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This paper contains a complete listing of isotropic Cartesian tensors of ranks up to eight with their
associated reduction equations for obtaining linearly independent sets whenever the reduction is called for.
In particular, the listing is compiled only for isotropic tensors associated with the rotation group O"(3) of the
three-dimensional underlying vector space. Based on an identity originally due to Capelli (1887), reduction
equations for tensors of odd ranks beginning at rank five and even ranks beginning at rank eight are shown

to be nontrivial. Significance of the computational result in both pure and applied mathematics is discussed.
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1. Introduction

With respect to some of the most important groups of linear transformations, Weyl [1]' has
written a definitive treatise on the algebraic problem of decomposing a space of tensors of a
given rank into its irreducible invariant subspaces. In the course of proving his main results,

AMS Subject Classtfication : 15A72

1
Figures in brackets indicate the literature references at the end of this paper.

571-453 O - 75 - 4



Weyl employed a powerful formal instrument known as Capelli’s identity [1, p. 39]. Based on a
theorem proved by Weyl [1. pp. 53-56]. and by applying a special form of Capelli’s identity, we
first demonstrate a nontrivial problem. The problem is that of constructing explicit linearly
independent sets of isotropic Cartesian tensors of odd ranks beginning at five and even ranks
beginning at eight. Our algebraic results including all reduction equations are then given in full.
An application of some of these results in mechanics of deformable media is described in a
companion paper [2].

2. Statement of the Problem

To facilitate our application in mechanics, we adopt the three-dimensional Euclidean space
as the underlying vector space in Cartesian coordinates. With respect to a fixed set of base
vectors, each Cartesian tensor of rank n has 3" real components denoted by Tij. (x times» €ach
subscript varying from 1 to 3. Let 4=|a;;] be a rotation matrix satisfying the conditions
ATA=1 and det A=+1. A Cartesian tensor of rank n, with respect to the three-dimensional
proper orthogonal group O+ (3), satisfies by definition the following transformation law:

(new) (old)

T . .(n times) = T ) Qi Qo (n times), (2.1)

ikp...( n times
where repeated indices denote summation according to the usual convention with each index
ranging from 1 to 3, and the «’s are based on the rotation matrix with which new base vectors
are expressed in terms of the old ones.

Within the context of this paper, we define a Cartesian tensor of rank n as isotropic if it
satisfies the additional requirement that all components of the tensor remain constant for
arbitrary rotations of the coordinate axes.? It is not difficult to show that there is no isotropic
Cartesian tensor of rank 1; all isotropic Cartesian tensors of rank 2 are in the form of X §;, A
being an arbitrary scalar; and all isotropic Cartesian tensors of rank 3 are scalar multiples of the
alternating tensor € which equals +1, 0, —1 for cyclic, acyclic, anti-cyclic permutations of the
three indices i, j, k.3 As proved in Weyl [1, pp. 53-56], every isotropic Cartesian tensor of even
rank is expressible as a linear combination of products of the Kronecker deltas, &, 8,,. etc..*
and every isotropic Cartesian tensor of odd rank is given by a linear combination of terms
formed of products of an appropriate number of Kronecker deltas with an alternating tensor.
Such products of Kronecker deltas with or without the alternating tensor € will be referred to
as fundamental isotropic Cartesian tensors (abbrev. FICT). For every rank n > 1, the total
number N(n) of FICT’s can be calculated from the following formulas:

!
n'!
For n even, Nhn) = ——M—. o
(f_) 1 gn2 (2.2)
2
n!
For n odd, N(n) = 3 . .
3! (n ) i 2( n-3)/2 (23)
2
2M:my writers prefer to use the term “hemitropic™ or “gyrotropic™ for tensors invaniant under rotations of the proper orthogonal group.
3See, e .. Jeffreys (3. pp. 66-68].

4 . . S : .
The same result for even rank tensors was given apparently first by Franklin [4] in 1923
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Except for n = 2.3,4, and 6, Racah [5] showed that N(n) in general exceeds M(n), the total
number of linearly independent FICT’s. Using the theory of group representation of the three-
dimensional rotation group, O*(3), he derived an explicit formula for the number M(n) as
follows:

ey
2

= 3 ()3 I

k=0

The following table shows that for odd ranks beginning at 5 and even ranks beginning at 8, there
exist linear combinations among FICT’s which are identically zero:

TapLe 1.

