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Abstract 

Oral cavity cancer is a type of head and neck squamous cell carcinoma (HNSCC) and contributes to 
significant morbidity and mortality each year. An epigenetic pathway of transcriptional inactivation for 
many genes has been described in various cancers, including HNSCC. For our study, we selected genes 
for which silencing caused by hypermethylation can promote cancer development. In 75 primary HNSCC 
tumours and paired surgical margins, we investigated the methylation status of the p16, APC, MGMT, 
TIMP3 and CDH1 gene promoters by methylation–specific PCR after bisulphite treatment. The promoter 
methylation rates of p16, APC, MGMT, TIMP3 and CDH1 in tumours were 58.67%, 49.33%, 58.67%, 
50.67%, and 57.33% and 50.67%, 41.33%, 37.33%, 42.67%, and 25.33% in the surgical margin, respectively. 
Our observations confirm the presence of epigenetic changes not only in the cancer cells, but also in the 
surrounding mucosa and represent a basis for further analysis to unravel these complicated issues. 
Appropriate cancer risk assessment based on epigenetic alterations in surgical margins may influence a 
patient’s diagnosis and cure. 

Key words: methylation, genes, tumour, surgical margin, oral cavity cancer, head and neck squamous cell carcinoma 
(HNSCC)  

Introduction 
Oral cavity cancer is an example of head and 

neck squamous cell carcinoma (HNSCC) in the head 
and neck area and can be defined as a malignant 
tumour derived from squamous epithelial cells that 
contributes significant morbidity and mortality each 
year [1]. Alcohol and tobacco abuse is recognized as 
an initiating element in HNSCC, and HPV infection is 
also defined as a preliminary factor [2-4]. Molecular 
alterations and aberrant signalling pathways in 
carcinogenesis of the head and neck have been 
identified [5]. As well as genetic abnormalities, 
epigenetic alterations have also been implicated in 
cancer. Epigenetic changes are defined as modified 

gene expression patterns caused by mechanisms that 
do not concerns the primary DNA sequence. 
Epigenetic alteration relates to gains and losses of 
DNA methylation and to histone modifications. 
Aberrant DNA methylation comprises gene- 
promoter-specific hypermethylation and its 
mechanism causing loss of gene expression, and 
global hypomethylation as a prelude to structural 
changes in chromosomes, genome instability, and 
oncogene activation [6]. DNA methylation is an 
encouraging marker for past exposure to carcinogens 
and future risk of cancer development [7]. An 
epigenetic pathway of transcriptional inactivation for 
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many genes has been described in various cancers 
[8-11]. Other publications address epigenetic changes 
in HNSCC cancers [10, 12-17], but few have compared 
the methylation level of tumours vs surgical margins 
[18-20]. Promoter hypermethylation in tissue samples 
can be detected by many molecular methods [11, 18, 
21, 22] including methylation–specific polymerase 
chain reaction (MSP) [23, 24]. In our study, we 
analysed samples of tumours and paired surgical 
margins to examine the promoter methylation status of 
p16, APC, MGMT, TIMP3 and CDH1 genes. All these 
genes are known to participate in the oncogenic 
pathway and to show tumour suppressor activities. 
We also evaluated the association of promoter 
methylation of these genes with clinicopathological 
features, habitual factors, metastasis, tumour 
recurrence rate, and 5-year survival rate of patients. 

Materials and Methods  
Study population 

We studied 75 patients with primary tumours in 
the oral cavity. There were 50 men and 25 women, 
with a mean age of 56 ± 11 years. There was no 
difference in age between men and women (55 ± 12 vs 
56 ± 81, p = 0.708). All of the patients were graded by 
the TNM staging system. Of the 75 patients, 4 (5.3%) 
were in the T1 stage, 11 (14.7%) were in the T2 stage, 
18 (24.0%) were in the T3 stage and 42 (56.0%) were in 
the T4 stage. There was no statistically significant 
difference in the T and N stage distributions between 
men and women. Moreover, 31 (41.3%) were in the N0 
stage, 28 (37.3%) were in the N1 stage, 15 (20.0%) were 
in the N2 stage and 1 was in the N3 stage. Histologic 
grading was classified as grade 1 (G1, well 
differentiated), grade 2 (G2, moderately differ-
entiated), and grade 3 (G3, poorly differentiated). In 
G1 there were 11 (14.7%) subjects and in G2 there 
were 57 (76.0%), and the rest were in G3. 

