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Abstract 

This is an evaluation of different score-level fusion techniques, and the results of a variety of fusion experiments 
using face and fingerprint data from 187,000 individuals, with matcher scores from three fingerprint and three face 
recognition systems.  

Eight score-level fusion techniques were implemented and evaluated. These differed in effectiveness, in the types of 
training data required, and in the complexity of modeling of genuine and imposter distributions. The most effective 
fusion techniques were product of likelihood ratios and logistic regression. Techniques that were nearly as effective 
were product of False Accept Rates ( FARs) and an optimized linear method.  

Multi-modal fusion is highly effective: fusing one fingerprint and face resulted in a 64-85% reduction in false reject 
rate at a constant false accept rate of 0.0001. Multi-instance fusion using fingerprints from multiple fingers is also 
highly effective: fusing two fingerprints resulted in a 48-90% reduction in false reject rate. Multi-sample fusion 
using the enrollment of two samples rather than one resulted in a 45-72% reduction in false reject rate. Multi-
algorithm fusion using different matchers on the same data resulted in an 8-33% reduction in false reject rate. 
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1 Introduction 
Biometric fusion is the use of multiple types of biometric data, or methods of processing, to improve the 
performance of biometric systems. One type of fusion is score-level fusion, which is the combination of 
matcher scores to improve accuracy. The scores used in fusion can be obtained through the use of 
multiple types of data for each subject (such as face and fingerprint, or fingerprints from different 
fingers), multiple samples from each subject, multiple matchers on a single type of data, or combinations 
of these. 

The studies described in this report had two key objectives: to evaluate the effectiveness of different 
score-level fusion techniques, and to measure the benefits of different categories of fusion on a large 
quantity of operational face and fingerprint data. The categories of fusion evaluated included multi-
modal (finger and face), multi-instance (multiple finger positions), multi-matcher, and multi-sample 
(multiple enrollments).  

This report summarizes the studies we conducted: the reports contained in the Appendices include much 
more complete background information, details of techniques, and details of the experiments. 

2 Data 
The primary test dataset was NBDF06 (NIST Biometric Data Fusion 2006). NBDF06 contains operationally 
collected law enforcement data from approximately 187,000 subjects. At each encounter with a subject, 
one set of segmented slap fingerprints from all fingers and one face image (mugshot) was collected. 
NBDF06 includes data from one encounter with 122,000 subjects, two encounters with 60,852 subjects, 
and three encounters with 4,015 subjects. We refer to the 122,000 subjects without mated faces or 
fingerprints as imposters, and the 64,867 subjects with mates as genuine subjects. Rolled fingerprints 
were not used in this study. Appendix A describes in detail the derivation of genuine and imposter 
scores. 

2.1 Face Images 

The face images used are frontal, 24-bit color JPEG images compliant with ANSI/NIST-ITL 2000 image 
format specifications; the images are compliant with Best Practice Application Level 30 requirements 
[MugshotBP] except for size: image size is typically 384 x 480 pixels, smaller than the 480 x 600 minimum 
mandated by the Best Practices document.  The images have controlled 3-point lighting, 18% gray 
backgrounds (with some exceptions), and uniform full frontal pose. The face occupies approximately 50% 
of the width of each image. The expressions are not controlled. A visual review of a sample of the face 
images shows that the images are fairly typical of recent mugshot photographs, and better than some 
databases such as BCC or US-VISIT (POE).  

2.2 Fingerprints 

NBDF06 contains slap livescan fingerprints from all ten fingers that were collected on FBI-certified 
livescan devices [FBI-Cert]. The devices used 2 to 2.5 inch high platens, smaller than the 3 inch platens 
required by the identification slaps standard [EFTS 7.1: Appendix F]. The thumbprints were collected as 
separate images. The four-finger slap images were segmented into individual fingerprint images using 
the NIST segmenter [NFIS]. Automated measures were used to identify probable segmentation failures, 
notably cases in which four fingerprints were not present or segmentation boxes touched or overlapped; 
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these cases, comprising approximately 5% of the source data, were excluded from the dataset. It would 
not be quite correct to regard these exclusions as failures to enroll (FTE) for several reasons: 
• These were probable segmentation failures, which are distinct from failures to enroll: failure to 

segment indicates a problem with the association of an individual fingerprint image with its finger 
position, and does not imply anything about the quality or content of the fingerprint features. 

