TETRAHYDROPYRANYL DERIVATIVES OF DAUNOMYCIN AND ADRIAMYCIN

Sir:

The baumycins were found in culture filtrates of a daunomycin-producing strain¹⁾. In preliminary tests of the activity on L-1210, baumycin Al exhibited stronger activity than adriamycin This was not repeated in or daunomycin. other laboratories where a second sample was tested. Moreover, the yield of baumycin Al was very small. Consequently, the simplest 4'-Oglycosidic derivative, that is, 4'-O-tetrahydropyranyladriamycin was prepared. One of the diastereomers of this glycosidic derivative was found to have greater activity than either adriamycin or daunomycin. It had lower toxicity by LD₅₀ and electrocardiographic toxicity tests. As reported by Dr. MATHÉ²⁾ in the next paper, he obtained results suggesting a low delayed cardio toxicity.

In this paper, the chemical synthesis, properties and the L-1210-inhibiting activities of two diastereomers of 4'-O-tetrahydropyranyl derivatives of daunomycin and adriamycin are reported.

Treatment of daunomycin (1) hydrochloride (60 mg) in dry N,N-dimethylformamide (5 ml) with 3,4-dihydro-2H-pyrane (1 ml) in the presence of a catalytic amount of p-toluenesulfonic acid at room temperature for 47 hours produced the 4'-O-tetrahydropyranyl derivatives IIa and IIb, each of which was isolated as the free base by silica gel chromatography; IIa: mp 193~ 196°C (dec.), $[\alpha]_D^{22} + 125^\circ$ (c 0.2, CHCl₃), found: C 60.82, H 6.27, N 2.24, calcd. for C₃₂H₃₇NO₁₁ ·H₂O: C 61.04, H 6.24, N 2.22; **IIb**: mp 190~ 193° C (dec.), $[\alpha]_{D}^{22} + 162.5^{\circ}$ (c 0.2, CHCl₃), found: C 61.48, H 6.37, N 1.97. Compound IIb (Rf 0.65) moves faster than IIa (Rf 0.46) on Silica gel G (E. Merck, 60F254) tlc with chloroform methanol (10: 1) as the developing solvent.

Treatment of adriamycin (III) hydrochloride (130 mg) in dry N,N-dimethylformamide (10 ml) with 3,4-dihydro-2*H*-pyrane (2 ml) in a manner similar to that described above resulted in a mixture of 14,4'-bis(O-tetrahydropyranyl) adriamycins (IVa, IVb) and 14-O-tetrahydropyranyladriamycin (V). These compounds were isolated by preparative silica gel tlc using chloroform-methanol (15:1) as the developing solvent: IVa, 16 mg; IVb, 14 mg; and V, 35 mg. Com-

pound V had a mp 195~202°C (dec.) and $[\alpha]_D^{24}$ + 162.5° (c 0.2, CHCl₃). Compounds IVa and IVb were diastereomeric mixtures of the 14-O-tetrahydropyranyl groups. The 14-O-tetrahydropyranyl groups in IVa and IVb were removed by treatment with methanolic 0.005 N p-toluenesulfonic acid solution at room temperature for an hour to yield 4'-O-tetrahydropyranyladriamycin derivatives VIa and VIb as free bases of single compounds, respectively; VIa: mp 172 ~177°C (dec.), $[\alpha]_D^{25} + 165^{\circ} \pm 15^{\circ}$ (c 0.2, CHCl₃), Rf 0.32 on silica gel tlc with chloroform - methanol (10:1), found: C 59.65, H 6.33, N 2.21, calcd. for C₃₂H₃₇NO₁₂·H₂O: C 59.52, H 6.10, N 2.17; VIb: mp $188 \sim 192^{\circ}$ C (dec.), $[\alpha]_{D}^{25} + 175^{\circ}$ $\pm 25^{\circ}$ (c 0.2, CHCl₃), Rf 0.49 on tlc, found: C 59.71, H 6.24, N 2.05.

The effects of tetrahydropyranyl derivatives on L-1210 were tested in comparison with daunomycin and adriamycin: 10^5 tumor cells were inoculated into CDF₁ mice $(20\pm 1~\rm g)$ intraperitoneally. Varied amounts $(100, 50, 25, 12.5, 6.25 \text{ and } 3.13~\mu g/\text{mouse/day})$ of each of the two diastereomers of 4'-O-tetrahydropyranyldauno-

Abbreviations: Daunomycin=DM, Adriamycin=ADM.
Tetrahydropyranyl=THP

Table 1.	Antitumor activities (T/C % of the survival period) of tetrahydropyranyl derivatives of da	auno-
myci	and adriamycin on L-1210.	