Rank n FZ 3| 4 5 6 7 8 9 10 11
Number of
Distinet FICT s

N(n) 1 1 3 10 115! 105 105 1,260 945 17,325
Number of Linearly
Independent FICT's

M(n) 1 1 3 6 15 36 91 232 | 603 1.585

The problem now is to find these linear combinations, known as reduction equations, for
ranks 5, 7, and 8, for use in explicit applications such as those described in [2].

3. Capelli’s Identity

To obtain the reduction equations for isotropic tensors of odd ranks beginning at five and
even ranks beginning at eight, we rely on special cases of a powerful formal instrument known
as Capelli’s identity.® In particular, we need only to apply the following two identities:

8Jp 8l'q 8"
6jp 040 O; = €k € pqr - (3.1)
8kp 8kq 8‘(!

5 . I . :
Weyl [1. pp. 39-47] introduced Capelli’s identity to prove a fundamental theorem on orthogonal invariants [1. p. 53]. For our purposes here. Weyl's equation

(9.1) in [1. p. 53] suffices as the basis for computation.
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Identity (3.1) can be verified directly by expanding the 3 X 3 determinant. Identity (3.2) follows
from the fact that there are only three possible values of the indices in a three-dimensional
space, and since there are four columns on the left hand side, the indices of at least two
columns must be equal.® Hence the determinant on the left of (3.2) must vanish. In light of (3.1),
consider the determinant of (3.2) expanded in the minors of the first column:

€,.. (6

qrs ipejkm_ Sjpeikm+ Skpeijmi 8mp€ijk) = 0. (33)
Since the first factor of this equation does not vanish identically, the linear combination of the
following four isotropic tensors of rank five must:

€k Omp ™ €jkm Oip T €4mi 85 — €, 0,, = 0. (3.4)
Equation (3.4) can be characterized by the index p, which is distinguished by occurring in each
of the four Kronecker deltas. One can write down a total of five such equations, each
characterized by one of the indices i, j, k, m, p. A glance at table 1 in the last section, however,
reveals that for rank five, six out of ten distinct FICT’s are required to form a linearly
independent set. Hence one of those five equations based on (3.4) must be dependent. In section
4, we show how a linearly independent set of isotropic tensors of rank five can easily be
obtained by using (3.4). A similar technique will be used in section 5 for rank 7 tensors, and in
section 6 for rank 8 tensors. A vanishing linear combination such as eq (3.4) is usually referred
to as a “‘null isotropic tensor.”

4. Isotropic Tensors of Ranks 2, 3, 4, 5, and 6

For completeness, we list here distinct isotropic tensors of ranks 2, 3, 4, and 6, for which
no reduction is needed.

TaBLE 2.
Rank Distinct and linearly independent fundamental isotropic tensors

2 o

3 € ik

4 83 ke S 48 jm 8 im® ji

6 6-1‘ kmﬁmr 6uf)knf)mlr aijskqﬁmw 8llralm(c’pq‘ 5,“5")5"“‘_
Stkﬁjqﬁmr 6..,"5],(8‘”1 8im81'96hr 8im8m8lp‘ e‘)ivﬁiksmq'
8 :p0 im0 Lg 850 ja® ke 0 a0 i ® mp 8 g0 im® kpr 809 jp® ke

Similar applications of (3.2) in mechanics are in the literature. See. e.g.. Rivlin [6]. Spencer and Rivlin [7]. etc
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Independent sets of isotropic tensors of rank five have been studied by Cisotti [8] and
Caldonazzo [9]. A particularly simple way of generating such a set is to write eq (3.4) in the
following way:

€itm Oip = €ijk Omp T € Oy — €4 Oy

Jjkm “ip ip ijm

, (4.1)
It is immediately clear from this equation, that any fundamental isotropic tensor of rank five in
which the index i appears in the Kronecker delta can be expressed as a linear combination of
fundamental tensors in which the index i appears in the alternator. A count of the number of the
latter fundamental rank-five isotropic tensors reveals that there are six of them, viz:

€ ik Smp. €im Okpr  €ijp Okm>  €ikm O €, O € O - 4.2)

ip ikp ' mj> imp
Since Weyl's result [1] implies that (3.4) or (4.1) exhaust all possible reduction equations for
rank-five isotropic tensors, and since none of the six in (4.2) can be so reduced, we conclude

that (4.2) is a linearly independent set.

