.95NbO2.975 0.96(10) 0.95 ~1% 

KNb0.95O2.875 1.06(6) 1.05 ~1% 

Table 3. 6: Experimental and theoretical K/Nb ratios for pure, K-deficiency and K- excess KNbO3 

compounds. 
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EDX analysis reveals that KNbO3 and KNb0.95O2.875 samples are chemically 

homogeneous with K/Nb molar ratio being close to 1 and 1.05, respectively. K-excess 

and K-deficient samples exhibit slightly higher standard deviation than pure KN, which 

could be related with a lower homogeneity. This fact confirms again the sensibility of this 

system to the initial stoichiometry. Spectra and at% tables for each scan are available in 

Appendix A. 

 

3.5 Electric characterisation of stoichiometric KNbO3 prepared by method 2 

 

In the previous section it was shown that dense single phase stoichiometric KNbO3 

ceramics can be successfully fabricated following method 2. 

 

3.5.4. Dielectric characterisation  

 

Electrical characterisation of non-stoichiometric K-deficient and K-excess ceramics was 

deemed unfeasible due to their poor densification (Table 3. 5), which renders them 

structurally weak. In addition, low density also prevents samples from withstanding high 

electric fields. Therefore, dielectric and ferroelectric measurements were carried out only 

for stoichiometric KNbO3. The temperature dependence of the relative permittivity, 𝜀𝑟, 

and dielectric loss, tan𝛿, for KNbO3 ceramics measured at 1MHz, 250 kHz 100 kHz and 

10 kHz is illustrated in Figure 3. 15 (a) and (b). The measurements were performed on 

heating and cooling in the temperature range 30-500 ºC. KNbO3 ceramics show two clear 

dielectric anomalies at ~206 ºC and ~398 ºC, which can be ascribed to the orthorhombic-

to-tetragonal and to the tetragonal-to-cubic transitions, respectively (Figure 3. 15 (a)). On 

the single crystal, these transitions are reported to occur on heating at 220 ºC and 420 ºC 

(Shirane, Danner, Pavlovic, & Pepinsky, 1954). This difference may be caused by the 

impurities present in the starting raw materials, in particular, K2CO3, which has the lowest 

purity. The temperature of the highest anomaly determines the Curie temperature 

(TC~400 ºC). A shift of ~0.5 ºC to lower temperatures is observed for Curie temperature 

during cooling. The relative permittivity at TC reaches a value of ~2600 on heating and 

~2400 on cooling. On the other hand, relative permittivity at RT is ~300 and 𝜀𝑟 appears 
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frequency independent. Figure 3. 15 (b) shows dielectric losses become larger with 

increasing temperature and decreases with increasing frequencies.  
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Figure 3. 15: Temperature dependence of the (a) relative permittivity and (b) tan(δ) (1 MHz, 250 kHz, 100 

kHz and 10 kHz) of KNbO3, during heating and cooling. 

 

3.5.5. Ferroelectric Characterisation 

 

Difficulties on measuring electrical properties of pure KN samples were encountered, but 

were circumvented. Samples left to ambient conditions present rounded ferroelectric 

loops (red loop in Figure 3. 16) which indicates some conductivity and consequently were 

unable to withstand higher electric fields. Hence, samples were dried at 200ºC for 10 

minutes. Figure 3. 16. (black loop) shows samples to become more resistive and exhibit 

a more typical ferroelectric loop. This fact suggests KN ceramics absorb very easily 

moisture from the environment. Drying ceramics up to 200ºC before the electrical 



Chapter 3 Processing and Characterisation of KNbO3 ceramics 

 
105 

measurements was systematically performed for all materials studied in this work. Figure 

3. 17 shows the strain for KN left in open air and after drying. 
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Figure 3. 16: Room temperature P-E loops of pure KNbO3 ceramics under 50 kV/cm before (red curve) and 

after (black loop) drying at 200 ºC. 
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Figure 3. 17: Room temperature S-E loops of pure KNbO3 ceramics under 50 kV/cm before (red curve) and 

after (black loop) drying at 200 ºC. 
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The P-E loop measured before drying, resembles the hysteresis loop reported by Birol et 

al in 2005. Indeed, Ps, Pr and Ec values are very similar to the values measured in the 

present work, ~20 µC/cm2, ~18 µC/cm2 and ~20 kV/cm, respectively. In contrast, P-E 

loop measured after drying, resembles the hysteresis loop reported by Kakimoto et al in 

2003. Again, Ps, Pr and Ec values are like the values obtained, ~10 µC/cm2, ~8 µC/cm2 

and ~20 kV/cm, respectively. Significant differences are not observed for the S-E loops 

before and after drying. KN exhibits Smax value of approximately 0.06%, which is in 

agreement with values measured by Kakimoto et al. The absorbed water makes the 

ceramics more conductive and gives rise to current instead of inducing electric 

polarization with the applied electric field. Therefore, the high Pr values reported by Birol 

may be over-estimated. 

Polarisation vs electric field (P-E) and strain vs electric field (S-E) loops measured at 

room temperature for KN ceramics under high electric fields up to 80 kV/cm, are shown 

in Figure 3. 18 and Figure 3. 19, respectively. Pure KN exhibits hysteresis loops typical 

for ferroelectric materials, which become larger with increasing electric field. 

Furthermore, KN sample is able to withstand an electric field of 80 kV/cm showing a 

maximum spontaneous polarisation (PS) of ∼16.4 µC/cm2, a remnant polarization (Pr) of 

∼13.8 µC/cm2
 and a coercive field (EC) of ∼27 kV/cm. Table 3. 7 displays the Ps, Pr and 

EC values under the different electric fields. 
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Figure 3. 18: Room temperature P-E loops of pure KNbO3 ceramics under different electric fields (50 

kV/cm, 60 kV/cm, 70 kV/cm and 80 kV/cm).  
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The shape of S-E curve is the standard butterfly curve that is usually observed in 

ferroelectrics (Figure 3. 19). The maximum strain (Smax) for KN is about 0.092% under 

80 kV/cm. In addition, the S-E curve shows that the negative strain can reach 0.02%, 

which is due to ferroelectric domain and domain wall switching. The Smax values under 

the different electric fields are also shown in Table 3. 7. 
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Figure 3. 19: Room temperature S-E loops of pure KNbO3 ceramics under different electric fields (50 

kV/cm, 60 kV/cm, 70 kV/cm and 80 kV/cm). 

Electric Field 

(kV/cm) 

PS  

(µC/cm2) 

Pr  

(µC/cm2) 

EC 

(kV/cm) 

Smax  

(%) 

50 11.20 7.94 13.00 0.062 

60 14.83 12.67 23.5 0.070 

70 15.51 12.67 24.81 0.086 

80 16.56 13.85 27.43 0.092 

Table 3. 7: PS, Pr, EC and Smax values of KN at RT under different electric fields (50 kV/cm, 60 kV/cm, 70 

kV/cm and 80 kV/cm). 

The characteristic ferroelectric parameters (PS, Pr, EC) and the maximum strain (Smax) of 

stoichiometric KN tend to increase with the increase of the electric field applied. 

The temperature dependence of the ferroelectric loops (Figure 3. 20) and the strain curves 

(Figure 3. 21) are also investigated in this work. At first glance, when increasing the 

temperature, the hysteresis loops become narrower and taller. This can be translated into 
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an increase of Ps and Pr values and decrease of EC with the temperature. Under 50 kV/cm, 

the maximum values are observed at 160ºC: PS of ∼23 µC/cm2, Pr of 20 µC/cm2 and EC 

of ∼14 kV/cm. PS, Pr, EC and Smax values at different temperatures, are shown in Table 3. 

8.  
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Figure 3. 20: P-E loops of pure KNbO3 ceramics under 50kV/cm at different temperatures (RT, 40ºC, 60ºC, 

80ºC, 100ºC, 120ºC and 140ºC). 

The maximum strain (Smax) for KN is about 0.097% under 50 kV/cm at 160ºC. This value 

is slightly higher than the Smax value at 80 kV/cm at RT. In addition, the S-E curve shows 

that the negative strain can reach 0.025%, which is related with ferroelectric domain 

switching. Smax values at different temperatures are shown in Table 3. 8. 
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Figure 3. 21: P-E loops of pure KNbO3 ceramics under 50 kV/cm at different temperatures (RT, 40ºC, 60ºC, 

80ºC, 100ºC, 120ºC and 140ºC). 

Temperature 

(ºC) 

PS 

(µC/cm2) 

Pr 

(µC/cm2) 

EC 

(kV/cm) 

Smax 

(%) 

RT 11.19 7.92 12.52 0.061 

40 16.18 12.34 12.52 0.071 

60 16.18 11.86 12.29 0.075 

80 16.42 12.19 12.61 0.078 

100 17.16 13.25 13.02 0.083 

120 19.62 16.51 14.58 0.091 

140 21.21 18.58 14.44 0.096 

160 22.50 20.45 14.17 0.097 

Table 3. 8: PS, Pr, EC and Smax values of KN under an electric field of 50kV/cm at different temperatures 

(RT, 40ºC, 60ºC, 80ºC, 100ºC, 120ºC and 140ºC). 

Ferroelectric parameters of PS, Pr and EC of KN ceramic continuously increase with 

increasing temperature. This tendency goes against to results presented by Birol et al, 

where Ps decreases with increasing temperature. Again, this fact is an evidence of their 

measurements being strongly affected by conductivity on the samples. Basically, during 

their measurements, moisture is driven off on heating, and then polarisation apparently 

drops. 
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3.6. Optical characterisation 

 

3.6.1. Diffuse Reflectance Spectroscopy 

 

Figure 3. 22 shows diffuse reflectance data. Direct and indirect band-gaps were calculated 

from these measurements using the Kubelka-Munk function. As discussed in Chapter 1, 

there is controversy in the literature about the nature of band-gap for KNbO3. Therefore, 

direct and indirect band-gaps were determined (Figure 3. 23 and Figure 3. 24). 
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Figure 3. 22: Diffuse reflectance (%) data for KNbO3, K0.95NbO2.975 and KNb0.95O2.875 ceramics 

Stoichiometric KN exhibits a direct band gap of 3.64 eV. Non-stoichiometric 

compositions present narrower band-gaps probably due to hybridised orbitals generated 

by oxygen vacancies. K-deficient and K- excess samples present 3.34 and 3.31 eV values 

respectively. Indirect band-gaps follow the same trend (Figure 3. 24). The narrowest 

band-gap is estimated for KNb0.95O2.875, which in principle has a larger concentration of 

oxygen vacancies. Indeed, in terms of defect chemistry it follows: 2𝑉𝑁𝑏
′′′′′+5𝑉𝑂

·· for 

KNb0.95O2.875 and 2𝑉𝐾
′ +5𝑉𝑂

·· for K0.95NbO2.975. 
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Figure 3. 23: Tauc plot for direct band-gaps of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 ceramics. 
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Figure 3. 24: Tauc plot for indirect band-gaps of KNbO3, K0.95NbO3-δ and KNb0.95O3-δ ceramics. 

The indirect band-gap for stoichiometric composition is 3.23 eV. K-deficiency and K- 

excess samples show 3.18 and 3.15 eV values respectively. Calculated band-gaps are 

summarised in Table 3. 9 for pure KN and non-stoichiometric composition. 

Band-gap 𝐊𝐍𝐛𝐎𝟑 𝐊𝟎.𝟗𝟓𝐍𝐛𝐎𝟐.𝟗𝟕𝟓 𝐊𝐍𝐛𝟎.𝟗𝟓𝐎𝟐.𝟖𝟕𝟓 

Direct (eV) 3.64 3.34 3.31 

Indirect (eV) 3.23 3.18 3.15 

Table 3. 9: Direct and indirect values for pure KN and non-stoichiometric composition. 
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3.7. Discussion 

 

Stoichiometric KNbO3 ceramics and compositions altered with potassium and niobium 

deficiency were prepared by solid-state reaction to examine the impact of potassium 

losses during the ceramic processing. Indeed, potassium volatilisation hinders the control 

of the stoichiometry of KNbO3, which leads to the formation of secondary phase, 

K4Nb6O17 (ICDD# 00-031-1064). This phase is highly hygroscopic. Two series of 

KNbO3, K0.95NbO2.975 and KNb0.95O2.875 were prepared following two different 

procedures, Method 1 and Method 2. All materials in this work are based on KNbO3, for 

this reason it was important to standardise a route which allows to prepare dense single-

phase KNbO3 ceramics. 

Two main lines of KN ceramic preparation can be distinguished in the literature: (1) 

single calcination and (2) double calcination steps for the synthesis. Method 1 and Method 

2 present two stages during calcination that should provide more effective route in 

obtaining dense KN ceramics. Method 1 is inspired on the most commonly used route in 

literature (Kim et al., 2014; K. Matsumoto et al., 2007; H. Nagata, Matsumoto, Hirosue, 

Hiruma, & Takenaka, 2007). First calcination (625ºC) occurs at lower temperature than 

the second calcination (1000ºC), which is close to the sintering temperature. On the other 

hand, Method 2 is based on Kakimoto studies. Compact powders are doubly calcined at 

lower temperatures (850ºC). By inspection of the crystal purity, the shrinkage behaviour 

and the stability in water of KNbO3, K0.95NbO2.975 and KNb0.95O2.875 ceramics, it is 

determined Method 2 is more appropriate for their preparation by conventional solid-state 

reaction.  

Firstly, the volatility of K is exacerbated when the material is treated above 1000 ºC. 

Therefore, Method 1 promotes K losses and consequently the appearance of K4Nb6O17. 

Secondly, K losses are also inhibited if the powders are compacted during the calcination. 

And thirdly, the control of firing environment with atmospheric powder and double 

crucible during the sintering, reduce the K losses and enhance the densification. High 

relative density (>94%) is achieved for stoichiometric KN ceramics, as reported by 

Kakimoto et al. 
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Once the ceramic processing was optimised, KNbO3, K0.95NbO2.975 and KNb0.95O2.875 

ceramics were characterised in terms of the structure, morphology and electrical 

properties.  

XRD and Raman results determined that KNbO3, K0.95NbO3-δ and KNb0.95O3-δ ceramics 

can be described by an orthorhombic crystal structure (Amm2 space group). However, 

these three compositions exhibit significant differences. Stoichiometric KNbO3 shows 

large cubic grains up to 3-5 µm. Being single-phase, these ceramics densify relatively 

well to 4.35(3) g/cm3 which corresponds to 94% relative density. KNbO3 ceramics with 

potassium excess exhibit lower densification (~85%) and the grain growth is inhibited 

(600-800 nm). Finally, low density (<80%), deliquescence in water and the appearance 

of secondary phase (K4Nb6O17) characterise the K-deficiency samples. Different 

temperatures are required to sinter KNbO3, K0.95NbO2.975 and KNb0.95O2.875. Worth to be 

underlined, the variation of only 5% of K content in KN ceramics induces changes in the 

purity, crystallisation, microstructure, stability and densification temperature of the 

samples. These results demonstrate the sensitivity of this compound to the stoichiometry 

and highlight the need of controlling the potassium losses during the processing. 

Low densities in non-stoichiometry samples limit the study of electrical properties. 

Hence, only KN ceramics were electrically characterised. The mixed sharp peak centered 

at 192 cm-1in Raman spectra is the fingerprint of the long-range polar order in KN 

compounds. Indeed, KN is a typical ferroelectric material. Large anomalies in the relative 

permittivity (𝜀𝑟) as a function of temperature corroborate ferroelectric phase transitions, 

from cubic to tetragonal phases (P4mm) at 398 °C (Curie point) and from tetragonal to 

orthorhombic (Amm2) at 206°C. For single crystal phase transitions occur at 410ºC and 

200ºC, exhibiting large temperature hysteresis between the heating and the cooling 

(Shirane et al., 1954). In contrast, ceramics do not show thermal hysteresis for 

orthorhombic-to-tetragonal transition but TC during the heating is ~10ºC higher than 

during cooling.  

P-E loops reveal KN ceramics left in air absorb moisture from the environment, which 

makes the sample more conductive and leads to over-estimated Ps, Pr and Ec values, as in 

the case of FE loops reported by Birol et al. Prior drying at 200ºC enables the application 

of 80 kV/cm at room temperature to KNbO3 ceramics, which exhibit typical ferroelectric 
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polarisation-electric field loops, as previously reported by Kakimoto et al. Enhancement 

of spontaneous and remanent polarisation are observed when the temperature increases. 

Finally, direct (and indirect) band-gap of KNbO3 was estimated at 3.64 eV (3.23 eV). 

However, non-stoichiometric compositions present narrower band-gaps. Indeed, K-

excess compound has higher concentration of oxygen vacancies 2𝑉𝑁𝑏
′′′′′+5𝑉𝑂

·· than 

2𝑉𝐾
′ +𝑉𝑂

··on the K-deficiency compound, which may decrease the band-gap energy. This 

phenomenon was also observed on non-stoichiometric BaTiO3 ceramics (Lee, Woodford, 

& Randall, 2008). 

 

3.8. Conclusions 

 

Densification issues on preparing pure KN ceramic are intimately related with the 

stoichiometry of the compound. The high volatility of K, the easy formation of a 

hygroscopic secondary phase (K4Nb6O17) and moisture absorption during the process 

makes the manufacture of KNbO3 ceramics difficult. In this chapter, these difficulties 

were circumvented through the introduction of appropriate measures to control K losses 

during the heat treatments. This investigation also demonstrates the susceptibility of 

KNbO3 to small variations on potassium levels. Finally, dense single-phase KNbO3 

ceramics were prepared. Furthermore, in this chapter the dependence of dielectric, 

ferroelectric and piezoelectric properties for KNbO3 with the temperature was shown. 

Spontaneous polarisation of ~23 µC/cm2 and maximum strain of 0.1% is obtained under 

50 kV/cm at 160ºC. Finally, KNbO3, K0.95NbO2.975 and KNb0.95O2.875 exhibit direct (and 

indirect) band-gaps of 3.64 eV (3.23 eV), 3.34 eV (3.18 eV) and 3.31 eV (3.15 eV), 

respectively. 
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4. System (1−x) KNbO3-x(Ba0.5Bi0.5)(Zn0.5Nb0.5)O3 

 

 

4.1. Introduction 

 

This chapter is devoted to the synthesis and characterisation of powders and ceramics in 

the binary system (1-x) KNbO3-x Ba0.5Bi0.5Nb0.5Zn0.5O3 (KBBNZ) with x=0, 0.05, 0.10, 

0.15, 0.20 and 0.25. Details on ceramic processing, structural, dielectric, ferroelectric, 

piezoelectric and optical properties are presented. 

The investigation of this system was motivated by a recent theoretical work on band-gap 

engineering of ferroelectric KN (F Wang, Grinberg, & Rappe, 2014). Their first principle 

calculations with HSE06 functional predict a band gap of 2.92 eV for 0.75 KNbO3-0.25 

(Ba0.5Bi0.5)(Zn0.5Nb0.5)O3 and a spontaneous polarisation of ~38 C/cm2, which is typical 

for a robust ferroelectric material. The origin of the band-gap narrowing allegedly relies 

on Zn2+ substitution for higher-valence Nb5+ in KNbO3, which gives rise to increased 

repulsion between the O 2p and Zn 3d states and thereby to a higher valence band 

maximum (VBM). The shift up of the VBM is driven by the repulsion between the non-

bonding 3d10 orbitals of Zn2+ and the 2p6 orbitals of O2-. In addition, the conduction band 

minimum (CBM) which mainly consists of Nb 4d states is essentially preserved from the 

parent KNbO3. Hence, the CBM is dependent on the off-centering direction of the B-site 

cation. Presumably, the combination of these two effects narrows the band-gap of the 

parent KN, moving it into the visible range.  

In this work, KBBNZ system was prepared by solid state reaction and the experimental 

results validate previous first principles calculations of the band gap for x =0.25, which 

also appears to be non-ferroelectric. In addition, a piezoelectric-to-electrostrictive 

crossover is also unveiled. 
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4.2. Structural and chemical characterisation 

 

4.2.1. Purity and X-ray powder diffraction 

 

KBBNZ powders were prepared by the solid-state reaction route. Starting oxides and 

carbonates (K2CO3, Bi2O3, BaCO3, Nb2O5, and ZnO) were weighed in required molar 

ratios according to the (1-x) KNbO3-x Ba0.5Bi0.5Nb0.5Zn0.5O3 formula and mixed for 24 

h. Slurries were dried and subsequently passed through a 250 mesh sieve. Double 

calcination in air at 850 °C was carried out following method 2 from Chapter 3. Room-

temperature X-ray diffraction (XRD) data for KN-BBNZ powders are shown in Figure 4. 
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Figure 4. 1 Room temperature XRD data for KBBNZ x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 powders after 

double calcination in air at 850ºC. 

After two calcinations at 850ºC, all oxides and carbonates appear to have fully reacted, 

as supported by the absence of any reflection associated with those chemical precursors. 

Indeed, all reflections in the traces, shown in Figure 4. 1 can be assigned to phases with 

the perovskite structure. At first glance, all compositions appear to be single-phase, 

however a closer inspection reveals the appearance of nearly undoped phase. The latter 
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is indicated by the dashed line in part (b) of Figure 4. 1. From this figure it is also evident 

that the position of the reflection associated with the undoped phase remains virtually 

unchanged, however its intensity decreases with the increasing x. Basically this 

observation shows that at low dopant levels homogenisation is more difficult to achieve. 

Conversely, the shoulder that start appearing in KBBNZ x=0.05 shifts slightly towards 

lower angles with increasing x, making the peak splitting clear. This suggests there are 

some difficulties in the simultaneous incorporation of Ba+2, Bi+3, Zn+2 and Nb+5 into the 

KN lattice, using the processing conditions established in Chapter 3 for undoped KN. 

The calcined powders were uniaxially pressed into pellets under 1 ton. Then, green bodies 

were fired in air for 12 hours at temperatures ranging from 1070 to 1100 °C, using a 

controlled heating rate of 3 °C/min. Room-temperature X-ray diffraction (XRD) data for 

KBBNZ ceramics are shown in Figure 4. 2.  
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Figure 4. 2 Room temperature XRD data for KBBNZ x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 ceramics sintered 

at 1100ºC 

The XRD pattern of KN (x=0) ceramics exhibits well-defined sharp peaks which can be 

indexed to an orthorhombic cell with Amm2 symmetry. All reflections for doped 

compositions shift systematically towards lower 2𝜃 angles, indicating an increase of the 

unit cell size with increasing x. Figure 4. 2 (b) shows the evolution of the triplet indexed 

as (040), (400) and (222) for pure KN with increasing Ba0.5Bi0.5Nb0.5Zn0.5O3 content. A 
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single peak is visible for the rest compositions. However, the wide peak for x=0.05 still 

exhibits an average orthorhombic symmetry. For x=0.10 and 0.15, a shoulder is visible 

on the higher 2𝜃 side indicating the coexistence of two phases. Finally, the sharp peaks 

for x=0.20 and 0.25 suggest an average cubic symmetry. Average lattice metrics 

calculated from the Rietveld refinement of XRD data for all KBBNZ ceramics are given 

in Table 4. 1 and Table 4. 2. Experimental and relative densities are also included in the 

tables. 

Table 4. 1: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KBBNZ (x=0, 0.05 and 0.10). * Weighted averaged of the two phases. 

 

 x=0 x=0.05 x=0.10 

Space Group Amm2 Amm2 71.8(4) % Amm2 28(1) % Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 4.42(11) 4.86(6) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.6523(4) 4.8888 (2)* 

Relative 

Density (%) 
94(1) 95(2) 98(1)* 

a (Å) 3.9711(1) 4.0057(1) 4.0266(1) 4.0204(1) 

b (Å) 5.6909(1) 5.6763(3) 5.6927(1) 4.0204(1) 

c (Å) 5.7158(1) 5.6935(3) 5.6822(1) 4.0204(1) 

V/106 (pm3) 64.576(2) 64.729(5) 65.128(3) 64.983(3) 

Rexp 1.26460 1.45269 1.45707 

Rprofile 2.97912 2.31942 2.03994 

Rwp 4.65175 3.29451 2.95423 

GOF 13.53086 5.14322 4.11080 
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KBBNZ ceramics reached relative densities above 95% of theoretical density. As 

mentioned in Chapter 3, pure KN (x=0) is assigned to orthorhombic phase (symmetry 

group Amm2). XRD data of KBBNZ x=0.05 is also attributed to orthorhombic phase. 

Patterns for x=0.10 and x=0.15 are acceptably refined as a combination of orthorhombic 

phase (space group Amm2) and cubic phase (space group Pm-3̅m). The relative content 

of orthorhombic phase falls from ∼70% (x=0.10) to ∼30% (x=0.15). XRD results for 

x=0.20 and x=0.25 are well ascribed to cubic phase. 

The unit cell volume for the orthorhombic phase (Amm2) increases linearly up to x=0.10. 

Orthorhombic and cubic symmetries coexist at x=0.10 and 0.15, but beyond these 

concentrations the unit cell volume for the cubic phase also increases linearly, as shown 

in Figure 4. 3. However, the volume of the orthorhombic phase for x=0.10 is larger than 

 x=0.15 x=0.2 x=0.25 

Space Group 28.5(3)% Amm2 71.5(6)%  Pm-3̅m Pm-3̅m Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.96(8) 4.42(11) 5.24(13) 

Density 

(calculated) 

(g/cm3) 

5.020(3)* 5.186(3) 5.3168(2) 

Relative 

Density (%) 
98(1)* 96(2) 98 (2) 

a (Å) 4.0399(6) 4.0268(1) 4.0276(1) 4.0331(1) 

b (Å) 5.6730(20) 4.0268(1) 4.0276(1) 4.0331(1) 

c (Å) 5.6810(20) 4.0268(1) 4.0276(1) 4.0331(1) 

V/106 (pm3) 65.100(3) 65.294(3) 65.334(4) 65.602(3) 

Rexp 1.44527 1.44843 1.23751 

Rprofile 2.18202 2.40865 1.47899 

Rwp 2.75964 3.17362 4.44817 

GOF 3.64964 4.80078 9.04555 

Table 4. 2: Experimental and theoretical density, lattice parameters and agreement indices calculated by Rietveld 

Refinement for KBBNZ (x=0.15, 0.20 and 0.25). * Weighted averaged of the two phases. 
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the cubic phase, which is not consistent with XRD data in Figure 4. 2 (b). Probably, this 

inconsistency arises from the low resolution in XRD measurements, which generates 

difficulties with Rietveld refinement. The variation of the cell volume for the single-phase 

compositions follows Vegard’s law. 
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Figure 4. 3.: Compositional variation in the unit cell volume for (1- x) KNbO3-x (Ba0.5Bi0.5) (Nb0.5Zn0.5) O3 

(0≤x≤0.25) ceramics.  

 

4.2.2. Raman Spectroscopy 

 

Room-temperature Raman spectra for KBBNZ powders calcined twice at 850ºC are 

illustrated in Figure 4. 4. All doped compositions present the same general spectral 

features as undoped KN (orange spectrum). Raman modes for doped compositions 

become broader and slightly shift to lower wavenumbers. From these results the 

coexistence of orthorhombic and cubic phases is not immediately discernible, however 

the presence of orthorhombic phase in all compositions is corroborated by the presence 

of sharp mixed mode at 192 cm-1 and the A1(TO)+A1(LO) peak. In contrast, significant 

changes appear in Raman spectra for KBBNZ ceramics (Figure 4. 5.). 
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Figure 4. 4.: Room-temperature Raman spectra for KBBNZ (0≤ x≤ 0.25) calcined powders at 850ºC two 

times. 
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Figure 4. 5.: Room-temperature Raman spectra for KBBNZ (0≤ x≤ 0.25) sintered ceramics at temperatures 

ranging from 1070 to 1100 °C 
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The increasing broadening of modes in the Raman spectra with increasing x, is consistent 

with increasing lattice disorder. As described in Chapter 3, pure KN (x=0) exhibits 12 

Raman active optical modes. KBBNZ ceramics exhibit similar features to KN. In 

addition, new modes emerged which are labelled as 1, 2, 3 and 4. At this point, their origin 

is purely speculative. Mode 1 emerges around 100 cm-1, whereas mode 2 appears at 

175 cm-1, as a shoulder to the sharp mixed mode at 192 cm-1. These modes are fairly 

static, as they only shift by 1 cm-1
 over the entire compositional range, but their relative 

intensity increases continuously. In the past, they have been associated to A-O vibrations 

within nm-sized clusters rich in either Bi+3  and/or K+ cations. Modes 3 and 4 appear on 

both sides of the high frequency A1(LO) mode. These have been previously associated 

with breathing of the BO6 octahedra, when occupied by different B-cations. Doping also 

leads to softening of some modes. For example, the A1(TO) mode at 600 cm-1
 for x=0 

gradually softens to 585 cm-1
 for x=0.20, due to the increase in the unit cell volume, as 

shown in Figure 4. 3. Indeed, softening of this O-Nb-O symmetric stretching mode is 

known to occur in undoped KN with increasing temperature, as expected from the lattice 

thermal expansion, which implies a lowering of the force constants. In contrast, the 

B1(TO) mode at 532 cm-1
 shows no compositional shift. The relative intensity of the 

A1(TO) in relation to the B1(TO) decreases continuously with increasing x. For x=0.25, 

the A1(TO) mode is considerably less intense than the B1(TO). The occurrence of long-

range polarisation in KN is ultimately associated with the presence of the mixed peak at 

192 cm-1, which therefore can be used to monitor the polar nature of KN-based solid 

solutions, as shown by Luisman et al, 2011. Figure 4. 6 illustrates the shifting of modes 

B1(TO) and A1(LO) for powders (dark squares) and ceramics (red circles). The shift of 

B1(TO) mode is more accentuated in ceramics than powders. On the other hand, mode 

A1(LO) is approximately constant in both, powders and ceramics. 
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Figure 4. 6.: Shift of modes B1(TO) and A1(LO) for powders (dark squares) and ceramics (red circles) as a 

function of x. 

In-situ Raman analysis between -180 and 280°C for KN (Figure 4. 7) clearly show the 

three different polymorphs (Rhombohedral, orthorhombic and tetragonal). In contrast, 

Figure 4. 8 suggests the crystal symmetry for x=0.25 is unchanged in this temperature 

range. 
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Figure 4. 7.: In-situ Raman for KNbO3 showing the typical spectrum for each of the three ferroelectric 

polymorphs. The sharp modes are regarded as “fingerprints” for ferroelectricity. Data corrected with the 

Bose-Einstein factor. 
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Figure 4. 8.: In-situ Raman for KN-BBNZ x=0.25, showing both the absence of structural phase transitions. 

Data corrected with the Bose-Einstein factor. 

 

4.2.3. SEM 

 

SEM images for KBBNZ (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) ceramics are shown in 

Figure 4. 9-13. Unpolished and polished surface were examined for KBBNZ (x=0, 0.05, 

0.10, 0.15) composition because of difficulty to distinguish the grains, even after thermal 

etching. 

 

Figure 4. 9.: SEM image of polished (a) and unpolished (b) surface for KN ceramic. 
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Figure 4.10.: SEM image of polished (a) and unpolished (b) surface for KBBNZ x=0.05 ceramic. 

 

Figure 4. 11.: SEM image of polished (a) and unpolished (b) surface for KBBNZ x=0.10 ceramic. 

