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Abstract 

Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized 
world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac 
death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease 
at an early stage before fatal manifestations occur. Among the various molecular imaging tech-
niques, this review mainly focuses on positron emission tomography (PET) imaging of athero-
sclerosis. The targets and pathways that have been investigated to date for PET imaging of ath-
erosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), in-
tegrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance re-
ceptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, 
platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. 
Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death 
caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical 
to the benefit of patients. 

Key words: Positron emission tomography (PET), atherosclerosis, molecular imaging, vulnerable 
plaques, cardiovascular diseases. 

Introduction 
Atherosclerosis is a leading cause of death in 

developed countries and it is crucial to distinguish the 
unstable plaques from the stable ones to increase the 
survival of patients with early intervention [1]. The 
initial abnormality in the pathogenesis of atheroscle-
rotic plaques is the fatty streak, a white/yellow linear 
discoloration that is visible macroscopically on the 
endothelial surface of an artery, caused by accumula-
tion of lipids and macrophages. This initial lesion 
matures into an atherosclerotic plaque with the ac-
cumulation of lipid and connective tissue, in particu-
lar collagen. As the plaque grows, the vessel expands 
to preserve the blood flow, a process known as posi-

tive remodeling. The artery eventually can expand no 
farther, and the plaque begins to occlude the lumen of 
the vessel causing circulatory obstruction [2-4] (Fig-
ure 1). Unstable plaques that are prone to cardiovas-
cular accidents demonstrate a thin fibrous cap, large 
lipid core, paucity of smooth muscle cells and abun-
dance of inflammatory cells (Figure 2) [5, 6].  

Clinical imaging of atherosclerosis 
 Traditionally atherosclerosis is visualized based 

on the anatomical changes in the vessel walls such as 
calcification and stenosis. Many techniques have been 
used for imaging of atherosclerosis in the clinic, such 
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as X-ray angiography, optical coherence tomography 
(OCT), intravascular ultrasound (US), computed to-
mography (CT), magnetic resonance imaging (MRI), 
single photon emission computed tomography 
(SPECT), positron emission tomography (PET), etc. 
[4]. Angiography yields an excellent resolution but it 
is highly observer dependent and not very reproduc-
ible [7-9]. Moreover diffuse arterial narrowing with-
out obvious luminal irregularity can be easily missed 
in angiographic images [10]. Even if angiography 
could demonstrate the luminal narrowing accurately, 
it has been documented that acute coronary syn-
dromes often result from plaque rupture at sites with 
no or only modest luminal narrowing based on an-
giography [11-13].  

Molecular imaging of atherosclerosis 
 Many biological changes take place in athero-

sclerotic plaques preceding the appearance of ana-
tomical disturbances [24, 25]. Given that a large pro-
portion of people who suffer a sudden cardiac event 
have no prior symptoms [26], it is crucial for diagnos-
tic procedures to go beyond the simple assessment of 
the vessel lumen to identify rupture-prone vulnerable 

plaques [6]. When compared with traditional meth-
ods, molecular imaging approaches have a number of 
advantages, such as enabling noninvasive study of 
cells in their natural microenvironment hence 
providing information on the whole biological pro-
cess rather than a small part of it. In terms of experi-
mental studies it is possible to perform longitudinal 
studies in the same animals with molecular imaging 
techniques, which will reduce the cost and can pro-
vide better statistical power.  

 Since the beginning of the 21st century, the field 
of molecular imaging has expanded tremendously 
[27-34]. Many of the preclinical imaging studies fo-
cused on atherosclerosis involved the use of MRI 
and/or optical techniques, for which excellent recent 
reviews are available [4, 6, 11, 35-37]. A few other 
imaging techniques have also been employed for im-
aging of atherosclerosis such as Raman spectroscopy, 
which measures the light-scattering effects [23, 38]. In 
one study, Raman spectroscopy was used for imaging 
atherosclerosis associated inflammation with prote-
ase-activated fluorescent probes (representing cap-
thesin-B and matrix metalloprotease (MMP)-2/9 ex-
pression) [39].  

 

 
Fig 1. The developmental stages of an atherosclerotic lesion. AHA (American Heart Association) stage of the disease is indicated at the bottom of each 
corresponding column. Adapted from reference [6]. 
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Fig 2. Mac-3 immunostaining of a severely inflamed atherosclerotic plaque. 
Macrophages are seen in brown, while adventitia and healthy vessel wall 
areas were Mac-3 negative. L: lumen; P: plaque; W: wall. Adapted from 
reference [79]. 