• Today, slap segmentation is required at the time of collection in order to be compliant with FBI 
standards [EFTS 7.1:  Appendix N] for identification slaps, which mandates larger scanner platen 
sizes and segmentation at the time of capture. The cases excluded in this evaluation presumably 
would have been flagged for recapture at the time of collection if the collection process included slap 
segmentation. 

The dataset as tested should be expected to contain some incorrectly segmented fingerprints, although 
small samples of manually inspected fingerprints (ones that resulted in low matcher scores) did not 
reveal segmentation failures; see [SlapSeg] for an evaluation of segmentation accuracy and a discussion of 
issues in slap segmentation. 

Figure 1 shows the distribution of fingerprint quality for the NBDF06 fingerprint data, using the NFIQ 
metric [NFIQ; NFIS]. 1.3% of all fingerprints were NFIQ 5; 4.8% were NFIQ 4 or 5.  

NFIQs for all NBDF06 fingerprints
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Figure 1: NFIQ results for all genuine and imposter fingerprints, including the best and worst from 
each subject, and best for each slap from each subject. 

2.3 Matchers 

Three fingerprint and three face matchers were used: 
• The fingerprint matchers were three of the more accurate fingerprint matchers identified in the NIST 

SDK single finger and two-finger tests [SDK; SDK2]: matcher H, matcher I, and matcher Q. Single-
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finger 1:1 matching accuracy for the fingerprint matchers ranged from a true accept rate (TAR) of 93 
to 99.5% (depending on the finger position and matcher) at a false accept rate (FAR) of 10-4. 

• The face matchers were three recent (c. 2004-5) commercially available face recognition systems, 
referred to here as A, B, and C. One-to-one matching accuracy for the face matchers ranged from a 
TAR of 72 to 78% (depending on the matcher) at a FAR of 10-4. 

2.4 Data Integrity 

Precise measurement of very small error rates on large datasets requires a detailed analysis of the data for 
potential data integrity issues, such as unconsolidated records (one person with records under different 
identifiers), misidentified records (records from different people using the same identifier), and swapped 
and repeated fingerprints (positionally mislabeled). Such issues are often due to collection problems or 
administrative errors; see [DataQuality] for a full discussion. 

In [FpVTE] and [SlapSeg] we found that fusion can be used effectively to detect possible data integrity 
errors, a process that we continued here. Redundant data (faces and multiple fingers) and multiple 
accurate matchers provide a basis for locating problems which can then be reviewed manually. To 
automate detection, metrics were developed based on two methods:  score-level fusion and Mahalanobis 
analysis (which identifies outliers in the score data). Both methods were effective at identifying subject 
pairs that were misidentified as genuines.  Mahalanobis analysis readily revealed partial errors, such as 
swapped thumbs of subjects whose fused scores were high because the face or other fingerprints 
matched.  Manual review was conducted of cases flagged as potential data integrity errors.  

Among the 64,867 genuine subjects, we found 33 data integrity problems (0.051%): 24 had face and 
fingerprints misidentified (0.037%), and 9 had some but not all fingerprints swapped or repeated 
(0.014%). This means that a false reject rate (FRR) smaller than 0.037% is not generally possible (except 
when FAR approaches 1), and that FRR less than 0.051% is possible only when fusion tolerates these 
errors due to using additional fingerprints or face images that were not misidentified. Among all 186,867 
subjects, no unconsolidated records were detected in our analysis of this dataset. This is not surprising, as 
each non-mate (impostor) was compared to only one subject in the gallery — i.e., a full similarity matrix 
was not produced. Among the very low-scoring genuines manually reviewed, an additional 46 subjects 
(0.071%) had some or all fingerprints noted as egregiously poor quality.  

