Springer Series in Information Sciences

Editors: Thomas S. Huang Teuvo Kohonen Manfred R. Schroeder

- 30 Self-Organizing Maps By T. Kohonen 3rd Edition
- 31 Music and Schema Theory Cognitive Foundations of Systematic Musicology By M. Leman
- 32 **The Maximum Entropy Method** By N. Wu
- 33 A Few Steps Towards 3D Active Vision By T. Viéville
- 34 Calibration and Orientation of Cameras in Computer Vision Editors: A. Gruen and T. S. Huang
- 35 **Computer Speech** Recognition, Compression, Synthesis By M. R. Schroeder 2nd Edition

Volumes I-29 are listed at the end of the book.

Psychoacoustics

Facts and Models

With 313 Figures and 53 Psychoacoustics Demonstrations on

Professor Dr.-Ing. Hugo Fastl

AG Technische Akustik Lehrstuhl für Mensch-Maschine-Kommunikation Technische Universität München Arcisstrasse 21 80333 München, Germany E-mail: fastl@mmk.ei.tum.de

Series Editors:

Professor Thomas S. Huang

Department of Electrical Engineering and Coordinated Science Laboratory University of Illinois, Urbana IL 61801, USA

Professor Teuvo Kohonen

Helsinki University of Technology Neural Networks Research Centre Rakentajanaukio 2 C 02150 Espoo, Finland

Professor Dr.-Ing. Eberhard Zwicker † Institut für Elektroakustik Technische Universität München

Professor Dr. Manfred R. Schroeder

Drittes Physikalisches Institut Universität Göttingen Bürgerstrasse 42-44 37073 Göttingen, Germany

Library of Congress Control Number: 2006934622

ISSN 0720-678X

Additional material to this book can be downloaded from http://extras.springer.com

ISBN 978-3-642-51765-5 ISBN 978-3-540-68888-4 (eBook) DOI 10.1007/978-3-540-68888-4

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 1990, 1999, 2007

Softcover reprint of the hardcover 3rd edition 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: by the author and techbooks using a Springer LATEX macro package Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper SPIN: 10960073 56/techbooks 543210

Preface to the Third Edition

As with the second edition of *Psychoacoustics – Facts and Models*, the style of the book in the third edition was also kept as a tribute to my mentor Eberhard Zwicker.

Since the book deals with psychoacoustics it was felt that it should be possible not only to read about psychoacoustic data, but also to hear some of the related phenomena. Therefore, a number of acoustic demonstrations have been prepared that are now available on an enclosed CD. The CD can be used as a traditional Audio-CD and the demos are also available as wav-files.

New sections on cognitive effects as well as localization with hearing instruments have been added. Moreover, in particular sections on noise measurements, noise immissions, loudness summation and recruitment, as well as musical acoustics were significantly expanded – the latter of course also with acoustic demonstrations. In addition, the list of references was updated in most sections.

The encouragement and fruitful cooperation of Springer Verlag, in particular of Dr. Thorsten Schneider and his team is gratefully acknowledged. Special thanks to Dr.-Ing. Markus Fruhmann and Dipl.-Ing. Daniel Menzel for their support in the preparation of the CD with acoustic demonstrations. Dipl.-Ing. Florian Völk is also acknowledged for substantial support in finalizing the CD, and for editorial help.

München August 2006 Hugo Fastl

Preface to the Second Edition

Shortly after the appearance of the first edition of this book, the scientific community was shocked by the unexpected and untimely death of the great psychoacoustician Professor Eberhard Zwicker. The present second edition of Psychoacoustics – Facts and Models is meant as a tribute to my mentor Eberhard Zwicker, who was both an outstanding scientist and a dedicated teacher.

Therefore, the basic concept of the book has remained untouched. However, new results and references have been added in most chapters, in particular in Chap. 5 on pitch and pitch strength, Chap. 10 on fluctuation strength, Chap. 11 on roughness, and in Chap. 16 concerning examples of practical applications. In addition, occasional typographical errors have been corrected and some older material re-arranged. In essence, however, care was taken to keep the style of the original work.

The encouragement as well as the helpful and patient cooperation of Springer Verlag, especially of Dr. Helmut Lotsch, is gratefully acknowledged. My thanks go to the many students and co-workers who assisted in the preparation of the second edition, in particular Dipl.-Ing. Wolfgang Schmid and Dipl.-Ing. Thomas Filippou.

Munich January 1999 H. Fastl

Preface to the First Edition

Acoustical communication is one of the fundamental prerequisites for the existence of human society. In this respect the characteristics of our receiver for acoustical signals, i.e. of the human hearing system, play a dominant role. The ability of our hearing system to receive information is determined not only by the qualitative relation between sound and impression, but also by the quantitative relation between acoustical stimuli and hearing sensations. With the advent of new digital audio techniques, the science of the hearing system as a receiver of acoustical information, i.e. the science of psychoacoustics, has gained additional importance. The features of the human hearing system will have to be taken into account in planning and realizing future acoustical communication systems in economically feasible projects: Each technical improvement in this area will be judged by listening and relating the result of listening to the cost.