5. Isotropic Tensors of Rank 7

The fundamental isotropic tensors of rank seven are products of an alternating tensor and
two Kronecker deltas. Table 1 indicates that there are 105 distinct ones for that rank. By the
procedure of the last section, it is a simple matter to eliminate all but 45 of these. Thus we need
consider only the 45 distinct fundamental tensors generated from ey  &,, 6, by those
permutations of the indices which leave the subscript i with the alternator €,,. Table 1 indicates
that a further reduction is necessary since only 36 of these 45 fundamental tensors are linearly
independent.

Null isotropic tensors in these 45 fundamental tensors can easily be constructed with the
aid of eq (3.4). The product of eq (3.4) with 8 can be combined with eq (4.1) in which the

indices g and r replace i and p, respectively, to give the following equation:

€k (& mp O gr = 040 m) + €am (0,04 — 0405
t €m0 04 — 84, 04) + €ng  (Onpd; - 8,0, (5.1
t €img (0,04 = 84,05) + €iq (© kp O mr = O mpOu) = 0.

This equation can be characterized by the two indices which appear in the product of
Kronecker deltas of every term: i.e., p and r. Of the other equations which can be generated by
permuting indices, 15 are distinct with a distinct pair of characteristic indices. These equations
can be put in the form of a 45 X 15 matrix for reduction on a computer.

In order to simplify manipulation of symbols, it is useful to number the 45 fundamental
isotropic tensors. This has been done in table 3, where the symbol (n) is-assigned to the nth
tensor of the table.
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TaBLE 3. Coding of 45 isotropic tensors of rank 7, of which 36 are independent

(0)* = €30 np0a (¥ = € b (2) € ik O me O pq
(3) = €imdipda (1% = €ndiad o (5)* = €imdud
(6) = €;;pO im0 g (D* = €4ip0 140 e (8) = €4ip0 40 g
9) = €ydimdp (10) = €40dupdme (1) = €4dudnp
(2) = €38 md (13) = €depdmg (18) = €udigdup
(5)% = €4ndpd o (16)% = €4ndadp (A7) = 84nd b,
(18) = €4pdmdar 9% = €488 m (20) = €upd ;Pma
Q21) = €ngdmd (22) = €u4edpdm (23) = eugdida
(28) = €ud b, (25) = €udpBme (26) = €ud b mp
Q1) = €impd b o (28)% = €d b (29) € imp® 1D 1
B0 = €imgd 4D B = €med pOu (32) = €umed iy
(33) = €imd i pe (B4) = €mdpdi (35) = €imdiudu
(36) = €1adud m BT = €pedmdu (38) = €4ad ;0 em
(B9 = €0 b mg (40) = €.d ind g @) = €8P m
(42) = €0dadn (43) = € imdip (#4) = €0d D im-

*Marks the nine tensors eliminated by our reduction scheme.

The numerical representation of tensors in table 3 enables us to present the nine reduction
equations in a simpler fashion. For example, eq (5.1) becomes

(0) — (2) = (3) + (5) + (10) — (11) + (15) — (17) — (22) + (23) + (31) — (32) =0.
(5.2)

The fifteen equations mentioned earlier can all be coded in a form similar to eq (5.2) in order to
obtain a 45 X 15 matrix for computer solution. This matrix can be reduced by standard
procedures to give nine reduction equations expressing nine tensors as linear combinations
among the remaining 36. The nine reduction equations used to eliminate tensors (0), (1), (4),
(5), (7), (15), (16), (19) and (28) are shown in table 4, and the eliminated tensors are marked
with asterisks in table 3. The remaining 36 fundamental tensors of rank 7 form a complete
linearly independent set. Such a set is, of course, not unique and entails some arbitrariness in
the choice of which tensors are eliminated.
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TaBLE 4. Reduction equations for isotropic tensors of rank 7

0) = 2+6-8-10+11-12+13-18+20+22—-23 +24 — 25— 37 + 38 — 43 + 44.
(1) = 2+9-10-12+ 13 -21+ 22 + 24 - 25 — 43 + 44.