The detected data integrity errors were not removed from the data shown in this report. 
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3 Score-Level Fusion Techniques 
Score-level fusion involves the combination of scores from two or more sources. Figure 2 shows an 
example of the univariate matcher score distributions (at bottom and at left), and how the joint 
distribution (scatterplot) enables greater discrimination between genuines and imposters. Each orange 
line corresponds to a decision threshold based on the unfused scores, which in this case fails to 
discriminate between the imposters and many genuines. This example shows linear fusion boundaries as 
well a polynomial boundary, each of which is superior to the univariate decisions. More elaborate — and 
accurate — decision boundaries follow the topology of the intersecting genuine and imposter 
distributions. Note that each decision boundary produces a single point on an ROC; each fusion 
technique implicitly defines a family of such boundaries from the sample data. 

 

Figure 2: Example of matcher score distributions, with genuines in black and imposters in red. The 
lines show examples of decision boundaries separating genuines from imposters: each such boundary 
corresponds to a point on an ROC. Note that in this chart 86% of all fingerprint genuine scores are at 
the maximum (rightmost) value. 

The presence of genuines in the upper left and lower right quadrants reveals that fusion succeeds 
primarily due to the fact that genuines are sometimes missed using one input, but can be identified using 
another input.  More definitive exclusion of impostors is not the primary mechanism.  This general rule 
appears to hold true for all the data studied. 

This distribution in Figure 2 should not be taken as characteristic of all of the data: distributions vary 
substantially depending on the data being fused, as shown in Figure 3.  

20 July 2006  6/22 



 Studies of Biometric Fusion 

 

Figure 3: Examples of joint distributions comparing all face and fingerprint matchers, with genuines 
in black and imposters in red. Scale has been reduced to accentuate overall form of the distributions. 

3.1 Implemented Techniques 

In this study, we surveyed a variety of proposed methods of fusion, and selected eight for evaluation: 
• Likelihood ratio-based methods. The Neyman-Pearson (NP) lemma [Neyman-33] defines a criterion 

for the optimization of an ROC based on likelihood ratios.1 While this approach is theoretically 
optimal, implementation assumes knowledge of joint genuine and imposter distributions. In practice, 
the accuracy of an NP implementation depends on accurate modeling of the distributions. Two 
likelihood ratio-based methods were implemented: 
o Product of Likelihood Ratios, as implemented here, is based on a multi-stage modeling process: 

probability density functions were separately modeled for each genuine and impostor 
distribution, using variable bandwidth kernels, log-linear tail tapering, and specific handling of 
spikes in the distributions; likelihood ratios were computed from these models for each matcher; 
scores were transformed to their likelihood ratios, then simply multiplied. Note that all of the 

                                                 
1 The Neyman-Pearson lemma states that optimal decision boundaries are defined by equal likelihood 
contours. These can be visualized as analogous to elevation contour lines on a topographic map. If you 1) take 
an X,Y scatterplot of genuine and imposter scores,  2) map each point in the scatterplot to the ratio of genuines 
to imposters  (likelihood ratios), and 3) plot those ratios in the Z dimension, then the Neyman-Pearson lemma 
states that the topological contours that follow a given “altitude” (a fixed likelihood ratio) correspond to 
optimal decision boundaries. 
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complexity in this implementation is in the modeling of distributions, rather than fusion per se, 
and that use of the univariate (not joint) distributions makes the simplifying assumption that 
fused scores are independent.  

o Logistic Regression is a standard statistical technique that directly models the likelihood ratio. 
Successful implementation requires accurate curve fitting of density distributions, which requires 
statistical expertise, but is supported by typical statistical packages: the log of the 
genuine/imposter density ratio is modeled (e.g. as a low-order polynomial function), then 
estimated from the training data by principle of maximum likelihood; density ratios are modeled 
independently for each matcher, and fusion is performed by adding the normalized scores (log 
likelihoods). Logistic Regression generally uses joint sample data. In this analysis, however, the 
independence assumption was highly effective, and various trial models showed that coefficients 
for carriers involving multiple scores were almost always statistically insignificant, so our models 
relied exclusively on univariate distributions.  