In all groups, 58 (77.3%) subjects smoke 
(currently), 57 (76.0%) reported alcohol intake and 30 
(40.0%) reported a family cancer episode (first-degree 
family history of cancer). Females smoked and drank 
less frequent than males (64.0 % vs 84.0; p<0.05 and 
52.0% vs 88.0%; p<0.001). There was no difference in 
previously reported family cancer episodes between 
men and women (40% in both groups). Survival rate 
in the analysed group was 46.7%, with metastasis 
observed in 13.3% and tumour recurrence in 32%. No 
patients received preoperative radio- or 
chemo-therapy. This study was approved by the 
Institutional Review Board on Medical Ethics of the 
Maria Sklodowska–Curie Memorial Cancer Center 
and Institute of Oncology in Gliwice (Nos. 
KB/493-15/08 and KB/430-47/13). All patients gave 

written informed consent. 

Tissue samples 
Samples were collected from 75 HNSCC patients 

with a previously untreated squamous cell carcinoma 
from the oral cavity at the Clinic of Oncological and 
Reconstructive Surgery, Maria Sklodowska–Curie 
Memorial Cancer Center and Institute of Oncology, 
Gliwice, Poland. Samples of surgical margins were 
obtained pair-wise from the site opposite the tumour 
and verified by a pathologist as free of cancer cells. 
Only patients who had tumour-free margins when the 
primary tumour was resected were included in the 
study. Tissue samples were quickly frozen in liquid 
nitrogen and stored at -80°C before DNA extraction.  

DNA extraction and bisulphite modification  
Genomic DNA was extracted from each tumour 

sample and corresponding surgical margin (20 mg) 
using a DNeasy Blood & Tissue Kit (Qiagen, USA) 
according to the manufacturer’s instructions and after 
tissue homogenization in a FastPrep®-24 instrument 
using Lysing Matrix A tubes (MP Biomedicals, USA). 
Total DNA concentration was measured using a 
ND-1000 spectrophotometer (NanoDrop, USA). The 
gDNA was bisulphite-treated using the method 
described by Herman and colleagues [23]: 2 μg DNA 
in a volume of 50 μl was alkali denatured in 2M 
NaOH and incubated in 10 mM hydroquinone 
(Sigma, USA) and 3M sodium bisulphite, pH 5.0 
(Sigma, USA) for 16 hours at 50°C in a microfuge tube 
with a mineral oil layer. Modified DNAs were 
purified using the Wizard DNA Clean-Up System 
(Promega, USA) and eluted into 50 μl of sterile water. 
DNA was again treated with 3M NaOH, precipitated 
with ethanol in 3M sodium acetate, pH 5.2 and 
resuspended in 20 μl of water. 

