

Patrick Moore's Practical Astronomy Series

Light Pollution

Responses and Remedies

Second Edition

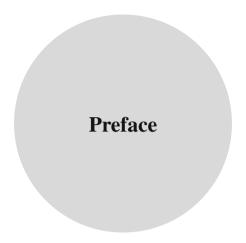
Bob Mizon

Bob Mizon Wimborne, UK

ISSN 1431-9756 ISBN 978-1-4614-3821-2 DOI 10.1007/978-1-4614-3822-9 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012939110

© Springer Science+Business Media New York 2012


This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

In July 2003, the 11 members of the UK Parliament's Science and Technology Select Committee convened beneath the high ceiling of a gilded meeting room at the House of Commons in London. They were there to gather evidence for an enquiry into light pollution and the gradual disappearance, since the 1950s, of the night sky over much of the country. Politicians, engineers, astronomers (including the Astronomer Royal, Sir Martin Rees) and many other interested individuals gave evidence.

A now prominent politician, at that time a junior education minister, concluded during his evidence that "if we cannot give young people access to the night sky because of where they live, we have to find other ways of giving them practical engagement with the subject" – by, he said, buying Internet time on telescopes abroad! The committee, in their report, expressed surprise "that the Minister... did not see the irony of his own words. Schools are now obliged to buy time to enable their pupils to view stars in the southern hemisphere, when the UK's own night skies should be there for all to view for free."

We require our children to appreciate "the wider universe" in the school curriculum, but the vast majority of them see very little of their universe because of the pall of wasted light that hangs over every city – and many villages and rural spaces – in our increasingly urbanized world.

Thousands of stars should be visible to the unaided human eye from a dark place, but it is becoming increasingly difficult to find such places. There are sites in modern town centers where nothing outside the Solar System is ever seen in the sky.

vi Preface

Wherever you are in the developed world, whether it's in your back garden or a well-equipped professional observatory, it is increasingly likely that the night sky will be tainted, degraded by wasted light. The second half of the twentieth century saw the gradual disappearance of the starry sky over large tracts of our planet.

Together with radio interference, space debris and aircraft contrails, light pollution contributes to the increasing barrier between the human race and its cradle, the cosmos. We are all made of star-stuff, nearly every atom in our bodies having been created in some distant and probably long-dead star, some explosive event whose reverberations have long since dissipated. Whatever is left of our material selves, when our planet finally sears in what Bertrand Russell called "the vast death of the Solar System," will be redistributed and recycled into the cosmic depths that we can no longer, in the twenty-first century, properly see and appreciate.

Robert Macfarlane told of both the value and the loss of the heavens in his book *The Wild Places*¹:

On a cloudless night, looking upwards, you experience a sudden flipped vertigo, the sensation that your feet might latch off from the earth and that you might plummet upwards into space. Star-gazing gives us access to orders of events, and scales of time and space, which are beyond our capacity to imagine: it is unsurprising that dreams of humility and reverence have been directed towards the moon and the stars for as long as human culture has recorded itself.

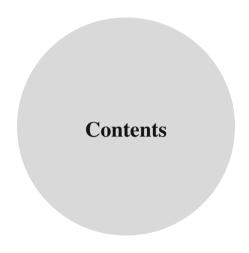
Our disenchantment of the night through artificial lighting may appear, if it is noticed at all, as a regrettable but eventually trivial side-effect of contemporary life. That winter hour, though, up on the summit ridge with the stars falling plainly far above, it seemed to me that our estrangement from the dark was a great and serious loss.

Light Pollution: Responses and Remedies is not a 'science book' in the usual sense. It is in the Practical Astronomy series because it concerns itself with the night sky and because it offers a selection of objects that may be studied in moderately light-polluted skies; but it is hoped that its contents may point to courses of action that astronomers and friends of the environment, be they ardent campaigners (Fig. 1) or mildly concerned individuals, can follow in order to contribute to the alleviation and eventual solution of the skyglow problem, and of the many other problems caused by wasted light.

This book deals with human perceptions as much as with the discipline of astronomy; with our aspirations and needs as well as with our technical achievements. It explores one of the saddest paradoxes of modern life: the fact that our developing technology can provide us with stunning images of the near and far universe, and at the same time blind our eyes to the stars above.