• FAR-based methods. In cases when the genuine distribution is unavailable or unreliable, scores can 
be normalized by transformation to False Accept Rates (using only the univariate imposter 
distributions) before fusion. However, correctly modeling the imposter distribution usually remains a 
complex process. In our implementations, FARs were modeled using the same processes used in 
Product of Likelihood Ratios. The techniques we implemented were Product of FARs, Min of FARs, 
and Max of FARs. Min and Max methods are decision-level fusion: Min is AND rule decision-level 
fusion, and Max is OR rule decision-level fusion (where decision thresholds are set to result in equal 
FARs). 

• Linear methods. These involve addition of weighted scores. The methods we implemented do not 
require modeling of score distributions.  
o Simple Sum of Raw Scores assumes the inputs have comparable scale, distribution, and strength 

— which is only a valid assumption in some cases, such as fusion of left and right index fingers 
scored by one matcher. 

o Simple Sum of Z-Normalized Scores requires only small samples of univariate imposter 
distributions to perform normalization.  Scores are normalized to a mean of 0 and standard 
deviation of 1, then added without weighting. 

o Best Linear is a weighted sum of z-normalized scores. The weights are based on an optimal slope 
(hyperplane) determined empirically on joint training data. This solution entails iteratively 
rotating the decision boundary and evaluating TAR at a fixed FAR. This is conceptually simple 
and does not require modeling, but does require joint training data. 

It is critical to note that the effectiveness of Product of Likelihoods, Logistic Regression, and the FAR-
based techniques depends greatly on how well the distributions are modeled.  

3.2 Evaluation of Techniques 

Figure 4 compares the performance of these techniques on several fusion tasks.  
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Figure 4: Eight techniques compared at FAR=10-4 on a variety of fusion tasks. The legend shows 
techniques in order of average performance for this data. 

In general (summarizing a much broader set of results than shown on this chart), we found: 
• Product of Likelihood Ratios was consistently most accurate, but most complex to implement. 
• Logistic Regression, Product of FARs, and Best Linear usually performed nearly as well as Product of 

Likelihood Ratios. 
• Sum of Z-Normalized Scores performs well in the multi-instance tasks.  
• Max of FARs performs near the top. This is notable because this is essentially decision-level fusion, 

countering expectations that decision-level fusion would not be effective.  
• Sum of Raw Scores makes simplifying assumptions that rarely hold except in the case of single 

matcher, multi-instance tasks. 
• Min of FARs performs poorly. 
• The distinctions between techniques were most pronounced for multi-modal tests (finger and face), 

where the potential improvement was great and the distributions highly dissimilar.  

Figure 5 and Figure 6 show examples of ROCs for sample tests. 
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Figure 5: Comparison of ROCs for the implemented techniques, for an example test of multi-modal 
fusion. Logistic Regression was not included in this series of tests. The Face and Min of FAR graphs 
are superimposed. Due to the scale, little of the unfused face and fingerprint ROCs are visible on this 
chart: face (A) had a TAR=0.720 at FAR=10-4; right index (I) had a TAR=0.981 at FAR=10-4. 
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Figure 6: Comparison of ROCs for the implemented techniques, for an example test of multi-modal 
fusion. Logistic Regression was not included in this series of tests. 

3.3 Considerations in the Choice of Techniques 

The choice of fusion techniques cannot just be governed by overall accuracy. The different fusion 
techniques — as implemented — have substantially different requirements in the quantity and type of 
training data, the expertise required, and the complexity of modeling. Table 1 summarizes these 
requirements.  