 
 Molecular vascular imaging with PET can ena-

ble early detection of these changes, thereby decreas-
ing the dependence to invasive biopsies or surgical 
procedures to characterize diseased tissues [11, 20, 23, 
24, 40, 41]. PET can detect tracer concentrations in the 
picomolar range, providing 4-5 mm resolution with 
clinical PET scanners and 1-2 mm with small animal 
PET scanners, and has been routinely used in clinical 
cancer patient management and preclinical research 
[42-48]. Although there is no optimal PET tracer for 
routine clinical imaging of atherosclerosis available to 
date [10], various imaging agents have been investi-
gated for PET imaging of atherosclerosis, targeting 
different components of the atherosclerotic plaque 
(Table 1). 

 In this review, we will summarize the targets 
and tracers used for PET imaging of atherosclerosis in 
experimental and clinical studies. The targets and 
pathways that have been investigated to date for PET 
imaging of atherosclerosis include: glycolysis, cell 
membrane metabolism (phosphatidylcholine synthe-
sis), integrin αvβ3, low density lipoprotein (LDL) re-

ceptors (LDLr), natriuretic peptide clearance receptors 
(NPCRs), fatty acid synthesis, vascular cell adhesion 
molecule-1 (VCAM-1), macrophages, platelets, etc. 
(Table 1). To create experimental models for athero-
sclerosis, animals are typically kept on a high fat diet. 
Commonly used animal models for studying athero-
sclerosis are: C57BL/6 Apolipoprotein (Apo) E-/- 

mice, C57BL/6 LDL receptor deficient mice (LDLr-/- 
mice), heterozygous LDL receptor deficient rabbits 
(LDLr+/- rabbits), and homozygous LDL receptor de-
ficient rabbits (LDLr-/- rabbits) [49-51]. The aorta is 
typically used as the human coronary artery analog in 
rodents since the diameter of mouse aorta is ~1 mm, 
comparable to the size of small arteries in humans 
[11]. 

 

Table 1. Summary of targets and tracers used for PET imaging of 
atherosclerosis. 

Target Tracer Preclinical Clinical 
Glucose metabolism 18F-FDG [52, 53, 59] [10, 54-58, 

60, 63] 
Membrane metabo-
lism 

18F-choline [65] - 
11C-choline     - [67] 

Integrin αvβ3  18F-galacto-RGD [68]  [69]  
LDLr 124I-CD68-Fc-ox-LDL [70] - 

18F-nLDL & ox-LDL [71] - 
NPCR 64Cu-DOTA-C-ANF [72, 73] - 
Fatty acid synthesis 11C-acetate - [74] 
VCAM-1 18F-V4 [77]  - 
Macrophages 64Cu-TNP [78] - 

68Ga [79] - 
11C-PK11195  [81] 

Platelets 18F-AppCHFppA [82] - 

 
 

PET imaging of atherosclerosis with 
18F-FDG  

 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) is one 
of the most frequently used PET tracers for in vivo 
imaging of atherosclerosis [4]. Deoxyglucose is a 
glucose analog that competes with glucose for uptake 
into metabolically active macrophages in atheroscle-
rotic plaques. After being labeled with 18F, the re-
sultant 18F-FDG is taken up into metabolically active 
cells but is not metabolized and thereby accumulates 
in atherosclerotic plaques (Figure 3A) [4]. More than 
15 years ago, studies have demonstrated uptake of 
18F-FDG in the region of the aortic arch in a rabbit 
model of atherosclerosis [52], while normal rabbits 
did not show increased uptake above background 
levels. Ex vivo analysis of the aortic arch confirmed 
18F-FDG uptake in areas of atherosclerosis that were 
rich in macrophages. In another early study, Leder-
man et al. [53] documented a 4-fold increase in 
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18F-FDG uptake by atherosclerotic plaques in iliac 
arteries of New Zealand White rabbits fed with high 
cholesterol diet.  

 A number of studies have been reported in pa-
tients. Yun et al. [10] reported the increased uptake of 
18F-FDG in 137 consecutive patients correlated with 
atherogenic risk factors. Among all risk factors, age 
was found to be the most significant factor. In another 
study, Rudd et al. [54] documented the ability of 
18F-FDG PET to image inflammation within carotid 
artery atherosclerotic plaques in 8 patients with 
symptomatic carotid atherosclerosis, who had expe-
rienced a recent carotid territory transient ischemic 
attack (TIA) and had an internal carotid artery steno-
sis of at least 70%. Several other clinical studies fol-
lowed [55-58].  