 

Figure 4. 12.: SEM image of polished (a) and unpolished (b) surface for KBBNZ x=0.15 ceramic. 
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Pure KN (Figure 4. 9.) ceramic exhibits cubic shaped grains, with smooth surface and 

their size varies from 3 µm to 5 µm. After doping, grain growth is inhibited, as shown in 

SEM image of KBBNZ x=0.05 (Figure 4.10), x=0.10 (Figure 4. 11.) and x=0.15 (Figure 

4. 12.) microstructures. Grain size varies between 300 nm and 500 nm and has the 

tendency slightly increases with increasing x value. The absence of almost any porosity 

in polished surfaces confirm the high experimental density of the ceramics. SEM images 

of thermal etched KBBNZ x=0.20 and x=0.25 ceramics are given in Figure 4. 13 and 

Figure 4. 14. 

 

Figure 4. 13: SEM image of polished surface for KBBNZ x=0.20 ceramic 

 

 

Figure 4. 14: SEM image of polished surface for KBBNZ x=0.25 ceramic. 
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Again, KBBNZ x=0.20 and x=0.25 ceramics reveal high density, in agreement with the 

experimental densities (both above 96%) reported in Table 4.2. Unlike the samples 

previously described, the growth in grain size is accentuated for these compositions, 

rising up to ~700 nm for x=0.20 and up to ~1µm for x=0.25. In summary, the morphology 

of KBBNZ ceramics is strongly dependent on the Ba0.5Bi0.5Nb0.5Zn0.5O3 content.  

 

4.2.4. EDX 

 

Chemical analyses and element distribution (K, Nb, Ba, Bi and Zn) for KBBNZ (0.05≤ 

x≤ 0.25) ceramics are obtained by EDX analyses. Theoretical and experimental K/Ba, 

K/Bi, K/Nb and K/Zn ratios are reported and compared in Table 4. 3-7. Relative error is 

provided as a mathematical means for comparing experimental and theoretical values. 

For x=0.05 (Table 4. 3), experimental K/Nb, K/Ba and K/Bi fractions match to theoretical 

ratios within margin of error. In contrast, K/Zn ratio is almost the double of theoretical 

ratio, which indicates concentration of Zn is much lower than it should be. This fact 

suggests ZnO presents difficulties on reacting with the rest of the oxides.  

x=0.05 

 Theoretical Experimental Relative error (%) 

𝑲
𝑩𝒂⁄  38 34(3) 10 

𝑲
𝑩𝒊⁄  38 42(5) 10 

𝑲
𝑵𝒃⁄  0.974 1(2) 3 

𝑲
𝒁𝒏⁄  38 60(2) 58 

Table 4. 3: Experimental (average) and theoretical K/Ba, K/Bi K/Nb and K/Zn ratios for 0.95 KNbO3 – 

0.05 Ba0.5Bi0.5Zn0.5Nb0.5O3 ceramic sintered at 1070ºC. 

Chemical inhomogeneities are found on the surface of KBBNZ x=0.05. For example, a 

big grain with fibre/cylindric shape is richer in Ba, Bi, and Zn and poorer in K, in 

comparison to the matrix. (Figure 4. 15). Difficulties on homogeneously incorporating 

small quantity of Ba+2
, Bi+3 and Zn+2 are found. 
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Figure 4. 15: Scanning electron image and EDX spectrograms of unpolished 0.95 KNbO3–0.05 

Ba0.5Bi0.5Nb0.5Zn0.5O3 ceramic sintered at 1100ºC. 

Table 4. 4 shows the experimental and theoretical K/Nb, K/Ba, K/Bi and K/Zn ratios and 

relative error for x=0.10 composition. 

x=0.10 

 Stoichiometric Experimental Relative error (%) 

𝑲
𝑩𝒂⁄  18 17(2) 5 

𝑲
𝑩𝒊⁄  18 24(6) 33 

𝑲
𝑵𝒃⁄  0.947 1(2) 6 

𝑲
𝒁𝒏⁄  18 28(6) 60 

Table 4. 4: Experimental (average) and theoretical K/Ba, K/Bi K/Nb and K/Zn ratios for 0.90 KNbO3 – 

0.10 Ba0.5Bi0.5Zn0.5Nb0.5O3 ceramic sintered at 1070ºC. 

Inside the margins of error, empirical K/Nb, K/Ba, K/Bi and K/Zn values fit with 

theoretical. Again, the high K/Zn value indicates low concentration of Zn. Big grains with 

fibre/cylindric shape are also detected on KBBNZ x=0.10 ceramic. These regions are 

characterised by low K concentration (calculated ratios in Figure 4. 16) but also Zn is not 

detected.  
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Figure 4. 16: Scanning electron image and EDX spectrograms of unpolished 0.90 KNbO3 – 0.10 

Ba0.5Bi0.5Nb0.5Zn0.5O3 ceramic sintered at 1100ºC. 
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Table 4. 5, Table 4. 6 and Table 4. 7 report the EDX results for KBBNZ x=0.15, x=0.20 

and x=0.25 ceramics, respectively. 

x=0.15 

 Stoichiometric Experimental Relative error (%) 

𝑲
𝑩𝒂⁄  11 10(2) 9 

𝑲
𝑩𝒊⁄  11 12(5) 8 

𝑲
𝑵𝒃⁄  0.919 1(2) 9 

𝑲
𝒁𝒏⁄  11 12(3) 9 

Table 4. 5: Experimental (average) and theoretical K/Ba, K/Bi K/Nb and K/Zn ratios for 0.85 KNbO3 – 

0.15 Ba0.5Bi0.5Zn0.5Nb0.5O3 ceramic sintered at 1070ºC. 

x=0.20 

 Stoichiometric Experimental Relative error(%) 

𝑲
𝑩𝒂⁄  8 9(2) 12 

𝑲
𝑩𝒊⁄  8 8(4) 0 

𝑲
𝑵𝒃⁄  0.889 1(1) 12 

𝑲
𝒁𝒏⁄  8 10(3) 25 

Table 4. 6: Experimental (average) and theoretical K/Ba, K/Bi K/Nb and K/Zn ratios for 0.80 KNbO3 – 

0.20 Ba0.5Bi0.5Zn0.5Nb0.5O3 ceramic sintered at 1070ºC. 

x=0.25 

 Stoichiometric Experimental Relative error (%) 

𝑲
𝑩𝒂⁄  6 5(1) 16 

𝑲
𝑩𝒊⁄  6 6(3) 0 

𝑲
𝑵𝒃⁄  0.857 1(3) 16 

𝑲
𝒁𝒏⁄  6 6(2) 0 

Table 4. 7: Experimental (average) and theoretical K/Ba, K/Bi K/Nb and K/Zn ratios for 0.75 KNbO3 – 

0.25 Ba0.5Bi0.5Zn0.5Nb0.5O3 ceramic sintered at 1070ºC. 

The values reported in these tables are an average of a set of measurements, that can be 

refered in Appendix B. 

From x=0.15 to x=0.25, experimental K/Ba, K/Bi, K/Nb and K/Zn ratios tend to 

continuously get closer to the theoretical stoichiometry. The high K/Zn ratio commented 
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for x=0.05 and x=0.10, is not observed in the rest of the compositions. This fact supports 

the hypothesis that difficulties on introducing Zn into KN matrix are more accentuated 

for low concentrations of Ba+2, Bi+3 and Zn+2. Indeed, relative errors are significantly 

lower. Standard errors also seem slightly lower for x=0.15, x=0.20 and x=0.25 than for 

x=0.05 and x=0.10. Therefore, compounds with low concentrations of x present more 

difficulties in obtaining a homogeneous element distribution. This statement is also 

supported by EDX mapping of K, Nb, Ba, Bi and Zn on KBBNZ x=0.10 sample (Figure 

4. 17) and x=0.25 (Figure 4. 18). Overall, the elements are more homogeneously 

distributed on KBBNZ x=0.25 than x=0.10. Moreover, the presence of Zn-rich regions in 

KBBNZ x=0.10 confirm this oxide has more difficulties to diffuse into KN lattice than 

the other oxides, under the condition of low concentration of dopants. 
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Figure 4. 17: (a) SEM image of the examined region with EDX spectra and experimental and theoretical 

atomic percent are provided. (b) EDX mapping of K, Ba, Bi, Nb and Zn for KBBNZ x=0.10. 
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Figure 4. 18: (a) SEM image of the examined region with EDX spectra, experimental and theoretical atomic 

percent are provided. (b) EDX mapping of K, Ba, Bi, Nb and Zn for KBBNZ x=0.25. 

 

4.3. Electrical Characterisation 

 

4.3.1. Dielectric Characterisation 

 

The temperature dependence of the permittivity, 𝜀𝑟, for KBBNZ ceramics (x = 0, 

0.05,0.10, 0.15, 0.20 and 0.25) measured at 100 kHz is illustrated in Figure 4. 19 which 

gives information about the impact of doping on the phase transitions. 
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Figure 4. 19: Temperature dependence of 𝜀𝑟 for (1-x) KNbO3–x Ba0.5Bi0.5Nb0.5Zn0.5O3 solid solution at 100 

kHz, during cooling. 

As described in Chapter 3, KN (x = 0) shows two maxima at ~205 ºC and ~400 ºC (Curie 

temperature), respectively, corresponding to orthorhombic-to-tetragonal and the 

tetragonal-to-cubic phase transitions, respectively. In this system, dielectric anomalies are 

visible up x=0.20. With increasing x, TC initially drops to ~370 ºC for x = 0.05, then it 

increases to ~387 ºC for x = 0.10 and subsequently goes down again to ~370 ºC for x = 

0.15. This non-monotonic TC variation occurs within the multiphase composition range, 

which suggests a non-homogeneous distribution of dopants between the orthorhombic 

and cubic phases, as shown by the EDX results. For x=0.20, two dielectric anomalies, 

probably due to a residual orthorhombic phase are still present. Finally, for x = 0.25, 𝜀𝑟  

decreases continuously upon increasing temperature. No dielectric anomalies are detected 

in this temperature range, which suggests that this composition has an average cubic 

crystal structure. It is noted, KBBNZ x=0.15, 0.20 and 0.25 ceramics exhibit larger 𝜀𝑟 

values at lower temperatures. 

Frequency-dependent measurements (100 kHz, 250 kHz and 1 MHz) of the relative 

permittivity and dielectric loss are provided for individual compositions, shown in Figure 

4. 20-24. A strong frequency dependence is observed for x=0.05 and 0.10, as illustrated 

in Figure 4. 20 and Figure 4. 21, respectively. The corresponding temperature for the 
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dielectric anomalies remains almost unaltered, but its magnitude decreases with 

increasing frequency. For x=0.15 and x=0.20, the frequency dependence is much less 

pronounced, as shown in Figure 4. 22 and Figure 4. 23. In these compositions, dielectric 

curves exhibit shoulders instead of maximum values at the phase transitions. 

Nevertheless, KBBNZ x=0.25 composition presents a flat dielectric response with 

temperature and it is not frequency dependent, as shown in Figure 4. 24. 
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Figure 4. 20: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.95 KNbO3–0.05 Ba0.5Bi0.5Nb0.5Zn0.5O3 solid 

solution at 100 kHz, 250 kHz and 1 MHz during cooling. 
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Figure 4. 21: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.90 KNbO3–0.10 Ba0.5Bi0.5Nb0.5Zn0.5O3 solid 

solution at 100 kHz, 250 kHz and 1 MHz during cooling. 
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Figure 4. 22: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.85 KNbO3–0.15 Ba0.5Bi0.5Nb0.5Zn0.5O3 solid 

solution at 100 kHz, 250 kHz and 1 MHz during cooling. 
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Figure 4. 23: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.80 KNbO3–0.20 Ba0.5Bi0.5Nb0.5Zn0.5O3 solid 

solution at 100 kHz, 250 kHz and 1 MHz during cooling. 
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Figure 4. 24 Temperature dependence of 𝜀𝑟and tan𝛿 for 0.75 KNbO3–0.25 Ba0.5Bi0.5Nb0.5Zn0.5O3 solid 

solution at 100 kHz, 250 kHz and 1 MHz during cooling.  
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4.3.2. Piezo- and Ferroelectric Characterisation 

 

Polarisation vs. electric field (P–E) loops of KBBNZ ceramics measured at room 

temperature under an electric field of 80 kV/cm are shown in Figure 4. 25. 
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Figure 4. 25: P–E measurements for (1 - x) KNbO3–x Ba0.5Bi0.5Nb0.5Zn0.5O3(x=0, 0.05, 0.10, 0.15, 0.20, 

0.25) ceramics. 

Undoped KN (x = 0) exhibits a P–E loop typical of a ferroelectric response, (described in 

Chapter 4). When Ba0.5Bi0.5Nb0.5Zn0.5O3 is substituted into the KN lattice, both Pr and Ec 

decrease dramatically and the P–E loops become increasingly slimmer as shown in Figure 

4. 25. For single-phase x = 0.25 with an average cubic structure, the P–E curve is virtually 

linear (hysteresis free). Figure 4. 26 summarises the Ps, Pr and Ec values for all 

compositions at RT. 
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Figure 4. 26: Compositional evolution of the spontaneous polarisation, Ps, remanent polarisation, Pr and 

coercive field Ec under 80 kV/mm at RT. 

KBBNZ x=0.05 ceramics show a spontaneous polarisation, Ps, of ~18 µC/cm2, a remnant 

polarization, Pr, of ~6 µC/cm2, which is roughly 3 times smaller in comparison with KN, 

and a coercive field, Ec, of ~14 kV/cm. It is noted, that maximum polarisation for this 

composition is higher than pure KN. Many reasons such as grain size and orientation, 

domain size and density can be attributed to be at the origin of this counterintuitive result. 

For the multiphasic (orthorhombic + cubic) x = 0.10, 0.15 and 0.20, Ps continuously drops 

from ~10 µC/cm2 to ~5 µC/cm2 as well as Pr, from ~3µC/cm2 to zero. Finally, KBBNZ 

x = 0.25 exhibits a linear response with a maximum polarisation of ~2.3 µC/cm2.  
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Figure 4. 27: S–E measurements for (1 - x) KNbO3–x Ba0.5Bi0.5Nb0.5Zn0.5O3(x=0, 0.05, 0.10, 0.15, 0.20, 

0.25) ceramics. 

Again, a gradual decrease of the field induces strain with increasing x is observed. The 

induced strain drops from 0.091% for x=0 (butterfly shape) to zero (x=0.25). For x = 0.10, 

0.15 and 0.20, the S–E responses show almost parabolic shape (as expected for an 

electrostrictive material) and their maximum strains continuously decrease, from 0.041%, 

to 0.009%, respectively. KBBNZ x=0.15 and x=0.20 ceramics show more accentuated 

electrostrictive behaviour (Figure 4. 28 (a) and Figure 4. 29 (a)). Indeed, the 

electrostriction coefficient, Q, can be determined from the S=QP2 relationship, where S 

and P represent the strain and polarisation, respectively. Thus, this coefficient is easily 

calculated from S-P2 curves of x=0.15 and x=0.20 (Figure 4. 28 (b) and Figure 4. 29 (b)). 

The electrostrictive coefficient, Q, for x=0.15 is 0.037 m4C−2 and for x=0.20 Q is 0.035 

m4C−2.  
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Figure 4. 28: (a) Parabolic S-E response and (b) S-P2 curve for KBBNZ x=0.15 ceramics. 
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Figure 4. 29: (a) Parabolic S-E response and (b) S-P2 curve for KBBNZ x=0.20 ceramics. 

 

Evolution of P-E and S-E loops under different electric fields from 20 kV/cm to 80 kV/cm 

at RT and their dependence with temperature from RT to 180 ºC, are provided for 

individual compositions in APPENDIX B (section B.3). Temperature measurements are 

performed under electric field of 50 kV/cm at 1 Hz, to avoid dielectric breakdown 

(APPENDIX B, section B.3). 

Figure 4. 30, Figure 4. 31 and Figure 4. 32 summarise the results of spontaneous 

polarisation (PS), coercive field (EC) and maximum strain (Smax) as a function of the 

temperature and the composition (x). 
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Figure 4. 30: Temperature dependence of Ps for KBBNZ (x=0, 0.5, 0.10, 0.15, 0.20 and 0.25) ceramics 

measured under electric field of 50kV/cm (1 Hz). 
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Figure 4. 31: Temperature dependence of Ec for KBBNZ (x= 0, 0.5, 0.10, 0.15, 0.20 and 0.25) ceramics 

measured under electric field of 50kV/cm (1 Hz). 
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Figure 4. 32: Temperature dependence of Smax for KBBNZ (x=0.5, 0.10, 0.15, 0.20 and 0.25) ceramics 

measured under electric field of 50kV/cm (1 Hz). 

Ps, Ec and Smax parameters for KBBNZ x=0.05 ceramic slightly decreases with increasing 

temperature. This behaviour is due to the proximity of the composition to the phase 

transition from orthorhombic-to-tetragonal at ~200ºC. Indeed, the polarisation decrease 

in this region is reported by theoretical calculations for KNbO3 (Fontana, Metrat, Servoin, 

& Gervais, 1984). In contrast, Ps, Ec and Smax values for KBBNZ x=0.10 ceramic 

increases with the temperature. Probably, this different tendency relies on the ferroelectric 

unsaturation of KBBNZ x=0.10 at 50 kV/cm. If the spontaneous polarisation values for 

KBBNZ x=0.05 and x=0.10 at RT under an electric field 80 kV/cm are compared with 

the ones at 40ºC under 50kV/cm, a larger difference is noticed for x=0.10 (~12 µC/cm2) 

than for x=0.05 (~ 4 µC/cm2), indicating this last composition is closer to be saturated 

(Figure 4. 33). Ps, Ec and Smax parameters for KBBNZ x=0.15, 0.20 and 0.25 ceramics are 

virtually maintained constant from RT to 180ºC. 
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Figure 4. 33: Comparison of Ps values at RT under an electric field of 80 kV/cm with the Ps evolution 

increasing the temperature under an electric field of 50 kV/cm. 

 

4.4. Optical Characterisation 

 

4.4.1 Diffuse reflectance spectroscopy 

 

The excitation across the band gap in KBBNZ ceramics is essentially a charge transfer 

from the O 2p states at the valence band maximum (VBM) to the Nb 4d states at the 

conduction band minimum (CBM). Some insight into the band structure and other charge 

transitions can be gathered from the response to photons of different energies. 

Experimental optical band gaps are obtained from the extrapolation of the linear part of 

the curve (F(R)·ℎ𝜐)n in the Tauc plots, where F(R) is Kubelka-Munk formula, R is 

experimental diffuse reflectance data and n determines the nature of the band-gap, direct 

(n=2) or indirect (n=1/2). Diffuse reflectance (raw data) against wavenumbers is shown 

in Figure 4. 34. Moreover, Tauc plots for KNBN 0≤x≤0.25 ceramics are constructed for 

direct (Figure 4. 35) and indirect (Figure 4. 36) band-gaps. 
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Figure 4. 34: Diffuse reflectance as a function of wavelength for KBBNZ system (raw data). 
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Figure 4. 35: Tauc’s plot for direct band gaps for KBBNZ ceramics 
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Figure 4. 36: Tauc’s plot for indirect band gaps for KBBNZ ceramics. 

First, reflectivity spectra for KBBNZ ceramics are very similar, all compositions mainly 

reflect in the region from 300 nm to 500 nm wavelength, and they do not follow any trend 

in respect to their compositions. Direct band-gaps narrow from 3.42 eV (x=0) to 3.13 eV 

(x=0.25). On the other hand, indirect band-gaps vary from 3.22 eV for x = 0 to 2.89 eV 

for x = 0.25, in broad agreement with the first-principles calculations (F Wang et al., 

2014) and also with experimental results for KNbO3 (Shi, Zhang, Zhou, & Chen, 2015). 

The emergence of Urbach tails reveals lattice disorder in the KBBNZ compositions, 

indicated by an arrow in Figure 4. 36. From the analysis of the Urbach tails, it is possible 

to obtain the information pertaining to the dynamics of the electronic transitions, and in 

principle to evaluate the impact of defects on those transitions. For example, the Urbach 

energy, EU, for KBBNZ when x = 0.25 was calculated as 0.22 eV. Moreover, these band 

gaps are consistent with the ability of KBBNZ ceramics to withstand electric fields as 

high as 80 kV cm-1, as previously shown in Figure 4. 25. Finally, Table 4. 8 summarises 

the direct and indirect band-gap values from Tauc’s plots. 

 x=0 x=0.05 x=0.10 x=0.15 x=0.20 x=0.25 

Direct band-gaps (eV) 3.64 3.40 3.52 3.38 3.34 3.34 

Indirect band-gaps (eV) 3.22 2.96 3.06 3.03 2.99 2.89 

Table 4. 8: Direct and Indirect band-gaps derived from Tauc’s plot. 
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4.5. Discussion 

 

Spontaneous polarisation of ~38 C/cm2 and a band gap of ~2.9 eV were predicted by 

first principle calculations for 0.75KNbO3-0.25(Ba0.5Bi0.5)(Zn0.5Nb0.5)O3 composition (F 

Wang et al., 2014). Motivated by this study, the (1−x) KNbO3-x (Ba0.5Bi0.5)(Zn0.5Nb0.5)O3 

(x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) system was prepared by solid-state reaction.  

XRD patterns of sintered ceramics reveal that the simultaneous incorporation of Ba+2, 

Bi+3 and Zn+2 into the KNbO3 parent phase is accompanied with an increase of the unit 

cell volume and a change in the crystal symmetry from orthorhombic (x=0) to cubic 

(x=0.25)  

Even if the XRD pattern for x=0.05 does not show the typical splitting of the peaks, still 

it is ascribed to orthorhombic symmetry. For x=0.10 and x=0.15, XRD patterns are 

interpreted as a combination of KN-based phase (space group Amm2) and a cubic phase 

(space group Pm-3̅m). In addition, a fibre-shaped K-deficient phase is detected by SEM. 

XRD pattern of KBBNZ x=0.20 is consistent with cubic symmetry. However, the 

presence of spontaneous polarisation (~5 µC/cm2) even in this composition suggests the 

presence of some residual orthorhombic (Amm2) phases, but at a level below the 

detection limit of the in-house XRD. This is consistent with the decrease of the relative 

intensity of the Raman mode at 192 cm-1 (fingerprint of the long-range polar order) in 

comparison with the mode 2, as illustrated in the expanded region of Figure 4. 5. The 

presence of this residual orthorhombic phase is also responsible for dielectric anomalies 

in x= 0.20 ceramics, as shown Figure 4. 24 

Finally, XRD pattern for x=0.25 is also attributed to cubic symmetry. Nevertheless, the 

presence of intense broad modes in the Raman spectrum of these samples provides ample 

evidence that their local crystal symmetry cannot be described by the cubic Pm-3̅m space 

group. The presence of K+, Ba2+ and Bi3+ in the A-sites and Nb5+ and Zn2+ in the B-sites 

not only induces local strains due to the difference in ionic radii, but also due to the 

hybridization between the 6s2 lone-pair of electrons of Bi3+ with both empty 6p0 orbitals 

of Bi3+ and 2p6 electrons of O2- which foreshortens the Bi-O covalent bonds. Bi3+ cations 

in perovskite compounds tend to off-center, often inducing rhombohedral distortions, 

thereby relieving the tensile bond strain of shorter Bi-O bonds. All the aforementioned 

local deformations allow for strong Raman scattering on materials, whose average crystal 
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structure may be described by the cubic Pm-3̅m space group, since the ions are locally 

displaced away from the centre of inversion. Octahedral tilting due to smaller Bi3+, which 

is a common distortion mechanism for reducing the A-O bond strain in perovskites, can 

be partially counteracted by the equivalent concentration of larger Ba2+ in KBBNZ 

ceramics. In summary, the Raman spectrum for x=0.25 provides a strong spectroscopic 

indication for the occurrence of short-range lattice deformations, which could not be 

resolved from the XRD data, but also rules out spontaneous polarisation in those 

ceramics.  

The change of the crystal structure with the increase of the (Ba0.5Bi0.5)(Zn0.5Nb0.5)O3 

content into KNbO3 generates changes on the electrical and optical properties of the 

materials. Gradual loss of the FE properties occurs with increasing x. This fact is 

suggested by monitoring the Raman peak at 192 cm-1 and confirmed by P–E 

measurements (Figure 4. 25) in combination with S–E curves (Figure 4. 27) and dielectric 

data (Figure 4. 19). 

The strain curves evolve from a butterfly shape (x=0) to non-response (x=0.25). For 

intermediary compositions (0.15 and 0.20), S–E responses show almost parabolic shapes, 

as shown in Figure 4. 28 and Figure 4. 29. Their maximum strain values drop to 0.021% 

and 0.009% and the electrostriction coefficients for x=0.20 and x=0.25 are estimated, 

0.037 m4C−2 and 0.035 m4C−2, respectively. These values are even larger than the well-

known electrostrictive material Pb(Mg1/3Nb2/3)O3 (PMN) having Q of 0.024 m4C−2 

(Kuwata, Uchino, & Nomura, 1980) with a maximum strain of 0.12% at 40 kV cm-1. 

However, the value of strain of x = 0.05 is comparatively low. Electrostriction in Pb-free 

materials has been investigated in recent years (Bai, Li, Wang, Shen, & Zhai, 2015; Feifei 

Wang, Jin, Yao, & Shi, 2013; Zhang, Yan, Yang, & Cao, 2010; Zuo et al., 2016). Q values 

ranging from 0.021 to 0.027 m4C-2 were reported in Bi0.5Na0.5TiO3–BaTiO3–

K0.5N0.5NbO3 ceramics (Zhang et al., 2009). More recently, Pb-free ferroelectric ceramics 

have been reported to exhibit giant electrostrictive coefficients as large as 0.05 m4C-2 (Jin 

et al., 2016). A piezoelectric-to-electrostrictive crossover is also unveiled. The normal-to-

relaxor ferroelectric crossover in Pb-free ceramics is now well documented, and it has 

been recently reviewed by Shvartsman & Lupascu in 2012. Interestingly, heterovalent 

substitution in K0.5Na0.5NbO3 (KNN), which is isostructural with KN, induces quenched 

random fields due to the local charge imbalance and the local elastic fields. These fields 

hinder long-range ordering thus leading to polar nanometric-size regions, often referred 
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to as PNRs. The degree of transformation into relaxor behaviour varies between different 

systems, as observed for KNN-SrTiO3 (Guo, Kakimoto, & Ohsato, 2004) and KNN-

BiScO3 (Du et al., 2008).  

Indirect band-gaps for the KBBNZ system narrow from 3.22 eV for x = 0 to 2.89 eV for 

x = 0.25, in broad agreement with the first-principles calculations. 

Crystal chemistry arguments can be recalled to explain the moderate band gap narrowing 

as follows: (i) the replacement of Nb5+ by Zn2+ creates underbonded O2- ions adjacent to 

the Zn2+, which form ZnO6 octahedra, (ii) Bi3+ ions which tend to be off-center, create 

short, strong Bi–O (covalent) bonds that partially compensate for the aforementioned loss 

of B–O bonding and (iii) Ba2+ ions are not off-center and are less prone to compensate 

the decrease of B–O bonding. As a result, the repulsion between the non-bonding O 

charge densities and Zn 3d states is relatively weak, leading to a moderate upshift of 

valence band maxima (VBM), which is composed of O 2p and Zn 3d states It is worth 

noting that the observed Raman shift of the broad A1(TO1), Figure 4. 6. may be a 

manifestation of the strong Bi–O bonds, whereas the general broadening of Raman modes 

results from an increased lattice disorder, which manifests itself by the emergence of 

Urbach tails, as shown in Figure 4. 36.  

In summary, a combination of competition between covalent and ionic bonds and a 

distribution of effective cation radii in the KNbO3-Ba0.5Bi0.5Nb0.5Zn0.5O3 system leads 

simultaneously to a piezoelectric-to-electrostrictive crossover and a modest narrowing of 

the optical band gaps. 

 

4.6. Conclusions 

 

Dense KBBNZ (0x0.25) ceramics were prepared by the solid-state reaction method. 

XRD data show the average crystal structure to evolve from orthorhombic at x=0 to 

pseudocubic at x=0.25. Raman spectroscopy suggests the absence of polar order for 

x0.25 ceramics. SEM and EDX analyses revealed second phases fiber shaped with K-

deficiency. Moreover, low solutes concentrations have more difficulties in achieving the 

chemical homogenisation, especially Zn+2. From a point of view of electric 

characterisation, continuous decrease of spontaneous polarisation and strain with 
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increasing x is observed. Electromechanical characterisation reveals a piezoelectric-to-

electrostrictive crossover. An electrostriction coefficient of 0.037 m4C−2 and 0.035 

m4C−2were measured for KBBNZ x=0.15 and x=0.20, respectively.  
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5. System (1-x) KNbO3- x BiFeO3 

 

 

5.1. Introduction 

 

In the first part of this chapter, the crystal structure, dielectric characteristics and band-

gap of compositions in (1-x) KNbO3- x BiFeO3 (KNBF) (0≤x≤0.25) system are 

investigated using XRD combined with Raman spectroscopy, capacitance measurements 

and diffuse reflectance ultraviolet and visible (DRUV-vis) spectroscopy. This system has 

been previously studied with the aim of finding new Pb-free FE and multiferroic 

materials. Structural phase transitions and electrical characterisation are mostly reported 

for high concentration of x in KNBF system (J. H. Choi, Kim, Hong, Chae, & Cheon, 

2012; Dash, Choudhary, Das, & Kumar, 2014; Lennox et al., 2015; Nakashima, Shimura, 

Sakamoto, & Yogo, 2007; Teslenko et al., 2017). Fe3+
 substitution for higher-valence 

Nb5+
 may give rise to increased repulsion between the O 2p and Fe 3d states and thereby 

to a higher VBM, whereas Bi3+
 substituting for K+

 inhibits the formation of oxygen 

vacancies. KNBF x=0.25 retains ferroelectricity and decreases its band-gap around 1 eV 

in comparison with KN.  

The second part of the chapter explores the best conditions to deposit this composition by 

PLD. Moreover, the photo-response of KNBF x=0.25 was measured.  

BiFeO3 is probably the most widely studied multiferroic material, due to the observation 

of ferroelectric (Tc∼800ºC) and antiferromagnetic (TN ∼635 K) ordering at room 

temperature (Catalan & Scott, 2009). As mentioned in Chapter 1, BiFeO3 exhibits an 

optical band-gap of ∼2.2 eV (Gao et al., 2006). 
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To our knowledge, there is no literature about the band-gap measurements of this system. 

However, band-gap tunability has been studied on other solid-solutions based on BiFeO3, 

such as (1-x) BiFeO3-x SrTiO3, where FE properties are improved compared with BiFeO3 

(Wu, Yao, Yang, & Zhang, 2017), and (1-x) Bi0.5K0.5TiO3-x BiFeO3 (Tuan et al., 2017) 

with a considerable band-gap narrowing, from 3.22 eV down to 1.39 eV. 

 

5.2. Structural and chemical characterisation 

 

5.2.1. Purity and X-ray powder diffraction 

 

KNBF ceramics were fabricated as described in Chapter 2 using the following precursor 

powders, K2CO3, Nb2O5, Bi2O3 and Fe2O3. After mixing 24 hours and sieve, powders 

were calcined twice in air at 850 °C for 4 hours with heating rate of 3 ºC/min. XRD data 

of KNBF (0≤x≤0.25) calcined powders are shown in Figure 5. 1. 
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Figure 5. 1: Room-temperature XRD data of KNBF powders after double calcination at 850ºC. 

