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Introduction

Despite tremendous advances in medical science, can-
cer remains a significant cause of mortality around the
world 1). Traditional therapeutic approaches such as
surgery, chemotherapy, and radiation therapy are still
widely used to treat patients with cancer. However,
these approaches have significant drawbacks, including
increasing patient's physical and mental trauma and
relatively low success rates. Thus, less invasive and
more effective cancer therapies are required.
       Photodynamic therapy (PDT) is one of a number
of alternative anticancer therapies available. It uses a
combination of a photosensitizer coupled with laser

irradiation to generate singlet oxygen in the target
tumor tissue 2-3). PDT treatment offers several advan-
tages over traditional cancer therapies. First, it has a
relatively low side effect profile; normal tissues do not
accumulate significant amounts of photosensitizer com-
pared to tumor tissues, so the damaging effect of sin-
glet oxygen is restricted to the latter. Second, it does
not carry a risk of hemorrhage. Recently, novel photo-
sensitizers with improved efficiency of accumulation in
tumors and hence, singlet oxygen production, have
been developed to improve the efficiency of PDT 4-6).
However, the mechanism by which photosensitizers
selectively accumulate in tumors remains unclear and
lack of this knowledge impedes patient confidence in
this therapeutic approach. In this review, we focus on
the cellular uptake mechanism of photosensitizers and
the effect of PDT from the viewpoint of oxidative
stress.
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Photodynamic Therapy/Diagnosis

An aging society is one of reasons for increase in can-
cer patient populations. Elderly patients, in particular,
face significant hurdles with conventional cancer thera-
pies, such as surgery, because of the increased risks for
severe failure of organs such as heart, lung, liver, and
kidney 7). In addition, patients with cardiovascular or
cerebrovascular disease, using any of the widely pre-
scribed anti-platelet treatments, may not be good can-
didates for surgery. In such cases, because of its low
invasiveness, PDT could be a viable treatment option
for these types of patients.
       In Japan, PDT is available through the public
health insurance system for the treatment of early gas-
tric, lung, and cervical cancers 8). According to the sur-
vey of National Cancer Center in Japan, the number of
patients with these diseases has been increasing in
recent years. In the case of gastric cancer, the mortality
rate in both males and females has increased signifi-
cantly. Furthermore, lung cancer is the leading cause
of death in males. In addition, the rate of cervical can-
cer is also increasing; the number of young female
patients testing positive for papilloma virus is increas-
ing, largely because the age at which they become sex-
ually active is decreasing. Consequently, this leads to
higher rates of cervical cancer in younger patients 9). A
standard treatment for patients with cervical cancer
above Stage Ib includes whole uterus resection result-
ing in loss of fertility in the patient. Therefore, an
effective treatment for cervical cancer that maintains a
patient's fertility would be of great benefit. PDT is
becoming a more attractive treatment option because
of its ability to target only the affected regions of an
organ and so avoid unnecessary removal of the entire
organ 10).
       As new photosensitizers are being developed, the
PDT approach continues to improve in effectiveness
11). Clinically, several photosensitizers for PDT have
been approved: porfimer sodium (Photofrin®), which
is a hematoporphyrin derivative, is used to treat early
lung, gastric, esophageal, and cervical cancer in Japan
2). In recent years, a second-generation photosensitizer
[Talaporfin sodium (Laserphyrin®)] has been devel-
oped, which has reduced photosensitivity and is used
for the treatment of early lung cancer and brain tumors
12). Besides treatment, agents such as 5-aminolevulinic
acid (ALA), which is a porphyrin precursor, can be
used to visualize tumor areas during brain tumor resec-
tion, allowing for better prognosis [Photodynamic diag-
nosis (PDD)] 13).