Wimborne, UK Bob Mizon

¹Robert Macfarlane: *The Wild Places*, Granta Publications, 2007 (ISBN 978-1-86207-941-0).


 $Fig.\ 1$ Dark-sky campaigners from around the world meet at Genk, Belgium, 2005 (Photo: Friedel Pas)

This second edition owes much to the encouragement and help of members of the British Astronomical Association's Campaign for Dark Skies (Dr. Chris Baddiley, John Ball, Graham Bryant, Dr. John Mason, Martin Morgan-Taylor, Mike Tabb), UK lighting professionals (especially Tom Webster), members of the International Dark-Sky Association (IDA), Eric Jones (SSE Museum of Electricity, Christchurch), Dr. Steven Lockley (Harvard Medical School), Richard Murrin, David Nash, Dr. Woody Sullivan (University of Washington, Seattle), Nik Szymanek, Steve Tonkin and fellow members of the Wessex Astronomical Society. My special thanks to Pam Mizon for her patience and support.

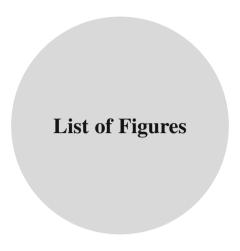
Photographs

All photographs in this book are by the author unless otherwise credited. Permissions have been acquired for other photos and for quotations from other works.

Part I The Gift of Light?

1	Living with Light	3
	The Limits of Human Vision	3
	Heaven's Lights	8
	The Range of Natural Radiation	13
	Sunlight	16
	Moonlight	22
	Starlight	24
	The Zodiacal Light	29
	The Gegenschein	30
2	Light Pollution: The Problem Defined	33
	Lights and More Lights: The Rise of Artificial Illumination	33
	Skyglow	40
	Turning the Tide	48
3	Adverse Impacts of Inefficient Artificial Lighting	53
	Waste of Energy and Money	53
	Domestic Floodlights	58
	Road Lights	59
	Degradation of the Environment	62

xii Contents


4	8 8/ € 1	77 77
5	Crime Reduction	85 87 93 97
6 Pa	Measurement The Bortle Scale	99 99 03 08 09 18
7	Filters 1	23 24 27
8	Andromeda (October) 1 Aquarius (August–September) 1 Aquila (July) 1 Aries (October–November) 1 Boötes (April–May) 1 Camelopardus (December) 1 Cancer (January–February) 1 Canes Venatici (April) 1 Canis Major (December–January) 1 Canis Minor (January–February) 1 Capricornus (August) 1 Capricornus (August) 1 Capricornus (August) 1 Capheus (August–September) 1 Cetus (October–November) 1 Coma Berenices (March–April) 1 Corona Borealis (May) 1 Cygnus (July–August) 1 Delphinus (July–August) 1 Draco (March–June) 1 Gemini (December–January) 1 Hercules (May–June) 1 Lacerta (September) 1	31 35 37 40 41 42 43 44 46 47 48 50 51 51 53 56 56 56 56 62 63 63 65

Contents xiii

Leo Minor	(February–March)	166
Lynx (Janu	ary-February)	166
Lyra (June-	-July)	168
Ophiuchus	(May–June)	169
Orion (Dec	ember–January)	170
Pegasus (Se	eptember-October)	171
Perseus (No	ovember-December)	172
Pisces (Sep	otember-October)	174
Sagitta (Jul	y-August)	174
Scutum (Ju	ne–July)	176
Serpens (M	Iay-June)	176
Taurus (No	vember–December)	177
Triangulun	n (October–November)	179
Ursa Major	(February–March)	180
Ursa Minor	r (May–June)	183
Virgo (Mar	ch–May)	183
	(July–August)	184
Part III Dar		
_	ation Solutions for the Twenty-First Century	189
	ld Manufacturers Be Doing About Light Pollution?	192
	ld Legislators Be Doing About Light Pollution?	199
	ld Local Authorities Be Doing About Light Pollution?	202
	ld Architects Be Doing About Light Pollution?	206
	ld Retailers Be Doing About Light Pollution?	208
	ld Astronomers Be Doing About Light Pollution?	209
Courses of	Action	209
Appendix 1	The StarLight Conference 2007: Declaration in Defence of the Night Sky and the Right	215
	to Starlight (La Palma Declaration)	215
Appendix 2	Organizations Committed to Reducing	
	Light Pollution	221
Appendix 3	Starry Starry Night	223
Appendix 4	The Future of Street Lighting – A Professional's View	227
Appendix 5	Recommendations for Good Light Control	231
Appendix 6	Extracts from Articles on the Legal Aspect of Light Pollution (Reproduced With Permission)	239
Appendix 7	Some Lighting Myths (Reproduced by kind permission of Dr. David Crawford, IDA)	243