As described in Chapter 3, XRD patterns for KN calcined powder exhibit well defined 

sharp peaks, which can be attributed to an orthorhombic structure. In contrast, the rest of 
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the compositions present broader peaks than pure KN, which hinders the assignment of 

the corresponding crystal symmetry. Some reflections in the patterns of doped 

compositions are coincident with those of undoped KN, suggesting the coexistence of 

virtually undoped KN with doped-KN. No other secondary phases are detected. This 

chemical inhomogeneity appears to vanish upon sintering, as shown below. 

Compacted powders into pellets were fired at 1085ºC for 4 hours with a heating rate of 

3ºC/min. Figure 5. 2. shows XRD data for KNBF ceramics at room temperature. 
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Figure 5. 2.: Room-temperature XRD data of KNBF ceramics after sintering at 1085ºC. 

Within the detection limits of the technique, all ceramics are single-phase. KN exhibits 

typical peak splitting expected for a perovskite with orthorhombic crystal symmetry 

(space group Amm2), but within the resolution of our measurements only single peaks 

are visible for doped ceramics. Indeed, the triplet for KN became a single peak for the 

other compositions, as shown in Figure 5. 2. Reflections shift slightly but almost 

systematically towards higher 2𝜃 angles with increasing x, indicating that the co-

solubility of Bi+3/Fe+3
 and KNbO3 is accompanied by a decrease of the unit cell volume. 

XRD patterns were refined by the Rietveld method. Lattice parameters, theoretical and 

experimental densities are reposted in Table 5. 1 and Table 5. 2. 
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 x=0 x=0.05 x=0.10 

Space Group Amm2 Amm2 Amm2 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 4.43(4) 4.6(1) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.8093(4) 4.9871(4) 

Relative 

Density (%) 
94(1) 92(1) 92(2) 

a (Å) 3.9711(1) 3.9987(2) 4.0013(2) 

b (Å) 5.6909(1) 5.6668(3) 5.6640(3) 

c (Å) 5.7158(1) 5.6871(3) 5.6786(3) 

V/106 (pm3) 64.576(2) 64.434(6) 64.348(6) 

Rexp 1.26460 1.43385 1.41668 

Rp 2.97912 2.19462 2.21614 

Rwp 4.65175 3.64457 3.42608 

GOF 13.53086 6.46074 5.84859 

Table 5. 1: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KNBF (x=0, 0.05 and 0.10). 
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 x=0.15 x=0.2 x=0.25 

Space Group Amm2 Amm2 Amm2 

Density 

(Experimental) 

(g/cm3) 

4.6 (2) 4.7(4) 4.9(3) 

Density 

(calculated) 

(g/cm3) 

5.1597 (5) 5.3288(5) 5.4971(7) 

Relative 

Density (%) 
90(4) 89(4) 90(6) 

a (Å) 4.0014(2) 4.0030(2) 4.0031(1) 

b (Å) 5.6612(4) 5.6618(4) 5.6618(1) 

c (Å) 5.6799(3) 5.6795(4) 5.6825(5) 

V/106 (pm3) 64.333(7) 64.361(5) 64.397(8) 

Rexp 1.39445 1.39349 1.45637 

Rp 2.40295 2.31442 2.60597 

Rwp 3.77848 3.43919 3.98020 

GOF 7.34224 6.09119 7.46907 

Table 5. 2: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KNBF (x=0.15, 0.20 and 0.25). 

For x=0.05, 0.10 and 0.15, relative densities exceed 90% comparing with theoretical 

density, and for x=0.20 and 0.25, they are somewhat below 90%. All compositions are 

acceptably refined into orthorhombic phase (symmetry group Amm2). Figure 5. 3 shows 

the compositional evolution of the unit cell volume and lattice parameters for KNBF 

ceramics calculated by Rietveld refinement. 

 



Chapter 5   System KNbO3-BiFeO3 

 
162 

0.00 0.05 0.10 0.15 0.20 0.25
3.95

4.00

5.65

5.70

5.75

 c

 a

 b

L
a
tt
ic

e
 p

a
ra

m
e
te

rs
 (


)

x

64.30

64.35

64.40

64.45

64.50

64.55

64.60

 Volume

V
o
lu

m
e
/1

0
6
 (

p
m

3
)

 

Figure 5. 3: Evolution of the unit cell volume and lattice parameters with x for (1-x) KNbO3-x BiFeO3 

(0≤x≤0.25) ceramics. 

From x=0 to x=0.15, b and c lattice parameters decrease while a parameter increases, 

resulting in a smaller unit cell volume than KN. Then, from x=0.15 to 0.25, the unit cell 

volume increases slightly. However, a, b and c lattice parameters practically remain 

constant between x=0.05 and x=0.25, indicating variations of the unit cell volume values 

are very small. 

 

5.2.2. Raman spectroscopy 

 

Room-temperature Raman spectra for KNBF (0≤ x≤ 0.25) powders calcined at 850ºC 

twice for 4 hours using heating rate of 3ºC/min are shown in Figure 5. 4. The typical 

spectral features exhibited by the ferroelectric KN orthorhombic polymorph (described in 

Chapter 3) are also visible in the Raman spectra of all doped powders. Raman modes 

became broader and slightly shift towards lower wavenumbers (~20 cm-1) with increasing 

Bi+3 and Fe+3 contents. Room-temperature Raman spectra for KNBF (0≤ x≤ 0.25) sintered 

ceramics at 1085ºC for 4 hours using heating rate of 3ºC/min are shown in Figure 5. 5. 
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Figure 5. 4: Room-temperature Raman spectra for KNBF (0≤ x≤ 0.25) calcined powders at 850ºC two 

times. 
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Figure 5. 5: Room-temperature Raman spectra for KNBF (0≤ x≤ 0.25) ceramics sintered at 1085ºC. New 

modes (1 and 2) emerge in KNBF (x≥0.05) pellets spectra. Attached graph: monitoring of mixed sharp 

mode at 192 cm-1
. 

The average orthorhombic crystal symmetry for the doped compositions is also 

corroborated by the Raman spectroscopy data. The typical spectral features for undoped 

KN are still visible in the Raman spectra of all doped ceramics. This spectral similarity is 
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sufficient to simultaneously ascertain the orthorhombic crystal symmetry and the 

occurrence of long-range polar order in the doped materials. 

Upon doping new modes emerge in the low frequency regime. They are labelled as 1 and 

2 and their origin is unclear. The new mode 1 is relatively broad and appears ~110 cm-1, 

whereas mode 2 appears as a shoulder to the sharp mixed mode at 192 cm-1. Relative 

intensity of mode 2 appears to increase with increasing x. In Chapter 4, these modes have 

been associated to A-O vibrations, in particular to nm-sized clusters rich in either Bi3+
 or 

K+
 cations. Finally, the A1(LO) mode at 831 cm-1 appears to become broader with 

increasing BiFeO3 content. This broadening may be associated with the emergence of 

new modes too, also perceived in KBBNZ system, due to breathing of the octahedra, 

when occupied by different B cations. The general broadening of the Raman modes from 

the doped ceramics (that results from increased lattice disorder) and the shift towards 

lower wavenumbers are shown for the most intense peaks in Figure 5. 6. 
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Figure 5. 6: Compositional evolution of the position, Xc, and the width, FWHM, of main Raman modes for 

doped compositions, (a) B1(TO) at ~270 cm-1, (b) B1(TO) at ~530 cm-1, (c) A1(TO) at ~600 cm-1 and (d) 

A1(LO) at ~830 cm-1. 

The presence of a sharp mode at 192 cm-1
 suggests the occurrence of long-range polar 

order in all compositions studied. In-situ Raman spectroscopy analyses were carried out 
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in the -80 ºC to 200 ºC temperature range. Dependence of Raman spectra with temperature 

for KNBF x=0.05 and x=0.20 are illustrated in Figure 5. 7 and Figure 5. 8. 
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Figure 5. 7: Raman spectra evolution from -80ºC to 200ºC for KNBF x=0.05 ceramic. 
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Figure 5. 8: Raman spectra evolution from -75ºC to 200ºC for KNBF x=0.20 ceramic. 
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Both compositions show rhombohedral-to-orthorhombic and orthorhobic-to-tetragonal 

transitions in the temperature range between -100ºC and 200ºC. The phase identification 

was carried out comparing the temperature evolution for KN Raman spectrum, 

described in Chapter 3; therefore, a detailed discussion of the modes assignment is not 

given here.  

In order to assert the presence of long-range polar order over a wide temperature range, 

Raman spectra for KN, x=0.05 and 0.20 are compared at three different temperatures (-

100 ºC, 25 ºC and 200 ºC) in Figure 5. 9. The spectra collected at -100 ºC show in the 

150-300 cm-1
 region the spectral signature typical for the ferroelectric rhombohedral 

polymorph (Figure 5. 9 (c)). On heating, to 25 ºC, the low frequency region becomes 

consistent with the ferroelectric orthorhombic polymorph, as shown in Figure 5. 9. (b). 

Finally, at 200 ºC, the phase transition to tetragonal phase (as will be determined by 

dielectric properties, section 5.3.1), that can be monitored by the appearance of a Raman 

mode at 270 cm-1, indicated with an arrow in Figure 5. 9. (a). Splitting between B1(TO) 

and A1(TO) modes in the medium frequency range becomes less evident as x increases, 

all compositions however, still show the features of long-range polar order. Therefore, all 

ceramics are polar in a wide temperature range. 
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Figure 5. 9.: In-situ Raman KNBF, x=0, x=0.05 and x=0.20 ceramics. Bose-Einstein factor applied to data. 

 

5.2.3. SEM 

 

SEM images of polished surfaces of KNBF (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) 

ceramics are shown in Figure 5. 10. (a-f). Large grains having average grain diameter of 

~3µm are observed for pure KN (Figure 5. 10. (a)). Upon doping, grain growth is 

inhibited, showing grain size falls below 1 µm. The non-appearance of porosity confirms 

highly dense ceramics (Table 5. 1). 
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Figure 5. 10.: Microstructure evolution for (1-x) KNbO3-xBiFeO3 (KNBF) ceramics for x=0 (a), x=0.05 

(b), x=0.10 (c), x=0.15 (d), x=0.20 (e) to x=0.25 (f). 

 

5.2.4. EDX  

 

Compositional analyses of KNBF (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) ceramics were 

performed by EDX spectroscopy, which enables us to study how efficient is the 

incorporation of Bi+3/Fe+3 into the KN lattice. Table 5. 3, Table 5. 4 and Table 5. 5 report 

the experimental and theoretical relations of K/Nb, K/Bi and K/Fe and relative errors, for 

x=0.05, x=0.10 and x=0.15. 
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x=0.05 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.1(1) 10 

𝑲
𝑩𝒊⁄  19 17(4) 11 

𝑲
𝑭𝒆⁄  19 29(10) 53 

Table 5. 3.: Experimental (average) and theoretical K/Nb, K/Bi and K/Fe ratios for 0.95 KNbO3 – 0.05 

BiFeO3 ceramic sintered at 1085ºC 

x=0.10 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.0(1) 0 

𝑲
𝑩𝒊⁄  9 11(3) 22 

𝑲
𝑭𝒆⁄  9 17(4) 90 

Table 5. 4: Experimental (average) and theoretical K/Nb, K/Bi and K/Fe ratios for 0.90 KNbO3 – 0.10 

BiFeO3 ceramic sintered at 1085ºC 

x=0.15 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.0(1) 0 

𝑲
𝑩𝒊⁄  ~5.67 6(2) 6 

𝑲
𝑭𝒆⁄  ~5.67 8(3) 41 

Table 5. 5.: Experimental (average) and theoretical K/Nb, K/Bi and K/Fe ratios for 0.85 KNbO3 – 0.15 

BiFeO3 ceramic sintered at 1085ºC. 

x=0.05, x=0.10 and x=0.15 compositions exhibit K/Nb ratios close to unity. Molar K/Bi 

ratio is similar to the intended stoichiometry. In contrast, K/Fe differ from the theoretical 

value, indicating low concentration of the solutes Fe 3+. Evidence of the appearance of a 

common secondary phase exists, ~0.70 KNbO3-0.30 BiFeO3, are shown in Figure 5. 11. 

(a) for KNBF x=0.05, Figure 5. 11. (b) for x=0.10 and Figure 5. 11. (c) for x=0.15. 
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Figure 5. 11.: SEM image and EDX spectra of unpolished ceramics for (a) x=0.05, (b) x=0.10 and (C) 

x=0.15. 
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On the other hand, Table 5. 6 and Table 5.7 inform about experimental and theoretical 

K/Nb, K/Bi and K/Fe ratios and relative errors, for x=0.20 and x=0.25. 

x=0.20 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.1(2) 10 

𝑲
𝑩𝒊⁄  4 5(2) 25 

𝑲
𝑭𝒆⁄  4 6(3) 50 

Table 5. 6.: Experimental (average) and theoretical K/Nb, K/Bi and K/Fe ratios for 0.80 KNbO3 – 0.20 

BiFeO3 ceramic sintered at 1085ºC. 

x=0.25 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.0(1) 0 

𝑲
𝑩𝒊⁄  3 2.5(9) 15 

𝑲
𝑭𝒆⁄  3 3(1) 0 

Table 5. 7.: Experimental (average) and theoretical K/Nb, K/Bi and K/Fe ratios for 0.75 KNbO3 – 0.25 

BiFeO3 ceramic sintered at 1085ºC. 

The indicated experimental molar ratios for K/Nb, K/Bi and K/Fe closely approximate to 

theoretical values. For x=0.20 and x=0.25, the intended solid-solutions seems to be easily 

formed than for x=0.05, x=0.10 and x=0.15. Nevertheless, a minor quantity of 0.5 

KNbO3-0.5 BiFeO3 secondary phase is detected on both compositions, as shown in Figure 

5. 12. (a) and (b). 
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Figure 5. 12.: SEM image and EDX spectra of unpolished ceramics for (a) x=0.20 and (b) x=0.25. 

EDX mapping detected the Bi/Fe-rich regions that were mentioned before for KNBF 

x=0.05 (Figure 5. 13). Despite these inhomogeneities, chemical distribution seems to be 

more homogeneous than for other systems studied in this thesis, for low concentration of 

x. EDX mapping on KNBF x=0.25 ceramic (Figure 5. 14) reveal more homogeneous 

distribution of the species, K, Nb, Bi and Fe, than x=0.05. Also, rich-K/Nb and rich-Bi/Fe 

regions are detected but only in traces, which is in agreement with what was described 

previously. 
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Figure 5. 13: SEM image of the examined region and EDX mapping of K, Nb, Bi and Fe for KNBF x=0.05. 

 

Figure 5. 14: SEM image of the examined region and EDX mapping of K, Nb, Bi and Fe for KNBF x=0.25.  

 

5.3. Electrical Characterisation 

 

5.3.1. Dielectric Characterisation 

 

Frequency dependence of relative permittivity, 𝜀𝑟 (10kHz, 100 kHz, 250 kHz and 1 MHz) 

and dielectric loss are provided for individual compositions, shown in Figure 5. 15-19. 
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Figure 5. 15.: Temperature dependence of 𝜀𝑟 and tan𝛿 for 0.95 KNbO3–0.05 BiFeO3 solid ceramics at 10 

kHz, 100 kHz, 250 and 1 MHz during cooling. 

For x=0.05 (Figure 5. 15) two dielectric anomalies are observed at ~220 ℃ and ~390℃. 

The temperatures for the r anomalies are constant, but its magnitude decreases with 

increasing frequency. It is worth to mention, dielectric measurements for x=0.10 (Figure 

5. 16.), x=0.15 (Figure 5. 17.) and x=0.20 (Figure 5. 18.) are strongly affected by the 

conductivity of the samples, making it difficult to describe the dielectric anomalies, 

especially for low frequency values. Dielectric losses, tan 𝛿, for these compositions are 

two orders of magnitude higher than in undoped KN, KNBF x=0.05 and KNBF x=0.25 

ceramics.  
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Figure 5. 16.: Temperature dependence of 𝜀𝑟 and tan𝛿 for 0.90 KNbO3–0.10 BiFeO3 solid solution at 10 

kHz, 100 kHz and 250 kHz during cooling. 
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Figure 5. 17.: Temperature dependence of 𝜀𝑟 and tan𝛿 for 0.85 KNbO3–0.15 BiFeO3 solid solution at 10 

kHz, 100 kHz and 250 kHz during cooling. 
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Figure 5. 18.: Temperature dependence of 𝜀𝑟 and tan𝛿 for 0.80 KNbO3–0.20 BiFeO3 solid solution at 10 

kHz, 100 kHz and 250 kHz during cooling. 

500

1000

1500

2000

100 200 300 400 500

0.2

0.4

 1 MHz

 250 kHz

 100 kHz

 

  r

 

 

ta
n
 

Temperature (ºC)

 

Figure 5. 19.: Temperature dependence of 𝜀𝑟 and tan𝛿 for 0.75 KNbO3–0.25 BiFeO3 solid solution at 10, 

100 kHz, 250 kHz and 1 MHz during cooling. 
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Dielectric anomalies are still visible for x=0.25, at ~220 ℃ and ~390℃ and the dielectric 

losses are in the same order as in KNBF x=0.05 ceramic. 

The temperature dependence of the relative permittivity for KNBF (x=0, 0.05 and 0.25) 

ceramics measured at 100 kHz is compared in Figure 5. 20.  
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Figure 5. 20.: Temperature dependence of 𝜀𝑟 for KNBF, x=0, x=0.05 and x=0.25 ceramics at 100 kHz. 

As described in Chapter 3, KN shows two clear dielectric anomalies at 𝜀𝑟 at ~205ºC and 

~400℃, can be ascribed to the orthorhombic-to-tetragonal and to tetragonal-to-cubic and 

structural phase transitions. x=0.25 ceramics show the highest apparent relative 

permittivity over the entire temperature range considered, but this may be a consequence 

of the fact that it has the lowest band gap, as will be discussed later. KN exhibits lower 

dielectric losses than x=0.05 and x=0.25 which have similar leaky behaviour. 
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5.3.2. Ferroelectric Characterisation 

 

Polarization, P, vs electric field, E, measurements are considered an inconclusive proof 

for determining ferroelectricity, because of the conductive nature of the samples. Figure 

5. 21. shows the P-E ferroelectric hysteresis loops at RT for KN and KNBF x=0.05. The 

shape of the hysteresis loop for the pure KN ceramic indicates a normal ferroelectric 

behaviour (Figure 5. 21. (a)). In contrast, a lossy capacitor hysteresis loop is clearly 

observed for KNBF x=0.05 (Figure 5. 21. (b)).  
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Figure 5. 21.: P-E measurements for (a) KN and (b) KNBF x=0.05 at room temperature. 
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P-E measurements for KNBF x=0.05 were performed at very low field from 0.2 kV/cm 

to 3 kV/cm, revealing ‘lemon’ shaped loops, which confirms the leaky nature of the 

sample (Figure 5. 22.). 
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Figure 5. 22.: Low field P-E loops measured for KNBF x=0.05 at room temperature. 

However, x=0.05 sample was able to withstand an electric field up to 30 kV/cm at sub-

ambient temperature (Figure 5. 23.). The sample was cooled down by immersion in liquid 

nitrogen before applying the electric field. Unsaturated loops were recorded. 
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Figure 5. 23.: P-E measurements for KNBF x=0.05 at sub-ambient temperature 
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5.4. Optical Characterisation 

 

5.4.1 Diffuse reflectance spectroscopy 

 

Diffuse reflectance spectroscopy was carried out using photons with wavelengths ranging 

from 200 to 1600 nm (Figure 5. 24).  
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Figure 5. 24: Diffuse reflectance data as a function of wavelength for KNBF system. 

The band gaps for KNBF ceramics were determined using the Tauc plots in Figure 5. 25 

and Figure 5. 26. The band gap energies are obtained from the intercept of the tangent 

line in the plot of (F(R)·ℎ𝜐)n vs energy. A priori there is no reason why the band gaps of 

KNBF ceramics should be direct or indirect. Hence, Tauc plots are constructed for n=2 

(direct band-gaps, Figure 5. 25.) and for n=1/2 (indirect band-gaps, Figure 5. 26).  

The value extracted for direct band-gap of KN is 3.66 eV, a high value but within the 

range reported in the literature (Chapter 1, Table 1.4), and consistent with the fact that 

these ceramics were able to withstand an applied electric field of 80 kV/cm.  
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Figure 5. 25.: Tauc plot for direct band gaps for KNBF ceramics. 

In Figure 5. 26, the Tauc plot is constructed using n=1/2 (indirect band gap). The extracted 

band gaps for KNBF x=0 and x=0.05 are 3.22 eV and ~2.5 eV, respectively, consistent 

with their electrical resistances. With increasing x, the band gap narrows continuously, 

reaching ~2.25 eV for x=0.25. We note that the apparent increase of the relative 

permittivity, Figure 5. 20., appears to follow the narrowing of the band gaps. 
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Figure 5. 26: Tauc plot for indirect band gaps for KNBF ceramics 
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Around 2.5 eV there is a clear shoulder, present in all doped materials (labelled as 1 in 

Figure 5. 26), and whose magnitude increases with increasing x. The optical absorption 

spectra of Fe3+ containing substances are known to exhibit three types of electronic 

transitions. Namely, Fe3+ cations ligand field transitions or the d-d transitions, ligand to 

metal charge transfer transitions, and pair excitations resulting from the simultaneous 

excitation of two neighbouring Fe3+
 that are magnetically coupled.  

In 2016, Burkert et al carried out an optical spectroscopy study in BiFeO3 and observed 

three well-defined absorption features at 1.22 eV, 1.66 eV, and 2.14 eV, which were 

assigned to charge-transfer excitons and in-gap defect states probably related to oxygen 

vacancies. All KNBF show Urbach tails, however their appearance in optical absorption 

near band edges is expected in any material with disorder. The general broadening of the 

Raman modes from the doped ceramics, Figure 5. 3, results from increased lattice 

disorder, which manifests itself by the emergence of Urbach tails in the Tauc plots. An 

alternative interpretation of these absorption regions is intraband transitions originated by 

Bi+3/Fe+3-rich impurities. 

 

5.5. Preparation of thin films 

 

5.5.1. Pulsed laser deposition 

 

The starting conditions for depositing KNBF x=0.25 were taken from the literature 

(Martín et al., 1997; Nakagawara et al., 2000; Zaldo, Gill, Eason, Mendiola, & Chandler, 

1994). The main limitation to deposit this material is the potassium loss, which has a 

detrimental influence on the purity of the sample. 

Deposition conditions were optimised from a systematic study in order to achieve thin 

film with good quality. KNBF x=0.25 was deposited at 600C and 650C under an oxygen 

pressure of 0.1 mBar and 0.75 mBar using KrF laser with a focused energy of ~ 1 J/cm2 

operating at 5 Hz (background pressure was ~10-4 mBar). In addition, both STO (001) 

and MgO (001) were used as substrates, which makes in total 8 films. Purity and structural 

properties of the films are examined by XRD at RT, as shown in Figure 5. 27 and Figure 

5. 28.  
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Figure 5. 27: XRD data for KNBF x=0.25 thin films deposited at 600ºC and 650ºC under oxygen pressure 

of 0.75 mBar and 1 mBar on STO. 
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Figure 5. 28: XRD data for KNBF x=0.25 thin films deposited at 600ºC and 650ºC under oxygen pressure 

of 0.75 mBar and 1 mBar on MgO. 

For both substrates, the best conditions to deposit KNBF x=0.25 are at 600ºC under an 

oxygen pressure of 0.15 mBar, that correspond to the patterns with less unindexed peaks. 

Low deposition temperature prevents the K volatilisation and low pressure decreases the 

resistance of the atoms from the target to the substrate.  

Figure 5. 29 shows XRD pattern of KNBF x=0.25 deposited at these conditions on STO 

and MgO. KNBF x=0.25 films are less crystallised on MgO than on STO. 
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Figure 5. 29: Room-temperature XRD pattern of KNBF x=0.25 thin film deposited at 600ºC under oxygen 

pressure 0.1 mBar on STO and MgO. Unknown secondary phase is indicated with blue asterisks. 

Almost all the peaks can be indexed to a pseudo-cubic structure of KNBF x=0.25 and to 

the substrates. Peaks indicated by blue asterisks in Figure 5. 29, belong to an unknown 

phase. Table 5. 8 shows that there is a relationship among these peaks.  

2𝜽 (º) d-spacing (Å) Miller indices 

29.17 3.06 (1 1 1) 

33.87 2.64 (2 0 0) 

60.62 1.53 (2 2 2) 

71.265 1.32 (4 0 0) 

Table 5. 8.: Unknown secondary phase indexing 

The unknown phase presents cubic symmetry with a cell size of ~ 5.28 Å. This second 

phase is observed in all films. However, its origin is completely unknown, after verifying 

that there is no coincidence with the data base. 

In-situ XRD for KNBF x=0.25 target is compared with the films deposited in Figure 5. 

30 and Figure 5. 31. 
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Figure 5. 30: Room-temperature XRD pattern of KNBF x=0.25 film (deposited at 600ºC under oxygen 

pressure 0.1 mBar on STO) compared with in-situ XRD of the target. 
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Figure 5. 31: Room-temperature XRD pattern of KNBF x=0.25 film (deposited at 600ºC under oxygen 

pressure 0.1 mBar on MgO) compared with in-situ XRD of the target. 

However, KNBF x=0.25 still requires further optimisation before functional 

characterisation. 

 

5.5.2. Photovoltaic cell 

 

Photoresponse was measured in ferroelectric photovoltaic (FEPV) cell for KNBF x=0.25. 

The fabrication of the cell was performed at the Universidade Federal de Pelotas (Brasil). 

The photoelectrical measurements were made under white light (210-1500 nm) and in the 

dark. For direct current measurements, the positive pole was connected to FTO/KNBF025 
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side, while the negative pole to FTO/carbon side. Also, reverse measurements were 

performed (positive connected to FTO/carbon and negative to FTO/KNBF025). The 

fabrication FEPV cell is explained in Chapter 2: Methodology (section 2.3.2.). 

Figure 5. 32 displays I-V plots during the illumination and at dark for unpoled KNBF 

x=0.25 at RT. From this graph the open circuit photovoltage Voc (the intersection points 

with the V-axis for the I-V curves) and the short circuit photocurrent, Isc, (the intersection 

points with the I-axis for the I-V curves) can be determined. The current density is given 

by Equation 5.1: 

𝐽𝑠𝑐 =
𝐼𝑠𝑐

𝐴
 

Eq. 5.1. 

where A is the area of the cell (in this study A=1 cm2). 
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Figure 5. 32: Dependence of the photovoltaic current on voltage for KNBF x=0.25 film under direct and 

reverse illumination. 

For direct illumination, Jsc and Voc are about 0.16 V and 0.24 µA/cm2, respectively. On 

the other hand, for reverse illumination, 0.21 V and 0.23 µA/cm2. It is worth noting that 

our Jsc is higher than 0.1 µA/cm2 reported for KN-BNN thick film by Grinberg et al in 

2013. Moreover, our Jsc is also greater than 40 nA/cm2 obtained at 77 K for the same 

composition.  

The Fill Factor, FF, for KNBF x=0.25 cell is given by the ratio between the maximum 

operational power of the cell, Pmax, (grey rectangle in Figure 5. 33) and the product of 𝑉𝑜𝑐 

and 𝐼𝑠𝑐 (black rectangle in Figure 5. 33). For direct light, KNBF x=0.25 film exhibits an 
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operational Pmax of 15.7 nW, a theoretical Pmax of 38.4 nW and a FF of ~41%. From the 

I-V curves obtained for reverse light, a FF of 33%, was estimated. For further information 

about the Fill Factor, please refer to Chapter 1, Introduction (section 1.4.2.: Photovoltaic 

effect). 

 

Figure 5. 33: I-V plot and schemes to calculate the FF for (a)direct light and (b) indirect light. 

Unfortunately, it is not possible to calculate the efficiency conversion (Chapter 1. 

Equation 1.14) of the cell because the incident light power during the operation of the 

lamp is not known. 

 

5.5. Discussion 

 

Room temperature XRD data for KNBF x=0, 0.05, 0.10, 0.15, 0.20 and 0.25, combined 

with Raman spectroscopy analysis show the polar orthorhombic crystal structure (Amm2 

space group) to persist up to x=0.25. In addition, in-situ Raman spectroscopy corroborates 

the polar nature of all compositions in the temperature range -100 to 200 ºC (Figure 5. 9). 

Reflections of KNBF patterns shift slightly to higher angles indicating a decrease of the 

unit cell volume up to x=0.15 (Figure 5. 2). 

Based on both permittivity measurements (Figure 5. 20) and Raman spectroscopy 

analysis all ceramics studied exhibit dielectric anomalies associated with structural phase 

transitions and their ferroelectric nature is corroborated by the presence of a Fano-type 

resonant dip in their Raman spectra (Figure 5. 5)  
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SEM imaging confirms dense sample by the almost absence of porosity (Figure 5. 10). 

However, chemical inhomogeneities are detected by EDX spectroscopy, which are not 

perceived by XRD, such as Bi/Fe-rich regions (Figure 5. 11). Also, minor quantity of 

secondary phase, 0.5 KNbO3- 0.5 BiFeO3, is detected in KNBF x=0.20 and 0.25.  

The unclear nature of the band-gap for KNBF system requires the study of both, direct 

and indirect, transitions. Direct band-gap continuously decreases from 3.66 eV (x=0) to 

2.70 eV (x=0.25). On the other hand, indirect bandgap narrows monotonically from 3.2 

eV (x=0) down to 2.22 eV (x=0.25), consistent with the inability of KNBF x=0.05 to 

withstand an electrical field as low as 0.2 kV/cm (Figure 5. 22). Indeed, all KNBF 

ceramics are electrically conductive, suggesting band gaps lower than 3 eV.  

It is demonstrated the polar order is retained up to x=0.25, which also exhibits the lowest 

band-gap of the KNBF system (2.22 eV), making this composition interesting for 

photoinduced phenomena. In order to measure the photoresponse of this composition, 

thin film of KNBF x=0.25 were tentatively deposited by PLD. The most appropriate 

temperature, oxygen pressure and substrate to deposit KNBF x=0.25 were 600ºC, 0.15 

mBar and STO, respectively. Low temperature avoids K losses, low pressure facilitates 

the motion of the atoms from the target to the STO. Polycrystalline KNBF x=0.25 film 

was obtained by PLD, therefore is still required further optimisation before measuring 

photoresponse on these films.  

Nonetheless, photoresponse was measured on other KNBF x=0.25 cell, fabricated by 

coating a FTO glass. The measured Voc and Isc were about 0.16 V and 0.24 µA/cm2, 

respectively. Table 5. 9 informs about Voc and Jsc values found in the literature for 

ferroelectric films and assuming the area of the cells is ~1 cm2, Pmax is estimated. 
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Material Voc Jsc Pmax Reference 

KN-BNN at 

RT 
0.7 mV 0.1 µA/cm2 0.07 nW 

(Grinberg et al., 

2013) 

KN-BNN at 

77K 
3.5 V 40 nA/cm2 140 nW 

(Grinberg et al., 

2013) 

PLZT at RT 0.84V 25 nA/cm2 21 nW 

(Poosanaas, 

Dogan, Thakoor, 

& Uchino, 1998) 

KNMN at RT 5 V 3.2 nA/cm2 16 nW 
(Park, Won, Ahn, 

& Kim, 2013) 

BTO 8 V 0.2 nA 1.6 nW 
(Spanier et al., 

2016) 

BFO 535 mV 54 µA/cm2 28 µW 

(T. Choi, Lee, 

Choi, Kiryukhin, 

& Cheong, 2009) 

KNBF x=0.25 

at RT 
0.16 V 0.24 µA/cm2 38.4 nW This study 

Table 5. 9. Voc and Jsc values reported in the literature for photoresponses of ferroelectric materials. 