1) = 3-6+8+9-11 13+ 14 +27-29-30+32+ 3738+ 39 —40 -42 + 43.
o) = 3-6+8+12~-13+27—29-31+32 33+ 384+ 37 — 38 + 39— 4 +43 - 44.
(7) 8+10-11-13+ 14 - 36 + 37 + 39 — 40 — 42 + 43.

L 15) W a0 T = 200 = 208 35 205 = 2 4 249 A &%) = ot = 319 & 4k

(16) N7 ap 20 = 2B) = 28 58 249 = o) o &% 45 8B = &5 = 4W) i 4R}

(19) = 20+22-23-25+ 26— 36 + 38 + 39 — 41 — 42 + 44.

(28) 20 + 31 —32-34+35—-37+38+40 —41 — 43 + 44.

In all nine equations given in table 4, we have simplified further by dropping all brackets on the
right hand side of each equation. The computational result is now complete for rank-seven
isotropic tensors.

6. Isotropic Tensors of Rank 8

There are 105 fundamental tensors of rank 8, of which only 91 are linearly independent.
The null isotropic tensors can be represented by determinants of matrices of Kronecker deltas
as was done in eq (3.2). The number of distinct null vectors that can result from permutations of
indices of eq (3.2) is 35, that is the number of ways the 8 indices can be divided up into two
distinct groups of 4 each. These results can be put into a 105 X 35 matrix and reduced in the
manner described in the previous section.

The reduction of this large matrix requires considerably more manipulation than does the
45 X 15 matrix of the last section. For this reason, it is convenient to have a method of coding
the fundamental isotropic tensors by calculation rather than searching an arbitrary list. As it
turns out, there is a simple way to do this. The letter indices of the Kronecker deltas are first
interchanged with numbers, viz:

(i, j, k., m, p, q, r, s) — (7, 6, 5, 4. 3, 2, 1, 0). (6.1)

Each Kronecker delta then corresponds to a doublet of digits, and these are ordered according
to the magnitude of the largest digit (Step 1). The smaller digits of each of the three largest
doublets are then collected in order and arrayed from left to right (Step 2). Each of these digits
is then reduced by one for each digit to the left of it that is smaller (Step 3). Finally the right
hand digit is added to three times the middle digit and 15 times the left hand digit (Step 4).
There results a unique number in the range 0 to 104 which characterizes the original
fundamental isotropic tensor. The process is illustrated by the following example:

8 040im0p becomes (Step 1): (7,1)(6,2)(5,4)(3,0)
(Step 2): (7,1)(6,2)(5,4) or (1,2,4)
(Step 3): a1, 2-1, 4-1-1) or (1,1,2)
(Step 4): (IX15 + 1X3 +2) or (20) (6.2)
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The inverse coding process is easily constructed. This coding procedure, though mysterious at
first glance, relates in a straightforward way with the method of indexing the Kronecker deltas.
It is a procedure which can be generalized to arbitrary even ranks of fundamental isotropic
tensors. For the rank 8 case, it is convenient to have a dictionary of this coding to use in
interpreting results. Table 5 is such a dictionary.