 However, in a study carried out by Laurberg et 
al. [59], the authors did not observe increased aortic or 
carotid tracer accumulation in hypercholesterolemic, 
ApoE−/− mice. Moreover, Menezes et al. [60] retro-

spectively examined 250 PET/CT images of 50 pa-
tients covering a 5 year period and found that they 
could not reproduce the similar results in subsequent 
images in patients with initially increased 18F-FDG 
uptake in carotids and the aorta. Therefore, it was 
concluded that increased 18F-FDG uptake in arterial 
lesions is a transient phenomenon. The discrepancy 
between the results of these studies and others re-
mains unexplained [61, 62]. In an interesting report, it 
was shown that different mechanisms for stimulation 
of macrophages, smooth muscle cells, and endothelial 
cells may contribute to increased 18F-FDG uptake in 
atherosclerotic plaques [63]. Experimental evidence 
suggested that hypoxia may play an important role in 
18F-FDG accumulation in atheromata, which deserves 
to be investigated in more detail in animal models and 
clinical settings to further our understanding of the 
biological mechanisms and significance of 18F-FDG 
uptake in atheromata. 

 

 
Fig 3. PET imaging of atherosclerosis with various tracers. A. Carotid atherosclerotic lesion in a male patient visualized by PET/CT. White arrows 
show 18F-FDG uptake at the level of the plaque in carotid artery. B. 11C-choline PET/CT images of the aortic arch of a male patient. White arrow indicates 
the atherosclerotic lesion. C. A representative transverse PET slice demonstrating the uptake of 64Cu-DOTA-C-ANF on injured (yellow arrow) and 
control (green arrow) arteries in rabbit femoral artery. F (arrow): fiducial marker. Adapted from references [4, 67, 72]. 
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PET imaging of atherosclerosis with ra-
diolabeled choline 

 Choline is taken up into cells by specific 
transport mechanisms, phosphorylated by choline 
kinase, metabolized into phosphatidylcholine, and 
eventually incorporated into the cell membrane [61]. 
Increased uptake of choline has been observed in ac-
tivated macrophages [64], which led to the idea of 
using radiolabeled choline for PET imaging of ather-
osclerotic plaques. For example, Matter et al. [65] used 
18F-Choline as the tracer to detect atherosclerotic 
plaques in ApoE−/− mice and reported superior re-
sults when compared with 18F-FDG. Laitinen et al. [66] 
observed a high 11C-choline uptake in the aortic 
plaques of atherosclerotic mice deficient for both 
LDLr and apolipoprotein B48. Kato et al. [67] reported 
an increased 11C-choline uptake in vessel walls of 93 
consecutive male patients between 60 and 80 years old 
(Figure 3B). However, PET tracer uptake and calcifi-
cation are rarely co-localized. Therefore, it was con-
cluded that 11C-choline has the potential to provide 
information about atherosclerotic plaques independ-
ent of calcification measurement.  

PET imaging of atherosclerosis targeting 
integrin αvβ3 

 Integrin αvβ3 is a cell adhesion molecule ex-
pressed by macrophages and endothelial cells in ath-
erosclerotic lesions [4]. Laitinen et al. [68] evaluated 
integrin αvβ3 deposition in atherosclerotic plaques in 
mice with 18F-galacto-RGD PET (RGD denotes argi-
nine-glycine-aspartic acid, potent antagonists of in-
tegrin αvβ3). They dissected the aorta of mice 2 hours 
after tracer injection and found that biodistribution of 
18F-galacto-RGD was higher in the atherosclerotic 
than in the normal aorta, and 18F-galacto-RGD uptake 
was directly correlated with macrophage density in 
the plaques. In a previous clinical study, Beer et al. 
[69] investigated the dosimetry of 18F-galacto-RGD in 
18 human subjects and concluded that it demonstrates 
high metabolic stability, a favorable biodistribution, 
and a low radiation dose. Therefore, this tracer can 
safely be used for noninvasive PET imaging of mo-
lecular processes (e.g. atherosclerosis) involving in-
tegrin αvβ3. 