Methylation-specific PCR (MSP) 
DNA methylation patterns in the CpG islands of 

the p16, APC, MGMT, TIMP3 and CDH1 gene 
promoters were determined using a methylation- 
specific PCR (MSP) technique following bisulphite 
modification of isolated genomic DNA [23]. To obtain 
specific PCR products, two separate PCRs were 
performed for each sample. “U” primers amplified 
only unmethylated DNA, while “M” primers 
amplified only methylated DNA in the regions of p16, 
APC, MGMT, TIMP3 and CDH1 gene promoters. Each 
chemically modified DNA sample was amplified with 
primers “U” and “M”, respectively. Primer sequences 
of gene promoters for the unmethylated reaction '"U" 
and for the methylated reaction "M" with thermal 
cycling conditions and product size are shown in 
Table 1. A primer set was chosen for the promoters of 
selected gene sequence regions based on the 
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previously published sequences in Table 1. Primers 
were synthesized by Genomed (Poland). 
Amplification of the p16, APC, MGMT, TIMP3 and 
CDH1 genes was performed in 25 μl of reaction 
mixture under the following conditions: 12.5 μl PCR 
Master Mix (Cat No. M7501; Promega, USA), 1.2 μl of 
each primer at a concentration of 10 μM; 2 μl of 
modified DNA; and 8.1 μl of sterile water (Eppendorf, 
Germany). CpGenome Universal Methylated DNA 
(Chemicon Cat No. S7821) was used as a positive 
control for methylation, while water was used as a 
negative control for PCR. To verify the results, we 
used the EpiTec PCR Control DNA Set (Qiagen, USA, 
Cat No 59695) consisting of bisulphite- 
converted methylated and unmethylated human 
DNA and unconverted unmethylated human DNA. 
Amplification was performed in a Mastercycler Pers-
onal thermocycler (Eppendorf, Germany). PCR prod-
ucts were visualized on a 2% agarose gel (Sigma, 
USA) with ethidium bromide (Serva, Germany) 
staining. 

Statistical analysis 
Statistical analysis was performed using 

STATISTICA 10.0 PL (StatSoft, QUEST, Tulsa, 
Oklahoma, USA). Statistical significance was set at a p 
value below 0.1. All tests were two-tailed. Nominal 
and ordinal data were expressed as percentages, 
while interval data were expressed as mean value ± 
standard deviation. Categorical variables were comp-
ared using χ2 tests. The consistency of methylation 
between a tumour and a margin was determined and 
assessed statistically with the McNemar test. For 
comparison of quantitative data between males and 
females, a parametric t-Student test was used. 
Distribution of variables was evaluated by the 
Shapiro-Wilk test, and homogeneity of variance was 
assessed by the Levene test. The assessment of 
association between clinical status, habitual factors 
and methylation occurrence was performed with the 
multivariable backward-stepwise logistic regression. 
Factors affecting survival, metastasis and tumour 
recurrence was assessed with the multivariable back-
ward-stepwise logistic regression. Results were 
presented as odds ratios with confidence interval and 
statistical significance. 

Results  
Methylation of the p16, APC, MGMT, TIMP3 and 

CDH1 gene promoters was detected in tumours and 
surgical margins. The methylation frequency of the 
MGMT and CDH1 genes was significantly higher in 
tumours than in surgical margin tissues (p<0.01). The 
promoter methylation status of these genes in tum-
ours and surgical margins is summarized in Table 2. 

 

Table 1. Primer sequences and amplicon characteristics of 
analysed genes 

Gene Primer sequences Annealing 
temperature 

Product 
size 

Reference 

p16 
(M) 

F:TTATTAGAGGGTGGGGCG
GATCGC  

61ᵒC - 30 s 150 bp Wang et al. 
[25] 

 R:GACCCCGAACCGCGACC
GTAA  

  

p16 (U) F:TTATTAGAGGGTGGGGTG
GATTGT  

60ᵒC - 30 s 151 bp Wang et al. 
[25] 

 R:CAACCCCAAACCACAAC
CATAA  

  

APC 
(M) 

F:GAACCAAAACGCTCCCCA
T  

59ᵒC - 45 s 74 bp Righini et 
al. [26]  

 R:TTATATGTCGGTTACGTGC
GTTTATA  

  

APC 
(U) 

F:AAACCAAAACACTCCCCA
TTC  

59ᵒC - 45 s 76 bp Righini et 
al. [26]  

 R:AGTTATATGTTGGTTATGT
GTGTTTAT  

  

MGMT 
(M) 

F:TTTCGACGTTCGTAGGTTT
TCGC  

59ᵒC - 45 s 81 bp Shilpa et 
al. [27] 

 R:GCACTCTTCCGAAAACGA
AACG  

  

MGMT 
(U) 