xiv Contents

Appendix 8	Advice from IDA and CfDS	249
Appendix 9	Examples of Governmental Guidelines on Good Lighting Practice	253
Appendix 10	The IDA's "Simple Guidelines for Lighting Regulations for Small Communities, Urban Neighborhoods, and Subdivisions"	255
Appendix 11	Extracts from the Revised Tucson and Pima County Outdoor Lighting Control Ordinances	259
Glossary		265
Bibliography .		269
About the Aut	chor	275
Object Index .		277
Subject Index		279

Fig. 1.1	A clear night sky. Orion looks down upon	
	the unlit village of Ansty, in Dorset	4
Fig. 1.2	A Milky-Way type spiral galaxy: NGC 7331, in Pegasus	
	(Photo: Alan Jefferis)	5
Fig. 1.3	Two-million-year old light from M31 (Photo: Alan Jefferis)	5
Fig. 1.4	A 30 s exposure: Jupiter and Saturn in Taurus, 2000 Aug 11	7
Fig. 1.5	The atmosphere (Diagram courtesy of Nigel Marshall)	8
Fig. 1.6	Clouds: the astronomer's <i>bête noire</i>	10
Fig. 1.7	Drifting contrails draw a veil across a clear sky	11
Fig. 1.8	A veil of contrails over Northern Europe (Courtesy Deutsche	
	Forschungsanstalt für Luft und Raumfahrt)	12
Fig. 1.9	Sky-wonder: a god (Jupiter) and a brighter goddess	
	(Venus) meet (1988 February 29)	13
Fig. 1.10	The electromagnetic spectrum (Diagram courtesy	
	of Nigel Marshall)	14
Fig. 1.11	Earthshine	15
Fig. 1.12	Dust clouds are prominent in this photograph	
	of the Milky Way. The brightest object is Jupiter	16
Fig. 1.13	Our stable star – the Sun (Photo: Sheri Lynn Karl)	17
Fig. 1.14	The solar spectrum on a kitchen wall	18
Fig. 1.15	The aurora of 2000 April 6–7, from my back garden	19
Fig. 1.16	Mercury sets below the Pleiades, 1996 April 24	20
Fig. 1.17	The evening star: Venus at twilight	20
Fig. 1.18	Mars (below centre) nears its red rival Antares in Scorpius	21
Fig. 1.19	Jupiter and Bob's 21-cm/8.5-in. reflector	21