TaBLE 5. Dictionary of rank 8 isotropic tensors

(0) =is jr kg mp (21) = ir jp ks mq (42) = iq jk ms pr (63) = im jr ks pq (84) = ik jp ms qr
(1) =is jr kp mq (22) = ir jp jp ms (43) = iq jk mr ps (64) = im jr kq ps (85) = ik jp mr gs
(2) = is jr km pgq (23) =ir jp km gs (44) = iq jk mp rs (65) = im jr kp gqs (86) = ik jp mq rs
(3) =1is jq kr mp (24) = ir jm ks pq (45) = ip js kr mq (66) = im jq ks pr (87) = ik jm ps gr
(4) =1is jq kp mr (25) = ir jm kq ps (46) = ip js kq mr (67) = im jq kr ps (88) = ik jm pr gs
(5) =1is jq km pr (26) = ir jm kp gs (47) = ip js km qr (68) = im jq kp rs (89) = ik jm pq rs
(6) =is jp kr mq (27) = ir jk ms pq (48) = ip jr ks mq (69) = im jp ks gr (90) = ijks mr pq
(7) =is jp kq mr (28) = ir jk mq ps (49) = ip jr kq ms (70) = im jp kr gs (91) = ij ks mq pr
(8) =is jp km gr (29) = ir jk mp gqs (50) = ip jr km gs (71) = im jp kq rs (92) =y ks mp qr
(9) =is jm kr pg (30) = iq js kr mp (51) = ip jq ks mr (72) =im jk ps qr (93) = ij kr ms pq
(10) = is jm kq pr (31) = iq js kp mr (52) = ip jq kr ms (73) = im jk pr gs (94) = ij kr mq ps
(11) =1is jm kp gr (32) = iq js km pr (53) = ip jq km rs (74) = im jk pq rs (95) = ij kr mp gs
(12) =is jk mr pq (33) = iq jr ks mp (54) = ip jm ks qr (75) = ik js mr pq (96) = ij kq ms pr
(13) =is jk mq pr (34) = iq jr kp ms (55) = ip jm kr gs (76) = ik js mq pr (97) = ij kg mr ps
(14) =is jk mp gqr (35) = ig jr km ps (56) = ip jm kq rs (77) = ik js mp gr (98) = ij kg mp rs
(15) = ir js kg mp (36) = iq jp ks mr (57) = ip jk ms gr (78) = ik jr ms pq (99) = ij kp ms qr
(16) =ir js kp mq (37) = iq jp kr ms (58) = ip jk mr gs (79) = ik jr mq ps (100) = ij kp mr gs
(17) =ir js km pq (38) = iq jp km rs (59) = ip jk mq rs (80) = ik jr mp gs (101) = ij kp mq rs
(18) =ir jq ks mp (39) = iq jm ks pr (60) = im js kr pq (81) = ik jq ms pr (102) = ij km ps gr
(19) =ir jq kp ms (40) = iq jm kr ps (61) = im js kq pr (82) = ik jq mr ps (103) = ij km pr gs
(20) = ir jq km ps (A1) = iq jm kp rs (62) = im js kp qr (83) = ik jg mp rs (104) = ij km pq rs

The process of reducing the matrix by computer is facilitated by knowing something of the
form of the results. Apparently, the reduction equations need never involve coefficients other
than 1 and —1. Whether this is true in general remains, to the best of our knowledge, a
conjecture. In light of this, the computer is instructed to abandon the test of any candidate for
elimination whenever a coefficient other than =1 appears in the reduced matrix.

The result of the reduction is the elimination of fundamental isotropic tensors (0), (1),
(12), (13), (34), (35), (44), (49), (58), (59), (68), (75), (76), (81). The reduction equations
are given in table 6. The remaining 91 tensors are a linearly independent set of isotropic tensors

of rank 8.
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TaBLE 6. Reduction equations for rank-eight isotropic tensors

(0) = Zud=6=0410=F 1o = 117 = 2l a5 28 45 28 = 245 = 8l <5 8% aF 6o = &%) — 619
+41 -45+46 +48—-50—-5]1 + 53 +55 — 56 + 60 — 61 — 63 + 64 + 66 — 67
-79+80+82-83-85+86+94—-95-97+ 98 + 100 — 101.

(1) = 24+6-8—-9+11+16-17-21 +23 + 24 — 26— 45 + 47 + 48 — 50 — 54
+ 55 + 60 — 62 — 63 + 65 + 69 — 70.

(12) = —3+5+7—-8+9-—10+ 14 + 18 — 20— 22 + 23 — 24 + 25 + 27 — 29 — 36
+37+39-40-42+43-66 + 67 +69 — 70— 72+ 73 + 90 — 92 — 93
+ 95 + 96 — 97 + 102 — 103.