F:TTTGTGTTTTGATGTTTGT
AGGTTTTTGT  

59ᵒC - 45 s 93 bp Shilpa et 
al. [27]  

 R:AACTCCACACTCTTCCAA
AAACAAAACA  

  

TIMP3 
(M) 

F:GCGTCGGAGGTTAAGGTT
GTT  

60ᵒC - 30 s 116 bp Righini et 
al. [26] 

 R:CTCTCCAAAATTACCGTA
CGCG  

  

TIMP3 
(U) 

F:TGTGTTGGAGGTTAAGGT
TGTTTT  

59ᵒC - 1 min 122 bp Righini et 
al. [26]  

 R:ACTCTCCAAAATTACCAT
ACACACC  

  

 CDH1 
(M) 

F:TTAGGTTAGAGGGTTATC
GCGT  

58ᵒC - 1 min 173 bp Righini et 
al. [26]  

 R:TAACTAAAAATTCACCTA
CCGAC  

  

 CDH1 
(U) 

F:TAATTTTAGGTTAGAGGG
TTATTG 

58ᵒC - 1 min 173 bp Righini et 
al. [26]  

 R:CACAACCAATCAACAAC
ACA  

  

 

Table. 2. Promoter methylation frequency of p16, APC, MGMT, TIMP3 and CDH1 genes in tumour and surgical margin in oral cavity 
patients 

Gene Tumour Margin p-value 
Total Methylation Frequency (%) Total Methylation Frequency (%) P 

p16 75 44 58.67  75 38 50.67  0.325 
APC 75 37 49.33  75 29 41.33  0.188 
MGMT 75 44 58.67  75 28 37.33  < 0.01 
TIMP3 75 38 50.67  75 32 42.67  0.326 
CDH1 75 43 57.33  75 19 25.33  < 0.001 
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Moreover, we investigated the clinical and 
habitual factors associated with methylation 
occurrence. In the APC gene we observed that positive 
nodal status conferred a higher methylation rate in 
matched margin samples (OR=1.66; 95% CI: 0.92-3.01; 
p<0.1). Habitual factors linked to cigarettes were 
associated with higher methylation of the APC gene in 
tumour samples (OR=3.60; 95% CI: 0.97-13.39; p<0.1). 
MGMT methylation was diminished in tumour 
samples (OR=0.38; 95% CI: 0.13-1.06; p<0.1) and in 
margin samples from females (OR=0.23; 95% CI: 
0.06-0.84; p<0.05). Patients with a family history of 
cancer showed more frequently methylated MGMT 
genes in tumour samples (OR=3.04; 95% CI: 1.08-8.55; 
p<0.05). We noted that advanced tumour stage was 
associated with a higher frequency of methylation of 
this gene in matched surgical margin samples 
(OR=1.78; 95% CI: 0.98-3.24; p<0.1). However, 
patients with a history of abusing alcohol showed 
lower MGMT promoter methylation in the surgical 
margin (OR=0.13; 95% CI: 0.03-0.56; p<0.01). Analysis 
of the TIMP3 gene showed that the female gender 
conferred a higher methylation level in margin 
samples (OR=2.49; 95% CI: 0.89-6.95; p<0.1) and a 
positive N stage showed a higher methylation level in 
tumour samples (OR=1.79; 95% CI: 0.96-3.35; p<0.1). 
For the CDH1 gene, an increased methylation level 
was seen in tumour samples from females (OR=2.61; 
95% CI: 0.88-7.73; p<0.1) and smoking was associated 
with higher CDH1 methylation both in tumour 
(OR=3.13; 95% CI: 0.91-10.80; p<0.1) and margin 
samples (OR=7.12; 95% CI: 0.87-59.36; p<0.1).  