  
Data required 

 

Statistical 
expertise 
required 

Complexity  
(As implemented) 

Product of Likelihood Ratios Univariate Genuine and Imposter Yes High 
Logistic Regression Univariate Genuine and Imposter Yes Medium 
FAR-based methods Univariate Imposter Yes High 
Best Linear Joint Genuine and Imposter No Medium 
Sum of Z-Normalized Scores Univariate Imposter (small amount) No Low 
Sum of Raw Scores None No None 

Table 1: Summary of data and modeling requirements for fusion techniques 

4 Results of Experiments 
We conducted experiments to measure the benefits of different categories of fusion on the NBDF06 
dataset. The categories of fusion evaluated included multi-modal (finger and face), multi-instance 
(multiple finger positions), multi-matcher, and multi-sample (multiple enrollments). Product of 
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Likelihood Ratios was used as the fusion technique unless otherwise noted. Except for the multi-sample 
experiments, the results described here all use 64,867 genuines and 122,000 imposters. 

4.1 Multi-Modal: Face and Fingerprint Results 

Score-level fusion of face and a single fingerprint is consistently very effective, as shown in Figure 7. Face 
and fingerprint data are nearly independent: the fused line is very close to — but still separable from — 
the independent chimera2 line. Some evaluations use chimeras for test data, when it is not possible to use 
face and fingerprint data collected from the same individuals; these results show that the independence 
assumption implicit in the use of chimeras will often be a valid approximation.   

 
Effect of Face and Single-Finger Fusion
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Figure 7: Effect of fusing face and single fingerprint scores for each finger position, using face matcher 
A, fingerprint matcher H and Product of Likelihood Ratios fusion. The fusion (blue) line shows the 
effect of fusing face (red) and fingerprint (green). The chimera (pink) line shows the effect of fusing 
face scores from one subject and fingerprint scores from another — this result indicates what the effect 
would have been if the face and fingerprint scores were independent. 

Table 2 summarizes the effect of fusion for all single fingerprint and face fusion experiments, given all ten 
finger positions, three fingerprint matchers, and three face matchers. The results are measured as 
reduction of false reject rate for a fixed false accept rate. Note the uniformity of results: fusing face and 
single fingerprint scores always reduced FRR by more than half, and usually by 75%. 

                                                 
2 Chimeras are composites of data representing virtual “subjects” that combine biometrics from multiple 
individuals (selected at random). 
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  Single finger + face 
  H+face I+face Q+face 

Min 68% 71% 64%
Median 74% 76% 75%
Average 74% 77% 74%
Max 80% 84% 79%

Table 2: Summary of fusion of each of the ten fingers against each of the three face matchers, in terms 
of reduction in FRR where FAR = 10-4, relative to the stronger of the inputs. 3  

4.2 Multi-Instance: 2-Fingerprint Results 

Score-level fusion of two fingerprints is very effective, as shown in Figure 8. Note however, that 
fingerprint scores from different fingers are not independent: the distance between the fused and chimera 
lines shows that dependence substantially limits the benefits of fusion. 

Effect of Fusing Corresponding Fingers from Right and Left Hands
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Figure 8: Effect of fusing scores for two corresponding fingerprints from right and left hands (matcher 
H, Product of Likelihood Ratios fusion). The fusion (blue) line shows the effect of fusing right (red) 

                                                 
3 For example, when fusing Left Thumb and Right Index, FRRLT=0.0055, FRRRI=0.0155 and the fused 
FRRLT*RI=0.0007, then the improvement in FRR = (min(0.0055, 0.0155) – 0.0007)/ min(0.0055, 0.0155) = (0.0055-
0.0007)/0.0055 = 87%.  This metric was computed at FAR = 10-4, but was not highly sensitive to this operating 
point. 
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and left (green) fingerprint scores. The chimera (pink) line shows what the effect would have been if 
the face and fingerprint scores were independent. 

Table 3 summarizes the effect of fusion for all combinations of two distinct fingerprints, given all ten 
finger positions, and three fingerprint matchers. The results are measured as reduction of false reject rate 
for a fixed false accept rate. On average, fusing two fingerprint scores results in about the same 
improvement in accuracy as fusing face and fingerprint scores: 77% rather than 75%. However, these 
results have more variability than the face + fingerprint results shown above in Table 2: 48-90% rather 
than 64-84%.  This variability reflects matcher accuracy and varying levels of score correlation among 
pairs of finger positions.  