Theoretical Pmax values were calculated by the the product of 𝑉𝑜𝑐  and 𝐼𝑠𝑐  and assuming PV cells of 1 cm2. 

As previously discussed, our Jsc is higher than 0.1 µA/cm2 and 40 nA/cm2reported at RT 

and 77 K for KN-BNN thick film by Grinberg et al. In addition, Jsc for KNBF x=0.25 is 

also superior than 8 nA/cm2 for a PLZT sample or 25 nA/cm2 for KNMN or 0.2 nA for 

BTO samples measured under ultraviolet illumination. However, our result is still lower 

than the photoresponse for BiFeO3 reported for a 70-mm sample under green-light 

illumination. 

The ability to control the band gap while maintaining the spontaneous polarisation makes 

the KNBF system specially interesting for photoinduced processes in a wide temperature 

range. 
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5.6. Conclusions 

 

Dense KNBF ceramics were prepared by solid-state reaction. Orthorhombic symmetry is 

maintained up to x=0.25 as corroborated by XRD, Raman spectroscopy and dielectric 

measurements. SEM images confirms the absence of porosity and EDX revealed some 

regions rich in solutes. Finally, it was demonstrated that the band gap of undoped KN can 

be systematically narrowed by 1 eV (i.e. a ~30% reduction) via co-substitution of K and 

Nb by Bi and Fe, respectively. Polar KNBF x=0.25 with a band gap of 2.2 eV is a 

promising candidate as a photoferroelectric. Indeed, a photocurrent of 0.24 µA/cm2 was 

measured on FEPV cell, which is much higher than other values reported in the literature 

for ferroelectrics (Table 5. 9). 
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6. System (1-x) KNbO3- x BiMnO3 

 

 

6.1. Introduction 

 

This chapter is devoted to the synthesis and characterisation of powders and ceramics 

from the binary system (1-x) KNbO3-x BiMnO3 (KNBM) with x=0, 0.05, 0.10, 0.15, 0.20 

and 0.25. Ceramic processing, structural, dielectric and optical characterisation are 

detailed below. For this system, ferroelectric and piezoelectric measurements are not 

carried out due to all KNBM ceramics being electrically very leaky. Indeed, band-gap 

narrowing is observed with increasing Bi+3/Mn+3 contents. 

BiMnO3 has been known since 1960, but recently the search for multiferroic materials 

has renewed the interest in this compound. Concerning the physical properties of 

BiMnO3, ferromagnetic order has been confirmed by several researchers. The Curie 

temperature was reported at around 100 K. In contrast, the ferroelectric nature of BiMnO3 

has been a controversial issue. 

Indeed, the exact crystal symmetry of BiMnO3 has also been a matter of debate as shown 

by the large number of studies (Alexei A. Belik, 2012). The first crystal symmetry 

proposed for BiMnO3 was based on the non-centrosymmetric C2 space group (Atou, 

Chiba, Ohoyama, Yamaguchi, & Syono, 1999; Moreira dos Santos et al., 2002). 

However, posterior studies suggested BiMnO3 to be better described as C2/n space group 

(nonpolar phase) (A.A. Belik et al., 2007; Montanari et al., 2005; Toulemonde et al., 

2009; Yang et al., 2008). Theoretical studies determined C2/n symmetry to be more stable 

than the C2 model at RT (Baettig, Seshadri, & Spaldin, 2007). In addition, ferroelectricity 

for BiMnO3 compound is still controversial. P-E loops in bulk BiMnO3 are reported with 

the Pr values of 0.043 mC/cm2 at 200 K (Moreira dos Santos et al., 2002) and 0.06 mC/cm2 
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at RT (Chi et al., 2007). Conversely, some reports affirmed ferroelectricity is not detected 

in bulk BiMnO3 (Alexei A. Belik, 2012). Optical band-gap of 0.9 eV based on X-ray 

emission and absorption spectra has been reported (McLeod et al., 2010). 

 

6.2. Structural and chemical characterisation 

 

6.2.1. Purity and X-ray diffraction 

 

KNBM (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) ceramics were prepared by the solid-state 

reaction method. K2CO3, Nb2O5, Bi2O3 and Mn2O3 powders weighed in the required 

stoichiometric ratios were mixed overnight in polyethylene bottles with zirconia milling 

media and isopropanol as solvent. After drying, the mixed powders were sieved and 

calcined twice in air first at 800 °C and then at 900°C. Subsequently, pellets were fired in 

air for 4 hours at 1070 °C using a controlled heating rate of 3 °C /min. In the literature, 

BiMnO3 is reported to be synthesised under high pressure conditions (Sugawara, Iiida, 

Syono, & Akimoto, 1968). The room-temperature XRD data for KNBM (0≤ x≤ 0.25) 

powders are shown in Figure 6. 1.  

A significant amount of manganese oxide (Mn2O3) is present in KNBM x≥0.10 (indicated 

with grey squares on Figure 6. 1.). XRD data for undoped KN (Orange pattern) is assigned 

to an orthorhombic perovskite described by the Amm2 space group. For KNBM x=0.05, 

data are also consistent with the formation of a single-phase perovskite. Moreover, the 

absence of any secondary phase or residual precursor phase supports the incorporation of 

Bi+3 and Mn+3 into KN lattice. This is also accompanied by a gradual disappearance of 

the peak splitting typical for the orthorhombic structure. With increasing x, Mn2O3 

appears as a second phase, showing that under the chosen processing conditions the 

homogenisation process is incomplete. This is further corroborated by the presence of 

some residual KN (indicated with black circles on Figure 6. 1.(a) and dashed line in Figure 

6. 1.(b)), which remained virtually undoped, as clearly shown by the XRD data for x=0.10 

and x=0.15. Figure 6. 2. shows the room-temperature XRD data for KNBM ceramics. 

After sintering at 1070ºC for 4 hours, the secondary phase (Mn2O3) disappears, 

supporting the complete incorporation of Mn into the KN lattice. Nevertheless, a closer 
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inspection of the XRD data, shows the coexistence of two KN-based polymorphs, as 

discussed below. 
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Figure 6. 1.: Room-temperature XRD data of KNBM (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) powders. 

Second phase at ~ 30º is associated with Mn2O3 (grey square). In addition, some pure KN remains in x=0.10 

and x=0.15 (black circles). 
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Figure 6. 2: (a) Room-temperature XRD data of KNBM (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) ceramics. 

(b) Coexistence of two phases: orthorhombic KN-based phase (black dashed line) and cubic phase. 
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Firstly, reflections of doped compositions shift towards lower 2θ angles, which means 

there is an increase of the unit cell volume with increasing Bi+3/Mn+3
 contents. This is 

consistent with the replacement of Nb+5 (rVI= 0.64 Å) by larger Mn+3 (rVI= 0.645 Å). 

Assuming high spin state, which may give rise to a Jahn-Teller distortion. The presence 

of larger Mn+2, should not be discarded. 

Secondly, the triplet between 77º and 80º (x=0) evolve to a single peak accompanied by 

a lower intensity reflection at higher 2θ angles (Figure 6. 2 (b)). With increasing x, this 

reflection looks less intense and disappears for KNBM x=0.20 and x=0.25. Speculatively, 

this reflection (black dash line, Figure 6. 2 (b)) could be associated with an orthorhombic 

KN-based phase (red dash line, Figure 6. 2 (b)), which is slightly shifted towards lower 

2θ angles in comparison with undoped KN due to the simultaneous incorporation of Bi+3 

and Mn+3. The fact that this reflection does not shift for x> 0.05, suggests that the 

solubility limit in orthorhombic KN is limited to x~0.05. This is supported by the 

Rietveld refinements in Table 6. 1 and Table 6. 2, which also show XRD data of these 

compositions are successfully refined as a combination of an orthorhombic phase (space 

group Amm2) and cubic phase (space group Pm-3̅m). Finally, the typical peak splitting 

expected for Amm2 crystal is not visible 

Table 6. 1 and Table 6. 2 show the results of Rietveld refinements for all compositions. 

In addition, experimental and relative density values are included. 
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 x=0 x=0.05 x=0.10 

Space Group Amm2 
Amm2 

22.8(7) 8% 

Pm-3̅m 

77.2(1) % 

Amm2 

14.1(5) % 

Pm-3̅m 

85.9(1) % 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 4.34(22) 4.21(10) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.7829(7) 4.7568(4) 4.9560(8) 4.8890(2) 

Relative 

Density (%) 
94(1) 91(4)* 86(2)* 

a (Å) 3.9711(1) 3.9883(3) 4.0234(2) 4.0003(3) 4.0325(1) 

b (Å) 5.6909(1) 5.6979 (6) 4.0234(2) 5.6855(5) 4.0325(1) 

c (Å) 5.7158(1) 5.7007(5) 4.0234(2) 5.6914(6) 4.0325(1) 

V/106 (pm3) 64.576(2) 64.77(1) 65.130(7) 64.72(1) 65.572(3) 

Rexp 1.26460 0.69640 0.84829 

Rprofile 2.97912 1.34817 2.17999 

Rwp 4.65175 1.91855 3.16955 

GOF 13.53086 7.58975 13.96061 

Table 6. 1.: Rietveld refinement results for KNBM x=0, x=0.05 and x=0.10 ceramics. (*) Relative densities 

compared with the weighted average of the theoretical densities from the two coexisting phases. 
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All compositions have a relative density above 80% except KNBM x=0.25. The relative 

content of orthorhombic phase falls from ∼23% for x=0.05 to ∼ 5% for x=0.15. KNBM 

x=0.20 and x=0.25 are acceptably refined as cubic phase (Pm-3̅m). Figure 6. 3. shows the 

unit cell volumes as a function of x. 

Table 6. 2.: Rietveld refinement for KNBM x=0.15, x=0.20 and 0.25. (*) Relative densities compared with 

the weighted average of the theoretical densities from the two coexisting phases. 

 x=0.15 x=0.20 x=0.25 

Space Group 
Amm2 

5.4(3) % 

Pm-3̅m 

94.6(8) % 
Pm-3̅m Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.29(19) 4.32(16) 4.20(10) 

Density 

(calculated) 

(g/cm3) 

5.1267(7) 5.0480(2) 5.2137(4) 5.3657(9) 

Relative 

Density (%) 
85(5)* 83(3) 78(1) 

a (Å) 3.9874(3) 4.0353(1) 4.0356(8) 4.0406(1) 

b (Å) 5.6800(7) 4.0353(1) 4.0356(8) 4.0406(1) 

c (Å) 5.7176(8) 4.0353(1) 4.0356(8) 4.0406(1) 

V/106 (pm3) 64.748(10) 65.711(3) 65.723(3) 65.97(1) 

Rexp 0.83353 0.6694 0.68507 

Rprofile 2.27072 1.54564 1.33107 

Rwp 3.85881 2.48361 2.22667 

GOF 21.43187 13.76548 10.56425 
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Figure 6. 3.: Graphical representation of unit cell volumes with x. Black square represents orthorhombic 

phase (Amm2) and red circles the cubic phase (Pm-3̅m) 

The orthorhombic phase for KNBM 0≤x≤0.15 presents an average volume of ~64.7 106 

pm3 and this value remains almost constant. On the other hand, the volume of the cubic 

phase Pm-3m increases systematically with x. This fact suggests limited incorporation of 

Bi+3/Mn+3 into the orthorhombic phase. Therefore, difficulties on homogenising the 

dopants into the KN lattice are observed at low concentration of x.  

 

6.3.2. Raman spectroscopy 

 

Room-temperature Raman spectra for KNBM 0≤ x≤ 0.25 powders are shown in Figure 

6. 4.. Spectra for all compositions present the same general features as reported for KN. 

Detailed description of Raman modes for pure KN can be found in Chapter 3.  
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Figure 6. 4.: Room-temperature Raman spectra for KNBM (0≤ x≤ 0.25) powders. New modes (1,2 and 3) 

emerge in KNBM (x≥0.15) powders spectra. Inset graph: monitoring of mixed sharp mode at 192 cm-1. 

The modes for doped compositions for this system become broader (which is directly 

related with the disorder of the material) and slightly shift to lower wavenumbers. As 

explained in previous chapters, the occurrence of long-range polarisation in KN is 

associated with the presence of a mixed sharp mode at 192 cm-1. Therefore, it can be used 

to monitor the polar phases. The presence of this sharp mode up to x=0.25 (attached graph 

on the right in Figure 6. 4) can be interpreted in two different ways. Firstly, KNBM system 

exhibits polar nature and secondly and more likely, the incomplete homogenisation, as 

shown by the XRD data, leads to powders containing residual orthorhombic KN. In 

addition, new modes start emerging for compositions with x≥0.10, which are indicated as 

1, 2, and 3. These extra modes are better observed in Raman spectra recorded for KNBM 

(0≤ x≤ 0.25) ceramics in Figure 6. 5. 
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Figure 6. 5.: Room-temperature Raman spectra for KNBM (0≤ x≤ 0.25) ceramics. New modes (1,2,3,4 and 

5) emerge in KNBM (x≥0.15) ceramics spectra. Inset graph: monitoring of mixed sharp mode at 192 cm-1 

New modes are labelled as 1,2,3,4 and 5. Mode 1 appears around ~100 cm-1 and mode 2 

emerges at ~175 cm-1 as a shoulder of the sharp peak at 192 cm-1. Both modes do not 

shift and the intensity increases systematically. Indeed, these modes have been observed 

and explained in Chapter 5 and they were speculatively associated with to A-O vibrations 

within nm-sized clusters rich in either Bi3+ and/or K+ cations. For sintered ceramics, the 

sharp mode at 192 cm-1 is present up to x=0.15, which supports the presence of an 

orthorhombic KN-based phase (ferroelectric phase). Moreover, the sharp mode become 

less intense with x, in agreement with the drop in the percentage of orthorhombic phase 

in KNBM (0.05≤ x≤ 0.15) ceramics calculated by the Rietveld refinements. Modes 3 and 

4 appear at 740 cm-1 and 800 cm-1 respectively and their relative intensity increase with 

x. Finally, mode 5, the least intense, continuously shifts by ~10 cm-1 to lower 

wavenumbers. The absence of the sharp mode at 192 cm-1 for x≥0.20, is consistent with 

the disappearance of orthorhombic KN-based phases, but the presence of Raman modes 

for x≥0.20, shows that the local structures is not purely cubic, as Raman activity is absent 

from crystals described by the centrosymmetric Pm-3̅m space group. Figure 6. 6 and 

Figure 6. 7 show the temperature dependence of Raman spectra for KNBM x=0.15 and 

x=0.25, respectively. The presence of a polar phase for x=0.15 is confirmed in a 
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temperature range between -180ºC and 20ºC. In contrast KNBM x=0.25 maintains the 

non-polar nature from 340 to-180ºC. 
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Figure 6. 6: Raman spectra evolution from -100ºC to 200ºC for KNBM x=0.15 ceramic. 
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Figure 6. 7: Raman spectra evolution from -100ºC to 200ºC for KNBM x=0.25 ceramic 
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6.3.3. SEM 

 

Scanning electron microscopy (SEM) images of unpolished surfaces KNBM 0≤x≤0.25 

ceramics are shown in Figure 6. 8(a-f). 

 

Figure 6. 8.: SEM images of KNBM ceramics with (a) x=0, (b) x=0.05, (c) x=0.10, (d) x=0.15, (e) x=0.20 and (f) 

x=0.25. 

Pure KN ceramics (Figure 6. 8 (a)) exhibit cubic shaped grains. The grain size varies from 

3µm to 5µm. A distinctive grain size decrease is observed for x=0.05 and x=0.10 (Figure 
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6. 8 a-c). The grain sizes for KNBM x=0.05 and x=0.10 are in a range between 300 and 

500 nm. Grain growth is inhibited upon 5% substitution of Bi+3 for K+1 in A-site and Mn+3 

for Nb+5 in the B-site. This behaviour has been reported previously in the literature. The 

microstructures of KNBM x=0.10 and x=0.15 (Figure 6. 8 c-d) show different grain 

morphology such as cubic or irregular shape. The grain size for x=0.15, x=0.20 and 

x=0.25 (Figure 6. 8 d-f) rises continuously reaching 1 µm. This increase is accompanied 

by the appearance of cubic shaped grains. This phase could be related with the cubic 

phase (Pm-3̅m) previously described. Important to note, some big grains are detected on 

KNBM x=0.10 and x=0.15 surface with different appearance, which will be examined by 

EDX.  

 

6.3.4. EDX 

 

The chemical composition for KNBM x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 ceramics were 

studied by EDX analysis. Moreover, this study evaluates how homogeneous the 

distribution of the elements (K, Nb, Bi and Mn) across the samples is. Table 6. 3 and 

Table 6. 4. shows the experimental and theoretical molar ratios for undoped KN and 

KNBF x=0.05, respectively. 

x=0 

 Theoretical Experimental Relative Error (%) 

𝑲
𝑵𝒃⁄  1 1.03(3) 3 

Table 6. 3.: Experimental (average) and theoretical molar K/Nb, ratio for KNbO3 ceramic sintered at 

1085ºC. 

x=0.05 

 Theoretical Experimental Relative Error (%) 

𝑲
𝑵𝒃⁄  1 1.0 (1) 0 

𝑲
𝑩𝒊⁄  19 7(3)* 63 

𝑲
𝑴𝒏⁄  19 20(9)* 5 

Table 6. 4.: Experimental (average) and theoretical molar K/Nb, K/Bi and K/Mn ratios for 0.95 KNbO3 – 

0.05 BiMnO3 ceramic sintered at 1070ºC. 

Experimental K/Bi and K/Mn ratios (indicated with an * in Table 6. 4.) do not reflect the 

average chemical profile of KNBM. The species are not well homogenised in this 
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material, as observed in EDX measurements provided in APPENDIX C. Indeed, high 

value of standard deviation for K/Mn ratio is evidence of the non-homogeneous 

distribution of Mn in the sample. Table 6. 5 shows EDX results for KNBM x=0.10. 

x=0.10 

 Theoretical Experimental Relative Error (%) 

𝑲
𝑵𝒃⁄  1 1.2 (3) 20 

𝑲
𝑩𝒊⁄  9 6(2) 33 

𝑲
𝑴𝒏⁄  9 9(4) 0 

Table 6. 5.: Experimental (average) and theoretical molar K/Nb, K/Bi and K/Mn ratios for 0.90 KNbO3 – 

0.10 BiMnO3 ceramic sintered at 1070ºC. 

Experimental K/Bi value markedly diverges from the theoretical molar ratio, contrary to 

K/Nb and K/Mn ratios which are within the error margins. However, high standard 

deviation for K/Mn suggest difficulties of incorporating Mn. Some big grains with 

smooth surface can be detected between irregular grain aggregates on KNBM x=0.10 

surface (Figure 6. 9). 

 

Figure 6. 9.: SEM image and EDX spectra of unpolished 0.90 KNbO3 – 0.10 BiMnO3 ceramic sintered at 

1070ºC reveal also the appearance of grains with high concentration of K and Nb 

EDX analysis reveals that these regions are K-rich and Nb, Bi and Mn are detected only 

in minor quantity. This fact confirms the coexistence of different phases. These large 

grains can be attributed to a second perovskite with stoichiometry ~A3BO9. Moreover, it 

is demonstrated that different morphologies are associated with different chemical 

compositions. Table 6. 6 shows EDX results for KNBM x=0.15. 
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x=0.15 

 Theoretical Experimental Relative Error (%) 

𝑲
𝑵𝒃⁄  1 1.3 (6) 30 

𝑲
𝑩𝒊⁄  ~5.67 7(4) 23 

𝑲
𝑴𝒏⁄  ~5.67 7(3) 23 

Table 6. 6.: Experimental (average) and theoretical molar K/Nb, K/Bi and K/Mn ratios for 0.85 KNbO3 – 

0.15 BiMnO3 ceramic sintered at 1070ºC. 

Experimental K/Nb, K/Bi and K/Mn ratios differ from the stoichiometric ratios, 

particularly K/Bi and K/Mn with a relative error of 23%. The high standard deviation for 

K/Bi and K/Mn reveals high spreading of the values above and below the mean. In other 

words, there is not a homogeneous distribution of the elements. Furthermore, the 

coexistence of two phases is shown in Figure 6. 10. 

 

Figure 6. 10.: SEM image and EDX spectra of unpolished 0.85 KNbO3 – 0.15 BiMnO3 ceramic sintered at 

1070ºC reveal also the appearance of grains with high concentration of K and Nb. 

Again, EDX spectroscopy reveals a region that is K-rich and speculatively can be ascribed 

to a second perovskite with stoichiometry ~A2B3O9. Therefore, the coexistence of two 

phases is confirmed for KNBM x=0.15 as well. Table 6. 7 and Table 6. 8. present EDX 

results for KNBM x=0.20 and x=0.25, respectively. 
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x=0.20 

 Theoretical Experimental Relative Error (%) 

𝑲
𝑵𝒃⁄  1 1.0(4) 0 

𝑲
𝑩𝒊⁄  4 4.0(3) 0 

𝑲
𝑴𝒏⁄  4 5.2(5) 30  

Table 6. 7: Experimental (average) and theoretical K/Nb, K/Bi and K/Mn ratios for 0.80 KNbO3 – 0.20 

BiMnO3 ceramic sintered at 1070ºC. 

x=0.25 

 Theoretical Experimental Relative Error (%) 

𝑲
𝑵𝒃⁄  1 0.95(2) 5 

𝑲
𝑩𝒊⁄  3 2.2(1) 27 

𝑲
𝑴𝒏⁄  3 2.8(3) 7 

Table 6. 8.: Experimental (average) and theoretical K/Nb, K/Bi and K/Mn ratios for 0.75 KNbO3 – 0.25 

BiMnO3 ceramic sintered at 1070ºC. 

For x=0.20 and x=0.25, experimental K/Nb, K/Bi and K/Mn ratios are closer to the 

theoretical than the previous compositions described. However, EDX spectroscopy has 

detected regions composed mainly of undoped KN, Bi-deficient and K-rich areas. 

Therefore, conventional ceramic processing strongly limits chemical homogenisation of 

the samples, especially for low concentrations of x.  

EDX mapping of K, Nb, Bi and Mn on KNBM x=0.05 and x=0.25 ceramics are shown 

in Figure 6. 11 and Figure 6. 12, respectively. Overall, the solutes are more 

homogeneously diffused in the lattice, for KNBM x=0.25 than x=0.05. The existence of 

Mn-rich regions in KNBM x=0.05 demonstrates that Mn+3 has more difficulties to 

disperse than Bi+3.  
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Figure 6. 11: (a) SEM image of the examined region and EDX mapping of K, Nb, Bi and Mn for KNBM 

x=0.05 (b) EDX spectra of Mn-rich region (Spectrum 1) is compared homogeneous region. 

 

Figure 6. 12: SEM image of the examined region and EDX mapping of K, Nb, Bi and Mn for KNBM 

x=0.25 
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6.4. Electrical Characterisation 

 

6.4.1. Dielectric Characterisation 

 

Temperature dependence of the permittivity (𝜀𝑟) and dielectric losses (tanδ) for KN-BM 

ceramics (x= 0.05, 0.10, 0.15, 0.20 and 0.25) are measured at 10 kHz, 100 kHz and 250 

kHz (Figure 6. 13-17). For x=0.05 (Figure 6. 13) and for x=0.10 (Figure 6. 14.), two broad 

dielectric anomalies are visible at ~220 ºC and ~400ºC, corresponding to orthorhombic-

to-tetragonal and tetragonal-to-cubic transitions, respectively. Therefore, this 

corroborates the presence of an orthorhombic ferroelectric phase. A third anomaly around 

100ºC emerges in all compositions (indicated with an arrow). At this stage, the origin of 

this anomaly is unknown, however it can arise from a secondary phase. Interestingly, it 

is present in x=0.25, which according to data in the previous sections appears to be single-

phase material. 

The temperature for the r anomalies remains almost constant, but their magnitude 

decreases with frequency. Also, frequency dependence is less marked between 100 kHz 

and 250 kHz. KNBM x=0.15 shows a dielectric relaxation which is indicated with an 

arrow at ~400 ºC (Figure 6. 15). This is consistent with the 5% of orthorhombic phase 

calculated for KNBM x=0.15 by Rietveld refinement. Compositions for x0.20 only 

show a dielectric protuberance around 100ºC (Figure 6. 16 and Figure 6. 17).  
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Figure 6. 13.: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.95 KNbO3–0.05 BiMnO3 ceramics at 10 kHz, 

100 kHz and 250 kHz during cooling. 
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Figure 6. 14.: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.90 KNbO3–0.10 BiMnO3 ceramics at 10 kHz, 

100 kHz and 250 kHz during cooling. 
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Figure 6. 15.: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.85 KNbO3–0.15 BiMnO3 ceramics at 10 kHz, 

100 kHz and 250 kHz during cooling. 

0

2500

5000

7500

10000

12500

100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 250 kHz

 100 kHz

 10 kHz

  r

 

 

ta
n
 

 Temperature (ºC)

50 100 150 200

200

400

600

800

 Temperature (ºC)

 

Figure 6. 16.: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.80 KNbO3–0.20 BiMnO3 ceramics at 10 kHz, 

100 kHz and 250 kHz during cooling. 
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Figure 6. 17.: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.75 KNbO3–0.25 BiMnO3 ceramics at 10 kHz, 

100 kHz and 250 kHz during cooling. 

 

Relative permittivity versus temperature curves at 100 kHz for KNBM 0≤x≤0.25 

ceramics are compared in Figure 6. 18. Orange curve (pure KN) shows two clear 

dielectric anomalies at 206ºC and 394ºC, these anomalies are still visible for x=0.05 and 

x=0.10, but less intense and at lower temperature. For x=0.15, a bump (indicated with an 

arrow in Figure 6. 15) is noticed at ~400 ºC in the dielectric curve. This demonstrates the 

presence of an orthorhombic phase in KNBM x=0.05, x=0.10 and x=0.15 observed and 

also described in XRD, SEM and Raman results. KNBM x=0.20 and x=0.25 show only 

one anomaly at 100 ºC. 
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Figure 6. 18.: Temperature dependence of 𝜀𝑟 and 𝑡𝑎𝑛𝛿  for KNBM 0≤x≤0.25 ceramics at 100kHz 

 

The dielectric losses of doped compositions are higher than for undoped KN. KNBM 

ceramics become more conductive with the increase of x (apart from the case of KNBM 

x=0.10, explained before). This behaviour could be directly related with the band-gap 

narrowing, as discussed later. 

 

6.5. Optical Characterisation 

 

6.5.1 Diffuse reflectance spectroscopy  

 

Diffuse reflectance spectroscopy was carried out in the range of 200 - 1400 nm. Band-

gaps are obtained from the intersection of the tangent line in the plot of [ℎ𝜐𝐹(𝑅)]𝑛 with 
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the x-axis, F(R), being the Kubelka-Munk function and R, the diffuse reflectance data 

(Figure 6. 19.). The n value determines the kind of transition, n=2 is used to plot direct 

band gaps and n=1/2 for indirect band gaps. In this study, both direct and indirect band-

gaps are considered because it is difficult to determine the nature of KNBM band-gap 

from the Tauc plot. 
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Figure 6. 19.: Diffuse reflectance as a function of wavelength for KNBM sytem (raw data). 

 

The Tauc plot of KNBM 0≤x≤0.25 ceramics is constructed for n=2 (direct band-gap) in 

Figure 6. 20. Band-gaps narrow systematically from 3.66 eV (x=0) to 2.44 eV (x=0.25). 

A shoulder (indicated with 1 in Figure 6. 20.) is observed for KNBM with x≥0.15 around 

2.8 eV and its magnitude increases with increasing x. Purple curve (KNBM x=0.25) 

shows two extra features at ~2 eV and ~2.25 eV (indicated with arrows). 
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Figure 6. 20.: Tauc plot for direct band gaps for KNBM 0≤x≤0.25 ceramics. 

The Tauc plot of KNBM ceramics constructed for n=1/2 (indirect band-gap) is shown in 

Figure 6. 21. In this case, it is difficult to determine the band-gap. With the increase of x, 

band- gaps narrow from 3.22 eV (x=0) to 1.29 eV (x=0.25). Three broad shoulders 

(indicated with 1, 2 and 3 in Figure 6. 21.) are present in all doped compositions at ~1.8 

eV, ~2.4 eV and ~2.8 eV. These modes are clearer for higher concentrations of x.  
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Figure 6. 21.: Tauc plot for indirect band gaps for KNBM 0≤x≤0.25 ceramics. 
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Figure 6. 22 shows direct and indirect band-gap values as a function of x. Both follow the 

same trend, band-gaps narrow systemically with the increase of x. 
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Figure 6. 22.: Dependence of direct and indirect band gap with x for KNBM 0≤x≤0.25 ceramics 

 

6.6. Discussion 

 

Room temperature XRD data of KNBM (0≤x≤0.25) ceramics (Figure 6. 2) show a phase 

transition from orthorhombic (x=0) to pseudocubic (x=0.25). All reflections of doped 

compositions shift continuously towards lower angles, indicating an increase of the unit 

cell volume with increasing x. The presence of a reflection at ~78º 2𝜃 (Figure 6. 2(b)) 

suggests the coexistence of two phases in KNBM 0.05≤x≤0.15 ceramics, an orthorhombic 

KN-based phase (space group Amm2) and a cubic phase (space group Pm-3m). This 

reflection remains at ~78º 2𝜃 and its intensity decreases with x, therefore the relative 

volume of this phase falls systematically until it disappears at x=0.20. Rietveld refinement 

calculated a concentration of 23% of the orthorhombic phase in KNBM x=0.05 which 

drops to 5% in KNBM x=0.15. Raman spectroscopy, SEM images and dielectric 

characterisation support the hypothesis of coexistence of these two phases.  

First, the existence of a polar orthorhombic KN-based phase in KNBM 0≤x≤0.15 

ceramics is supported by the presence of the sharp Raman mode centred at 192 cm-1in 

Raman spectra (Figure 6. 5). This peak becomes less intense with the increase of x and 
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disappears in KNBM x=0.20 spectra, following the same trend described for XRD 

patterns. Indeed, this is also consistent with the Rietveld refinements results, which 

calculate a drop of the orthorhombic phase, from 23% (x=0) to 5% (x=0.15).  

Second, SEM images of KNBM x=0.10 clearly show two different morphologies: some 

big grains with smooth surface stand out in a small cubic grains agglomerate (Figure 6. 

8). EDX analyses reveals a K-rich concentration in these regions. Overall, significant 

decrease of the grain size is observed on SEM images, from 3𝜇m (x=0) to 300 nm 

(x=0.10). Then, the grain size increases until it reaches 1𝜇m (x=0.25). KNBM ceramics 

look well densified and the grains are cubic shaped.  