Patients with an advanced T classification were 
significantly associated with a increased risk of death 
(OR=9.64; 95% CI: 2.07-44.87; p<0.01). Disease 
recurrence was significantly related to female gender 
(OR=0.22; 95% CI: 0.06-0.78; p<0.05) and showed a 
trend towards a lower recurrence rate. No association 
was observed between metastasis, recurrence, or 
survival rate and hypermethylation of any of the 
genes analysed. Moreover, aberrant promoter 
hypermethylation of all five genes (CpG Island 
Methylator Phenotype, CIMP-positive) was found in 
tumour samples in four cases (5.3%).  

Discussion 
p16 

p16INK4a (CDKN2A) is one of the most extensively 
studied genes in cancer, including epigenetic 
alterations. Hypermethylation of p16 has been 
observed in many tumour types e.g., colon, breast, 
brain, kidney, pancreas, liver [28] and also in HNSCC 
in several studies [12, 16, 19, 24, 28-31], not only in 
tumour tissues but also in adjacent healthy mucosa 

[19, 24, 30, 31]. In our study, the promoter region was 
highly methylated in tumour tissue (58.7%). 
Moreover, 42.6% of patients showed hyper- 
methylation of this gene both in the tumour and 
matched surgical margin. According to our collected 
literature, the frequencies of hypermethylation in 
HNSCC tumours vary from 86.8% [31] to 82% [32], 
49% [24], 36% [12], and 27% [28] to 20% [19]. Other 
analyses showed a significant increase in promoter 
hypermethylation in tumours compared to normal 
control tissue from the resection margin in oral cancer 
[33-35]. A coherent methylation pattern was found in 
primary tumours and matched metastatic lymph 
nodes, and also in 65% of patient's plasma [24]. 
Interestingly, some studies showed methylation in 
patients with premalignant oral lesions and healthy 
controls [24, 29, 32]. p16 hypermethylation showed no 
association with clinical and demographic features in 
our study population, as confirmed in other studies 
[12, 19, 24, 30, 36-38]. However, some reports show 
that promoter methylation of p16 both in tumours and 
margins may be linked to chronic exposure to 
carcinogens in alcohol and tobacco [24, 39, 40]. 
Moreover, based on other findings, hypermethylation 
of p16 was associated with younger age, nodal 
involvement, distant metastasis, increased recurrence 
rate and shortened disease-free survival, suggesting it 
as a candidate prognostic and predictive biomarker in 
oropharyngeal squamous cell carcinoma [18, 29, 31, 
34, 39-41]. 

APC 
Adenomatous Polyposis Coli (APC) is a tumour 

suppressor gene that, through Wnt signalling, inhibits 
cell proliferation [42]. In the present study, 
methylation of this gene ranges from 49% in tumour 
samples to 41% in margin samples. Independent 
studies also reported hypermethylation of APC in 
OSCC samples [36, 38, 43, 44], but Esteller et al. did 
not detect hypermethylation of this gene in head and 
neck cancers [28]. No differences between patients 
with HNSCC and healthy patients in methylation of 
the APC gene were observed by Longo et al., and 
surprisingly, this gene was frequently methylated in 
control samples [45]. Brait et al. reported that APC 
was methylated in 7% of DNA samples extracted from 
the plasma of a cancer–free population, and promoter 
methylation of this gene was not associated with 
several potential risk factors e.g., age, smoking and 
alcohol status, family cancer history, diet, and 
nutrition [46]. Other data also showed no correlation 
between aberrant methylation and clinical features 
and outcomes, such as survival [36, 38, 44]. 
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MGMT  
O6-methylguanine-DNA methyltransferase 