xvi List of Figures

Fig. 1.20	Moonlight: a midnight Moon and a 20-s exposure	
	create a daylight scene	22
Fig. 1.21	The Moon at first quarter, 2010 December 13. The line	
	between lunar day and night is known as the terminator	
	(Photo: Len Telford)	23
Fig. 1.22	The Milky Way flows through Cassiopeia and Cygnus	
8	in a dark, rural night sky	24
Fig. 1.23	Deneb is the brightest star in this 3-min exposure	
8	from Child Okeford, Dorset	25
Fig. 1.24	The Pointers of the Plough indicate the Pole Star,	
116.112.	high above the marquee of a school's summer camp	25
Fig. 1.25	Supernova 1993J in M81 (NGC 3031)	27
Fig. 1.26	Nova Aquilae 1999 December 4. The 'new' star is near	21
115. 1.20	Delta Aquilae, and is arrowed on the accompanying chart.	
	Altair is the brightest star at the top of the photo	28
Fig. 1.27	An ancient constellation: Orion, the Osiris of the Pharaonic	20
11g. 1.27	Egyptians (Photo: Chris Bowden)	29
Fig. 1.28	The zodiacal light from La Palma (Photo: Alan Drummond)	30
Fig. 1.29	Veil across the heavens – light pollution blots out the	50
11g. 1.2)	southern stars	31
	Southern stars	31
Fig. 2.1	Stone and shell oil lamps (Courtesy SSE Museum of Electricity,	
	Christchurch)	34
Fig. 2.2	A bulky carbon arc streetlamp from the 1880s next to	
	the surprisingly small original filament lamp by Swan	
	(Courtesy Eric Jones, SSE Museum of Electricity)	34
Fig. 2.3	Bob with a replica of Swan's first filament lamp	
	(Courtesy SSE Museum of Electricity)	36
Fig. 2.4	Poorly directed emissions: much of the light misses the church	37
Fig. 2.5	Shielded light in a supermarket car park, preventing	
	light spill into houses	38
Fig. 2.6	Glare dominates the environment in this photo taken	
	on the outskirts of London (Photo: Edward Hanna)	39
Fig. 2.7	Most of the light from this car park floodlight will go into	
	the sky (Photo: Mike Tabb)	39
Fig. 2.8	The massed and mostly poorly directed lights of Canford	
	Heath, Dorset	40
Fig. 2.9	Skyglow over Poole: the "hot spot" is caused	
	by the floodlights of the cross-channel ferry terminal	41
Fig. 2.10	The city of Bath by night, 1950s and 2000	
	(Photo: Mike Tabb)	42
Fig. 2.11	Some of the large numbers of new, downward-directed	
	road lights replacing old wasteful types in the UK	43
Fig. 2.12	Urbanisation of the countryside near John O'Groats	
_	(Photo: Bill Eaves)	44

List of Figures xvii

Fig. 2.13	Europe by night (Copyright 1996 W.T. Sullivan and Hansen	
	Planetarium)	44
Fig. 2.14	A farm light shines into a neighbouring garden	
	(Photo: Graham Bate)	45
Fig. 2.15	Warrington, Cheshire: a car lot's "security" floodlight	
	intrudes into premises well outside its perimeter	
	(Photo: Ian Phelps)	45
Fig. 2.16	Looking towards Stonehenge from the east, 2011: a golf	
	range steals the ancient stars (Photo: CfDS)	46
Fig. 2.17	The lights of the world by night, from space	
	(Copyright 1994 W.T. Sullivan and Hansen Planetarium)	47
Fig. 2.18	Tim Hunter (<i>left</i>) and David Crawford, founders	
	of the IDA (Courtesy IDA)	49
Fig. 2.19	The committee of the Campaign for Dark Skies, 2011:	
	left to right, Chris Baddiley, Mike Tabb, Bob Mizon,	
	David Paul, Martin Male, Tom Webster, Graham Bryant	
	(Absent: Darren Baskill, Stuart Hawkins,	40
E!- 2.20	Martin Morgan-Taylor)	49
Fig. 2.20	The diffusion of power station and factory steam plumes	
	is striking in this Landsat image of the north-west Midlands	
	of England, taken from an altitude of about 900 km/560 miles	50
	(Copyright Focal Point A-V, Portsmouth)	50
Fig. 3.1	Wasted light from UK streetlights: Portsmouth	
	(Photo: Ron Arbour)	54
Fig. 3.2	City lights left on in the small hours of the morning	
	(Photo: Darren Baskill)	55
Fig. 3.3	Wasteful design in a street light: high-pressure sodium	
	lights illuminate the chimneys above them	
	(Photo: Chris Baddiley)	56
Fig. 3.4	A poorly mounted "Rottweiler" light which illuminates	
F1 0 #	premises across the street	58
Fig. 3.5	(a) FCO road luminaire with careful optics, designed for	
	residential streets (Courtesy D.W. Windsor Ltd).	
	(b) FCO in profile; this type is increasingly seen on Britain's	
	main roads (Courtesy Urbis Lighting Ltd). (c) FCO with multiple	
	lamps; often used on roundabouts and busy road junctions	60
Eia 26	(Courtesy Siemens Ltd)	60
Fig. 3.6	Bob Mizon and David Paul present the Campaign for Dork Skies' Award of Appreciation to Gippy Clarks	
	for Dark Skies' Award of Appreciation to Ginny Clarke,	61
Fig 27	Chief Highways Engineer of the UK Highways Agency	01
Fig. 3.7	Glaring sports floodlights at a leisure centre. The centre	
	received a CfDS Good Lighting Award when the lights were re-angled (Photo: Gerard Gilligan)	62
Fig. 3.8	Poorly angled floodlights dazzle drivers on this urban road	63
= 12° a a 7a(7	- LANDER OUT DATE IN A THE THE MOLETING WILLY AND THE HILLS HE DATE I DATE	11