In the years from 1952 to 1967, the research group on hearing phenomena at the Institute of Telecommunications in Stuttgart made important contributions to the quantitative correlation of acoustical stimuli and hearing sensations, i.e. to psychoacoustics. Since 1967, research groups at the Institute of Electroacoustics in Munich have continued to make progress in this field. The correlation between acoustical stimuli and hearing sensations is investigated both by acquiring sets of experimental data and by models which simulate the measured facts in an understandable way. This book summarizes the results of the above-mentioned research groups in two ways. First, the content of many papers originally written in German is made available in English. Second, the known psychoacoustical facts and the data produced from models are united to give an integrated picture and a deeper understanding. The references are confined to papers published by the two research groups mentioned, although there are naturally many more relevant papers in the literature.

The book is aimed primarily at research scientists, development engineers, and research students in the fields of psychoacoustics, audiology, auditory physiology, biophysics, audio engineering, musical acoustics, noise control, acoustical engineering, ENT medicine, communication and speech science. It may also be useful for advanced undergraduates in these disciplines. A special feature of the book is that it combines psychoacoustical facts, descriptive models, and applications presented in the form of examples with hints for the solution of readers' problems.

The first three chapters give an introduction to the stimuli and procedures used in the experiments, to the basic facts of hearing, and to information processing in the auditory system. The important role played by the active processing within the inner ear is stressed in order to understand frequency selectivity and nonlinear behaviour of our hearing system. The next four chapters deal with frequency resolution and temporal resolution expressed in masking, pitch, critical bands and excitation, as well as just-noticeable changes in the sound parameters. The different kinds of pitch are described in Chap. 5, and the following six chapters deal with the basic sensations of loudness, sharpness, fluctuation strength, roughness, subjective duration, and rhythm. The next two chapters concern the ear's own nonlinear distortion and binaural hearing, with emphasis given to the topics that have been covered by the two research groups. The last chapter provides examples of applications, which will be of special interest to those engaged in finding practical solutions.

For didactical reasons, the text is not interrupted by the inclusion of references. However, at the end of the volume, the relevant literature published by the Stuttgart and Munich groups is cited, as is the literature dealing with the various applications given in the final chapter. The equations appearing in the book are given as "magnitude equations", containing not only symbols but also the units in which the variables are to be expressed. This should help to avoid mistakes since one can check the units of the calculated quantity.

Some of the figures contain more information than is needed for the immediate discussion. This is simply a device to save space and the additional information is invariably discussed at a later point in the text.

We would like to acknowledge the helpful and patient cooperation of Springer-Verlag. We thank the many individuals who contributed to the realization of this book, notably, Mrs. Angelika Kabierske for drawing the figures, Mrs. Barbi Ertel for typing the text, Dr. Frances Harris, Dr.-Ing. Tilmann Zwicker, and Dipl.-Ing. Gerhard Krump for reading drafts, and Dr. Bruce Henning for many very fruitful discussions and suggestions.

Munich, June 1990 E. Zwicker H. Fastl

Contents

1	Stir	nuli aı	nd Procedures	1
	1.1	Temp	oral and Spectral Characteristics of Sound	1
	1.2	Preser	ntation of Sounds by Loudspeakers and Earphones	5
	1.3	Metho	ods and Procedures	8
	1.4	Stimu	li, Sensations, and Data Averaging	11
2	Hea	aring A	Area	17
	2.1	Thres	hold in Quiet	19
3	Info	ormati	on Processing in the Auditory System	23
	3.1	Prepr	ocessing of Sound in the Peripheral System	23
		3.1.1	Head and Outer Ear	23
		3.1.2	Middle Ear	24
		3.1.3	Inner Ear	25
		3.1.4	Otoacoustic Emissions	35
		3.1.5	Model of the Nonlinear Preprocessing System	50
	3.2	Inform	nation Processing in the Nervous System	58
4	Ma	sking .		61
	4.1	Maski	ing of Pure Tones by Noise	62
		4.1.1	Pure Tones Masked by Broad-Band Noise	62
		4.1.2	Pure Tones Masked by Narrow-Band Noise	64
		4.1.3	Pure Tones Masked by Low-Pass or High-Pass Noise	66
	4.2	Maski	ing of Pure Tones by Tones	66
		4.2.1	Pure Tones Masked by Pure Tones	67
		4.2.2	Pure Tones Masked by Complex Tones	71
	4.3	Psych	oacoustical Tuning Curves	74
	4.4	Temp	oral Effects	78
		4.4.1	Simultaneous Masking	79
		4.4.2	Premasking	82
		4.4.3	Postmasking	83
		4.4.4	Temporal Masking Patterns	84
		4.4.5	Masking-Period Patterns	93
		4.4.6	Pulsation Threshold	97
		4.4.7	Mixed Spectral and Temporal Masking	102