PET imaging of atherosclerosis with 
18F-labeled LDL  

 Oxidation of LDL is regarded as a crucial event 
in atherogenesis. Langer et al. [70] conjugated 124I to 
the scavenger receptor CD68 (soluble CD68-Fc) and 
used this molecule for the detection of atherosclerotic 
plaques in wild type or ApoE-/- mice. Since CD68 

binds to oxidized LDL (ox-LDL) molecules and me-
diates their uptake, this tracer could be a useful tool 
for noninvasive imaging of atherosclerosis. In another 
study, Pietzsch et al. [71] reported PET imaging with 
18F-labeled native LDL (nLDL) and ox-LDL after in-
jection into male Wistar rats. It was suggested that the 
use of 18F-labeled LDL could be an attractive alterna-
tive to iodinated LDL. Future studies are warranted to 
clarify the potential of radiolabeled LDL for the de-
tection of atherosclerotic changes.  

PET imaging of atherosclerosis targeting 
NPCR 

 Natriuretic peptides (NPs) have potent antipro-
liferative and antimigratory effects on vascular 
smooth-muscle cells and participate in vascular re-
modeling in atherosclerosis. The expression of NPCRs 
is upregulated both in endothelium and in vascular 
smooth-muscle cells during the formation of athero-
sclerotic plaques [72]. Liu et al. [72] investigated the 
potential of radiolabeled C-type atrial natriuretic fac-
tor (C-ANF) to noninvasively image developing 
plaque-like lesions. C-ANF was linked with 
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic 
acid (DOTA) and labeled with 64Cu for noninvasive 
PET in a hypercholesterolemic rabbit model, which 
demonstrated that 64Cu-DOTA-C-ANF was a prom-
ising candidate for PET of NPCR in atherosclerotic 
plaques (Figure 3C). In a follow-up study, the same 
group developed a C-ANF-integrated, 64Cu-labeled 
nanoprobe for in vivo PET imaging of NPCR during 
angiogenesis in a mouse hindlimb ischemia model 
[73].  

PET imaging of atherosclerosis with other 
tracers 

 In addition to the abovementioned examples, 
many other tracers have been investigated for imag-
ing of atherosclerosis. Derlin et al. [74] used 
11C-acetate PET/CT for the evaluation of atheroscle-
rotic plaques in 36 patients (Figure 4). Fatty acids are a 
common constituent of atherosclerotic plaque and 
may be synthesized in the plaque itself. Fatty acid 
synthesis requires acetyl-coenzyme-A (CoA) as a 
main substrate, which is produced from acetate. 
Therefore, 11C-acetate, just like 18F-FDG, can be used 
as a non-specific tracer for in vivo imaging of athero-
sclerotic plaques.  

 VCAM-1 is a monocyte and lymphocyte adhe-
sion factor expressed by endothelial cells under 
pro-atherogenic conditions [75, 76]. Nahrendorf et al. 
[77] have investigated the potential of VCAM-1 as a 
target for PET imaging of vulnerable plaques. A te-
trameric VCAM-1 affinity peptide (V4), which can be 
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internalized into endothelial cells after VCAM-1 
binding, was labeled with 18F and tested in athero-
sclerotic ApoE-/- mice receiving a high-cholesterol 
diet. The tracer was found to be suitable for noninva-
sive PET imaging of VCAM-1 in inflammatory ather-
osclerosis, as well as monitoring the effects of thera-
peutic intervention. In another study, Nahrendorf et 
al. [78] also reported the use of a 64Cu-labeled, dex-
tranated, diethylenetriaminepentaacetic acid 
(DTPA)-modified magnetofluorescent nanoparticle 
for imaging of atherosclerotic plaques. The agent was 
termed 64Cu-TNP (i.e. trireporter nanoparticle), where 
its uptake in atherosclerosis was based on the avidity 
of lesional macrophages for polysaccha-
ride-containing supramolecular structures. It was 
found that 64Cu-TNP accumulated predominantly in 
macrophages in atherosclerotic plaques in ApoE-/- 
mice (Figure 5).  

  
 

 
Fig 4. Transaxial 11C-acetate PET/CT images of abdominal aorta of a male 
patient. Tracer uptake in vessel wall coincided with calcification in some 
areas (white arrow), whereas other calcifications of comparable size did 
not accumulate 11C-acetate (white arrow heads). Adapted from reference 
[74]. 