xviii List of Figures

Fig. 3.9	A well enclosed flat-glass light at a holiday park in France	64
Fig. 3.10	Light intrusion: light spill from a car park in a rural	
	area illuminates a room in a nearby house	~~
Fig. 3.11	(Photo: Richard Murrin)	65
Fig. 3.11	An intrusive streetlight shines through the windows of houses (Photo: CfDS)	66
Fig. 3.12	A species in decline: the house sparrow, whose young	00
8	are insectivorous (Photo: Steve Smith)	68
Fig. 3.13	A glow-worm signals its position at dusk beneath	
	a fine display of noctilucent clouds (Photo: Dave Tyler)	71
Fig. 3.14	Birds' circadian rhythms are seriously disturbed by night-time	
E: 0.15	floodlighting of their habitats (Photo: Chris Baddiley)	72
Fig. 3.15	A floodlit tree (Photo: Andreas Haenel)	73
Fig. 4.1	Intrusive light cut down by FCO lights in a residential	
	area (Photo: Urbis)	78
Fig. 4.2	Light intrusion into a first-floor bedroom	81
Fig. 4.3	Night in the city: darkness is a thing of the past. Gloucester	0.1
Fig. 4.4	at night (Photo: Chris Baddiley) Los Angeles, night-time view (Photo: CfDS)	81 83
r 1g. 4.4	Los Aligeles, llight-time view (Filoto, CIDS)	0.5
Fig. 5.1	Rioters in an English city, summer 2011	
D1	(Photo: Alex Cater)	86
Fig. 5.2	Glare from a rural car park light that would conceal	0.0
Eia 5 2	any wrong-doing occurring there (Photo: Richard Murrin)	86
Fig. 5.3	More lights that prevent the observer from seeing (it's an airport) (Photo: IDA)	87
Fig. 5.4	A "security" light in a secluded area may act as a "courtesy	07
115.0	light" for criminals	90
Fig. 5.5	"Security" lights shining into the eyes of approaching	
C	drivers (Photo: CfDS)	91
Fig. 5.6	Site of a ram-raid, carried out by the light of a street lamp	92
Fig. 5.7	Glare: a poorly aimed light in rural Northern Scotland	
F: #0	(Photo: Bill Eaves)	94
Fig. 5.8	An outside lamp with its sensor mounted beneath,	0.4
Eia 50	making it impossible to angle it down further	94
Fig. 5.9	Low-power shielded exterior lighting illuminates a porch and garden adequately, without glare or spill into	
	neighbouring premises (Photo: IDA)	96
D		
Fig. 6.1	A Sky Quality Meter	100
Fig. 6.2	The night sky at Prayway Head, Exmoor, SW England (Photo: David Brabban)	100
Fig. 6.3	This view of Malvern and Worcester taken from nearby	100
11g. 0.5	hills shows plainly that most of the waste light comes from the	
	luminaires, not from the ground (Photo: Chris Baddiley)	102