Finally, the coexistence of these two phases is also corroborated by the appearance of 

three broad dielectric anomalies as a function of temperature in KNBM 0≤x≤0.15 

ceramics (Figure 6. 13-15). Two anomalies are attributed to the orthorhombic-to-

tetragonal at ~220 ºC and the tetragonal-to-cubic at ~400 ºC phase transition of the 

orthorhombic KN-based phase, where the solutes Bi+3 and Mn+3 are not incorporated. 

Indeed, the ferroelectric-to-paraelectric transition (~400 ºC) confirms the polar nature of 

the KN-based phase in KNBM 0≤x≤0.15. The third anomaly around 100ºC maybe 

associated to the pseudocubic phase. In 2011, Luisman et al observed a frequency 

dependent broad anomaly in KNbO3-BiYbO3 ceramics with an average pseudocubic 

structure. 

From reflectivity data, direct band-gap values of KNBM system continuously narrow 

from 3.66 eV (x=0) to 2.44 eV (x=0.25). On the other hand, indirect band-gaps decrease 

from 3.22 eV (x=0) to 1.29 eV (x=0.25). However, there are not enough signs to identify 

the nature of KNBM band-gaps.  

 

6.7. Conclusions 

 

The co-solubility of Bi and Mn into the orthorhombic phase of KN is limited to less than 

5% mol. Ceramics in the 0≤x≤0.15 region were refined as a combination of orthorhombic 

and pseudocubic phases. For x≥0.20, XRD suggests a cubic structure for KNBM 

ceramics, but Raman shows that their local structure is non-cubic. Direct band-gaps 
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varying from 3.66 eV down to 2.44 eV and indirect band-gaps from 3.22 eV to 1.29 eV, 

are estimated from reflectivity data. 
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7. System (1-x) KNbO3- x BiCoO3 

 

 

7.1. Introduction 

 

This chapter addresses the synthesis and characterisation of powders and ceramics from 

the binary system (1-x) KNbO3-x BiCoO3 (KNBC) with x=0, 0.05, 0.10, 0.15, 0.20 and 

0.25. First, KNBC ceramics were prepared by conventional route and were characterised 

in terms of crystal structure (XRD and Raman spectroscopy) and chemical homogeneity 

(EDX). Then, the impact of different quantities of Bi+3 and Co+3 into KN lattice was 

examined by the evolution of dielectric and optical properties. Ferro- and piezoelectric 

characterisation was not performed because of the high conductivity and low density of 

the samples. Indeed, difficulties in dielectric measurements were encountered and 

detailed below.  

BiCoO3 is a polar compound (P4mm space group) similar to well-known FE materials, 

such as BaTiO3 and PbTiO3 (Izyumskaya, Alivov, & Morkoç, 2009). Theoretically, 

BiCoO3 exhibits antiferromagnetic ordering as well as giant ferroelectric polarization. 

First principles calculations for BiCoO3 gave a PS value as high as 170–179 µC/cm2  

(Oguchi, 2005; Ravindran, Vidya, Eriksson, & Fjellvåg, 2008). However, polarisation 

switching of BiCoO3 has not yet been demonstrated experimentally. The number of 

experimental investigations on BiCoO3 (Oka et al., 2010; Sudayama et al., 2011) is still 

rather small compared with the number of theoretical works, probably because of 

preparation difficulties that require high pressure conditions, 6 GPa (Belik et al., 2006). 

Finally, a band-gap of 1.7 eV was measured for BiCoO3 by X-Ray absorption spectra 

XAS (McLeod et al., 2010). 
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7.2. Structural and chemical characterisation 

 

7.2.1. Purity and X-ray powder diffraction 

 

KNBC (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) powders were prepared by the solid-state 

reaction route. Required amounts of K2CO3, Nb2O5, Bi2O3 and Co3O4 were mixed for 24 

hours, then dried and the resulting powder was sieved. This powder was calcined twice 

in air at 850 °C for 4 hours using a heating rate of 3ºC/min. XRD patterns of KNBC 

(0≤x≤0.25) calcined powders are shown in Figure 7. 1. 
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Figure 7. 1: Room-temperature X-Ray diffraction data of KNBC (0≤ x≤ 0.25) powders. Secondary phases 

are identified as Bi2O3 (black square) and Co3O4 (yellow triangle). Probably, some pure KN remains in all 

compositions (black dash line). 

Main reflections can be assigned to the perovskite structure, indicating that the most of 

starting oxides reacted to form KNBC (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25). 

Nevertheless, some unreacted Bi2O3 (black square) and Co3O4 (yellow triangle) are 

detected. The appearance of these phases is more accentuated for compositions with 

higher x values. Doped compounds exhibit broader peaks in comparison with pure KN 

(x=0), which makes the assignment of the corresponding crystal structure difficult. A 
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closer inspection shows nearly undoped KN to be formed in all compositions, as indicated 

the dashed black line (Figure 7. 1).  

Pellets were fired in air for 4 hours at 1090 °C using a controlled heating rate of 3 °C/min. 

Figure 7. 2 shows XRD data of KNBC (0≤x≤0.25) sintered ceramics. 
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Figure 7. 2: Room temperature XRD patterns for KNBC (x=0, 0.05, 0.10, 0.15, 0.20 and 0.25) ceramics 

sintered at 1080-1090ºC. Black squares indicate secondary phase of Bi2O3. The attached graph on the right 

illustrates how the triplet for x=0 evolves to a single peak for x=0.25. 

Sharp peaks and reduction of secondary phases confirm both a higher degree of 

crystallisation and enhanced purity for KNBC ceramics in comparison with powders. 

However, a small amount of Bi2O3 is still present in KNBC x=0.20 and x=0.25 ceramics. 

A continuous shift of the XRD peaks towards lower 2𝜃 angles indicates an increase of 

the unit cell size with the increase of BiCoO3 content. 

Figure 7. 2 (b) shows in detail the XRD patterns from 75º to 80º 2𝜃 with increasing x. For 

x=0, a triplet is observed corresponding to (040), (400) and (222) Miller indices for the 

orthorhombic symmetry. For the rest of compositions, a single peak is perceptible within 

the resolution of the measurement. This single peak is accompanied by a remarkable 

shoulder in x=0.05 which also appears in x=0.10 pattern but is less intense. For 

0.15≤x≤0.25 compositions, a sharp peak is observed which could be attributed to (220) 

Miller index for the cubic symmetry. However, the assignment of the phases for this 

system was ambiguous, due to the resolution of the measurements. Complete 
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characterisation of these compounds will help to determine the crystal structure evolution 

with increasing Bi+3/Co+3. The refinement of the XRD patterns by Rietveld method 

provides information about the space group, lattice parameters and theoretical density of 

KNBC ceramics (Table 7. 1 and Table 7. 2). Experimental and relative density are added 

in the tables. 

 x=0 x=0.05 x=0.10 

Space Group Amm2 
8.1 (6) % 

Amm2 

91.9(2)% 

Pm-3̅m 
Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 4.19(17) 4.21(22) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.7960(2)* 4.9436(4) 

Relative 

Density (%) 
94(1) 87(1)* 85(2) 

a (Å) 3.9711(1) 3.9868(4) 4.0150(1) 4.0211(2) 

b (Å) 5.6909(1) 5.6829(7) 4.0150(1) 4.0211(2) 

c (Å) 5.7158(1) 5.7080(1) 4.0150(1) 4.0211(2) 

V/106 (pm3) 64.576(2) 64.723(3) 64.66(2) 65.02(1) 

Rexp 1.26460 1.21332 1.3220 

Rp 2.97912 2.56084 4.1034 

Rwp 4.65175 3.17835 5.83102 

GOF 13.53086 6.8620 19.4552 

Table 7. 1: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KNBC (x=0, 0.05 and 0.10). *Weighed average for the phases. 
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 x=0.15 x=0.2 x=0.25 

Space Group Pm-3̅m Pm-3̅m Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.26(7) 4.25(20) 4.18(10) 

Density 

(calculated) 

(g/cm3) 

5.4590(2) 5.2651(4) 5.4269(2) 

Relative 

Density (%) 
78(2) 81(4) 77(2) 

a (Å) 4.0245(1) 4.0276(2) 4.0304(1) 

b (Å) 4.0245(1) 4.0276(2) 4.0304(1) 

c (Å) 4.0245(1) 4.0276(2) 4.0304(1) 

V/106 (pm3) 65.183 (2) 65.333(5) 65.465 (3) 

Rexp 1.30162 1.26475 1.26090 

Rp 3.32856 4.35045 3.01453 

Rwp 4.94895 6.57066 4.73736 

GOF 14.45641 26.9903 14.1159 

Table 7. 2: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KNBC (x=0.15, 0.20 and 0.25). 

Low relative density values (below 90%) for all KNBC ceramics were obtained. This fact 

could be related to the unsuccessful densification of BiCoO3 ceramics at ambient 

conditions (Belik et al., 2006). KNBC x=0.05 is reasonably refined as a combination of 

orthorhombic phase (space group Amm2) and cubic phase (space group Pm-3̅m) as 

shown in Figure E.2 (Appendix E). XRD patterns for x=0.10, x=0.15, x=0.20 and x=0.25 

can be ascribed as cubic phase (Pm-3̅m). However, there is evidence which suggests these 

compositions are neither single phase nor truly cubic, as will be explained below. 

However, a linear relation between unit cell volume and x is obtained (Figure 7. 3). 
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Figure 7. 3: Evolution of the unit cell volume with x for KNBC (0≤x≤0.25) ceramics.  

Overall, the unit cell volume increases linearly with x This fact indicates there is a 

systematic incorporation of Bi+3 and Co+3 into KNbO3 structure. Probably, there is 

coexistence of phases in the intermediary concentrations, but X’Pert software was not 

able to fit two phases. 

 

7.2.2. Raman spectroscopy 

 

Room-temperature Raman spectra for KNBC (0≤ x≤ 0.25) powders are illustrated in 

Figure 7. 4. All KNBC powders present similar Raman spectra. Main features reported 

for KN (orange pattern) are found in the other spectra (bold dashed line). However, these 

modes seem to be wider and slightly displaced to lower wavenumbers (by ~11 cm-1). 

New modes arise for high concentrations of Bi+3/Co+3 and labelled as 1, 2 and 3. In 

addition, small bumps pointed with ‘*’could be interpreted as impurities. The sharp mode 

at 192 cm-1 discloses the polar ordering in KN compounds. This mode is detected in all 

KNBC powders spectra, which supports the hypothesis proposed in the XRD section 

about the presence of nearly pure orthorhombic KN, which reveals chemical 

inhomogeneities in KNBC powders. Room-temperature Raman spectra for KNBC (0≤ x≤ 

0.25) ceramics sintered 1090ºC are examined in Figure 7. 4 and Figure 7. 5. 
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Figure 7. 4: Room-temperature Raman spectra for KNBC (0≤ x≤ 0.25) powders calcined at 850ºC two 

times. New modes (1, 2 and 3) emerge in KNBM (x≥0.05) powders. Small modes indicated with ‘*’can be 

associated with local impurities. 
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Figure 7. 5: (a)Room-temperature Raman spectra for KNBC (0≤ x≤ 0.25) ceramics sintered at 1080-

1090ºC. New modes (1, 2, 3, 4, 5 an6) emerge in KNBC (x≥0.05) pellets spectra. (b) Attached graph shows 

the monitoring of mixed sharp mode at 192 cm-1. 

Raman spectra for KNBC (0≤ x≤ 0.25) ceramics show some differences in comparison 

with powder spectra. New arising modes are labelled as 1, 2, 3, 4, 5, and 6. Mode 1 and 
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2, also visible in the powders, appear at 114 cm-1 and 174 cm-1 (as a shoulder of the mixed 

peak centred at 192 cm-1). Both modes keep their position constant. The intensities of 

mode 1 is practically equal for all compositions, in contrast, the intensity of mode 2 seems 

to reach a maximum for x=0.10 and 0.15 and then gradually decreases. These modes 

appear in all the systems investigated in this work, and are attributed to A-O vibrations 

within nm-sized clusters rich in either Bi3+ and/or K+ cations. The absence of the sharp 

mixed peak at 192 cm-1 and the interference dip at 197 cm-1 support the cubic symmetry 

assigned for x=0.20 and x=0.25 in the XRD analysis section. Evidence of the coexistence 

of orthorhombic phase (polar phase) and cubic phase (nonpolar phase) for intermediary 

concentrations is shown in Figure 7. 5 (b). The sharp mode can be intuited up to x=0.20 

and its intensity decreases with x. The polar phase may be only in traces for x=0.10 and 

x=0.15, because it was not detected by XRD. Modes 3 and 4 appear at ~500 cm-1 and 

~700 cm-1only for x=0.20 and x=0.25. Finally, the intensity of mode 5 (~800 cm-1) and 

mode 6 (~870 cm-1) considerably increases with increasing x. 
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7.2.3. SEM 

 

SEM images of unpolished KNBC (0≤ x≤ 0.25) ceramics are shown in Figure 7. 6 (a-f). 

 

Figure 7. 6: Microstructure evolution for KNBC ceramics for (a) x=0, (b) x=0.05, (c) x=0.10, (d) x=0.15, 

(e) x=0.20 and (f) x=0.25. 

Grain growth is inhibited with the incorporation of Bi+3 and Co+3 into the KNbO3 lattice. 

However, grains preserve the cubic shape in all compositions. Microstructures for x=0.05, 
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x=0.10 and x=0.15 present very similar morphology (Figure 7. 6. (b-d)). Grain size varies 

between 600 nm and 800 nm for theses compositions. For x=0.20, large cubic grains 

(~1µm) but still a wide grain size spectrum is distinguished in its microstructure start 

appearing. KNBC x=0.20 and x=0.25 exhibit smooth surfaces. Grain size grows up to 2 

µm but still different grain sizes in the surface of x=0.25 can be found. 

 

7.2.4. EDX  

 

Element distribution (K, Nb, Bi and Co) and chemical analyses were performed in all 

KNBC (0.05≤ x≤ 0.25) ceramics by EDX. Experimental and theoretical K/Nb, K/Bi and 

K/Co ratios and relative errors for KNBC x=0.05 are given in Table 7. 3. 

x=0.05 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 0.99(3) 1 

𝑲
𝑩𝒊⁄  19 18(4) 5 

𝑲
𝑪𝒐⁄  19 34(12) 79 

Table 7. 3: Experimental and theoretical molar K/Nb, K/Bi and K/Co ratios for 0.95 KNbO3 – 0.05 BiCoO3 

ceramic sintered at 1090ºC. 

The experimental K/Nb and K/Bi ratios match with the theoretical values within deviation 

margins. On the other hand, K/Co considerably differs from theoretical value (79%). The 

high standard deviation value indicates non-homogeneous distribution of Bi and Co 

across the sample. An example of different degree of Bi+3 and Co+3 solubility is shown in 

Figure 7. 7.  
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Figure 7. 7: SEM image and EDX spectra of unpolished 0.95 KNbO3 – 0.05 BiCoO3 ceramic sintered at 

1090ºC. 

The existence of such disparities amongst experimental K/Bi ratios reveals the difficulties 

of uniformly incorporating a small amount of Bi+3/Co+3 into KNbO3. 

Table 7. 4 shows the experimental and theoretical K/Nb, K/Bi and K/Co relations and 

relative errors for KNBC x=0.10 composition. 

x=0.10 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.2(4) 20 

𝑲
𝑩𝒊⁄  9 5(2) 44 

𝑲
𝑪𝒐⁄  9 7(3) 22 

Table 7. 4 Experimental and theoretical K/Nb, K/Bi and K/Co ratios for 0.90 KNbO3 – 0.10 BiCoO3 ceramic 

sintered at 1090ºC. 

Despite margin of error, empirical K/Bi and K/Co ratios still diverge from theoretical 

ratios. Their lower values reveal high concentration of K and Nb, suggesting difficulties 

in incorporating Bi+3 and Co+3 into the KNbO3 lattice. Figure 7. 8 shows a SEM image 

and the EDX spectra as evidence of inhomogeneous distribution of the species.  
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Figure 7. 8: SEM image and EDX spectra of unpolished 0.90 KNbO3 – 0.10 BiCoO3 ceramic sintered at 

1090ºC. 

High concentration of K is detected in some regions, suggesting the appearance of other 

phase (~A2BO6). Table 7. 5 show the experimental and theoretical K/Nb, K/Bi and K/Co 

relations and relative errors for KNBC x=0.15 composition. 

x=0.15 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.0(1) 0 

𝑲
𝑩𝒊⁄  5.67 5(1) 12 

𝑲
𝑪𝒐⁄  5.67 7(2) 23 

Table 7. 5: Experimental and theoretical K/Nb, K/Bi and K/Co ratios for 0.85 KNbO3 – 0.15 BiCoO3 

ceramic sintered at 1090ºC. 

In this case, experimental K/Nb, K/Bi and K/Co ratios are in agreement with the 

theoretical stoichiometry of KNBC x=0.15 within the margin error. Table 7. 6 reports the 

EDX results for KNBC x=0.20. 
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x=0.20 

 Theoretical Experimental Relative error 

𝑲
𝑵𝒃⁄  1 1.0(1) 0 

𝑲
𝑩𝒊⁄  4 3.5(5) 12 

𝑲
𝑪𝒐⁄  4 5(1) 25 

Table 7. 6: Experimental and theoretical K/Nb, K/Bi and K/Ni ratios for 0.80 KNbO3 – 0.20 BiCoO3 

ceramic sintered at 1090ºC. 

Experimental values acceptably coincide with theoretical values, beside presenting lower 

standard deviation. This fact implies a substantial enhancement of Bi+3 and Co+3 solubility 

into KNbO3. However, Co-rich particles are detected on the surface of the sample (Figure 

7. 9). Finally, K/Nb, K/Bi and K/Co ratios for KNBN x=0.25 have the closest values to 

the intended stoichiometry (Table 7. 7). As commented above, low standard deviation 

values indicate more homogeneous chemical distribution. These results confirm the 

solubility of Bi+3/Co+3 into KNbO3 is more effective under conditions of high 

concentration of BiCoO3. 

x=0.25 

 Theoretical Experimental Relative error 

𝑲
𝑵𝒃⁄  1 1(1) 0 

𝑲
𝑩𝒊⁄  3 3(1) 0 

𝑲
𝑪𝒐⁄  3 4(1) 33 

Table 7. 7.: Experimental and theoretical K/Nb, K/Bi and K/Co ratios for 0.75 KNbO3 – 0.25 BiCoO3 

ceramic sintered at 1090ºC. 
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Figure 7. 9: SEM image and EDX spectra of unpolished 0.80 KNbO3 – 0.20 BiCoO3 ceramic sintered at 

1090ºC. 
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In the same way as noted in the other systems, KNBC presents difficulties in forming the 

solid solution, especially for low concentration of x. In contrast, KNBC x=0.20 and 

x=0.25 exhibit more accurate K/Nb, K/Bi and K/Co values than the rest. This is also 

supported by EDX mapping of K, Nb, Bi and Co on KNBC x=0.05 sample (Figure 7. 10) 

and x=0.25 (Figure 7. 11). Globally, the elements are more homogeneously dispersed on 

KNBC x=0.25 than x=0.05. The existence of Co-rich regions in KNBC x=0.05 

demonstrates that Co+3 has difficulties to diffuse into KN lattice. Despites the large 

concentration of porosity that is visible for x=0.25, a better diffusion of Co+3 is achieved. 

Some K-rich region are detected. 

 

Figure 7. 10: SEM image of the examined region and EDX mapping of K, Nb, Bi and Co for KNBC x=0.05. 

 

Figure 7. 11: SEM image of the examined region EDX mapping of K, Nb, Bi and Co for KNBC x=0.25. 
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7.3. Electrical Characterisation 

 

7.3.1. Dielectric Characterisation 

 

The temperature dependence of the permittivity, 𝜀𝑟, and dielectric losses, tanδ, for KNBC 

ceramics (x= 0.05, 0.10, 0.15, 0.20 and 0.25) measured at 1 kHz, 10 kHz, 100 kHz and 

250 kHz are shown in Figure 7. 12-16. It must not be forgotten that KNBC ceramics 

reveal relative densities below 90%, which promotes the sensitivity to crack and directly 

affects the physical properties such as electrical conduction.  

The only sample that presents two dielectric anomalies (dashed line in Figure 7. 12) is 

KNBC x=0.05: one at 215ºC and the other at 381ºC. These anomalies can be attributed 

to the orthorhombic solid solution as well as to some pure KN-based phase left, detected 

in EDX. Dielectric response and losses show dependency with frequency. For x=0.10, 

only a broad relaxation is visible at 390ºC (dashed line in Figure 7. 13). Again, 𝜀𝑟 and 

tan 𝛿 are heavily influenced by frequency. By inspection of Figure 7. 14-16, dielectric 

anomalies are not perceived, and the frequency dependence is less marked for KNBC 

x=0.15, 0.20 and 0.25. Moreover, a protuberance is perceived around 100ºC in KNBC 

x=0.10 and x=0.15, which could be supposedly originated by the pseudocubic phase. 
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Figure 7. 12: Temperature dependence of 𝜀𝑟and tan𝛿for 0.95 KNbO3–0.05 BiCoO3 ceramic at 1 kHz, 10 

kHz and 100 kHz during cooling. 
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Figure 7. 13: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.90 KNbO3–0.10 BiCoO3 solid solution at 1 

kHz, 10 kHz and 100 kHz during  cooling. 
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Figure 7. 14: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.85 KNbO3–0.15 BiCoO3 solid solution at 1 

kHz, 10 kHz and 100 kHz during cooling. 
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Figure 7. 15: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.80 KNbO3–0.20 BiCoO3 solid solution at 1 

kHz, 10 kHz and 100 kHz during cooling. 
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Figure 7. 16: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.75 KNbO3–0.25 BiCoO3 solid solution at 1 

kHz, 10 kHz and 100 kHz during cooling. 

The temperature dependence of the permittivity, 𝜀𝑟, for KNBC ceramics (x = 0, 0.05, 

0.10, 0.15, 0.20 and 0.25) measured at 100 kHz is illustrated in Figure 7. 17. Upon doping, 

the 𝜀𝑟(T) curves become flatter than KN curve, which shows two maxima at 205 ºC and 

400 ºC. Those two dielectric anomalies are associated with phase transitions. As 

mentioned before, KNBC x=0.05 is the only one that exhibits two anomalies but much 

less intense than undoped KN. 
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Figure 7. 17: Temperature dependence of relative permittivity and dielectric losses for (1-x) KNbO3–x 

BiCoO3 (0 ≤ x ≤ 0.25) ceramics at 100 kHz. 

 

7.4. Optical Characterisation 

 

7.4.1 Diffuse reflectance spectroscopy 

 

Direct and indirect band-gaps for KNBC ceramics (x= 0, 0.05, 0.10, 0.15, 0.20 and 0.25) 

were determined using the Tauc plots from the reflectivity data (Figure 7. 18) Direct band-

gaps continuously narrow from 3.62 eV (x=0) to 2.60 eV (x=0.25) with increasing of Bi+3 

and Co+3 contents into the KN lattice (Figure 7. 19). 
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Figure 7. 18: Diffuse reflectance as a function of wavelength for KNBC system (raw data). 
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Figure 7. 19: Tauc plot for direct band gaps for KNBC 0≤x≤0.25 ceramics 

If the electron excitation occurs through an indirect path, the bandgap narrows with 

increasing x, reaching 2.15 eV for x=0.25 (Figure 7. 20). Two bumps (labelled as 1 and 

2) arise at 2.21 eV and 2.45 eV in all the spectra, which become more intense with x. 

These absorption regions could be related with d-d transitions, hybridized orbitals or 

energetic levels within the band gap. 
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Figure 7. 20: Tauc plot for indirect band gaps for KNBC 0≤x≤0.25 ceramics. 

Figure 7. 21 plots the band-gap narrowing as a function of x for direct and indirect 

transitions.  
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Figure 7. 21: Compositional evolution of direct and indirect band-gap for KNBC 0≤x≤0.25 ceramics. 

Predictably, direct band-gaps present higher values than indirect band-gaps. In addition, 

both show the same trend of narrowing with increasing x. For indirect band-gaps, the 

most pronounced decrease occurs in between x=0 and x=0.05. On the other hand, direct 

band-gaps constantly narrow with increasing Bi+3/Co+3 contents. 
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7.5. Discussion 

 

Unreacted bismuth and cobalt oxides were detected in KNBC calcined powders by XRD. 

After sintering, small amount of Bi2O3 was perceived in KNBC x=0.20 and x=0.25 

ceramics. The main problem found during the ceramic processing of this system was the 

impossibility of obtaining high density ceramics. Densities below 85% lead to very weak 

samples, generating stability problems in air and preventing a reliable electric 

characterisation. There are only few papers that have reported BiCoO3 solid-solutions 

prepared by conventional route at ambient pressure (Wu et al., 2011; Zhou, Liu, Li, Yuan, 

& Chen, 2009), probably due to difficulties in the ceramic processing. 

XRD patterns of KNBC ceramics show all reflections constantly move towards lower 2𝜃 

angles with increasing x. KNBC x = 0.05 is acceptably refine as a combination of cubic 

and orthorhombic phases. With further increase of the Bi+3 and Co+3, the system evolves 

to a pseudocubic phase, which is accompanied by a linear increase of the unit cell volume. 

In contrast, a polymorphic phase transition between the orthorhombic and the 

rhombohedral phase for a similar system, (1-x) K0.5Na0.5NbO3-x BiCoO3, was described 

approximately at 0.01≤x≤0.02 (Wu et al., 2011). 

The presence of the Raman mode at 192 cm-1 and the dip at 197 cm-1 indicates the 

presence of a polar phase up to x=0.15, that was not detected by XRD. The absence of 

the mixed Raman mode at 192 cm-1 corroborates the centrosymmetric phase for KNBC 

x=0.20 and x=0.25. However, Raman activity confirms local distortions up to x=0.25.  

SEM imaging and EDX analyses show different solubility degrees of Bi+3 and Co+3 for 

low concentration of x, revealing solid-state reaction is not adequate processing method, 

as already commented in other similar solid-solutions. For x=0.20 and x=0.25, better 

homogenisation of the chemicals leads to the appearance of larger cubic grains. 

Dielectric anomaly associated with ferroelectric-to-paraelectric transition is visible for 

KNBC x=0.05 and x=0.10. Based on EDX results it seems the ferroelectric behaviour in 

this system is due to orthorhombic KNbO3-based. In contrast, dielectric maxima are not 

detected for x=0.15, x=0.20 and x=0.25, however electrical measurements are not reliable 

due to the low density, which affects the integrity of the samples.  
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By inspection of constructed Tauc plots, direct (and indirect) band-gaps continuously 

narrow from 3.62 eV (3.22 eV) to 2.60 eV (2.15 eV), with increasing Bi+3 and Co+3 

content into the KN lattice. 

 

7.6. Conclusions 

 

Low density KNBC ceramics were prepared by solid state reaction. Coexistence of polar 

and non-polar phases for x=0.05 and x=0.10 is suggested by XRD, Raman and dielectric 

measurements. The polar phase is attributed to the presence of KN-rich regions where 

Bi+3 and Co+3 are not well diffused, as revealed by SEM and EDX analyses. In contrast, 

KNBC x=0.20 and x=0.25 are assigned to pseudocubic symmetry as supported by XRD 

and Raman spectroscopy analyses. EDX confirms a better homogenisation of the 

chemicals, which is accompanied by grain growth. Finally, systematic band-gap 

narrowing for KNBC system is observed with increasing x. 
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8. System (1-x) KNbO3- x BiNiO3 

 

 

8.1. Introduction 

 

This chapter is devoted to the processing and characterisation of ceramics from the binary 

system (1-x) KNbO3-x BiNiO3 (KNBN) with x=0, 0.05, 0.10, 0.15, 0.20 and 0.25. First, 

the optimal powder processing heat-treatment was established. This was followed by an 

evaluation of the crystal structure using combined XRD and Raman Spectroscopy 

analyses. Then the impact of Bi+3 and Ni+3 into KNbO3 was investigated by the evolution 

of ferroelectric and dielectric properties. Finally, a band-gap narrowing is observed in this 

system with the increase of Bi+3 and Ni+3 content. 

The triclinic BiNiO3 (symmetry group P1̅) is centrosymmetric, and therefore not polar 

(Belik, 2012). In this chapter, the effect of non-polar BiNiO3 doping on the long-range 

polar order of KNbO3 is investigated. BiNiO3 compound is mainly reported in the 

literature due to its unusual charge distribution (McLeod et al., 2010). At ambient 

pressure, BiNiO3 exhibits Bi0.5
3+Bi0.5

5+Ni2+O3 charge distribution with ordering of Bi3+ 

and Bi5+ charges in the A site in a highly distorted perovskite structure (Carlsson et al., 

2008; Ishiwata et al., 2002; Mizumaki et al., 2009; Wadati et al., 2005). This fact may 

lead to interesting conductivity phenomena in the boundary between insulator and metal. 

A band-gap of 1.1(5) eV based on X-ray emission and absorption spectra (Azuma et al., 

2007) has been reported. Furthermore, with increasing pressure BiNiO3 acquires Pnma 

symmetry (Azuma et al., 2007) which is accompanied by a different charge distribution 

(Bi3+Ni3+O3) which leads to insulator-to-metal electronic changes, and a 2.6% volume 

reduction (Azuma et al., 2011). BiNiO3 also presents weak ferromagnetism (TN~300 K) 

(Carlsson et al., 2008; Ishiwata et al., 2002). However, there is no experimental evidence 

for BiNiO3 being a multiferroic (Catalan, 2008). To the best of our knowledge, there are 
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only few reports about BiNiO3-based solid solution, such as Na0.5K0.5NbO3–BiNiO3–

LiSbO3 (Liu, Liu, Jiang, & Ma, 2010). 

 

8.2. Structural and chemical characterisation 

 

8.2.1. Purity and X-ray diffraction 

 

(1-x) KNbO3-x BiNiO3 (KNBN) with x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 ceramics were 

prepared by the solid-state reaction method. K2CO3, Nb2O5, Bi2O3 and NiO powders were 

weighed in the required stoichiometric ratios and mixed overnight (24 hours) by ball 

milling in isopropanol. The dried mixed powders were then calcined twice in air at 850 

°C for 4 hours using a heating rate of 3ºC/min. Figure 8. 1 shows XRD data of KNBN 

(0≤x≤0.25) calcined powders.  
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Figure 8. 1: XRD data of (1-x) KNbO3-x BiNiO3 (KNBN) with x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 powders 

after calcining twice at 850ºC. Grey triangles and black squares indicate secondary phases, NiO and Bi2O3 

respectively. 

The main peaks can be ascribed to a perovskite structure which means KNBN (x=0, 0.05, 

0.10, 0.15, 0.20 and 0.25) forms a solid solution. Although KN calcined powder exhibits 

well defined peaks (orange pattern) and an orthorhombic crystal structure, broader peaks 

for KNBN x>0.05 compositions are observed, which makes difficult to assign the 
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corresponding crystal structure. Moreover, considerable amount of two second phases are 

identified in this system, nickel oxide (NiO) in all compositions (grey triangle) and 

bismuth oxide (Bi2O3) in KNBN 0.10≤x≤0.15 compounds (black square), indicating low 

reactivity. There is also some small amount of impurity in KNBN 0.20≤x≤0.25 

compositions labelled with‘?’, because those impurities could not be identified. KNBN 

0.05≤x≤0.25 powders were again calcined at 850ºC for 4 hours with heating rate of 

3ºC/min in order to further react NiO and Bi2O3. Figure 8. 2 shows the XRD patterns of 

KNBN (0≤x≤0.25) powders after the third calcination. 
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Figure 8. 2:XRD data of (1-x) KNbO3-x BiNiO3 (KNBN) with x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 calcined 

powders three times at 850ºC. Grey triangles and black squares indicate secondary phases, NiO and Bi2O3 

respectively. 