(13) = -3+5+6-8+14+18-20-21+23 +28-29—66 + 67 + 69 — 70 — 72
1 TS S Il = O = O 2 OF 5 10 = TI0EY

(34) = 15-17-18+20+24-25-30+31+33-36+37—-46 +47 + 51 — 53
—54+56+60-62-63+65+69—70+ 78— 80— 82 + 83 — 84
+85+87—-89—-93+95+ 97 —-98 + 99 — 100 — 102 + 104.

(35) = 15-16—-18+ 20 + 21 — 23 — 25 + 26 — 30 + 31 + 33 — 36 + 38 + 40
-41 +45-46-48+ 50+ 51 =53 -55+56+ 79 — 80 — 82 + 83 + 85
—86—94 + 95 + 97 — 98 — 100 + 101.

(44) = - 15+ 17 +22-23 - 27 +29 + 30 — 32 — 37 + 38 + 42 — 60
+61+70-71-73+74+93-95-96+ 98 + 103 — 104.

(49) = 4-5-7+8+10-11+16-17—-19 + 20 — 21 + 22 + 24 — 25
-31+32+36—-38-39+41 -45+46 + 48 - 51 + 52 + 60 — 61
-~ 63 +64+66—67+78-79-84+86+87-89-93+94+99
=101 = 102 + 104.

(58) = -4+5+7-8-10+11+19-20-22+ 23 +25-26 — 36 + 37 + 39 — 40
— 42 +43 + 51 — 52 — 54 + 55+ 57 - 66 + 67+ 69 — 70 — 72 + 73 + 96 — 97
- 99 + 100 + 102 — 103.

(59) = -4+5+7-8-10+11-16+ 17+ 19 —20 - 27 + 28 + 31 — 32 — 36
+ 38+ 3941 +45-46 + 51 — 52 - 54 + 56 + 57 — 60 + 61 — 66 + 67 + 69
- 71 =72+ 74 +93 -94 - 99 + 101 + 102 — 104.

(68) = 4-5-7+8+10-11-31+32+36-38-39+ 41 + 46 —-47 - 51 + 53
+54 - 56 - 61 +62+ 66— 69 + 71.

(75) = - 15+17+18-20-24 +25+46 — 47 -51 +53 +54 — 56 + 77 + 82 — 83
—87+89+90-92-97 + 98 + 102 - 104.

(76) = —15+16+18-20—-21 +23 +25—-26 - 31+ 32+ 36— 38— 39 + 41 + 46
— 47 -51 + 53+ 54 —-56 + 77+ 82 —83 —85 + 86 —87 + 88 + 91 — 92 — 97
+ 98 + 100 — 101 + 102 — 103.

8l) = —4+5+7-8-10+11+19-20—-22+ 23 +25—-26 + 82 + 84 — 85 — 87

+ 88+ 96 — 97 - 99 + 100 + 102 — 103.

In all 14 equations given in table 6, we have also simplified further by dropping all brackets on
the right hand side of each equation. The computational result is now complete for rank-eight

isotropic tensors.



7. Significance of Computational Results

The computational results presented here were motivated by a direct application in
mechanics as described in a companion paper [2]. It is probable, however, that further
applications in theoretical physics will result in view of the close connection between isotropic
tensors and the decomposition of a tensor space.” Since all laws in physics are necessarily
tensorial equations, the tool we have developed here would be particularly useful in reducing
complicated physical laws into uncoupled irreducible equations.

Two additional comments may be of interest to our readers. On the abstract level, our
results may be used to generate examples of mathematically interesting algebras. Tensors
invariant to transformations by elements of subgroups of the orthogonal group can be developed
also. Such tensors are sometimes called ‘‘anisotropic tensors,””® and complete sets of them must
contain the isotropic tensors developed in this paper.’ At the practical level, our results can be
used to determine whether two isotropic tensors of equal rank are indeed the same. since the
question of “‘sameness’ for two isotropic tensors of equal rank is best settled by expressing
them in terms of a linearly independent set.'®
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This question cannot be answered without the table of reduction equations as given in this paper for ranks up to eight. Smith [16] has shown that. for rank
eight tensors. a set of 91 linearly independent elements can be constructed via the “tableau™ method. His results offer an alternate approach to the same

problem, but contained no explicit reduction equations.
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