(MGMT) is involved in the guanine alkylation repair 
mechanism [47]. Expression of this gene varies 
between tissues and individuals [48]. Differential 
protein expression of MGMT between normal and 
cancer tissue was also confirmed [47]. Aberrant 
promoter hypermethylation of this gene is often 
observed in cancers including HNSCC [8, 12, 16, 19, 
28, 30, 47, 49]. The results in the present study 
demonstrated that MGMT was statistically 
significantly hypermethylated in tumours compared 
to margins (58% versus 37%, p<0.01). Aberrant 
promoter hypermethylation of the MGMT gene was 
detected in 73.7% of oral cavity cancers, with a 
significant difference between cases and controls, by 
Kordi-Tamandani et al. [17]. Martone et al. and Kato 
et al. observed that MGMT was hypermethylated in 
50% and 56% of primary HNSCC tumours, and the 
results showed association of gene-specific 
hypermethylation status in tumours and paired 
surgical margins [19, 30]. In our study, population, 
methylation of the MGMT gene was not associated 
with age, nodal status, and smoking, as confirmed in 
other studies [12, 19, 30]. However, Paluszczak et al. 
showed an association between methylation in 
tumour cells and lymph node involvement, and in 
turn Taioli et. al observed that reduced disease–free 
survival and reduced overall survival are associated 
with hypermethylation of this gene in HNSCC 
patients [49, 50]. Moreover, hypermethylation of 
MGMT is postulated as a potential prognostic 
biomarker [19]. 

TIMP3 
The tissue inhibitor of metalloproteinase-3 

(TIMP3) may play a significant role in tumour 
development, growth and metastasis by interaction 
with metalloproteinases in the extracellular matrix 
[51]. In this study, no statistically significant 
differences between tumour and margin methylation 
levels for this gene was observed. Some results 
showed hypermethylation of TIMP3 in various 
tumour types [28, 51, 52]. Hypermethylation of this 
gene in HNSCC tumours and saliva samples was also 
observed [15, 16, 26, 53-55] but no relation between 
hypermethylation and clinical features was shown 
[16, 38, 53, 55]. Furthermore, this gene was 
hypermethylated in exfoliated tumour cells in 
HNSCC patients compared to the healthy control 
group. Interestingly, the work of Longo et al. was the 
first study regarding methylation of exfoliated cells 
obtained from patients with non-invasive techniques, 
namely cytobrushes [45].  

CDH1 
Cadherin 1 (CDH1/E-cadherin/E-cad) is related to 

cell adhesion and regarded as an invasion-suppressor 
gene [56]. Inactivation of this gene by methylation 
was seen in HNSCC [16, 57]. Several studies showed a 
range of 32% to 61.8% methylation of this gene in 
tumour tissues of HNSCC patients [17, 33, 35, 58]. Our 
results showed tumour tissue with significantly 
higher methylation compared to the surgical margin 
(57% vs 25% p<0.001). Another study supported this 
finding [34, 35], but other investigators did not show 
significant differences in promoter methylation 
between cases of oral cancer and normal control tissue 
[17, 33]. Chang at al. showed hypermethylated 
promoters of E-cadherin in 64% of oral carcinoma 
cases, and downregulation of its expression was 
found to be related to promoter hypermethylation 
[59]. The influence of CDH1 promoter methylation in 
the invasive progression of HNSCC was observed 
based on an increased frequency of gene methylation 
at stages beyond the early tumour stage [60]. Oral 
leucoplakia patients also showed a high percentage of 
methylation, which can be considered as a diagnostic 
marker [58]. Šupić et al. showed that patients with 
advanced oral squamous cell carcinoma with E-cad 
promoter methylation had significantly worse overall 
survival, and this factor can be proposed as a potential 
molecular marker for poor survival [36]. In other 
research, no differences between patients with 
HNSCC and a healthy control population regarding 
methylation of CDH1 was observed; surprisingly, this 
gene was frequently methylated in control samples 
[45]. Using human carcinoma and fibroblast cell lines, 
Youshiura et al. investigated silencing of E-cadherin 
and postulated hypermethylation as a mechanism of 
inactivation. Furthermore, demethylating agents can 
be used in therapies as epigenetic drugs [56].  

CpG Island Methylator Phenotype (CIMP) has 
been reported in cancer and was first described in 
colorectal cancer as a phenotype that includes 
methylation of multiple genes [61]. CIMP status was 
also observed and classified in HNSCC and indicated 
a correlation between environmental factors and 
CIMP in tumour tissue. Smoking was strong 
associated with CIMP-positivity compared to 
CIMP-negativity, and poor survival was associated 
with CIMP-positivity (five or more methylated genes) 
[35]. In our study, aberrant promoter 
hypermethylation was found in all five genes 
(CIMP-positive) in four cases (5.3%) of tumour 
samples. 