List of Figures xix

Fig. 6.4	Reflection from a thin veil of low cloud over Edinburgh	
	(Photo: Chris Baddiley)	102
Fig. 6.5	Ideal atmospheric conditions: a crystal-clear winter	
	sky over central Dorset	103
Fig. 6.6	The night sky over Sark, the Channel Islands' dark-sky	
	preserve. Only a few distant house lights (exaggerated on	
	this exposure) intrude into a pristine sky (Photo: Martin	
	Morgan-Taylor)	105
Fig. 6.7	Suburban night sky: Orion in a light-polluted winter sky	106
Fig. 6.8	Light over a big city (Photo: Chris Baddiley)	107
Fig. 6.9	A decorative LED light on the Clifton Suspension Bridge	
	in Bristol: shielded and not too bright for the task	
	(Photo: Pam Mizon)	109
Fig. 6.10	Old LPS road lights of the kind which are (at long last) fast	
C	disappearing in the UK (Photo: Chris Baddiley)	110
Fig. 6.11	New metal halide road light in a seaside town: note	
	the "mast"-style column	112
Fig. 6.12	A triply environmentally friendly LED light: well-directed,	
	solar powered, and it goes off when there is nobody around!	
	(Photo courtesy of Zeta Solar)	113
Fig. 6.13	The statue of William and Caroline Herschel in their garden,	
	close to the spot from which Uranus was discovered	
	(Photo: Mike Tabb)	114
Fig. 6.14	Globe lights now illuminate the area behind	
	the Herschels' garden	115
Fig. 6.15	A globe light painted black on one side in an attempt	
	to retrieve darkness for an upper-storey bedroom	116
Fig. 6.16	Newport, Shropshire: the stars I learned in boyhood are veiled	
	by a supermarket's car park globe lights (since capped)	116
Fig. 6.17	A woman stands near a globe light and is easily seen	
	(Courtesy IDA)	117
Fig. 6.18	The woman seen in Fig. 6.17 has moved into the	
	less illuminated space beneath the globe light (Courtesy IDA)	117
Fig. 6.19	The fact that most of the light from this car park globe	
	goes up instead of down is excellently illustrated	
	by this IDA photo	118
Fig. 6.20	Stacked louvres confine the light from this bollard lamp	
	to the ground (Courtesy DW Windsor Lighting)	120
Fig. 7.1	Some LPR filters (Courtesy Ninian Boyle, Venturescope)	124
Fig. 7.2	My small run-off-roof observatory in Colehill,	127
6- /	with its 21-cm/8.5-in. reflector	127
Fig. 7.3	Urban CCD image of M27, the Dumb-bell Nebula	/
-8	(Photo: Nik Szymanek and Ian King)	128
Fig. 7.4	Urban CCD image of M13, the great globular cluster in Hercules	0
9	(Photo: Nik Szymanek and Ian King)	128

xx List of Figures

Fig. 8.1	What a third of a million people throw into the sky:	
	light pollution over Poole and Bournemouth	132
Fig. 8.2	Bob's venerable Charles Frank 21-cm (8.5-in.) reflector	133
Fig. 8.3	The old 1980s lamps in my street threw a high	
	percentage of their emissions skywards	134
Fig. 8.4	The day the new FCO lamp arrived opposite my observatory	134
Fig. 8.5	New metal halide lamp in my street – goes off at midnight	135
Fig. 8.6	The shields installed by the local council to protect	
_	my observing site are visible on this luminaire	136
Fig. 8.7	Better lighting, more stars: looking north from my	
	back garden above two FCO streetlights	137
Fig. 8.8	Gamma Andromedae is the bright star here beneath	
	Comet C/1995 O1 (Hale-Bopp) on 1997 Mar 31. The comet's	
	tail sweeps towards the 'W' of Cassiopeia	138
Fig. 8.9	NGC 752	139
Fig. 8.10	τ^{1} Agr to $\Sigma 2970$	140
Fig. 8.11	Finding R Aql	141
Fig. 8.12	NGC 1907	142
Fig. 8.13	Field of 14 Aur	143
Fig. 8.14	'Kemble's Cascade' ('The Wristwatch') to the left	
Ü	of Comet C/1996	144
Fig. 8.15	Chain of pairs in Camelopardus and Cassiopeia	145
Fig. 8.16	M67	147
Fig. 8.17	Finder chart for Y Canum Venaticorum	148
Fig. 8.18	A 'star-hop' to h3945	149
Fig. 8.19	Stars near $\Sigma 1149$	150
Fig. 8.20	Field of WZ Cas	152
Fig. 8.21	NGC 457	153
Fig. 8.22	$\Sigma 2813, \Sigma 2816, \Sigma 2819$	154
Fig. 8.23	A 'star-hop' to RW Cep	155
Fig. 8.24	Finder chart for T CBr	157
Fig. 8.25	Motion of 61 Cyg: positions in 1970 and 1992	158
Fig. 8.26	Star chains near SAO 50246	159
Fig. 8.27	Motion of Σ2398 against background stars: positions	
	in 1967 and 1989.	161
Fig. 8.28	A miniature Cassiopeia in Draco	162
Fig. 8.29	NGC 7209	164
Fig. 8.30	NGC 2903	165
Fig. 8.31	NGC 2683	167
Fig. 8.32	From Vega to T Lyr	168
Fig. 8.33	IC 4665, the 'HI!' cluster	169
Fig. 8.34	NGC 6633 and Comet 1987S (Bradfield)	170
Fig. 8.35	NGC 7331	172
Fig. 8.36	St 4	173
Fig. 8.37	Finder chart for U Sge	174