After the third calcination, some residual Bi2O3 is still present in KNBN x=0.10 but it is 

absent in KNBN x=0.15. The amount of NiO decreases compared with the previous 

calcination but there is still a considerable quantity of second phase in all compositions. 

The unknown impurity (‘?’) is only present in KNBN x=0.20. The triplet from KN 

powder pattern (64º-67º) evolves to a single peak (KNBN x=0.25) (Figure 8. 2 (b)). The 

intermediary compositions exhibit one broad peak with a shoulder. For x=0.05, the peak 

at higher 2𝜃 is linked to some orthorhombic KN-based phase where Bi+3 and Ni+3 are not 

diffused. Between KNBN x=0.05 and x=0.10, the peak and the shoulder swap positions, 
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indicating the better diffusion of the solutes with increasing x. In contrast, this swapping 

occurred between KNBN x=0.10 and x= 0.15 in the first calcinations (Figure 8. 1). 

Figure 8. 3 shows XRD data of KNBN (0≤x≤0.25) pellets sintered at 1070ºC for 4 hours 

using a heating rate of 3ºC/min. 
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Figure 8. 3.: XRD data of (1-x) KNbO3-x BiNiO3 (KNBN) with x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 

ceramics sintered at 1070ºC for 4h. Grey triangles indicate secondary phase of NiO. The attached graph on 

the right illustrates the evolution from the triplet in KN to a sharp single peak. 

All reflections for KNBN (0≤x≤0.25) pellets shift systematically towards lower 2𝜃 

angles, indicating an increase of the unit cell size with increasing Bi+3 and Ni+3 contents. 

The presence of some residual NiO suggests incomplete reaction. 

Figure 8. 3. (b) shows the evolution of the triplet from x=0 to x=0.25. A single peak is 

visible for the rest of the compositions within the resolution of our measurements. For 

x=0.05 and x=0.10, an asymmetry of the peak shape is observed on the higher 2θside 

(pointed with arrows in Figure 8. 3) indicating a distortion away from cubic symmetry. 

Indeed, complications in refining these patterns were found. For 0.15≤x≤0.25, single and 

sharp peak is observed which could be associated with cubic structure but a simple visual 

inspection of XRD patterns is impossible to determine the crystal structure. Only a full 

characterisation of this system will provide enough information to elucidate crystal 

structure evolution with x. Crystal metrics for each composition were calculated by 

Rietveld refinement, and are listed in Table 8. 1 and Table 8. 2 alongside theoretical and 



Chapter 8   System KNbO3-BiNiO3 

 
252 

relative density values for the ceramics. The relative densities decrease from 94% for 

undoped ceramics to 76%. 

 x=0 x=0.05 x=0.10 

Space Group Amm2 
27.9 (7) % 

Amm2 

72.1(9) % 

Pm-3̅m 
Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 4.19(17) 4.21(22) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.801(1)* 4.9671(4) 

Relative 

Density (%) 
94(1) 87(1)* 85(2) 

a (Å) 3.9711(1) 3.9868(4) 4.0118(1) 4.0146(1) 

b (Å) 5.6909(1) 5.6829(7) 4.0118(1) 4.0146(1) 

c (Å) 5.7158(1) 5.7080(1) 4.0118(1) 4.0146(1) 

V/106 (pm3) 64.576(2) 64.68(2) 64.570(3) 64.703(3) 

Rexp 1.26460 1.26990 1.31667 

Rp 2.97912 2.77807 3.66920 

Rwp 4.65175 4.07684 4.60483 

GOF 13.53086 10.30640 12.23126 

Table 8. 1: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KNBC (x=0., 0.05 and 0.10). *Weighed average for the phases. 
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 x=0.15 x=0.2 x=0.25 

Space Group Pm-3̅m Pm-3̅m Pm-3̅m 

Density 

(Experimental) 

(g/cm3) 

4.26(7) 4.25(20) 4.18(10) 

Density 

(calculated) 

(g/cm3) 

5.1331(2) 5.3013(2) 5.4705(2) 

Relative 

Density (%) 
83(2) 80(4) 76(2) 

a (Å) 4.0167(1) 4.0181(1) 4.0192(1) 

b (Å) 4.0167(1) 4.0181(1) 4.0192(1) 

c (Å) 4.0167(1) 4.0181(1) 4.0192(1) 

V/106 (pm3) 64.805 (3) 64.873(3) 64.926 (3) 

Rexp 1.34213 1.36698 1.47013 

Rp 3.25375 4.21412 4.28872 

Rwp 4.70176 5.75481 6.14752 

GOF 12.27251 17.72312 17.48605 

Table 8. 2: Experimental and theoretical density, lattice parameters and agreement indices calculated by 

Rietveld Refinement for KNBC (x=0.15, 0.20 and 0.25). 

As largely discussed in this work, pure KN (x=0) is described as an orthorhombic phase. 

XRD data of KNBN x=0.05 is refined as a combination of orthorhombic phase (symmetry 

group Amm2) and cubic phase (symmetry group Pm-3̅m). As commented before, x=0.10 

shows a small shoulder (Figure 8. 3 (b)) which made the phase assignment difficult. 

Different symmetries were attempted, such as orthorhombic, cubic or a combination of 

both, which based on previous systems seemed to be the most likely option. However, 

the software was not able to refine the coexistence of both phases. Alternative refinement 

into orthorhombic phase for x=0.10 is shown in Appendix F. x=0.15, x=0.20 and x=0.25 

patterns are ascribed to cubic symmetry (Pm-3̅m). Even if the XRD patterns seems to 

describe cubic symmetry, some evidence suggests the presence of a polar phase up to 

x=0.25, as will be explained below. Figure 8. 4 shows compositional evolution of the unit 

cell volume for KNBN (0≤x≤0.25) ceramics calculated by Rietveld refinement. 
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Figure 8. 4: Evolution of the unit cell volume with x for (1-x) KNbO3-x BiNiO3 (0≤x≤0.25) ceramics. 

The unit cell volume increases linearly with increasing x, which means the compositional 

evolution for KNBN system follows Vegard’s law. However, the unit cell volume of the 

orthorhombic phase for x=0.05 is larger than the cubic phase, which is not consistent with 

XRD data in Figure 8. 1(b). Figure F.3 (Appendix F) shows the inability of Rietveld 

method to refine the orthorhombic phase. 

 

8.2.2. Raman spectroscopy 

 

Room-temperature Raman spectra for KNBN (0≤ x≤ 0.25) powders calcined at 850ºC 

three times are shown in Figure 8. 5. All compositions present the same general modes as 

reported for KN (bold dashed lines), but these are broader due to disorder of the material 

and slight shift to lower wavenumbers. Moreover, new modes emerge with the increase 

of Bi+3 and Ni+3 contents into KNbO3, labelled as 1, 2 ,3, 4, 5 and 6. As demonstrated in 

previous chapters, the presence of the sharp mode at 192 cm-1 indicates the long-range 

polar order for all KN-BN (0.05≤ x≤ 0.25) powders. Modes 5 and 6 indicate undoped KN 

in agreement with XRD data in Figure 8. 1. Room-temperature Raman spectra for KN-

BN (0≤ x≤ 0.25) ceramics sintered at 1070ºC are also examined in Figure 8. 6.  
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Figure 8. 5: Room-temperature Raman spectra for KNBN (0≤ x≤ 0.25) powders calcined three times at 

850ºC. New modes (1,2,3,4 and 5) emerge in KNBN (x≥0.05). 
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Figure 8. 6: (a) Room-temperature Raman spectra for KNBN (0≤ x≤ 0.25) ceramics sintered at 1070ºC. 

New modes (1, 2, 3, 4, 5 and 6) emerge in KNBN (x≥0.05) pellets spectra. (b) Monitoring of mixed sharp 

mode at 192 cm-1. 

Raman spectra for KNBN (0≤ x≤ 0.25) ceramics exhibit same general features with the 

powders (labelled with dashed lines). Emerging modes are indicated by 1, 2, 3, 4, 5, and 

6. Mode 1 arises at 114 cm-1 and mode 2 appears at ~175 cm-1 as a shoulder of the sharp 
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peak at 192 cm-1. Both modes do not shift and the intensity is maintained constant with 

the increase of x. Modes 1 and 2 are observed in almost all the systems studied in this 

work and hypothetically attributed to A-O vibrations within nm-sized clusters rich in 

either Bi3+ and/or K+ cations. Mode 1 is present in all doped ceramics but not in all 

powders. The sharp mode at 192 cm-1 and the interference dip at 197 cm-1 are visible in 

all compositions, which supports the existence of orthorhombic phase (polar phase) up to 

x=0.25 (attached graph in Figure 8. 6). The intensity of the sharp mode decreases with 

increasing x, which it may confirm the systematic reduction of the orthorhombic phase. 

Modes 3 and 4 emerge at ~500 cm-1 and ~700 cm-1 only for KNBN x=0.20 and x=0.25. 

Finally, the intensity of mode 5 (~800 cm-1) and mode 6 (~875 cm-1) systematically rises 

with increasing x.  

The temperature dependence of Raman spectra for KNBN x=0.05 are KNBN x=0.25 is 

shown in Figure 8. 7 and Figure 8. 8, respectively. In this range of temperatures (from -

180ºC to 340ºC), the transitions from rhombohedral to orthorhombic to tetragonal are 

visible for KNBN x=0.05. The sharp mode (indicated with arrows) is apparent up to 

340ºC for KNBN x=0.05, suggesting polar phase is still present. Indeed, this temperature 

is below its Curie temperature (~390ºC, Figure 8. 18). For x=0.25, this sharp mode 

disappears at 180ºC suggesting a phase transition from polar to non-polar state at this 

temperature. Interestingly, this transition occurs at lower temperature than observed for 

orthorhombic KN-based solid solutions (~400ºC). This phenomenon may be linked with 

the appearance of a broad dielectric anomaly at ~130ºC (Figure 8. 22). 
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Figure 8. 7: Raman spectra evolution from -180ºC to 340 ºC for KNBN x=0.05 ceramics. 
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Figure 8. 8: Raman spectra evolution from -180ºC to 340 ºC for KNBN x=0.25 ceramics. 

 

8.2.3. SEM 

 

SEM surface images of unpolished KNBN (0≤ x≤ 0.25) ceramics are shown in Figure 8. 

9 (a-f). Upon Bi+3/Ni+3 doping into the KN lattice, cubic large grains of ~3µm for x=0 
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(Figure 8. 9 a) become round small grains of ~500nm (x=0.05, Figure 8. 9 b). The 

inhibition of the grain growth is also observed in all systems studied in this investigation. 

A heterogenous grain size distribution is perceived in KNBN (0.05≤ x≤ 0.25) ceramics, 

which is accompanied by different grain morphologies such as agglomerates of small 

grains, irregular shaped grains as well as cubic grains. However, cubic grains seem to 

continuously emerge with increasing x (Figure 8. 9. c-e). For x=0.25, mostly all grains 

are cubic shaped with the grain size in between ~500 nm and ~1 µm. The complex 

microstructures for KNBN ceramics can be associated firstly, with the coexistence of 

multiple phases, as supported by XRD and Raman results. And secondly, to difficulties 

on forming solid solutions and consequently inhomogeneous incorporation of the dopants 

in the grains. To validate this statement, energy dispersive x-ray spectra and mapping are 

collected for all compositions in the KNBN system. 
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Figure 8. 9 (a-f): Microstructure evolution for (1-x) KNbO3-x BiNiO3 ceramics from (a) x=0, (b) x=0.05, 

(c) x=0.10, (d) x=0.15, (e) x=0.15 and (f) x=0.25. 
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8.2.4. EDX  

 

The chemical composition for KNBN x=0, 0.05, 0.10, 0.15, 0.20 and 0.25 ceramics is 

studied by EDX analysis, showing the non-homogeneous distribution of the elements (K, 

Nb, Bi and Ni) across the samples. Table 8. 3 reports the experimental and theoretical 

ratios and relative error of the different elements for x=0.05. 

x=0.05 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 0.97(5) 3 

𝑲
𝑩𝒊⁄  19 21(7) 10 

𝑲
𝑵𝒊⁄  19 31(9) 64 

Table 8. 3: Experimental (average) and theoretical molar K/Nb, K/Bi and K/Ni ratios for 0.95 KNbO3 – 

0.05 BiNiO3 ceramic sintered at 1070ºC. 

K/Ni ratio is much larger than the theoretical, an indication of Ni-rich regions. This fact 

supports the difficulties of NiO reacting with the rest of the oxides. Evidence of unreacted 

NiO is shown in Figure 8. 10.  

 

Figure 8. 10: SEM image and EDX spectra of unpolished 0.95 KNbO3 – 0.05 BiNiO3 ceramic sintered at 

1070ºC. 

EDX analysis detected NiO particles, in agreement with XRD data Table 8. 4 informs the 

experimental and theoretical molar K/Nb, K/Bi and K/Ni ratios and relative errors for 

x=0.10 composition. 
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x=0.10 

 Stoichiometric Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.07(5) 7 

𝑲
𝑩𝒊⁄  10 10(4) 0 

𝑲
𝑵𝒊⁄  10 16(7) 60 

Table 8. 4.: Experimental (average) and theoretical molar K/Nb, K/Bi and K/Ni ratios for 0.90 KNbO3 – 

0.10 BiNiO3 ceramic sintered at 1070ºC. 

Within the margin of errors, empirical K/Nb and K/Bi ratios are in agreement with t9he 

desired stoichiometry. The high K/Ni fraction again reveals concentration of Ni is lower 

in KNBN x=0.10. Figure 8. 11. demonstrates non-uniform distribution of the species 

across the sample. 

 

Figure 8. 11: SEM image and EDX spectra of unpolished 0.90 KNbO3 – 0.10 BiNiO3 ceramic sintered at 

1070ºC. 

Large grains with smooth surface stand out above the agglomerates of irregular small 

grains. EDX spectra reveal high concentration of K, approximately the double of Nb. 

Indeed, this could be related with the formation of a second perovskite with stoichiometry 

~A2BO6. Table 8. 5 presents EDX results for KNBN x=0.15. 
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x=0.15 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 0.99(4) 1 

𝑲
𝑩𝒊⁄  5.67 6(1) 6 

𝑲
𝑵𝒊⁄  5.67 10(2) 75 

Table 8. 5: Experimental (average) and theoretical K/Nb, K/Bi and K/Ni ratios for 0.85 KNbO3 – 0.15 

BiNiO3 ceramic sintered at 1070ºC. 

Once more, K/Ni ratio is high for this composition. In contrast, molar K/Nb and K/Bi 

relations match with the intended stoichiometry of KNBN x=0.15 within the margin of 

error. Grains of NiO are found on the ceramic surface (Figure 8. 12) which confirms the 

same tendency of non-homogeneous chemical distribution as observed in previous 

samples. 

 

Figure 8. 12: SEM image and EDX spectra of unpolished 0.85 KNbO3 – 0.15 BiNiO3 ceramic sintered at 

1070ºC. 

EDX analysis reveals more homogeneous chemical distribution for x≥0.20 (Table 8. 6.) 

However, secondary phases are again detected, such as NiO particles (Figure 8. 13) and 

K -rich regions (~A2BO6) (Figure 8. 14) also observed for x=0.15. 
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x=0.20 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 0.95(4) 5 

𝑲
𝑩𝒊⁄  4 4(1) 0 

𝑲
𝑵𝒊⁄  4 7(1) 75 

Table 8. 6: Experimental (average) and theoretical K/Nb, K/Bi and K/Ni ratios for 0.80 KNbO3 – 0.20 

BiNiO3 ceramic sintered at 1070ºC. 

 

Figure 8. 13: SEM image and EDX spectra of unpolished 0.80 KNbO3 – 0.20 BiNiO3 ceramic sintered at 

1070ºC. NiO is detected. 

 

Figure 8. 14: SEM image and EDX spectra of unpolished 0.80 KNbO3 – 0.20 BiNiO3 ceramic sintered at 

1070ºC reveal also the appearance of grains with high concentration of K and Nb. 
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Finally, KNBN x=0.25 shows the closest experimental molar relations to the intended 

stoichiometry. Higher concentration of Bi+3 and Ni+3 enhance the solubility of these 

species (Table 8. 7). Nevertheless, K-rich regions are also detected in this composition 

(Figure 8. 15). 

x=0.25 

 Stoichiometric Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 0.94(7) 6 

𝑲
𝑩𝒊⁄  3 3.4(5) 13 

𝑲
𝑵𝒊⁄  3 4 (1) 33 

Table 8. 7: Experimental (average) and theoretical K/Nb, K/Bi and K/Ni ratios for 0.75 KNbO3 – 0.25 

BiNiO3 ceramic sintered at 1070ºC. 

 

Figure 8. 15: SEM image and EDX spectra of unpolished 0.75 KNbO3 – 0.25 BiNiO3 ceramic sintered at 

1070ºC. 

Summarising, KNBN system shows difficulties to achieve the intended stoichiometry, 

especially for Ni. Unreacted NiO (Figure 8. 16) leads to low concentration of Ni in the 

solid-solution. Indeed, high molar K/Ni values are obtained in all KNBN composition. 

Elements are more homogeneously dispersed in KNBN x=0.20 and x=0.25, as confirmed 

by EDX mapping. NiO particles and K-rich regions are detected for x=0.05 and x=0.20 

by EDX mapping. 
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Figure 8. 16: SEM image of the examined region EDX mapping of K, Nb, Bi and Ni for KNBN x=0.05 

 

Figure 8. 17: SEM image of the examined region EDX mapping of K, Nb, Bi and Ni for KNBN x=0.20 

 

8.3. Electrical Characterisation 

 

8.3.1. Dielectric Characterisation 

 

The temperature dependence of the permittivity, 𝜀𝑟, and dielectric losses, tanδ, for KN-

BN ceramics (x= 0.05, 0.10, 0.15, 0.20 and 0.25) measured at 1 kHz, 10 kHz, 100 kHz 

and 250 kHz is shown in the following figures (Figure 8. 18-22)). The impact of doping 

on phase transitions is examined and compared with dielectric anomalies of undoped KN.  
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For x=0.05 (Figure 8. 18), x= 0.10 (Figure 8. 19) and x=0.15 (Figure 8. 20), three broad 

dielectric anomalies are observed at ~100 ℃, at ~220 ℃ and ~390℃. The first anomaly 

can be hypothetically attributed to a pseudocubic secondary phase. As described in 

Chapter 3 the two maxima values of 𝜀𝑟 at ~200 ℃ and ~400℃, are related to the 

orthorhombic-to-tetragonal and the tetragonal-to-cubic structural phase transitions, 

respectively. The temperature for these anomalies remains almost constant, but their 

magnitude decreases with x. Moreover, a strong frequency dependence of both r and 

tan𝛿 is measured for all the compositions. Nevertheless, KNBN x0.20 compositions 

only show the broad dielectric anomaly at ~100 ℃ and the frequency dependence is less 

marked, as shown in Figure 8. 21 and Figure 8. 22. 
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Figure 8. 18: Temperature dependence of 𝜀𝑟and tan𝛿for 0.95 KNbO3–0.05 BiNiO3 solid solution at 1 

kHz, 10 kHz and 100 kHz during cooling. 
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Figure 8. 19 Temperature dependence of 𝜀𝑟and tan𝛿 for 0.90 KNbO3–0.10 BiNiO3 solid solution at 1 

kHz, 10 kHz and 100 kHz during cooling. 
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Figure 8. 20: Temperature dependence of 𝜀𝑟and tan𝛿for 0.85 KNbO3–0.15 BiNiO3 solid solution at 1 kHz, 

10 kHz and 100 kHz during cooling. 
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Figure 8. 21: Temperature dependence of 𝜀𝑟and tan𝛿for 0.80KNbO3–0.20 BiNiO3 solid solution at 1 kHz, 

10 kHz and 100 kHz during cooling. 
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Figure 8. 22: Temperature dependence of 𝜀𝑟and tan𝛿 for 0.75 KNbO3–0.25 BiNiO3 solid solution at 1 kHz, 

10 kHz and 100 kHz during cooling. 
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KNBN x=0.25 only shows the broad anomaly at ~100ºC, which might be linked to the 

phase described for this sample from Raman spectrum evolution with temperature in 

section 8.7. Indeed, the polar-to-non-polar phase transition is observed in the same 

temperature range as the dielectric anomaly.  

The temperature dependence of relative permittivity and dielectric losses for KNBN 

ceramics at 100 kHz is shown in Figure 8. 23. 
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Figure 8. 23: Temperature dependence of relative permittivity and dielectric losses for (1-x) KNbO3–x 

BiNiO3 (0 ≤ x ≤ 0.25) ceramics at 100 kHz. Note dielectric response for KN (orange curve) has different 

scale (right axes). 

As explained in Chapter 4, KN (x = 0) shows two maxima values of 𝜀𝑟 at ~205 ℃ and 

~400℃, which are related with the orthorhombic-to-tetragonal and the tetragonal-to-

cubic structural phase transitions, respectively. These anomalies are visible up to x=0.15, 

suggesting the presence of a polar phase, even if it was not detected by XRD. No 

anomalies are measured for x=0.20 and x=0.25. The protuberance at 100ºC is 

unnoticeable for 100 kHz. Undoped KN exhibit lower dielectric losses than the rest of the 

compositions. 



Chapter 8   System KNbO3-BiNiO3 

 
270 

8.4. Optical Characterisation 

 

8.4.1 Diffuse reflectance spectroscopy 

 

Tauc plots for KNBN 0≤x≤0.25 ceramics are constructed from diffuse reflectance data 

(Figure 8. 24) and shown in Figure 8. 25 (direct optical band-gaps) and Figure 8. 26. 

(indirect optical band-gap). The maximum of the valence band of KNBN compositions 

can be attributed to O 2p orbital and the conduction band minimum to Nb 4d states. Direct 

band-gaps narrow from 3.62 eV (x=0) to 3.32 eV (x=0.25) with increasing Bi+3/Ni+3 

contents into the KN lattice. 
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Figure 8. 24: Diffuse reflectance as a function of wavelength for KNBN system (raw data). 

In the case of KNBN compounds they present indirect optical band gaps, the narrowing 

is produced from 3.20 eV (x=0) to 2.87 eV (x=0.25). Four lumps (labelled as 1, 2, 3 and 

4 in Figure 8. 26) emerge at 1 eV, 1.53 eV, 1.73 eV and 2.82 eV in all the spectra. Similar 

pattern is reported in literature for KN-BNN compositions (Wu et al., 2016). These 

absorption bands are related with d-d transitions by Ni+2 ions within the bulk or from 

hybridized Ni 3d and O 2p to Nb 4d states transitions. Indeed as mentioned in Chapter 1, 

low band gap in KN solid solutions doped with Ni may arise from inadequate 

interpretation of these absorbance regions. 
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Figure 8. 25: Tauc plot for direct band gaps for KNBN 0≤x≤0.25 ceramics.  
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Figure 8. 26.: Tauc plot for indirect band gaps for KNBN 0≤x≤0.25 ceramics. 

Evolution of direct and indirect band-gap values as a function of x is illustrated in Figure 

8. 27.  
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Figure 8. 27: compositional evolution of direct and indirect band-gap for KNBN 0≤x≤0.25 ceramics. 

As expected, direct band gaps present larger values than indirect band gaps. Both decrease 

following the same trend. The largest reduction happens in between x=0 and x=0.05. 

Apart from that, the values decrease systematically with x. 

 

8.5. Discussion 

 

Unreacted oxides, Bi3O2 and NiO, were detected in ceramic powders after two 

calcinations by XRD analyses. An extra heat treatment at 850ºC for 4 hours helped the 

reaction, indeed Bi3O2 phase disappeared and the amount of NiO phase was considerably 

reduced as shown in XRD results. NiO particles were detected in SEM images due to 

their morphology and in EDX analyses due to their chemical composition. Unreacted NiO 

particles cause low concentration of Ni in KNBN system (Table 8. 8), especially for 

x=0.05, x=0.10 and x=0.15. This phenomenon evidences the enhancement of NiO 

solubility for larger concentration of Bi+3/Ni+3. Moreover, high deviation errors mean 

heterogeneous chemical distributions, as it is shown in Appendix E. 

 x=0.05 x=0.10 x=0.15 x=0.20 x=0.25 

(𝑲
𝑵𝒊⁄ )

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍
 31 (9) 16(7) 10(2) 7(1) 4(1) 

(𝑲
𝑵𝒊⁄ )

𝑻𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍
 19 10 5.67 4 3 
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Table 8. 8.: Experimental and theoretical K/Ni ratios for (1-x) KNbO3-x BiNiO3 (0.5 ≤x≤0.25) ceramics 

sintered at 1070ºC. 

Difficulties on crystal structure assignment were also encountered for this system. Firstly, 

XRD results do not provide enough resolution to accurately determine the crystal 

symmetries. XRD data were refined by Rietveld method and cubic symmetry (Pm-3̅m) 

was attributed up to x=0.25. The coexistence of orthorhombic (Amm2) and cubic (Pm-

3̅m) phase is only ascribed for x=0.05. However, the appearance of the sharp mode at 192 

cm-1 and the interference dip at 197 cm-1 in Raman spectra and dielectric anomalies with 

temperature at ~220 ℃ and ~390℃ for KNBN x=0.05, x=0.10 and x=0.15 demonstrate 

the occurrence of a polar phase up to x=0.15. For the rest of the compositions, neither 

dielectric anomalies nor sharp peaks in Raman spectra are visible, which agrees with the 

cubic symmetry assignment. Raman activity reveal non- truly cubic symmetry. 

Despite these difficulties, the incorporation of Bi+3/Ni+3 into KNbO3 lattice is supported 

by: first, reflections in XRD patterns shift towards lower 2𝜃 angles with x, which means 

the unit cell increases with increasing x. Second, EDX analyses show that ceramics have 

the tendency to get closer to the intended stoichiometry within the standard deviation 

margins. Third, systematic band-gap narrowing is observed with increasing x. 

Locally, different facts also show non-homogeneous incorporation of the dopants into 

KNbO3. First, multiphase formation as explained above. Second, broader Raman modes 

with increasing BiNiO3 content, which indicates more disorder in the lattice. Furthermore, 

extra modes emerge in Raman spectra, which can be related with local impurities. Third, 

SEM images show a wide spectrum of grain morphologies that is accompanied with 

changes in the chemical composition (detected by EDX analyses). Fourth, broad 

dielectric anomalies exist as a function of the temperature. 

 

8.6. Conclusions 

 

KNBN system required three calcinations to react the starting oxides and carbonates. 

XRD revealed unreacted NiO phase in the sintered ceramics, promoting low 

concentrations in all compositions. Upon doping, the pseudocubic unit cell volume 

continuously increases with increasing x. However, Raman results combined with 

dielectric measurements proved the occurrence of a polar phase up to x=0.15. For 
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compositions with low concentrations of Bi+3/Ni+3 (0.05≤x≤0.15) non-homogeneous 

microstructure and regions with different chemical compositions were detected by XRD, 

Raman spectroscopy, SEM and EDX. However, EDX mapping confirmed a better 

homogenisation of the chemicals for x=0.20 and =0.25, which is accompanied by grain 

growth. Despite all these problems, a systematic band-gap narrowing was observed with 

increasing x. 
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9. Ferroelectric and optical properties for: 

KNbO3 vs K0.90Ba0.1Nb0.95Ni0.05O3 

K0.5Na0.5NbO3 vs K0.49Na0.49Ba0.02Nb0.99Ni0.01O3 

 

 

9.1. Introduction 

 

Following the 2013’s Nature letter claiming 0.90 KNbO3- 0.10 BaNi0.5Nb0.5O3 (KN-

BNN) to be a polar perovskite at room temperature, with a direct band-gap of 1.39 eV 

and exhibiting a photocurrent density of ~50 times larger than (Pb0.5La0.5) (Zr0.5Ti0.5) O3, 

some other researchers investigated the (1-x) KNbO3- x BaNi0.5Nb0.5O3 system (Ilya 

Grinberg et al., 2013). The aforementioned results were also rationalised by different 

theoretical works (F. Wang, Grinberg, & Rappe, 2014; Fenggong Wang & Rappe, 2015). 

Details on the origin of the band-gap narrowing in the KN-BNN solid solutions were 

reviewed in section 1.5. of this thesis. A few researchers reported band-gaps as wide as 

3.20 eV, as listed in Table 9. 1, which also includes spontaneous polarisation values. A 

more detailed review of these works is provided in Chapter 1. In the initial report (Ilya 

Grinberg et al., 2013) KN-BNN was deemed too conductive at room-temperature to 

attempt the evaluation of its polarisation response to a large electric field for this reason 

that measurement was carried out between 77 K and 170 K, and a spontaneous 

polarisation of 20 µC/cm2, measured under 250 kV/m was reported. Spontaneous 

polarisation for KN-BNN ceramics seems to reach ~10 µC/cm2 at RT under 80 kV/cm 

(Bai, Siponkoski, Peräntie, Jantunen, & Juuti, 2017). One of the motivations of this 

Chapter is the attempt to resolve the controversial issues surrounding this compound.  
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KN- BNN 

Reference Band-gap (eV) Ps  

(I. Grinberg et al., 2013) 1.39  
20 µC/m2 at 170 K 

under 250 kV/m 

(Song et al., 2017) 1.8  - 

(Zhou, Deng, Yang, & 

Chu, 2014) 
1.8  - 

(Bai, Siponkoski, et al., 

2017) 
1.48  

~10 µC/cm2 at RT under 

80 kV/cm 

(Zhou, Deng, Yang, & 

Chu, 2016) 
2.51  - 

(Wu et al., 2016) 3.20  - 

Table 9. 1: Experimental band gap and spontaneous polarisation values for KN-BNN (0.9 KNbO3- 0.10 

BaNi0.5Nb0.5O3) ceramic found in the literature. 

In 2017, Bai et al investigated a similar compound based on 0.98 K0.5Na0.5NbO3- 0.02 

BaNi0.5Nb0.5O3 (KNN-BNN), which is able to withstand at room-temperature an electric 

field of 90 kV/cm leading to Ps=26 µC/cm2 and shows a band-gap as narrow as 1.6 eV 

(Table 9. 3). Interestingly, FE properties of KNN-BNN are apparently comparable to 

those of undoped K0.5Na0.5NbO3 (KNN) but with ~1 eV band-gap narrower (Table 9. 2). 

KNN 

Reference Band-gap (eV)  Reference Ps  

(Sun et al., 2017) 2.70 

(Birol, 

Damjanovic, & 

Setter, 2006) 

~25 µC/cm2 at RT 

under 80 kV/cm 

Table 9. 2: Experimental band gap and spontaneous polarisation value for KNN (K0.5Na0.5NbO3) ceramic 

found in the literature. 