Our results based on correlations between 
aberrant methylation and patient's characteristics 
indicated that positive nodal status was related to a 
higher methylation rate of the APC and TIMP3 genes. 
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We also noted that an advanced tumour stage was 
related to higher rates of methylation of the MGMT 
gene, supporting a role for gene methylation in the 
invasive progression of HNSCC. There is increasing 
evidence that methylation of specific genes is related 
with tumour biology, such as prognosis and drug 
response, and is linked with particular tumour 
histological features [62].  

We also observed that the female gender showed 
a trend towards a lower recurrence rate. Furthermore, 
female gender conferred an increased methylation 
level of CDH1 and TIMP3 but with a decreased 
MGMT gene methylation level. Based on our results, 
it is unclear why gender influences methylation 
status. Other studies showed that dietary components 
can influence gene expression through epigenetic 
mechanisms [63, 64]. Notably, methylation differences 
related to coffee consumption were observed only in 
women who never used menopausal hormone 
therapy (MHT) and suggest that coffee may affect 
DNA methylation levels in immune cells of the blood 
[65]. It is also suggested that oestrogen receptor alpha 
(ERα) may regulate gene expression partially via 
DNA methylation [66]. 

Furthermore, in our cohort of patients those with 
a family history of cancer showed more frequently 
methylated MGMT genes. Some studies indicated that 
a positive family history of cancer increases the risk of 
HNSCC cancer [67, 68]. A connection between the 
presence of methylation and a family history of cancer 
was also shown previously, indicating a shared 
aetiology such as genetic predisposition [46]. It is well 
known that environmental noise exposure can induce 
changes in DNA methylation and is connected with 
many human diseases [69]. Our results suggested that 
habitual factors associated with cigarettes confer 
higher methylation of the APC and CDH1 genes. 
However, our patients with a history of abusing 
alcohol showed lower promoter methylation of the 
MGMT gene in the surgical margin. Numerous 
studies describe genes, including MGMT, that are 
frequently methylated due to smoking [24, 32, 70-74]. 
It is postulated that tobacco-specific nitrosamines 
prevalent in tobacco cause hypermethylation of genes 
[73]. It is difficult to explain how alcohol protects from 
methylation of genes involved in the DNA repair 
process. These results are unclear, but in tumour 
samples of squamous cell carcinoma of the head and 
neck there was an effect of alcohol use on gene 
hypermethylation [24, 60, 75]. There is also evidence 
that epigenetic mechanisms such as DNA methylation 
play a crucial role in the pathophysiology of 
alcoholism [76]. Multiple studies have shown 
alcohol-associated changes to DNA methylation 
which are complex and depend on numerous factors 

including gender and tissue type [77]. Pierini et al. 
noticed that intensive alcohol consumption is 
inversely associated with methylation of only one 
gene out of four analysed, suggesting that alcohol 
exposure might affect DNA methylation in a 
gene-specific manner [40]. Other findings have shown 
no correlation between methylation and cigarette 
smoking and alcohol intake [30, 40, 49, 50]. Contrary 
and obscure results were shown by Puri et al.: the 
promoter of the MGMT gene was hypermethylated in 
patients with a history of alcohol use but this was 
significantly associated with lack of hypermethylation 
in another gene studied, p16 [12]. Because a high level 
of MGMT caused failure of therapy, it is noteworthy 
that expression of the MGMT gene imparted drug 
resistance of cancer cells to very popular classes of 
chemotherapeutic and chloroethylating agents [47, 
48]. Moreover, methylation of MGMT not only led to 
sensitivity to alkylating drugs used in chemotherapy, 
but also exposed a mutator phenotype [62]. 
Polymorphisms of genes vulnerable to environmental 
carcinogens were especially common in those coding 
for enzymes involved in carcinogen metabolism, such 
as MGMT, as a mechanism for differential cancer 
susceptibility [78]. In a study by Huang et al. 
alcohol–related head and neck cancer risks tended to 
vary with MGMT genotypes [79]. An MGMT 
Ile143Val polymorphism may play a role in 
modulating the risk of cancer in the presence of 
alcohol [80]. Further studies are required to clarify 
these interactions of genetics and environmental 
factors.  