Commounds	Dose (µg/mouse/day)							
Compounds	100	50	25	12.5	6.25	3.13		
DM-HCl (I)	Toxic	138*	191	145	132	118		
4'-THP-DM(a) (IIa) 4'-THP-DM(b) (IIb)	320* 320*	>474 256	122 122	115 115	96 103	90 90		
ADM-HCl (III)	180*	>458	278	373	198	131		
14,4'-THP-ADM(a) (IVa) 14,4'-THP-ADM(b) (IVb)	154 161	115 109	109 103	96 103	103 96	96 115		
14-THP-ADM (V)	142	130	126	113	110	103		
4'-THP-ADM(a) (VIa) 4'-THP-ADM(b) (VIb)	>800**	173 >473	180 >427	187 342	120 171	127 129		

Leukemia L-1210 cells (10 5) were inoculated into CDF₁ mice (20 ± 1 g) intraperitoneally. Drugs were daily administered from day 1 to 9, intraperitoneally. Survival studies were continued up to 60 days.

Table 2. Antitumor activities of 4'-tetrahydropyranyladriamycin (VIb) and adriamycin (III) on L-1210.

Injection	Compounds		Dose (µg/mouse/day)					
			320	160	80	40	20	10
Once*	4'-THP-ADM- (b) (VIb)	T/C(%) 30 days survivor	>370 6/6	>337 5/6	>212 1/6	219 0/6	150 0/6	124 0/6
	ADM (III)	T/C (%) 30 days survivor		>290 3/6	191 0/6	144 0/6	127 0/6	121 0/6
3 times**	4'-THP-ADM- (b) (VIb)	T/C (%) 30 days survivor	>370 5/6	>370 6/6	>281 2/6	>274 3/6	152 0/6	132 0/6
	ADM (III)	T/C (%) 30 days survivor		263 0/6	>259 2/6	>292 2/6	142 0/6	126 0/6

Leukemia L-1210 cells (105) were inoculated into CDF₁ mice (20 ± 1 g) intraperitoneally.

mycin (IIa and IIb) or 4'-O-tetrahydropyranyladriamycin (VIa and VIb) were administered intraperitoneally, daily for 9 days, from one day after inoculation of tumor cells. As shown in Table 1, compound VIb, one of the 4'-O-tetrahydropyranyladriamycins had the greatest activity. The 14-O-tetrahydropyranyl derivatives (IVa, IVb and V) of adriamycin were weakly active. As shown in Table 2, one- or three-dose therapy of VIb had strong therapeutic effects.

The intravenous LD₅₀ of the most active derivative, VIb, was 27.8 mg/kg. This is approximately one-third the toxicity of adriamycin (10 mg/kg).

Electrocardiographic toxicity determined by administering VIb at 1.56, 3.13 and 6.25 mg/kg to hamsters indicated about one-fourth the toxicity of adriamycin. Administration of 3.13 mg/kg of adriamycin produced slight toxicity in 2/5 hamsters and 6.25 mg/kg caused marked changes in all hamsters; 6.25 mg/kg of VIb caused a slight changes comparable to 1.56 mg/kg of adriamycin. Accordingly, the actue cardiac toxicity of VIb was found to be significantly lower than that of adriamycin.

The results described above indicated that one of the 4'-O-tetrahydropyranyl derivatives of

^{*} Toxic ** 5 out of 6 survived.

^{*} Drugs (hydrochlorides) were intraperitoneally administered one time, 24 hours after the inoculation of cells.

^{**} Drugs (hydrochlorides) were intraperitoneally administered three times on day 1, 5 and 9.

adriamycin is an interesting compound that should be investigated further. The 4'-O-glycosidic derivatization may give other interesting derivatives. Additional studies on other derivatives will be reported in the future.

Hamao Umezawa Yoshikazu Takahashi Mitsuhiro Kinoshita* Hiroshi Naganawa Toru Masuda Masaaki Ishizuka Kuniaki Tatsuta* Tomio Takeuchi

Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan *Department of Applied Chemistry Faculty of Engineering, Keio University Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223, Japan

(Received July 17, 1979)

References

- KOMIYAMA, T.; Y. MATSUZAWA, T. OKI, T. INUI, Y. TAKAHASHI, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: Baumycins, new antitumor antibiotics related to daunomycin. J. Antibiotics 30: 619 ~ 621, 1977
- DANTCHEV, D.; M. PAINTRAND, M. HAYAT, C. BOURUT & G. MATHÉ: Low heart and skin toxicity of a tetrahydropyranyl derivative of adriamycin (THP-ADM) as observed by electron and light microscopy. J. Antibiotics 32: 1085 ~ 1086, 1979