Accumulation of Photosensitizers in Tumor
Tissue

       As mentioned above, photosensitizers possessing
a porphyrin structure have commonly been used in the
treatment of cancer patients. Cancer-specific porphyrin
accumulation is one of the most important phenomena
underlying the utility of PDT to affect cancer cells in a
selective manner. The mechanism by which this phe-
nomenon occurs has been investigated and, based on
this, new photosensitizers have been proposed. One
example is glycoconjugated porphyrin (Figure 1).
Cancer cells are well known to utilize glucose as a
preferential fuel and often have incredibly high rates of
glycolysis 14). Thus, cancer cells express various glu-
cose transporters and avidly take up glucose 15-16).
Based on this, glycoconjugated porphyrins derivatives
can be specifically targeted to cancer cells, using glu-
cose transporters as an uptake mechanism 17). It
should, however, be pointed out that the reason why
porphyrins without sugar chains are specifically trans-
ported into cancer cells is unclear but it does suggest
that multiple uptake pathways exist.
       Indeed, several theories have been advanced to
propose how cancer cells incorporate porphyrins.
Laura Polo et al. reported that a binding complex
between low-density lipoproteins (LDL) and por-
phyrins was transported into cells through the LDL
receptor 18). In a previous study, we also demonstrated
that porphyrin could be transported into cells by a pro-
ton-coupled folate transporter called heme carrier pro-
tein 1 (HCP1), also known as SLC46A1 19-20). HCP1
was originally discovered as a heme-transport protein.
Since heme has a porphyrin-based structure and

Figure 1: The structure of a glycoconjugated porhyrin
which was developed for PDT
(Reference #6)



adopts a conformation almost identical to that of por-
phyrin, HCP1 can transport not only heme but also
porphyrin. In fact, uptake of porphyrin has been
shown to be increased in HCP1 over-expressing cells
and, likewise, is decreased in HCP1 knock-down cells
supporting the notion of porphyrin transport into cells
by HCP1 20). It has also been reported that HCP1
expression is regulated by hypoxia 21). Hypoxia
increases the generation of mitochondrial reactive oxy-
gen species (mitROS) 22-23) and these in turn enhance
the expression of HCP1, depending upon the precise
ROS concentration. Transcription factors and cytokines
responsive to oxidative stress responsive have been
also suggested to be important in regulating HCP1
expression.

Oxidative Stress and Mitochondrial Reactive
Oxygen Species (mitROS)

Eukaryotic cells synthesize ATP by oxidative phospho-
rylation. This aerobic metabolism is performed by the
mitochondrial electron transfer system in which free
electron leakage sometimes occurs allowing the gener-
ation of mitROS 24). ROS that are generated in mito-
chondria are mainly superoxide anions, although other
species of ROS such as the hydroxyl radical and hydro-
gen peroxide can also be generated 25-26). ROS are
ubiquitously generated in the body and are the princi-
pal cause of oxidative stress. They have been proposed
to be involved in a variety of diseases including vascu-
lar diseases, Alzheimer disease and carcinogenesis, as
well as accelerated aging 27-29) (Figure 2). To protect
against these diseases, the body has various defense

mechanisms that act to scavenge ROS in order to sup-
press oxidative stress. Glutathione and glutathione per-
oxidase convert hydrogen peroxide to water, and
superoxide dismutase (SOD) decomposes superoxide
to hydrogen peroxide 30). SOD has a metal iron at its
active center and several different types of SOD
enzyme have been characterized based on the active
metal center, e.g., Cu- and Zn-SODs in the cytoplasm
and Mn-SOD in the mitochondria 31). In a previous
study, we demonstrated that cancer cell specific
mitROS enhanced cellular invasion 32). Therefore, Mn-
SOD, which predominantly scavenges mitochondrial
ROS, is an important enzyme for biophylaxis.
       In addition to the activity of the mitochondrial
respiratory chain, other exogenous factors also pro-
mote the generation of ROS. For examples, excessive
intake of salt and alcohol intake have been reported to
be involved in the induction of gastric cancer 33). We
have also reported that salt and alcohol inhibit the
mitochondrial electron transport chain and accelerate
the generation of mitROS in gastric epithelial cells 34-
35). Furthermore, infection of the gastric mucosa with
Helicobacter pylori also induces mucosal inflammation
via the production of ROS, and is related to the resul-
tant gastric carcinogenesis 36). Therefore, ROS, espe-
cially mitROS, are also induced by a variety of exoge-
nous factors and could be associated with the onset
and establishment of cancer. Moreover, the over-pro-
duction of mitROS may activate many signal transduc-
tion pathways, followed by the induction of proinflam-
matory cytokines and activation of a variety of tran-
scription factors such as NF-κB and hypoxia inducible
factor 1α (HIF-1α) 26, 37-38). These cytokines and
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Figure 2: Schematic illustration of the relationship between reactive oxygen species and diseases.
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transcription factors are related to carcinogenesis and
form part of the cancer-specific phenotype.
Consequently, signal transduction via mitROS may play
an important role in cancer cell-specific HCP1 expres-
sion.