Aberrant methylation profiles could be caused 
by various factors including the above-mentioned 
tobacco and alcohol consumption and also Human 
Papilloma Virus (HPV) infection [54, 57]. 
HPV-positive cancers have been shown to have 
elevated levels of methylation in the same regions of 
the genome [81]. TIMP3 was more hypermethylated 
in HPV-positive than in HPV-negative patients with 
oropharyngeal squamous cell carcinoma [54]. In 
addition to HPV, especially HPV type 16, as a cause of 
cancers of the head and neck [82], Helicobacter pylori 
was detected in the oropharyngeal area, leading to 
hypotheses about its participation in the development 
of cancer [83], although this result has not been 
confirmed. We plan to study HPV infection in our 
group of patients.  

Our results showed aberrant DNA methylation 
both in tumour and surgical margins, which might be 
due to the existence of a heterogeneous preneoplastic 
field that is not detectable by basic histologic analysis 
and ipso facto revealing the impact of DNA aberrant 
methylation in tumorigenesis. Several cancers are 
known to display a "field effect" region outside the 
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tumour border that harbours histological or molecular 
changes associated with cancer [84]. The initial step of 
a field effect is associated with various molecular 
lesions. The genetically altered mucosa that remains 
after therapy can cause local recurrences and second 
primary tumours after surgery to remove the primary 
carcinoma [85, 86]. This process arises from exposure 
to harmful environmental factors such as alcohol and 
tobacco and is related to 75% of all squamous cell 
carcinomas of the head and neck [1]. Interestingly, 
research by Tan et al. and Hayashi et al. studied gene 
methylation in negative surgical margins in HNSCC; 
methylation was associated with decreased survival, 
and the researchers concluded that these analyses 
served as predictive markers of postoperative 
locoregional recurrence [18, 87]. Importantly, 
epigenetic aberration was also found in histologically 
normal mammary tissues [88]. Similar suggestions 
based on results indicating hypermethylation of 
tumour suppressor genes in control populations as a 
consequence of environmental factors were made by 
Carvalho et al. [16]. Increased DNA methylation is 
also associated with ageing and chronic inflammation 
[62].  

Some authors describe a “molecular surgical 
margin” (MSM), whose status is estimated not only by 
histopathologic assessment but also by the presence of 
molecular markers; this MSM could allow more 
accurate assessment of cancer recurrence. Moreover, 
in surgical practice, particularly regarding the head 
and neck, the problem is to completely remove 
collateral areas because any remaining cells with 
molecular abnormalities increase the risk of 
developing a second primary tumour [89].  

Taken together, access to molecular biology 
methods has allowed recently for the precise analysis 
of the genetic material, but at the same time the 
complexity of the physiological and patho- 
physiological processes often make it difficult to 
interpret the results. More precise methods of cancer 
treatment depend on advances in basic research. The 
diagnosis and treatment of cancer should focus on the 
field of origin, and not only on the tumour [90].  

Conclusions 
Based on our observations, aberrant methylation 

is an important epigenetic event in HNSCC cancer. 
The hypermethylation of the promoter region of the 
MGMT and CDH1 genes could be a potential 
biomarker in HNSCC cancer. Moreover, clinical and 
habitual factors affect methylation in different 
manners and cause different patterns of gene 
promoter methylation. Our observations confirm the 
presence of epigenetic changes not only in the cancer 
cells but also in the surrounding mucosa, and 

represent a basis for the suggestion that appropriate 
cancer risk assessment based on epigenetic alterations 
in surgical margins may influence a patient’s 
diagnosis and cure. 
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