 
 Silvola et al. [79] investigated the uptake of ionic 

68Ga in atherosclerotic LDLr-/-ApoB100/100 mice. 
PET/CT imaging revealed an elevated 68Ga uptake in 
the aortic atherosclerotic plaques of mice, especially at 
the sites that are rich in macrophages. Ex vivo biodis-
tribution studies and autoradiography of aortic cryo-
sections confirmed the results of in vivo imaging. 
However, it was stated that the slow blood clearance 
may limit the clinical usability of 68Ga as a PET tracer 

for imaging of atherosclerosis. In another study, Yano 
et al. [80] suggested that 68Ga-labeled platelets could 
be useful for PET imaging of thrombosis or athero-
sclerosis. However, no in vivo studies were carried 
out, although in vitro labeling of rabbit platelets with 
68Ga was successful.  

 

 
Fig 5. PET/CT imaging of inflammatory atherosclerosis in ApoE-/- mice 
injected with 64Cu-TNP. Adapted from reference [78]. 
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Gaemperli et al. [81] recently suggested the use 
of 11C-PK11195, a selective ligand of the translocator 
protein which is highly expressed by activated mac-
rophages, for PET imaging of atherosclerosis. Initial 
results obtained from 32 patients with carotid stenosis 
were encouraging. Elmaleh et al. [82] evaluated PET 
imaging with 18F-AppCHFppA, a competitive inhibi-
tor of adenosine diphosphate-induced platelet ag-
gregation, to detect atherosclerotic lesions in male 
New Zealand White rabbits. It was reported that the 
accumulation of 18F-AppCHFppA in macrophage rich 
atherosclerotic plaques could be quantified noninva-
sively.  

Conclusion and future perspectives 
 A wide variety of targets and tracers have been 

investigated for PET imaging of atherosclerosis, 
which has significant potential for translation and 
future clinical imaging of atherosclerosis. Among 
these PET tracers, inflammation-targeted tracers seem 
particularly promising. Monocytes, macrophages, and 
foam cells play important roles in the evolution and 
complications of atherosclerosis [83]. Following their 
migration to the lesion site, these cells scavenge lipids, 
secrete cytokines that further amplify inflammation 
and produce proteases that can be noninvasively 
visualized with the use of suitable tracers [11, 83]. The 
most commonly used PET tracer for imaging of ath-
erosclerosis is 18F-FDG, with many other tracers al-
ready tested clinically: 11C-choline [67], 
18F-galacto-RGD [69], 11C-acetate [74], and 
11C-PK11195 [81]. Since 11C-PK11195 specifically binds 
to macrophages through translocator proteins that are 
highly expressed on activated macrophages, it may 
provide more specificity for imaging of atherosclero-
sis than 18F-FDG.  

 An important contribution of PET imaging of 
atherosclerosis will be to determine the at-risk indi-
viduals earlier in the disease process by targeting one 
of the abovementioned components at the early stage 
of disease. It may also prove to be useful in deter-
mining the biological responses to certain therapeutic 
intervention. The key strengths of PET include its 
excellent sensitivity, limitless depth of penetration, 
and quantitation capabilities [27]. However, the small 
size of the atherosclerotic lesions and their vicinity 
with blood, the unbound/circulating tracer activity, 
and the continuous respiratory and cardiac move-
ments during the acquisition of the images are the 
unsolved issues in PET imaging of atherosclerosis [11, 
12, 84]. The availability of PET/MR systems [85, 86], 
where MRI can provide high spatial resolution and 
exquisite soft tissue contrast to complement PET, may 
dramatically facilitate the translation of promising 
PET tracers into the clinic for atherosclerosis imaging.  

 Measurement of regional and global calcification 
of the heart and major arteries using 18F-NaF PET/CT 
may also be useful for early detection of atherosclero-
sis [87]. This technique may provide highly relevant 
information about the state of calcified plaque before 
structural calcification is detectable by standard CT 
techniques, thereby allowing for earlier intervention 
for risk reduction in cardiovascular diseases [87, 88]. 
Another potential target for the PET imaging of ath-
erosclerosis is CD105 (i.e. endoglin), where it was 
demonstrated that precursor atherosclerotic lesions 
exhibit intimal neovascularization that are associated 
with increased CD105 expression on endothelial cells 
[89-91]. In addition, CD105 also plays a role in reste-
nosis after stent placement [92], therefore can be used 
as a marker for the progression of coro-
nary atherosclerosis. We have recently developed a 
series of CD105-targetted PET and/or optical imaging 
probes [93-96], which may be applied for PET imaging 
of atherosclerosis in the near future. In conclusion, 
PET imaging of atherosclerosis is still at a nascent 
stage which needs significant future research effort. 
Smooth clinical translation of promising PET tracers 
into the clinic is critical to the benefit of patients.  
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