	4.5	"Addition" of Masking	$\frac{103}{103}$
		4.5.2 "Addition" of Postmasking	105
	4.6	Models of Masking	106
		4.6.1 Psychoacoustical Model of Simultaneous Masking	107
		4.6.2 Psychoacoustical Model of Non-simultaneous Masking.	108
		4.6.3 Masking Described in Cochlear Active	
		Feedback Models	109
5	Pito	h and Pitch Strength	111
	5.1	Pitch of Pure Tones	111
		5.1.1 Ratio Pitch	111
		5.1.2 Pitch Shifts	113
	5.2	Model of Spectral Pitch	116
	5.3	Pitch of Complex Tones	119
	5.4	Model of Virtual Pitch	123
	5.5	Pitch of Noise	125
	5.6	Acoustic After Image (Zwicker-tone)	130
	5.7	Pitch Strength	135
6	Crit	ical Bands and Excitation	149
	6.1	Methods for the Determination	
		of the Critical Bandwidth	150
	6.2	Critical-Band Rate Scale	158
	6.3	Critical-Band Level and Excitation Level	165
	6.4	Excitation Level versus Critical-Band Rate	
		versus Time Pattern	172
7	Just	-Noticeable Sound Changes	175
	7.1	Just-Noticeable Changes in Amplitude	175
		7.1.1 Threshold of Amplitude Variation	175
		7.1.2 Just-Noticeable Level Differences	180
	7.2	Just-Noticeable Changes in Frequency	182
		7.2.1 Threshold for Frequency Variation	182
		7.2.2 Just-Noticeable Frequency Differences	185
	7.3	Just-Noticeable Phase Differences	188
	7.4	Influence of Partial Masking on Just-Noticeable Changes	192
	7.5	Models of Just-Noticeable Changes	194
		7.5.1 Model for Just-Noticeable Variations	194
		7.5.2 Model for Just-Noticeable Differences	201
8	Lou	dness	203
	8.1	Loudness Level	203
	8.2	Loudness Function	205
	8.3	Spectral Effects	208

	8.4 8.5 8.6 8.7	Spectrally Partial Masked Loudness Temporal Effects Temporally Partial Masked Loudness Model of Loudness Model of Loudness 8.7.1 Specific Loudness 8.7.2 Loudness Summation (Spectral and Temporal) 8.7.2	214 216 219 220 223 226
		8.7.3 Loudness Calculation and Loudness Meters	233
9	\mathbf{Sha}	rpness and Sensory Pleasantness	239
	9.1	Dependencies of Sharpness	239
	9.2	Model of Sharpness	241
	9.3	Dependencies of Sensory Pleasantness	243
	9.4	Model of Sensory Pleasantness	245
10	Flu	ctuation Strength	247
	10.1	Dependencies of Fluctuation Strength	247
	10.2	Model of Fluctuation Strength	253
11	Boi	ighness	257
	11.1	Dependencies of Roughness	257
	11.2	Model of Roughness	261
19	Տոր	viective Duration	265
14	12.1	Dependencies of Subjective Duration	$\frac{265}{265}$
	12.2	Model of Subjective Duration	268
12	Dhr	wthm	971
10	13.1	Dependencies of Rhythm	271
	13.1	Model of Bhythm	$\frac{211}{275}$
	10.2		
14	The	e Ear's Own Nonlinear Distortion	277
	14.1	Even Order Distortions	279
	14.2	Odd Order Distortions	282
	14.3	Models of Nonlinear Distortions	286
15	Bin	aural Hearing	293
	15.1	Just-Noticeable Interaural Delay	293
	15.2	Binaural Masking-Level Differences	295
		15.2.1 Dependencies of BMLDs	296
		15.2.2 Model of BMLDs	302
	15.3	Lateralization	308
	15.4	Localization	309
	15.5	Binaural Loudness	311

16	Exa	mples of Application
	16.1	Noise Abatement
		16.1.1 Loudness Measurement
		16.1.2 Evaluation of Noise Emissions
		16.1.3 Evaluation of Noise Immissions
		16.1.4 Evaluation of Sound Quality 327
		16.1.5 Cognitive Effects: Identification of Sound Source 330
	16.2	Applications in Audiology 333
		16.2.1 Otoacoustic Emissions
		16.2.2 Tuning Curves
		16.2.3 Amplitude Resolution
		16.2.4 Temporal Resolution
		16.2.5 Temporal Integration
		16.2.6 Loudness Summation and Recruitment 348
		16.2.7 Speech in Background-Noise
		16.2.8 Localisation with Hearing Instruments 356
	16.3	Hearing Aids 356
	16.4	Broadcasting and Communication Systems 359
	16.5	Speech Recognition
	16.6	Musical Acoustics
	16.7	Room Acoustics
Lite	eratu	re
Ind	.ex	
Cor	ntent	s of CD: Psychoacoustic Demonstrations