  Two fingers 

  
H 

fingers 
I 

fingers 
Q 

fingers 
Min 59% 48% 51%
Median 83% 79% 72%
Average 82% 78% 71%
Max 90% 90% 84%

Table 3: Summary of fusion for all 45 pairwise combinations of fingers, in terms of reduction in FRR 
where FAR = 10-4, relative to the stronger of the inputs. 

Table 4 summarizes the results of [SDK2] using the same metrics. Those results correspond closely to 
ours.  

2-finger SDK Report 
Min 58%
Median 80%
Average 77%
Max 89%

Table 4: Summary of two-finger fusion results from [SDK2]4 , in terms of reduction in FRR where FAR 
= 10-4, relative to the stronger of the inputs. (Based on index finger results from ten matchers and four 
datasets, using simple sum of raw scores.) 

4.3 Multi-Instance: N-Fingerprint Results 

Figure 9 shows the results of fusing fingerprint scores in various combinations, using each of the three 
fingerprint matchers. Since these results exceed an FRR of 0.001, we show the data integrity limits 
discussed in Section 2.4: the upper line is the 0.037% limit due to the 24 subjects with face and fingerprints 
misidentified (0.037%), and the lower line is the 0.051% limit including the additional 9 subjects with 
some swapped or repeated fingers. The upper line is a hard limit; the lower line may be a limit 
depending on which fingers are used.  

                                                 
4 Derived from Tables 3 and 6 in [SDK2]. 
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Multifinger Fusion
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Figure 9: Fusion of various groupings of multiple fingers, showing data integrity limits (based on the 
number of known database errors) for fingerprint matchers H, I, & Q and Product of Likelihood 
Ratios fusion. 

A number of conclusions may be drawn from these results: 
• It is an oversimplification to say that fusing more fingers improves accuracy. The combinations of 

fingers used are at least as important as the number of fingers used. 
• Thumbs are substantially more effective than the other fingers:  

o Thumbs offer as much performance advantage over index fingers as index fingers offer over little 
fingers. Two thumbs are much more accurate than two index fingers. 

o A four-finger slap is approximately as effective as a thumb and any other finger. 
• For Matchers H and I, the combination of both thumbs and both index fingers reaches the data 

integrity limit. Note this combination has one fingerprint from each of the four images captured in a 
full set of slap fingerprints. In some experiments, the combination of both thumbs and one other 
finger reached the data integrity limit. 

• As more inputs are fused and accuracy approaches 100%, the maximum achievable accuracy is 
limited by data integrity problems (misidentifications, swapped prints, missing images). 

The primary reason that accuracy is sensitive to specific combinations of fingers is because of correlations 
between fingerprint scores. Figure 10 shows correlations between genuine scores for one fingerprint 
matcher. Note the correlations between neighboring fingers, among the four fingers collected in each 
slap, and between corresponding fingers on right and left hands (faint diagonal from top right to bottom 
left).  Some of these correlations are specific to the way that these fingerprints were collected: if both 
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thumbs were captured in a single image, they would be more correlated; if the fingers were collected 
separately rather than in a single slap image, they would be less correlated. 

 

Figure 10: Correlations between genuine scores for Matcher I by finger position — left little (ll) to 
right little (rl). Darker colors represent higher correlations. Values range from 0.17 to 0.47 (ignoring the 
identity diagonal). 

4.4 Multi-Instance/Modal: N-Fingerprint and Face Results 

Figure 11 shows the effect of adding face to the results shown above in Figure 9. Combining face with 
fingers is beneficial in all cases, although the relative benefit of adding face decreases as FRR approaches 
the data integrity limit. 
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Figure 11: Fusion of various groupings of fingers, with and without face. This uses fingerprint matcher 
H and face matcher C, the most effective combination. (Product of Likelihood Ratios fusion) 

4.5 Multi-Matcher Results 

We evaluated the effect of fusing scores from multiple matchers, given the same input samples. Table 5 
shows that for pairs of fingerprint matchers at fixed FAR=0.0001, FRR was generally reduced by 8-33%, 
varying by finger position; for pairs of face matchers, FRR was reduced by 10-13%.  