List of Figures xxi

Fig. 8.38	38 Finder chart for WZ Sge	175
Fig. 8.39	Finder chart for R Ser	177
Fig. 8.40	From Aldebaran to NGC 1647 and HU Tau	178
Fig. 8.41	M33	179
Fig. 8.42	From 23 UMa to NGC 2880.	181
Fig. 8.43	NGC 3992	183
Fig. 8.44	NGC 6940	185
Fig. 9.1	A hill NOT too steep to climb: Bath University's sports	
J	lighting, seen in this photo taken in 2000 by Mike Tabb,	
	has now been replaced with FCOs and the skyglow has been	
	minimised. The scheme won the BAA's Good	
	Lighting Award	190
Fig. 9.2	Bob presents the Campaign for Dark Skies' Award	
	of Appreciation to broadcaster John Humphrys, who has	
	often involved himself in the dark skies debate (Photo: CfDS)	191
Fig. 9.3	A well-directed outdoor light on a school in Luton, England	192
Fig. 9.4	"Sky-friendlier" exterior light, illuminating	
	only the area to be lit	193
Fig. 9.5	An advertisement at a lighting exhibition, using stars	
	as a feature	194
Fig. 9.6	"Sky-friendlier" FCO lights (black casings) replace old LPS	
	types at a rural roundabout	195
Fig. 9.7	(a) Glare and skyglow from a rural roundabout lit	
	by old LPS lamps; (b) the same scene after refitting	
	with cut-off lamps: sideways glare and skyglow are much	
	reduced (Photo: John Ball)	196
Fig. 9.8	Glare from an indifferently mounted 'security' light,	
	200 m away, which forced members of the Wessex Astronomical	
	Society to abandon one of their traditional observing sites	107
E' 0.0	in the New Forest	197
Fig. 9.9	Bulkhead light	198
Fig. 9.10	One government department which has set the trend	
	with well-directed lights: the UK Highways Agency's Martin	
	Hazle (<i>left</i>) receives the British Astronomical Association's	
	Good Lighting Award from CfDS committee member Stuart Hawkins (Photo: CfDS)	200
Fig. 9.11	Galloway Forest Park	
Fig. 9.11	Night sky over Exmoor, south-west England: a National Park	200
11g. 9.12	with a good lighting strategy. Location: Winsford Hill	
	(Photo: David Brabban)	201
Fig. 9.13	Stonehenge silhouetted against spill light from the	201
116. 7.13	nearby town of Amesbury (Photo: Grant Privett)	203
Fig. 9.14	East Dorset District Council have light pollution on	203
- 16, 7,14	their agenda: leader Don Wallace receives the Good Lighting	
	award (Photo: EDDC)	203

xxii List of Figures

Fig. 9.15	Some church floodlighting is far too random, and allows	
	a large fraction of emissions into the sky	
	(Photo: Chris Baddiley)	206
Fig. 9.16	A city nightscape, with buildings clamouring	
	for attention	207
Fig. 9.17	Preparing for a garden star party	211
Fig. 9.18	I wish you clear skies	213