  



Chapter 9                                                   KN vs KN-BNN and KNN vs KNN-BNN 

 
279 

KNN-BNN 

Reference Band-gap (eV) Ps  

(Bai, Tofel, et al., 2017) 1.60  
26 µC/cm2 at RT  

under 90 kV/cm 

Table 9. 3.: Experimental band gap and spontaneous polarisation value for KNN-BNN (0.98 K0.5Na0.5NbO3- 

0.02 BaNi0.5Nb0.5O3) ceramic found in the literature. 

In summary, this chapter addresses the incongruence in the literature previously 

described. K0.90Ba0.1Nb0.95Ni0.05O3 (KN-BNN) ceramic is prepared by solid-state 

reaction. In addition, K0.49Na0.49Ba0.02Nb0.99Ni0.01O3 (KNN-BNN) ceramic is prepared in 

order to reproduce the recent promising photoferroelectric properties reported. Their 

crystal structure, chemical composition, FE and optical properties will be characterised 

and compared to KNbO3 and K0.5Na0.5NbO3 results.  

 

9.2. Structural and chemical characterisation 

 

9.2.1. Purity and X-ray powder diffraction 

 

KN, KN-BNN, KNN and KNN-BNN ceramics were prepared by solid-state reaction 

method. Stoichiometric ratios of K2CO3, Nb2O5, Na2CO3, BaCO3 and NiO powders were 

milled overnight and sieved for obtaining fine powder. The mixed powders were calcined 

in air at 850 °C two times for 4 hours with heating rate of 3ºC/min. Powders were 

compacted into pellets and fired in air for 4 hours at 1070-1180°C using a controlled 

heating rate of 3 °C /min. 

 

9.2.1.1. Results for KN and KN-BNN powders and ceramics 

 

Figure 9. 1 and Figure 9. 2 illustrate RT XRD data for KN and KN-BNN calcined powders 

and sintered pellets, respectively. 
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Figure 9. 1: Room-temperature XRD patterns of KN and KN-BNN calcined powders. Secondary phases, 

Nb2O5 and NiO, are indicated with red and green symbols, respectively. 
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Figure 9. 2: Room-temperature XRD patterns of KN and KN-BNN sintered pellets. 

XRD pattern of KN-BNN ceramic can be ascribed to orthorhombic crystal structure 

(Amm2 symmetry) as well as KN pattern. However, KN-BNN pattern exhibits broader 

peaks and peak splitting is not as clear as for KN, which could be related to the crystals 

size. After calcination, minor amounts of starting reactants (Nb2O5 and NiO) are detected, 

and after sintering, a small quantity of NiO is still present. This result is in agreement 



Chapter 9                                                   KN vs KN-BNN and KNN vs KNN-BNN 

 
281 

with the literature (Bai, Siponkoski, et al., 2017; Ilya Grinberg et al., 2013). As 

demonstrated in Chapter 8, NiO exhibits major difficulties in reacting with the rest of 

oxides. Lattice parameters are calculated by Rietveld method as a=3.9820(2) Å, 

b=5.6927(3) Å and c=5.7041(3) Å. The unit cell volume is only 0.12% larger than for KN. 

The sintering and the melting temperature of KN-BNN ceramic are very close, generating 

difficulties in the densification. Indeed, this compound only reached a relative density of 

87% after firing at 1075ºC for 4 h, while it melted at 1080º. Rietveld refinements results 

are summarised in Table 9. 4. 

 

9.2.1.2. Results for KNN and KNN-BNN powders and ceramics 

 

Room-temperature XRD analysis for KNN and KNN-BNN calcined powders and 

sintered ceramics are shown in Figure 9. 3 and Figure 9. 4, respectively. 
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Figure 9. 3: Room-temperature XRD patterns of KNN and KNN-BNN calcined powders. 

XRD pattern for KNN-BNN powder exhibits much broader peaks than KNN, preventing 

to distinguish the peak splitting. Broader peaks are often associated with non-

homogeneity in powders produced by solid-state reaction method.  
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Figure 9. 4: Room-temperature XRD patterns of KNN and KNN-BNN sintered ceramics. 

Again, KNN-BNN ceramics exhibit well-defined sharp peaks, which can be indexed to 

an orthorhombic cell with Amm2 symmetry. Both KNN and KNN-BNN show very 

similar XRD patterns. The same secondary phase (NiO) is found on KNN-BNN, which 

again evidences chemical inhomogeneity in the sample. This second phase was also 

reported by Bai in 2017. Rietveld refinement estimates lattice parameters for KNN-BNN: 

a=3.9488 Å, b=5.6394(4) Å and c=5.6648(3) Å and its unit cell volume is 1.25% larger 

than KNN. In addition, KN-BNN ceramic was sintered at 1175ºC in contrast to KNN that 

was sintered at 1100ºC and reached a relative density of 95%. Rietveld refinements results 

are shown in Table 9. 4. 
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9.2.2. Raman spectroscopy 

 

9.2.2.1. Results for KN and KN-BNN 

The Raman spectrum for KN-BNN calcined powders is very similar to that of undoped 

KN (Figure 9. 5). All Raman modes for KN (described in Chapter 4) can be assigned to 

KN-BNN spectra, confirming the orthorhombic symmetry. Nevertheless, some 

differences are perceived in the Raman spectrum for KN-BNN sintered pellets in 

comparison to KN spectrum (Figure 9. 6) such as broader peaks and shifted to lower 

wavenumber. The shift at low and high frequencies is ~12 cm-1 and ~6 cm-1, respectively. 

In addition, the emergence of (1) and (2) modes, one at 104 cm-1 and other at 164 cm-1 as 

 KN KN-BNN KNN KNN-BNN 

Space Group Amm2 Amm2 Amm2 Amm2 

Density 

(Experimental) 

(g/cm3) 

4.35(3) 4.22(16) 4.29(10) 4.35(12) 

Density 

(calculated) 

(g/cm3) 

4.6273(1) 4.8310(4) 4.5831(5) 4.5731(4) 

Relative 

Density (%) 
94(1) 87(3) 90(2) 95(2) 

a (Å) 3.9711(1) 3.9820(2) 3.9299(2) 3.9488(2) 

b (Å) 5.6909(1) 5.6927(3) 5.6148(4) 5.6394(3) 

c (Å) 5.7158(1) 5.7041(3) 5.6460(3) 5.6648(3) 

V/106 (pm3) 64.576(2) 64.651(6) 62.291(6) 63.074(5) 

Rexp 1.26460 1.32958 2.15325 2.27382 

Rprofile 2.97912 2.33741 2.84928 2.99204 

Rwp 4.65175 3.55947 3.89764 3.87318 

GOF 13.53086 7.16704 3.27654 2.90151 

Table 9. 4: Experimental and theoretical density, lattice parameters and agreement indices for KN (KNbO3), 

KN-BNN, KNN and KNN-BNN calculate by Rietveld Refinement. 
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a shoulder of the sharp peak at 192 cm-1 (indicated with arrows) was also observed and 

described in other systems (Chapters 4,5,6,7 and 8)). It is noted, mode (1) was already in 

the KN-BNN powder and the bump labelled as ’?’ in Figure 9. 5 disappears in ceramics.  
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Figure 9. 5: Room-temperature Raman spectra for KN and KN-BNN calcined powders. 
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Figure 9. 6: Room-temperature Raman spectra for KN and KN-BNN sintered pellets. 
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9.2.2.2. Results for KNN and KNN-BNN 

Room-temperature Raman spectra for KNN and KNN-BNN calcined powders and 

sintered ceramics are shown in Figure 9. 7 and Figure 9. 8, respectively. All spectra 

present the typical features for KNN, which has 12 Raman-active optical modes of 

4A1+4B1+3B2 +A2, which are labelled according to the assignment by Kakimoto et al in 

2005. 

Vibrational modes can be separated into translational modes of an isolated cation and 

internal modes of coordination polyhedra. In that case, the vibrations of the NbO6 

octahedra consist of 1A1g(𝜐1)+1Eg (𝜐2)+2F1u(𝜐3, 𝜐4)+F2g(𝜐5)+ F2u(𝜐6). Of these 

vibrations, 1A1g(𝜐1)+1Eg (𝜐2)+2F1u(𝜐3, 𝜐4) are stretching and the rest are bending modes. 

The other internal vibrational modes of NbO6 octahedra appear in a wide range from 200 

to 900 cm-1. In particular, 𝜐1 (615 cm-1) and 𝜐5 (256 cm-1) are detected as relatively strong 

scatterings. The 𝜐6 mode of NbO6 also appears at 141 cm-1, although its peak intensity is 

still much lower than the other internal vibrational modes, its intensity increases for 

ceramics. The weak peaks (humps) observed at around 60 and 196 cm-1, which appear to 

the left of 𝜐5 as a shoulder, are assigned to the translational modes of Na+/K+ and K+ 

cations versus NbO6 octahedra, respectively. 
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Figure 9. 7: Room-temperature Raman spectra for KNN and KNN-BNN calcined powders. 
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Figure 9. 8: Room-temperature Raman spectra for KNN and KNN-BNN sintered pellets. 

 

9.2.3. SEM 

 

SEM images of unpolished surfaces of KN vs KN-BNN and KNN vs KNN-BNN 

ceramics are illustrated in Figure 9. 9. (a and b) and Figure 9. 10 (a and b). 

 

Figure 9. 9: Secondary electron images of (a) KN and (b) KN-BNN. 
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Figure 9. 10: Secondary electron images of (a) KNN and (b) KNN-BNN. 

Both KN and KNN ceramics (Figure 9. 9 and Figure 9. 10(a)) morphologies, displaying 

well-defined cubic grains. Also, the absence of almost any porosity confirms the high 

density obtained in the previous section. Even if different grain sizes can be detected in 

both ceramics, the average grain size of KNN seems to be slightly larger (~10 µm) than 

KN (~5 µm). The incorporation of Ba and Ni in KN leads to a dramatic reduction of the 

grain size of the final microstructure. This marked alteration on the microstructure of KN-

BNN and KNN-BNN, is also noticed in all systems for low concentration of dopants (x) 

investigated in the present work. 

 

9.2.4. EDX  

 

The chemical composition of KN, KN-BNN, KNN and KNN-BNN ceramics was 

determined by EDX analyses. Moreover, chemical inhomogeneities can be detected 

combining this analyses with SEM imaging. Table 9. 5 and Table 9. 6 shows experimental 

and theoretical molar K/Nb, K/Ba and K/Ni relations for KN and KN-BNN. 

KN 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  1 1.03(3) 3 

Table 9. 5: Theoretical and experimental molar K/Nb ratio for KN. Relative error between the two values 

is included. 
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KN-BNN 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒃⁄  ~0.95 1.1 (1) 15 

𝑲
𝑩𝒂⁄  9 15(9) 67 

𝑲
𝑵𝒊⁄  18 38(18) >100 

Table 9. 6: Theoretical and experimental molar K/Nb, K/Ba, K/Ni ratio for KN. Relative error between the 

two values is included. 

While experimental stoichiometry for KN is acceptably adjusted to theoretical, 

stoichiometry for KN-BNN considerably differs from theoretical. Also, high standard 

deviation errors indicate a non-homogeneous chemical distribution on the surface, 

especially for Ni. Indeed, in some regions Ni is not detected at all as shown in Figure 9. 

11. 
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Figure 9. 11: SEM image and EDX spectra of unpolished KN-BNN ceramic sintered at 1085ºC. 

Spectrum 63 gives the ideal atomic percent for intended KN-BNN solid solution. 

However, other regions reveal low concentration of Ba and Ni (if it is detected at all). In 

addition, some large grains (>10 µm) with different morphology are observed (Figure 9. 

12 and Figure 9. 13). Both EDX spectra reveals low concentration of K and the absence 
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of Ni. Indeed, this could be related with the formation of a second perovskite with the 

following stoichiometry: K1/3Ba1/3NbO3. 

 

Figure 9. 12: SEM image and EDX spectra of second phase detected on unpolished surface of KN-BNN 

ceramic. 

 

Figure 9. 13: SEM image and EDX spectra of second phase detected on unpolished surface of KN-BNN 

ceramic. 

Experimental and theoretical molar K/Nb, K/Ba, K/Nb and K/Ni ratios for KNN and 

KNN-BNN are shown in Table 9. 7 and Table 9. 8, respectively. 
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KNN 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒂⁄  1 0.9(4) 10 

𝑲
𝑵𝒃⁄  0.5 0.4(1) 20 

Table 9. 7.: Theoretical and experimental molar K/Na and K/Nb ratio for KNN. Relative error between the 

two values is included. 

Experimental stoichiometry for KNN coincides with theoretical, within error margins and 

consequently low relative errors. Nevertheless, some chemical inhomogeneities are 

perceived, as exposed in Figure 9. 14. 

 

Figure 9. 14: SEM image and EDX spectra of second phase detected on unpolished surface of KNN 

ceramic. 

While small grains on the ceramic surface reveal slightly lower K concentration than 

theoretical, large grains present the desired stoichiometry. In addition, a fibre shaped grain 

rich in Si and Al is detected which can be attributed to a possible contamination from the 

firing environment or from the equipment. 

Table 9. 8. provides EDX results for KNN-BNN ceramic and it is perceived this 

compound presents the same difficulties in homogenising the species as described for 

KN-BNN ceramic. First, Ni is absent in some areas of the ceramics, as shown in Figure 

9. 15. Second, regions mostly made of KNN are identified, where Ba and Ni are found in 

trace quantities (Figure 9. 15). And third, big grains with smooth surface that stand out 

from the small grains (Figure 9. 16.), are K and Ni deficient, similarly to the second phase 

found on KN-BNN.  
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KNN-BNN 

 Theoretical Experimental Relative error (%) 

𝑲
𝑵𝒂⁄  1 1.0(4) 0 

𝑲
𝑩𝒂⁄  24.5 21(14) 14 

𝑲
𝑵𝒃⁄  0.5 0.4 (1) 20 

𝑲
𝑵𝒊⁄  49 56(54) 14* 

Table 9. 8: Theoretical and experimental molar K/Na, K/Na, K/Nb and K/Ni ratios for KNN-BNN. Relative 

error between the two values is included. 

Summarising, the experimental results confirm KN and KNN ceramics have the desired 

stoichiometry and do not show second phases. In contrast, both KN-BNN and KNN-BNN 

ceramics are heterogeneous. EDX analyses revealed regions depleted of Ni or where Ba 

and Ni are in trace quantities or K-deficient areas. Therefore, the chemical homogeneity 

is not achieved in these compositions by conventional ceramic processing. The main 

reason of this failure is attempting to homogenise a small quantity of BaNb0.5Ni0.5O3 into 

KN and KNN lattice, which at the same time are very sensitive materials to moisture 

absorption and to K losses. 
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Figure 9. 15: SEM image and EDX spectra of second phase detected on unpolished surface of KNN-BNN 

ceramics. 
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Figure 9. 16: SEM image and EDX spectra of second phase detected on unpolished surface of KNN-BNN 

ceramic. 
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9.3. Electrical Characterisation 

 

9.3.1. Dielectric measurements 

 

Dielectric, piezo-and ferroelectric characterisation for undoped KN is shown in Chapter 

3. KN-BNN sample is conductive, as observed by Grinberg et al, only dielectric response 

was measured. At ambient conditions, KNN ceramics get pulverised, making it 

impossible to measure any electrical property. 

Temperature dependence of the permittivity (𝜀𝑟) and dielectric losses (tanδ) for KN-BNN 

and KNN-BNN ceramics, measured at 1 kHz, 10 kHz, 100 kHz and 250 kHz, are shown 

in Figure 9. 17 and Figure 9. 18, respectively. KN-BNN exhibits two dielectric anomalies 

at ~210 ºC and ~405ºC, corresponding to orthorhombic-to-tetragonal and tetragonal-to-

cubic transitions, respectively. The values of the relative permittivity are extremely low 

in comparison with KN. On the other hand, dielectric anomalies for KNN-BNN are 

visible at ~167 ºC and ~375ºC. These results are consistent with the assignment to 

orthorhombic phase for the two compositions by Rietveld refinement. The temperature 

for the r anomalies does not change, but the magnitude decreases with frequency for KN-

BNN. Also, frequency dependence is more marked for KN-BNN than KNN-BNN. The 

dielectric losses are on the same order for both compositions.  
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Figure 9. 17.: Temperature dependence of the (a) relative permittivity and (b) tan(δ) (250 kHz, 100 kHz 

and 10 kHz) of KN-BNN, during cooling. 
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Figure 9. 18.: Temperature dependence of the (a) relative permittivity and (b) tan(δ) ( 250 kHz, 100 kHz, 

10 kHz and 1kHz) of KNN-BNN, during cooling. 
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9.3.2. Piezo- and Ferroelectric Characterisation 

 

Evolution of P-E and S-E loops for KNN-BNN ceramic under different electric fields 

from 20 kV/cm to 60 kV/cm at RT is shown in Figure 9. 19 and Figure 9. 20. KNN-BNN 

sample is able to withstand 60 kV/cm. This ceramic shows a spontaneous polarisation, 

Ps, of ~20 µC/cm2, a remnant polarization, Pr, of ~17 µC/cm2 and a coercive field, Ec, 

of ~14 kV/cm. The bipolar electric-field induced strain for KNN-BNN reaches about 

0.10% under a field of 60 kV cm-1, as shown in Figure 9. 20. The strain curve shows that 

the negative strain can reach ~0.04%, which is due to the ferroelectric domain and 

domain wall switching. 
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Figure 9. 19: P-E loops for KNN-BNN ceramics under electric field from 20 kV/cm up to 60 kV/cm at RT. 
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Figure 9. 20: S-E loops for KNN-BNN ceramics under electric field from 20 kV/cm up to 60 kV/cm at RT 

Temperature dependence of P-E and S-E loops from RT to 140ºC under an electric field 

of 50 kV/cm is shown in Figure 9. 21 and Figure 9. 22, respectively. Spontaneous 

polarisation, Ps rises to ~21 µC/cm2 at 60ºC but then Ps drops to ~18 µC/cm2 at 180ºC. 

This tendency of slightly decreasing Ps values with increasing the temperature was 

observed in KN (Chapter 3) and KBBNZ x=0.05 ceramics (Chapter 4). This behaviour 

was attributed to the proximity of the composition to the phase transition from 

orthorhombic-to-tetragonal (~180ºC). In contrast, maximum strain value continuously 

increases up to ~0.12% with increasing temperature.  
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Figure 9. 21: P-E loops from RT up to 140º under electric field of 50 kV/cm for KNN-BNN 
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Figure 9. 22.: P-E loops from RT up to 140º under electric field of 50 kV/cm for KNN-BNN. 
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9.4. Optical Characterisation 

 

9.4.1 Diffuse reflectance spectroscopy 

 

Direct and indirect band-gaps are estimated from reflectivity data plotted in relation to 

wavelength (Figure 9. 23). 
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Figure 9. 23.: Diffuse reflectance as a function of wavelength for KN, KN-BNN, KNN and KNN-BNN 

(raw data) 

Direct and indirect band-gap values are determined from (F(R)ℎ𝜐)2 and (F(R)ℎ𝜐)1/2 

curves vs photon energy, shown in Figure 9. 24 and Figure 9. 25.  

The nature (direct or indirect) and the value of KN band-gap were largely discussed in 

Chapter 1 and experimentally validated in Chapter 3. It is strongly recommended that the 

reader refers to theses chapters. Supposedly, KN exhibits an indirect band-gap of 3.2 eV. 

Direct and indirect band-gaps for KN-BNN ceramic are calculated as 3.37 eV and 3 eV, 

contrary to works (Bai, Siponkoski, et al., 2017; I. Grinberg et al., 2013) that reported 

direct band-gaps as low as 1.4 eV.  
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Figure 9. 24: Tauc plot for direct band gaps of KN and KN-BNN ceramics. 
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Figure 9. 25: Tauc plot for indirect band gaps of KN and KN-BNN ceramics. 

Also, four absorption bands (labelled as 1, 2, 3 and 4 in Figure 9. 25) emerge at 1 eV, 

1.56 eV, 1.73 eV and 2.90 eV in KN-BNN spectra, which were also observed in KNBN 

system (Chapter 8). These protuberance bands are attributed to d-d transitions by Ni+2 

ions within the bulk or from hybridized Ni 3d and O 2p to Nb 4d states transitions (Wu 

et al., 2016). Again, direct and indirect band-gaps are considered for KNN and KNN-

BNN, because there are not enough indications to determinate the nature of their band-

gaps. Tauc plots constructed for n=2 and n=1/2 are illustrated in Figure 9. 26. and Figure 

9. 27., respectively. 
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Figure 9. 26 Tauc plot for direct band gaps of KNN and KNN-BNN ceramics 
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Figure 9. 27.: Tauc plot for indirect band gaps of KNN and KNN-BNN ceramics. 

A direct band-gap of 3.38 eV for KNN and slightly lower value for KNN-BNN, 3.34 eV 

is determined from the Tauc plots. In the same way, indirect band-gaps are calculated as 

3.18 eV and 2.95 eV for KNN and KNN-BNN, respectively. Table 9. 9. Summarises all 

band- gap obtained for the four compositions under study. 
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 Direct band-gap (eV) Indirect band-gap (eV) 

KN 3.65 3.20 

KN-BNN 3.37 3.00 

KNN 3.38 3.18 

KNN-BNN 3.34 2.95 

Table 9. 9: Direct and indirect band-gap extrapolated from Tauc plots for KN, KN-BNN, KNN and KNN-

BNN ceramics. 

 

9.5. Discussion 

 

KN-BNN composition was proposed as promising photoferroelectric material in an 

influential journal such as Nature (I. Grinberg et al., 2013). It did not take long for 

investigations on this compound to appear (Table 9. 1). As explained in Chapter 1 and in 

the introduction of this chapter, the large discrepancy in band-gap value of KN-BNN in 

the literature, motivated us to investigate this controversy. Very recently, a similar 

compound, KNN-BNN, has been reported to have even better FE properties than KN-

BNN, and a low band-gap of 1.60 eV (Bai, Tofel, et al., 2017) 

KN-BNN and KNN-BNN ceramics were prepared by solid state reaction following the 

methodology detailed in Chapter 3 and their characterisation is compared with the parent 

KN and KNN compounds. 

In terms of crystal structure symmetry, KN-BNN and KNN-BNN are isostructural and 

can be described by the orthorhombic Amm2 space group, like their parent KN and KNN 

compounds. XRD in combination with Raman spectra support this statement. In 

agreement with literature, XRD data of both KN-BNN and KNN-BNN reveal the 

presence of small amounts of NiO, suggesting difficulties in homogenisation of Ni. 

Raman spectra of KN-BNN shows the same general features as KN and the same happens 

for KNN-BNN and KNN. 

To the best of our knowledge, there are no studies about morphology and chemistry of 

KN-BNN and KNN-BNN ceramics by SEM and EDX. The first thing to notice, is a 

drastic change in the microstructure of KN and KNN when BaNb0.5Ni0.5O3 is 

incorporated, generating inhibition of the grain growth. This phenomenon occurs in all 

the systems studied in this work and also is reported in the literature (Saito & Takao, 
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2006; Zuo, Rödel, Chen, & Li, 2006). The appearance of small crystals (<1µm) can be 

related with the broadening of the XRD peaks for KN-BNN and KNN-BNN. 

KN and KNN ceramics are free of secondary phase and show the expected stoichiometry. 

In contrast, considerable compositional deviations are found in KN-BNN and KNN-BNN 

ceramics. EDX analysis identified regions in both compounds where: Ni is not detected 

at all, KN or KNN compositions are predominant (minor quantities of Ba and Ni) or K is 

deficient, leading to the formation of secondary phases. These compositional 

inhomogeneities are not perceived by XRD. 

These results evidence the difficulties of obtaining homogenised samples by solid state 

reaction, especially when a small quantity of dopants has to be uniformly incorporated. 

Indeed, BaNb0.5Ni0.5O3 represents only 10% and 2% of the entire composition for KN-

BNN and KNN-BNN, respectively. Similar issues regarding solid state reaction 

procedure are reported in the literature for Nb-doped BT ceramics (Masó et al., 2006). 

Therefore, even if macroscopically KN-BNN and KN-BNN are single phase (except for 

NiO), the presence of chemical inhomogeneities could be a source of error when 

interpreting the experimental results.  

FE measurements at RT of KN-BNN ceramic were not possible to perform. Just one study 

was able to apply an electric field of 80 kV/cm to KN-BNN ceramic at RT, showing 

unsaturated FE loops (Bai, Siponkoski, et al., 2017). The same authors also reported FE 

loops and a spontaneous polarisation above 25µC/cm2 for KNN-BNN composition. 

Experimental evidence corroborates the ferroelectric nature at RT of this composition, 

reaching a spontaneous polarisation, of ~20 µC/cm2, a remnant polarization of ~17 

µC/cm2 and a coercive field of ~14 kV/cm under an electric field of 60 kV/cm. Also, 

electromechanical properties were studied and a strain deformation of 0.10% was 

obtained. 

Finally, to resolve the discrepancy of the band-gap values, the diffuse reflectance of KN, 

KN-BNN, KNN and KNN-BNN ceramics was measured and compare with the largely 

reported band-gap of MAPbI3 (1.58 eV). In addition, direct and indirect band-gaps were 

considered, because there is not enough experimental evidence to be sure of the origin of 

the transition. Reflectivity data and Tauc plots constructed for direct and indirect band 

gaps of KN, KN-BNN, KNN, KNN-BNN and MAPbI3 are shown in Figure 9. 28, Figure 

9. 29 and Figure 9. 30.  
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Figure 9. 28: Reflectance (%) data for KN, KN-BNN, KNN, KNN-BNN and MAPbI3 compounds. 
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Figure 9. 29 Tauc plot for direct band gaps of KN, KN-BNN, KNN, KNN-BNN and MAPbI3 compounds. 
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Figure 9. 30: Tauc plot for indirect band gaps of KN, KN-BNN, KNN, KNN-BNN and MAPbI3 compounds. 

The major absorption region in terms of light energy for KN, KN-BNN, KNN and KNN-

BNN correspond to ranges from 3.25 eV to 3.6 eV for direct transitions and from 3 eV to 

3.25 eV for indirect transitions. Ba and Ni modifications slightly narrow the KN band-

gap (only 0.12 eV) which is similar with results reported by Wu et al in 2016. On the 

other hand, KNN seems to have even lower band-gap than KNN-BNN in contradiction 

to reported results (Bai, et al 2017).  

The Tauc plot constructed for n=1/2 (Figure 9. 25 and Figure 9. 27) shows four broad 

bumps below the band-gap for KN-BNN and KNN-BNN that were attributed to d-d 

transitions generated by Ni cations. Wu et al. proposed the misinterpretation of these 

absorption regions might be the origin of the discrepancy of the band-gap values for KN-

BNN. However, Grinberg and Bai reported direct nature for the band-gaps of KN-BNN 

and KNN-BNN in their respective studies. 

Finally, we realised that depending on the scale at which the (F(R)·ℎ𝜈)2 curve is plotted, 

the band-gap values from the intercept of the x-axis and the tangent line of the curve may 

be different. Indeed, it is demonstrated here that by zooming at the bottom part of the 

Tauc plot, we obtained band-gap values for KN-BNN and KNN-BNN as low as 1.42 eV 

and 1.46 eV, respectively (Figure 9. 31). Coincidentally, these values are in broad 

agreement with those reported by Grinberg and Bai.  
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Figure 9. 31 Zoom of Tauc plot for direct band gaps of KN, KN-BNN, KNN, KNN-BNN and MAPbI3 

compounds 
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9.6. Conclusions 

 

SEM and EDX analyses evidence the difficulties of obtaining chemically homogenised 

samples of KN-BNN and KNN-BNN by conventional ceramic processing. Band-gaps of 

3.37 eV and 3.34 eV are obtained for these compositions from reflectivity data. These 

results are consistent with the ability of KNN-BNN to withstand an electric field as high 

as 60 kV/cm up to 140ºC. Discrepancies of band-gap values in the literature are attributed 

to: firstly, non-adequate processing route that may lead to the appearance of chemical 

inhomogeneities which modify the physical properties, secondly a misinterpretation of 

some absorption regions below the band-gap due to d-d transitions in the Tauc plot and 

thirdly the use of non-standardised scale for the Tauc plots. 
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10. Discussion  

 

 

10.1. Ceramic processing 

 

The solid-state reaction method, also known as conventional processing, was selected for 

preparing all the compositions presented in this work. The main processing issue with 

KNbO3 concerns K loss during heat treatments, which promotes the appearance of the 

hygroscopic phase, K4Nb6O17. This secondary phase affects the structural integrity of KN 

ceramics. In order to mitigate this issue, several strategies have been explored. For 

example, preparation methods that require lower sintering temperature than conventional, 

such as sol-gel processing (Nazeri-Eshghi, Kuang, & Mackenzie, 1990) and co-

precipitation methods (K. K. and T. I. and H. Ohsato, 2008), or the introduction of 

additives, such as CuO and ZnO, that were described in detail in Chapter 3. 

In this work, it was shown that is possible to prepare high density undoped KN ceramics 

(~94%) by solid state reaction. Ceramic processing involved the synthesis of deliberately 

non-stoichiometric KN ceramics, in order to gather some in-sight of the effect of potential 

K-loss on properties. Comparison of two routes based on general recommendations 

reported in the literature was carried out (Chapter 3, Table 3.1. and Table 3.2.). 

The selection of calcination temperatures was crucial to obtain single-phase samples. 

These temperatures must not exceed 1000ºC, to control K losses. KN samples were 

successfully synthesised after double calcination at 850ºC during 4 hours with a heating 

rate of 3ºC/min. Also, the control of the firing environment during the sintering using 

atmospheric powder and double crucible was decisive to inhibit the K losses during 

sintering (Figure 10. 1). The sintering temperature was at 1075ºC for 4 hours with a 

heating rate of 3ºC/min. 
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Figure 10. 1: Schematic representation of the sintering environment. The green body is imbedded into 

atmospheric powder and covered with two crucibles. 

Most powders for the KN-based systems, presented in this thesis, were double calcined 

at 850ºC. KNBM and KNBN systems were exceptions. KNBM powders were calcined at 

800ºC and 900ºC, because literature shows BiMnO3 to require higher reacting 

temperature than BiFeO3 (Woo, Tyson, Croft, Cheong, & Woicik, 2001) and the KNBN 

system needed three calcinations to react the starting oxides, as shown in this thesis. 

Nevertheless, some issues regarding the solid-state route were noticed during the powders 

preparation. After the synthesis, most of the compositions presented some orthorhombic 

KNbO3-based phase, where the solutes were not well incorporated, due to an incomplete 

reaction among the reactants. The presence of nearly undoped-KN was detected by XRD 

combined with Raman analysis.  

Diffusion of low concentration of dopants (x≤0.15) into the KNbO3 lattice was 

incomplete even after sintering, generating compositionally inhomogeneous regions. 

Cations of the transition metals (Mn+3, Fe+3, Co+3, Ni+3/+2 and Zn+2) appeared to be more 

difficult of being incorporated into KNbO3 than Bi+3 and Ba+2, specially, Ni+3/+2 and Zn+2 

(Table 10. 1). Unreacted NiO was detected by XRD and EDX analyses in all system that 

contained Ni+3 (KNBN from x=0.05 to x=0.25, KN-BNN and KNN-BNN compounds). 

This phenomenon has been reported in the literature (Bai, Siponkoski, Peräntie, Jantunen, 

& Juuti, 2017; Grinberg et al., 2013; Hawley et al., 2017). 

Chemical homogeneity was achieved in most systems for x=0.20 and x=0.25, as 

confirmed by EDX mapping analysis. To avoid chemical inhomogeneities for low 

concentration of solutes, higher and longer heat treatments would be required, but in turn, 

would promote K and O losses. Alternatively, the number of calcinations can be increased 

or the use of master-batch method which enables a precise control of the composition. 