 Face Fingerprint 
   H+I H+Q I+Q 

Min 10% 14% 8% 9%
Median 10% 25% 20% 20%
Average 11% 25% 16% 20%
Max 13% 33% 32% 32%

Table 5: Reduction in FRR where FAR = 10-4, for pairwise matcher fusion using the Product of 
Likelihood Ratios technique.  Fingerprint results are for all ten finger positions. Face results 
summarize the three pairwise combinations of matchers. 

Figure 12  and Figure 13 show the effect of three-way matcher fusion. 
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Figure 12:  Fusing all three face matchers reduced FRR by 20% relative to Matcher C (at FAR=10-4).  
Note that much of the benefit at high FAR (between 1 and 10-1) is directly due to Likelihood Ratio 
normalization of Matcher A, not fusion.5

 

Figure 13: Fusing all three matchers on left index fingers reduced FRR by 17% relative to Matcher H (at 
FAR=10-4). 

                                                 
5 In some cases, normalization of scores by transformation to likelihood ratios improves ROC performance 
even without fusion. Face matcher A is a case in point, due to a spike in the genuine distribution at the 
minimum score value, which translates into a vertical drop at FAR=1. A similar effect but to a lesser extent 
occurs for fingerprint matcher I in Figure 13. 
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Matcher fusion often does produce a substantial increase in accuracy, although typically much less than 
that for multi-instance or multi-modal fusion. This should be expected due to the greater degree of data 
independence for instance and modal fusion. Since single-instance multi-matcher fusion uses the same 
data for both (or all) matchers, the independent information that is necessary for effective fusion must 
come from differences (if any) between matchers. Thus any improvements in accuracy reflect differences 
in the matchers that might be exploited either through score-level fusion or further improvement of 
existing matcher technology.   

4.6 Multi-Sample Results 

A multi-sample biometric system uses more than one sample from each biometric instance, such as 
multiple fingerprint images from each of a person’s fingers. Multi-sample fusion from the use of multiple 
enrollments is likely to be of interest since it leverages existing data rather than requiring the collection of 
additional data. Therefore the cost and complexity of implementing this form of multi-sample fusion is 
likely to be much less than that of multi-modal or multi-instance fusion. The method used in this study 
was to measure how accuracy would be affected if a gallery retained two fingerprint samples per finger 
position per subject rather than just one. 

NBDF06 includes 4,015 subjects with three fingerprint sets each. The fingerprint sets were captured in 
different collection encounters, on different dates. The mated (genuine) multi-sample data used in this 
analysis was comprised of the three segmented slap fingerprints per finger position for each of these 
4,015 subjects. The non-mated (imposter) multi-sample data consists of 396,210 subject pairs selected from 
among the off-diagonal scores of the similarity matrices. The matchers used were the H, I, and Q 
fingerprint matchers. As the fused scores have the same score distribution (same finger, same matcher), 
they were fused by Simple Sum of Raw Scores (and by Max of Raw Scores, which produced essentially 
the same results). 

Figure 14 shows the effect of multi-sample fusion: FRR was reduced by about half. 

20 July 2006  19/22 



 Studies of Biometric Fusion 

 

Figure 14: Example of effects of multi-sample fusion, for matcher I, left middle fingers.  

Table 6 shows summary results of multi-sample fusion for all finger positions, by matcher. The 
improvement in FRR ranged from 45% to 72%.  

  H I Q 
Min 53% 49% 45%
Median 57% 56% 52%
Max 70% 72% 57%

Table 6: Effect of multi-sample fusion, using Raw Sum of Scores technique, in terms of reduction in 
FRR at FAR=10-4, relative to the stronger input. Results for each matcher are computed over all ten 
finger positions. 