Effect of Mitochondrial Reactive Oxygen
Species for Photodynamic Therapy

We compared the expression of HCP1 induced by dif-
ferent levels of mitROS, and then studied the differ-
ences in both cellular porphyrin accumulation and the
PDT effect in normal and cancer cells, and cancer cells
over-expressing MnSOD 39). Generally, cancer cells
showed a higher concentration of ROS than normal
cells. In addition, Mn-SOD over-expression suppressed
ROS generation in cancer cells 32). We confirmed that,
as expected, HCP1 was expressed at higher levels in
cancer cells compared to normal cells, and that Mn-
SOD over-expression in cancer cells suppressed
HCP1expression 22). The higher level of HCP1 expres-
sion in cancer cells induced porphyrin accumulation
into these cells and this accumulation of porphyrin was
suppressed in Mn-SOD-overexpressing cancer cells:
PDT effects correlated with porphyrin accumulation
levels. These results indicate that over-expression of
mitROS in cancer cells enhances the PDT effect
(Figure 3). Based on this result, we hypothesized that
promotion of ROS generation through inhibition of the

mitochondrial electron transfer system would enhance
the effect of PDT. We previously reported that
indomethacin (IND) enhanced the generation of ROS
in isolated mitochondria derived from gastric epithelial
cells 40). Non-steroidal anti-inflammatory drugs
(NSAIDs), including IND, are usually prescribed as
analgesics, and notoriously cause gastrointestinal injury
by suppressing prostaglandin production through inhi-
bition of cyclooxygenase. Damage to the intestinal
mucosa is caused not only by components of digestive
juice, such as gastric acid, but also by the ROS generat-
ed in response to the NSAIDs 41-42). We demonstrated
that administration of IND accelerated both the genera-
tion of mitROS and the subsequent PDT effect.
Through this phenomenon, we were able to confirm
the cancer-specific enhancement of HCP1 expression.
We conclude that mitROS generated in response to
IND enhanced the effect of PDT.
       In a previous report, we studied the relationship
between tumor malignancy and HCP1 expression in
brain tumor specimens. The level of HCP1 expression
was found to coincide with the malignancy of the
tumor cells 43). Moreover, since mitROS are strongly
associated with the malignant transformation of cells,
the acceleration of cellular malignant transformation
and HCP1 expression might occur as a result of mor-
phological changes in cells brought about by mitROS.
As another example, cancer-specific mitROS generation
increased the expression of peptide transporter 1
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Figure 3: Schematic illustration of the expression mechanism of porphyrin-trans-
port protein, HCP1. Over-generation of mitochondrial reactive oxygen
species enhanced HCP1 expression and subsequent PDT effect.
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(PEPT1), which is a transporter of ALA, to enhance the
effect of PDT 44). Accordingly, cancer-specific mitROS
are likely to convert cancer cellular phenotypes via sig-
nal transduction, and enhance the effect of PDT effect
by accelerating the expression of various transporters
for photosensitizers.

Conclusion and future aspects

In this mini review, we have discussed data that show
that the production of mitROS can improve the effec-
tiveness of PDT, and further clarified that mitROS does
so by increasing the expression of cellular transporters
that are capable of transporting photosensitizing
agents. Although we have focused on the cancer-spe-
cific porphyrin accumulation mechanism, many aspects
of the mechanism remain to be elucidated. As men-
tioned above, mitROS can activate many signal trans-

duction pathways, which in turn induce the activation
of transcription factors and therefore the expression of
target proteins. However, this mechanism is not always
decided centrally. Furthermore, although in this paper
we have focused on the uptake of porphyrin, knowl-
edge about other aspects of porphyrin biology, such as
its excretion and degradation, could also be of impor-
tance. For example, it has been reported that ROS pro-
duction and the subsequent activation of HIF-1 are
related to the expression of a porphyrin excretion
transporter ABCG2 45-46). Further, the association with
nitric oxide, which is a gas mediator cell signaling mol-
ecule, should be studied further. 
       In the near future, as the population ages and
dietary habits change, a simpler and more effective
treatment for cancer will be required. PDT offers one
such potential approach and we are hopeful that fur-
ther studies will bring this potential to fruition.
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