This method relies on a sequential mixing process. Firstly, same quantity of solutes and 

solvent is mixed up. Subsequently, the solvent is progressively added until the desired 

stoichiometry is obtained. 
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The solid-state reaction shows some limitations to prepare these solid solutions, and 

therefore, it would be interesting to investigate new synthesis and sintering routes, such 

as sol-gel (Masó et al., 2006), combustion (Pecchi, Cabrera, Delgado, García, & Jimenez, 

2013) , HP-HT (high pressure and high temperature) (Chi et al., 2007) and SPS (spark-

plasma-sintering) (Jiang, Nan, Wang, Liu, & Shen, 2008). 

Polarisation measurement of single-phase KN are strongly affected by the moisture 

absorption from the environment. A simple experiment enables us to demonstrate this 

phenomenon and it is easily reproducible. A P-E loop for undoped KN sample left in air 

is round and resembles the loop and the values reported by Birol et al, 2005 (P-E loop 1, 

Figure 10. 2). Then, if the sample is dried at over 200ºC for 10 minutes, it becomes more 

resistive, showing a typical ferroelectric loop as reported by Kakimoto et al in 2004 (P-E 

loop 2, Figure 10. 2). Moreover, the sample was again left at room conditions for 10 

minutes, which caused an increase of the polarisation (P-E loop 3, Figure 10. 2). The 

conductivity of the KN sample increases by the absorption of water, giving rise to the 

current instead of the electric polarization under electric field and over-estimating the Pr 

values of undoped KN. 
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Figure 10. 2.: Reproducibility of the experiment described in Chapter 3, section 3.6.2 (Figure 3. 16). RT P-

E loops for undoped KN ceramics under 60 kV/cm before (P-E loop 1) and after (P-E loop 2) drying at 200 

ºC. An increase of the spontaneous polarisation is noticed if the same sample is left for10 min in open air 

(P-E loop 3). 



 

 

 

 

 

  

 (1-x) KNbO3-x BiMnO3 (1-x) KNbO3-x BiFeO3 (1-x) KNbO3-x BiCoO3 (1-x) KNbO3-x BiNiO3 (1-x) KNbO3-x BaBiZnO3 

x=0.05 

     

X=0.25 

     

Table 10. 1: EDX mapping for x=0.05 and x=0.25 of the transitions metals for the systems object of this thesis, KNBM, KNBF, KNBC, KNBN and KBBNZ. Low concentrations 

(x=0.05) of metal transitions cations, Mn+3, Fe+3, Co+3, Ni+3 and Zn+2, show difficulties of being diffuse into the KNbO3, leading the appearance of compositionally 

inhomogeneous regions, specially, Ni+3 and Zn+2: On the other hand, for high concentration of solutes (x>0.25) a more homogeneous distribution is observed. Porosity can 

induce misinterpretation of the EDX mapping, as for example KNBC x=0.25. KNBF exhibits better diffusion of Fe+3 in comparison with the other systems. 
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10.2. (1-x) KNbO3-x BiMeO3 (Me=Fe, Mn, Co, Ni) (0≤x≤0.25) systems 

 

(1-x) KNbO3-x BiMeO3 (Me=Fe, Mn, Co, Ni) (0≤x≤0.25) systems were prepared with 

the objective of retaining the spontaneous polarisation of the parent compound (KNbO3) 

while narrowing the band-gap, through the modification of the electronic configuration 

of B-site but without generating oxygen vacancies, which would lead to recombination 

of photocarriers. K+1 is substituted by a higher valence cation, Bi+3, whereas Nb+5 is 

replaced by a transition metal, Me+3, in order to maintain charge neutrality. The structural 

and chemical characterization of KNBM, KNBC and KNBN systems revealed 

coexistence of different polymorphs (Amm2 and Pm-3̅m) for some ranges of x. For some 

compositions, it was difficult to identify secondary phases by XRD. Reflections 

corresponding to secondary phases were very weak in intensity and sometime overlapped, 

making very ambiguous the identification of the phases present. Hence the 

characterisation of each system was accomplished through the combination of analyses 

of data obtained from different techniques, as shown below. 

Firstly, the coexistence of a pseudocubic phase with a residual orthorhombic KN-based 

phase was inferred from XRD data. In some cases, like the KNBM system, it was easier 

to identify the residual orthorhombic phase. Secondly, imaging (SEM) and elemental 

mapping by EDX showed K-rich regions with different morphology than the rest of 

grains, that were attributed to this orthorhombic phase. Thirdly, the monitoring of Raman 

modes at 192 cm-1 and 830 cm-1 (more evident in powders) which indicate the polar order 

in undoped KN. Indeed, the sharp mode at 192 cm-1 suggests the occurrence of 

spontaneous polarisation, which is fundamental to develop the anomalous photovoltaic 

effect. Finally, two dielectric anomalies linked to the orthorhombic-to-tetragonal and 

tetragonal-to-cubic phase transition of ferroelectric KN. The combination of these results 

demonstrated the presence of the ferroelectric-orthorhombic phase in some compositions. 

On the other hand, and simultaneously, the pseudocubic phase was monitored by XRD 

and Raman spectroscopy. The third broad dielectric anomaly around 100ºC, visible in 

KNBM, KNBC and KNBN systems, was speculatively attributed to a weak-relaxor 

behaviour of a pseudocubic phase that was reported by Luisman et al for similar solid-

solution, KNbO3-BiYbO3, in 2011. This phase could be hypothetically connected with 

the phase revealed by Raman spectroscopy with temperature in KNBN x=0.25 
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ceramic, which presented a polar-to-non-polar phase transition in the same 

temperature range with the appearance of the dielectric anomaly. 

Another similarity among KNBM, KNBC and KNBN systems was the tendency to 

macroscopically evolve to a pseudocubic symmetry with increasing x (Figure 10. 3), 

resulting in the absence of long-range polar ordering. On the other hand, microscopically 

all compositions show distortions from the cubic phase. This phenomenon was previously 

described in (1-x) PbTiO3- xBiMnO3 solid solutions (Reaney, 2004), while authors were 

attempting to validate the hypothesis that coupling of the Jahn–Teller effect of BiMnO3 

could enhance the spontaneous strain in the tetragonal structure close to the MPB in the 

BiMnO3–PbTiO3 solid solution. 
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Figure 10. 3: Compositional unit cell volume evolution for KNBM, KNBF, KNBC and KNBN. Squares 

and circles indicate orthorhombic and cubic phases, respectively. 

For KNBC and KNBN systems, the two polymorphs coexist up to x=0.05. In KNBM 

system while the content of orthorhombic phase drops continuously until it disappears, 

the cubic and orthorhombic phases coexist up to x=0.15. In summary, upon doping 

systems have the tendency of being ascribed to ‘‘cubic’’ lattice, which results from a set 

of microdomains of small orthorhombic distortion. Furthermore, the unit cell volume 

increases with increasing x. 
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In contrast, KNBF system seems to be single phase and maintains the polar phase up to 

x=0.25. Also, the unit cell volume decreases with x. Immediately, a question arises, what 

makes KNBF different from the other systems?  

To address this question, it is required to go back to some basic concepts.  

Formation of substitutional solid solutions between two compounds is governed by the 

following rules, also known as Hume-Rothery rules (Kittel & Hellwarth, 1957): (a) Size 

difference between the atoms of solute and the parent compound should be less than 15%. 

(b) The electronegativity difference between the metals should be small. (c) For complete 

solubility over the entire range of compositions the crystal structures of the solute and the 

solvent must be the same. (d) Similar valence between the metals. 

Table 10. 2 informs about the coordination numbers, ionic radii and electronegativity for 

K+1, Bi+3, Nb+5, Mn+3, Fe+3, Co+3 and Ni+3 cations. 

A-site 

 Coordination Ionic radius (Å) Electronegativity 

K+1 XII 1.64 0.82 

Bi+3 XII 1.33 2.02 

B-site 

Nb+5 VI 0.64 1.60 

Mn+3 VI 0.645 1.55 

Fe+3 VI 0.645 1.83 

Co+3 VI 0.61 1.88 

Ni+3 VI 0.60 1.91 

Table 10. 2: Coordination numbers, ionic radii and electronegativity for the cations involved in KNBM, 

KNBF, KNBC and KNBN (Shannon, 1976). 

B-site cations have very similar ionic radii to Nb+5. In contrast, there is a considerable 

difference of size in A-site cations and more than double of electronegativity. This aspect 

could hinder the formation of the solid-solutions. As described in Figure 10. 3, the unit 

cell volume of the solid solutions increases monotonically with increasing amount of 

substitution. However, this tendency cannot be explained by the difference in the ionic 

radii of substitution ions (Table 10. 2). Bi+3 (1.33 Å, XII) exhibits a smaller cation size 

than K+ (1.64 Å, XII), while Mn+3, Fe+3, Co+3 and Ni+3 have ionic radii equivalent to that 

of Nb5+ (0.64 Å, VI). Therefore, the incorporation of a smaller cation (Bi+3) into the K+ 
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site should decrease the dimensions of the unit cell. In contrast, the opposite behaviour is 

observed. This may be due to the incorporation of Bi+5 (0.76 Å, VI) into the B-site 

position, replacing Nb+5 and promoting an increase of the unit cell volume. Other 

possibility could be the occurrence of the Jahn-Teller effect that produces octahedral 

distortions which in turn might lead to the increase of the unit cell volume. 

Table 10. 3. shows the crystal symmetry and the lattice parameters for KNbO3, BiMnO3, 

BiFeO3 and BiNiO3. 

 Crystal symmetry Lattice parameters 
Volume 

(pm3/106) 
Ref. 

KNbO3 
Amm2 

Orthorhombic 
Polar 

a= 3.971 Å 

b=5.697 Å 

c=5.723 Å 

𝛼= 𝛽 = 𝛾 

=90º 
64.74 [1] 

BiMnO3 
C2/c 

Monoclinic 

Non-

polar 

a=9.464 Å 

b=5.479 Å 

c=9.585 Å 

𝛽=110.70º 

𝛼= 𝛾 =90º 
61.78 [2] 

BiFeO3 
R3c 

Rhombohedral 
Polar 

arh= brh = crh 

=5.581 Å 

𝛼𝑟ℎ= 𝛽𝑟ℎ 

=𝛾𝑟ℎ=59.3º 
62.30 [3] 

ah=bh=5.58Å 

ch=4.720 Å 

𝛼= 𝛽=90º 

𝛾 =120º 

BiCoO3 
P4mm 

Tetragonal 
Polar 

a=3.719 Å 

b=3.719 Å 

c=4.720 Å 

𝛼= 𝛽 = 𝛾 

=90º 
65.70 [4] 

BiNiO3 
P1̅ 

Triclinic 

Non-

polar 

a=5.385 Å 

b=5.650 Å 

c=7.708 Å 

𝛼 =91.95º 

𝛽 =89.81º 

𝛾=91.54º 

58.57 [5] 

Table 10. 3: Crystal symmetry and lattice parameters for KNbO3, BiMnO3, BiFeO3 and BiNiO3 (A.A. Belik, 

2012). Refereces: [1] (Shuvaeva, V.A., & Antipin, 1995), [2] (A.A. Belik et al., 2007), [3](Sosnowska, 

Schäfer, Kockelmann, Andersen, & Troyanchuk, 2002)[4] (Alexei A. Belik et al., 2006) and [5] (Ishiwata 

et al., 2002). 

None of the solute perovskites crystallises with the same symmetry as KNbO3. Indeed, 

BiMO3 compounds (being M transition materials from the 4th period) that have 

incomplete dn orbitals, are predisposed to acquire centrosymmetric crystal structure (A.A. 
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Belik, 2012). However, BiFeO3 and BiCoO3 can be considered as exceptions from this 

general tendency (Catalan & Scott, 2009; Oka et al., 2010).  

Another point to be considered is the transition metals (Me) have multiple potential 

oxidation states, because unpaired electrons in 3d orbitals are unstable and tend to bond 

with other chemical species. During traditional sintering, there is no-control of oxidation 

states, which may result in cations getting reduced (gain electrons) or oxidised (lose 

electrons) to achieve the stability and react with other species, and not being in the desired 

state. Sintering at high pressure prevents the appearance of unusual oxidation states. A 

study on ferroelectric and piezoelectric properties of KNbO3 doped with small amount of 

Fe+3, La+3 and Mn+3 (K. K. and I. M. and H. Ohsato, 2003) revealed the non-control of 

the oxidation states for manganese cations (Mn+4/Mn+3/Mn+2), while Fe+3 (being a 

multivalent ion as well), maintained its valence state. 

Finally, stoichiometric BiMnO3, BiNiO3 and BiCoO3 can be only synthesized at high 

pressure. From our point of view, this aspect would be an important contribution to the 

sintering issue presented in this work. 

BiMnO3 is not stable at atmospheric pressure, and it requires pressures of approximately 

6 GPa and temperatures of approximately 1100 K to be fabricated in bulk from a mixture 

of Bi2O3 and Mn2O3 (A.A. Belik et al., 2007). Under ambient pressure the reaction of the 

metal oxides is Bi2O3+Mn2O3→0.5 Bi2Mn4O9+0.5 Bi2O3 (Levin, Robbins, & McMurdie, 

1964) and it is therefore an inaccessible material to synthesise at ambient pressure. In the 

same way, BiCoO3 and BiNiO3 ceramics are only stable at high-pressures and thus to be 

regarded as metastable under ambient conditions (Gilioli & Ehm, 2014; Oka et al., 2010; 

Yasui et al., 2008). However, BiFeO3 is again unusual compound among the Bi-based 

perovskites because it can be prepared under ambient conditions.  

As was described, there are several factors that could affect the formation of single-phase 

solid solutions. However, BiFeO3 is an exception among the Bi-based compounds 

because it crystallises in a polar phase and can be prepared by conventional methods at 

ambient pressure, and this is reflected on KNBF system that displays completely different 

development from KNBM, KNBC and KNBN systems. Indeed, there are a wide spectrum 

of applications and studies for solid solution based on BiFeO3, specially to examine 

piezoelectric properties in the MPB such as KNa0.5Nb0.5O3-BiFeO3 (Sun et al., 2008) or 

PbTiO3-BiFeO3 (Woodward, Reaney, Eitel, & Randall, 2003). In addition, Kowal et al 
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reported in 2017 that BiFeO3-BaTiO3 solid solutions possess both ferroelectric and weak 

ferromagnetic properties. 

In all these systems, KNBM, KNBF, KNBC and KNBN, a continuous band-gap 

narrowing was achieved as well as the formation of the solid -solutions, that was proved 

through the validation of Vegard’s law. Theoretically, the mechanism which leads to the 

band-gap narrowing is the local imbalance created by Me+3 substitution in B-site of 

KNbO3, giving rise to the repulsion between non-bonding 3d orbitals of the Me+3 and 2p 

orbitals of O-2 and consequently upshifting the VBM. The transition metals were chose 

following the periodic table order in the fourth period, Fe, Mn, Co and Ni. Ferroelectric 

characterisation was unfeasible due to the high conductivity of these samples. 

 

10.3. Photovoltaic effect in orthorhombic 0.75 KNbO3-0.25 BiFeO3 solid-

solution 

 

KNBF x=0.25 ceramic retains the polar order in a wide range of temperatures and its 

band-gap is narrowed by 1eV in comparison with undoped KN, making this composition 

interesting for photoinduced phenomena. To measure the photoresponse of this 

composition, thin films of KNBF x=0.25 were deposited by PLD. The most appropriate 

temperature, oxygen pressure and substrate to deposit KNBF x=0.25 were 600ºC, 0.15 

mBar and STO, respectively. Undesirable polycrystalline thin films were obtained, 

therefore further optimisation is still required before measuring photoresponse. However, 

we were able to measure photoresponse in a cell filled by KNBF x=0.25 paste. The 

measured Voc and Jsc are about 0.16 V and 0.24 µA/cm2, respectively and a Pmax of 0.016 

µW and FF of ~41%. Table 5.9. (Chapter 5) informs about Voc and Jsc values found in 

the literature for ferroelectric films. It is important to note, our Jsc is higher than 0.1 

µA/cm2 reported for KN-BNN thick film at RT by Grinberg et al in 2013. Moreover, our 

Jsc is also greater than 40 nA/cm2 obtained at 77 K for the same composition.  
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10.4. Experimental validation and non-reproducibility of band-gap 

narrowing in solid solutions based on KNbO3 from literature 

 

The first part of this section addresses the experimental validation of ferroelectricity in 

KNbO3-based material proposed by a theoretical study that predicted low band-gaps upon 

doping. This part exposes both the helpfulness and the limitation of this kind of studies. 

In 2014, Wang et al proposed six KNbO3- based solid solutions doped with Zn+2, together 

with charge compensation by different combinations of higher-valence A-site cations 

(free vacancies). Their first principles calculations predicted a band gap of 2.92 eV for 

0.75 KNbO3-0.25 (Ba0.5Bi0.5) (Zn0.5Nb0.5) O3 and a spontaneous polarisation of ~38 

C/cm2. Our experimental results validate the optical band-gap value, but not the 

ferroelectric behaviour. Structural, dielectric, ferroelectric, piezoelectric and optical 

characterisation and discussion of (x-1) KNbO3-x (Ba0.5Bi0.5) (Zn0.5Nb0.5) O3 (KBBNZ) 

system are provided in detail in Chapter 4.  

Upon doping, the crystal structure of KBBNZ system evolves from orthorhombic (x=0) 

to pseudocubic (x=0.25) symmetry, continuing the same trend seen in KNBM, KNBC, 

and KNBN systems. Moreover, the coexistence of these two polymorphs is verified for 

x=0.10 and x=0.15. SEM and EDX analysis revealed chemical inhomogeneities mainly 

associated with Zn. The overall chemical homogeneity is enhanced for higher values of 

solutes. Compositional evolution is accompanied by a gradual loss of the FE properties. 

The typical butterfly loop characteristic of FE became a parabola and then no field 

induced strain is observed.  

In summary, it is not possible to experimentally validate the results predicted by first-

principles, though this paper was fundamental in our research. The rest of the systems 

which are the object of this thesis were inspired on the band-gap narrowing strategy, 

described in this study (F Wang et al., 2014). 

Chapter 11 is focused on the controversy found in the literature about the compound 

K0.9Ba0.1Nb0.95Ni0.05O3 (KN-BNN) (motivated and explained in detail Chapter 1 and 

Chapter 10). We were not able to reproduce the results reported by the Nature paper 

(Grinberg et al., 2013).  
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Nevertheless, we demonstrated that KNbO3 presents difficulties in incorporating multiple 

solutes by conventional sintering, especially if it is a small amount. XRD is not sufficient 

evidence for the formation of homogeneous single-phase solid solutions. Indeed, SEM 

imaging combined with EDX analysis for KN-BNN revealed: undoped KN regions, NiO 

particles and different concentration of solutes. 

Ferroelectric characterisation was not performed because of the leaky comportment of 

the KN-BNN sample, in contrast to P-E loops reported at RT in the literature by Grinberg 

and Bai. Similar band-gap values to the parent KNbO3 were obtained. However, some 

absorption bands are visible at 1 eV, 1.56 eV, 1.73 eV and 2.90 eV in KN-BNN spectra, 

which were also observed in (1-x) KNbO3-x BiNiO3 system (Chapter 8). These 

protuberance bands could be related to d-d transitions by Ni+2 ions within the bulk or from 

hybridized Ni 3d and O 2p to Nb 4d states transitions from the NiO particles. The 

misinterpretation of these absorption regions could be the origin of the discrepancy of the 

band-gap values for KN-BNN in the literature. Furthermore, we realised that depending 

on the scale with which the (F(R)·ℎ𝜈)2 curve is plotted, the band-gap values from the 

intercept of the x-axis and the tangent line of the curve may be different. Indeed, it is 

demonstrated that when zooming in the bottom part of the Tauc plot, we obtained low 

band-gaps for KN-BNN. These suppositions can be extrapolated to 

K0.49Na0.49Ba0.02Nb0.99Ni0.01O3 (KNN-BNN) as well.  

The band-gap narrowing in ferroelectric KN-BNN is supported by theoretical calculations 

(Fenggong Wang & Rappe, 2015). However, as also discussed for KBBNZ, sometimes 

theoretical studies cannot be experimentally proven. We are not saying that the theory is 

wrong but conventional synthesis and sintering processing is not able to prepare this 

compound and hence impossible to experimentally reproduce. 

 

10.4. Band-gap narrowing 

 

Tauc plots for direct and indirect band-gaps of KN and 0.75 KNbO3- 0.25 BiMeO3 (Me= 

Mn, Fe; Co and Ni) systems are shown in  Figure 10. 4-5. The most homogeneous samples 

were obtained for x=0.25, as was explained in the first section of this chapter. Also, the 

solar spectrum is illustrated, and the IR, VIS and UV regions are schematically indicated. 
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Even if the sun emits in all the energetic range, the maximum energy is allocated in the 

visible range. 

 

Figure 10. 4: [𝐹(𝑅) · ℎ𝜐]2 against photon energy for KN and 0.75 KNbO3- 0.25 BiMeO3 (Me= Mn, Fe; Co 

and Ni) systems. 

 

Figure 10. 5: [𝐹(𝑅) · ℎ𝜐]1/2 against photon energy for KN and 0.75 KNbO3- 0.25 BiMeO3 (Me= Mn, Fe; 

Co and Ni) systems. 
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As mentioned in Chapter 2, Tauc plots cannot determine conclusively if a band structure 

is direct or indirect, therefore, both band-gap values are extracted. Direct and indirect 

band-gaps follow the same trend, KNBM (2.4 eV)<KNBC(2.6 eV) <KNBF(2.8 eV) 

<KNBN(3.3 eV) <KN (3.6 eV) and KNBM(1.3 eV)<KNBC(2.1 eV) <KNBF(2.2 eV) 

<KNBN(2.87 eV) <KN (3.2 eV), respectively. 

As shown in Figure 10. 6. a linear relationship is found between the optical band gaps 

(direct and indirect) and the pseudocubic unit cell volume, leaving aside the KNBF 

compound that presents orthorhombic symmetry. 
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Figure 10. 6: Direct (a) and indirect (b) band gap energies as a function of pseudocubic unit cell volume 

shows a linear dependency. 

The band gap decreases with increasing lattice volume. On the other hand, the lattice 

volume increase with B-site ionic radius, in the order Mn+3, Co+3 and Ni+3.  Moreover, 

electronegativity also decreases with ionic radii and therefore increases with increasing 

band-gap energy. This trend with lattice volume for each solid is comparable to that 

reported by Lee et al, which described a set of perovskites with A-site alkaline earth whose 

optical band-gap varied linearly with lattice volume and the Goldschmidt tolerance factor. 

Also, it is in agreement with the classical work for covalent semiconductors, where a 

linear increase in band gap is noticed for smaller bond lengths (Phillips, 1973). 

The relationship between optical band-gap and Goldschmidt tolerance factor is also 

examined in Figure 10. 7. The Goldsmith tolerance factor for a solid solution was 

calculated using Equation 10.1. 
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𝑡𝑆𝑆 =
(0.75 · 𝑟𝐾) + (0.25 · 𝑟𝐵𝑖) + 𝑟𝑂

√2((0.75 · 𝑟𝑁𝑏) + (0.25 · 𝑟𝑀𝑒) + 𝑟𝑂)
 

Eq.10.1 

 

where rK, rBi, rNb, rMe and rO denote the ionic radii for K+1, Bi+3, Nb+5, Me+3 and O2-, 

respectively (Table 10. 2). 
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Figure 10. 7: Direct (a) and indirect (b) band gap energies as a function of tolerance factor. 

All the systems, KNBM, KNBF, KNBC and KNBN have similar tolerance factor which 

considerably differs from KN. In general, solid solutions with high tolerance factor show 

broad band-gaps. If we draw a line from KNBN to KNBM, we can observe the other two 

values for KNBF and KNBC, are close to this line. However, it is not possible to 

determine a linear dependence between the tolerance factor and the band-gaps values. 
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11. Conclusions, contributions to the field and 

future work 

 

 

11.1. Conclusions 

 

Ferroelectric KNbO3 (KN) ceramic is the central compound of this thesis. An intensive 

study on processing, electrical and optical characterization of KN ceramic was conducted. 

Following results were obtained: 

• High density and pure KN ceramics were prepared by solid state reaction. It was 

demonstrated purity and stability are intimately related with the stoichiometry of 

KN. Double calcination of powders compacted at 850ºC for 4 hours and the 

control of the sintering environment through atmospheric powder and double 

crucible, enabled to inhibit the K losses during the ceramic processing, keeping 

KN stoichiometric. 

• Stoichiometric KN, K-deficient and K-excess compounds were also prepared in 

order to evaluate eventual K losses. XRD and Raman results determined the 

orthorhombic phase (Amm2 space group). Slight deviations from the nominal 

stoichiometry induces changes in the purity, crystallisation, microstructure, 

stability, density and sintering temperature of the samples. 

• Electrical characterisation of non-stoichiometric compounds was unfeasible due 

to their poor densification. In addition, samples should be dried at 200ºC for 10 

min, because KN ceramics left in air absorb moisture from the environment, 

making the samples more conductive. 

• KN ceramics showed two clear dielectric anomalies at ~206 ºC and ~398 ºC, 

which can be attributed to the orthorhombic-to-tetragonal and to the tetragonal-
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to-cubic transitions, respectively. Spontaneous polarisation of ~23 µC/cm2 and 

maximum strain of 0.1% is obtained under 50 kV/cm at 160ºC. 

• The narrowest band-gap (3.15 eV) corresponds to K-excess compound, which 

supposedly has the largest concentration of oxygen vacancies. Direct and indirect 

band-gaps for stoichiometric KN are estimated 3.64 eV and 3.23 eV, respectively. 

The following binary systems based on KN, (1-x) KNbO3-x Ba0.5Bi0.5Nb0.5Zn0.5O3 

(KBBNZ), (1-x) KNbO3-x BiFeO3 (KNBF), (1-x) KNbO3-x BiMnO3 (KNBF), (1-x) 

KNbO3-x BiCoO3 (KNBC), (1-x) KNbO3-x BiNiO3 (KNBN), 0.90 KNbO3-0.10 

BaNb0.5Ni0.5O3 (KN-BNN), KNa0.5Nb0.5O3 (KNN) and 0.98 KNa0.5Nb0.5O3-0.10 

BaNb0.5Ni0.5O3 (KNN-BNN), being x=0, 0.05, 0.10, 0.15, 0.20 and 0.25, were prepared 

by solid state reaction, following the same route as KN. However, some problems 

appeared during the ceramic processing: 

• After the synthesis, most of the compositions present some orthorhombic KNbO3-

based phase due to incomplete diffusion of the species.  

• The solubility of low concentration of solutes (x≤0.15) into the KNbO3 lattice was 

insufficient during sintering, generating compositionally inhomogeneous regions. 

• Solid-sate reaction may not be the most adequate method to prepare these solid 

solutions. 

This thesis underpins the structural, vibrational, microstructural, elemental, electrical (if 

feasible) and optical characterisation of the systems listed above. The main conclusions 

are summarised below: 

• Upon doping, KBBNZ system evolves from orthorhombic to cubic symmetry, 

which is accompanied by a piezoelectric-to-electrostrictive crossover in the 

compositional range, 0≤x≤0.25. A progressive decrease of FE and piezoelectric 

properties is observed. Indeed, KBBNZ x=0.25 is non-ferroelectric in 

contradiction with a theoretical study (Wang, Grinberg, & Rappe, 2014). 

Electrostrictive coefficient for x=0.15 is 0.037 m4C−2 and for x=0.20 Q is 0.035 

m4C−2. 

• The band gap of KBBNZ ceramics narrows slightly from 3.22 eV for x= 0 to 2.89 

eV for x= 0.25, in agreement with first-principles calculations (Wang et al., 2014). 

Common results were obtained for KNBM, KNBC and KNBN systems: 
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• XRD data suggests these systems evolve from an orthorhombic phase (x=0) to 

cubic symmetry with an increase of x. There is a solubility limit for orthorhombic 

KN phase. The cubic solid-solution is confirmed by the validation of Vegard’s 

law. 

• Cubic and orthorhombic phases coexist at intermediary values of x, more 

specifically, up to x=0.15 for the KNBM system and up to x=0.10 for the KNBC 

and KNBN systems. 

• The polar phase (Amm2) was monitored by: (i) the occurrence of the Raman 

modes at 192 cm-1 and 830 cm-1. (ii) SEM imaging combined with elemental EDX 

analyses, which reveals the presence of KN-rich regions. (iii) The appearance of 

the two dielectric anomalies associated with KN. 

• Globally, x=0.20 and x=0.25 compositions can be ascribed as cubic phase (Pm-

3̅m), but the existence of Raman modes demonstrates that locally they are not 

purely cubic.  

• Systematic band-gap narrowing was observed with increasing x. A linear 

dependence is found between the optical band gaps (direct and indirect) and the 

pseudocubic unit cell volumes. 

However, the KNBF system was an exception in all aspects: 

• KNBF system retained polar order up to x=0.25 in a wide range of temperatures 

and continuously narrowed its band-gap with x. 

• Polar ordering and a lower band-gap. ~1eV in comparison with undoped KN, 

makes KNBF x=0.25 interesting for photoinduced phenomena. The measured Voc 

and Jsc are about 0.16 V and 0.24 µA/cm2, respectively and a Pmax of 0.016 µW 

and FF of ~41%.  

Finally, KN-BNN and KNN-BNN showed: 

• Impossibility of obtaining chemically homogenised samples by conventional 

ceramic processing, as revealed by XRD, SEM and EDX. 

• Band-gaps of 3.37 eV and 3.34 eV were estimated, respectively. 

• Controversy of band-gap values in the literature are attributed to: (i) conventional 

processing route may lead to the appearance of chemical inhomogeneities which 

modify the physical properties. (ii) ambiguity on interpretation of Tauc plots. 
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11.2. Contributions to the field 

 

(1) First comprehensive study on processing-structure-property relationships in 

KNbO3-BiMeO3, where Me is Fe, Mn, Co and Ni. Demonstration for first time of 

a photovoltaic effect in the KN-BF system. 

(2) Demonstration for first time of a piezoelectric-to-electrostrictive crossover on 

KBBNZ system and corroboration of first principle calculations of the band-gap 

(Wang et al., 2014). 

(3) Contribute with a hypothesis why there are controversies in the band-gaps 

reported for KN-BNN (Grinberg et al., 2013) and possibly in KNN-BNN (Bai, 

Tofel, Palosaari, Jantunen, & Juuti, 2017). 

 

11.3. Future work 

 

The research presented in this thesis seems to have opened new horizons to explore. There 

are several lines of research arising from this work which should be pursued.  

(1) Sample synthesis using alternative routes to improve homogeneity. 

(2) X-ray synchrotron study to obtain better resolution and address the problems 

related with Rietveld refinement. 

(3) Raman spectroscopy with temperature for KNBC x=0.15. 

(4) Low- temperature P-E loops to avoid the conductivity issues. 

(5)  Fabrication and characterisation of solar cells, using the most promising 

materials. 

(6) Temperature dependence of the band-gap to investigate the nature of the band-

gaps. Furthermore, development of some simulations by first principles 

calculations for better understanding. 

(7) All systems should be investigated in all compositional range from KN to 

BiMeO3. 

(8)  Control of the oxidation states. 
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