5 Conclusions 
Eight score-level fusion techniques were implemented and evaluated. These differed in effectiveness, in 
the types of training data required, and in their requirements for modeling genuine and imposter 
distributions. 
• The most effective fusion techniques were Product of Likelihood Ratios and Logistic Regression, 

which are implementations of the theoretically optimal Neyman-Pearson Lemma. Product of 
Likelihood Ratios involved complex, detailed modeling of score distributions. Logistic Regression 

20 July 2006  20/22 



 Studies of Biometric Fusion 

achieved similar results using a standard statistical technique. Both techniques require statistical 
tools, training, and a substantial amount of training data.  

• Techniques that were nearly as effective were product of FARs and Best Linear. Product of FARs 
requires modeling the non-mated (imposter) distribution, but does not require mated (genuine) data. 
Best Linear is a conceptually simple technique that requires joint training data, but does not require 
modeling of distributions. 

• For cases in which the input scores are of similar strengths and distributions, such as fusing two 
index fingers using a single matcher, the choice of fusion technique had minimal effect on accuracy. 

A variety of fusion experiments using face and fingerprint data were conducted, using the most accurate 
of the techniques we implemented, Product of Likelihood Ratios. The baseline performance of biometric 
systems is largely determined by matcher accuracy and sample quality. The number of fused scores, the 
extent to which those scores are correlated, and the fusion techniques used determine the additional 
benefits of fusion. As more inputs are fused and accuracy approaches 100%, the maximum achievable 
accuracy is limited by data integrity problems (such as misidentifications or swapped or repeated 
images). Fusing scores from at least three or four separately collected samples (finger instances and/or 
face) largely eliminates the effect of poor image quality. 
• Multi-modal score-level fusion (face and fingerprint) was consistently highly effective, because the 

face and fingerprint matching scores are nearly independent. Fusing matcher scores from one 
fingerprint and face resulted in a 64-85% reduction in 1:1 false reject rate at a constant false accept rate 
of 0.0001. For example, an improvement of false reject rates from 1.0% (using fingerprints) to 0.25% 
(using face in addition) is a 75% reduction in false reject rates. Improved face image quality should be 
expected to result in further accuracy improvements. 

• Multi-instance score-level fusion (using fingerprints from multiple fingers) was consistently highly 
effective. Fusing two fingerprints resulted in a 48-90% reduction in false reject rate at a constant false 
accept rate of 0.0001. The accuracy of multi-fingerprint fusion is dependent on which fingers are 
used, the number of fingers, and the correlations of the fingerprint scores.  Example findings: fusing 
of scores from a thumb and any other finger was as effective as fusing the scores from four fingers on 
one hand (slap); the maximum possible accuracy on this dataset (0.05% false reject rate, at a false 
reject rate of 10-4) could be achieved using both thumbs and one other finger. Fusion of scores from 
two fingers was about as accurate as fusion of scores from face and one fingerprint; fusion of scores 
from a four-finger slap was not as accurate as fusion of scores from face and two fingerprints. 

• Multi-sample score-level fusion, such as from the use of multiple enrollments, was consistently 
effective. The use of single-finger gallery samples from two enrollments rather than a single 
enrollment resulted in a 45-72% reduction in false reject rate at a constant false accept rate of 0.0001, 
using Sum of Raw Scores fusion. Multi-sample fusion may be of interest since it leverages existing 
data rather than requiring the collection of additional data. 

• Multi-matcher score-level fusion, using two matchers on the same data, was much less effective than 
the other methods, but may be of interest since it does not require the collection of additional data. A 
10-13% reduction in false reject rate was achieved at FAR= 0.0001 by fusing scores from two face 
matchers; an 8-33% reduction was achieved using fingerprint matchers. 

Although score-level fusion has clearly been shown to be effective, this does not necessarily mean that 
fusion can be successfully implemented in every situation. The extent to which the benefits of fusion can 
be realized in practice depends on  
• The availability of multi-biometric data and/or multiple matchers  
• The accuracy of the matchers 
• The correlation of the scores 
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• The representativeness and quantity of training data 
• A detailed understanding of score distributions 
• How fusion is implemented (e.g. the choice of fusion technique, details of its implementation, and its 

role in the system architecture) 
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