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EXISTENCE OF PERMANENT AND BREAKING
WAVES FOR A SHALLOW WATER EQUATION:
A GEOMETRIC APPROACH

by Adrian CONSTANTIN

Introduction.

There are several models describing the unidirectional propagation of
waves at the free surface of shallow water under the influence of gravity.

We have the celebrated Korteweg-de Vries (KdV) equation [22]

(1) {ut+6uuz+umx =0, t>0, zeR,

u(0,z) = up(z), z€R.

Here and below u(t,z) represents the wave height above a flat bottom,
x is proportional to distance in the direction of propagation and t is
proportional to elapsed time. The Cauchy problem (1.1) has been studied
extensively, cf. [20], [21], and citations therein. A very interesting aspect of
the KdV equation is that it admits traveling wave solutions, i.e. solutions
of the form u(t, ) = ¢(z — ct) which travel with fixed speed ¢ and vanish at
infinity. Further, these traveling wave solutions are solitons: two traveling
waves reconstitute their shape and size after interacting with each other
[15]. KdV is integrable(!) (for a discussion of this aspect, we refer to [25]).
An astonishing plentitude of structures is tied into the KdV equation

Keywords : Nonlinear evolution equation — Shallow water waves — Global solutions —
Wave breaking — Diffeomorphism group — Riemannian structure — Geodesic flow.
Math classification : 35Q35 — 58D05.

) Integrability is meant in the sense of the infinite-dimensional extension of a classical
completely integrable Hamiltonian system: there is a transformation which converts the
equation into an infinite sequence of linear ordinary differential equations which can be
trivially integrated [25].
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which explains the many interesting (and physically relevant) phenomena
modeled by (1.1). However, the KdV equation does not model the occurence
of breaking for shallow water waves: as soon as ug € H'(R)(®, the solutions
of (1.1) are global, cf. [21], and it is known that some shallow water waves
break! Under wave breaking we understand [30] the phenomenon that a
wave remains bounded, but its slope becomes unbounded in finite time.

An alternative model for KdV is the regularized long wave equation

(1.2) {ut+uz+uuz—u”t=0, t>0, z€eR,

u(0,2) = up(z), ze€R,

proposed by Benjamin, Bona and Mahony [3]. Equation (1.2) has better
analytical properties than the KdV model but it is not integrable and
numerical work suggests that its traveling waves are not solitons [14].
As any initial profile ug € H?(R) for (1.2) develops into a solution of
permanent form cf. [3], the regularized long wave equation does not model
wave breaking.

Whitham [30] emphasized that the breaking phenomenon is one of the
most intriguing long standing problems of water wave theory. He suggested
the equation

(13) Ut + Ul +/Rko(a: — & uz(t,€)dE =0, t>0, zeR,

u(0,z) = uo(z), z€R,

with the singular kernel

i) = o [ () e ag

£

as a relative simple model equation combining full linear dispersion with
long wave nonlinearity to describe the breaking of waves. The numerical
calculations carried out for the Whitham equation (1.3) do not support the
hypothesis that soliton interaction occurs for its traveling waves, cf. [14].

Recently, Camassa and Holm [4] derived a new equation describing
unidirectional propagation of surface waves on a shallow layer of water
which is at rest at infinity:

(1.4) Vi — Vige + 260z + 30U; = 2UVz0 + VUgge, t>0, xE€R,
' v(0,z) = vo(x), z€R.

() gk (R), k € N, stands for the Sobolev space of functions with derivatives up to

order k having finite L2(R) norm.
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The constant « is related to the critical shallow water speed. The term
VU2, makes (1.4) a nonlinear dispersive wave model(®): the transition to
full nonlinearity (compared with the weakly nonlinear regime of the other
models) is motivated by the search of a single model describing, at the same
time, as many as possible of physically interesting phenomena, observed in
the propagation of shallow water waves. Note that we can get rid of  in
(1.4) by the substitution u(¢,z) = v(t,x — st) + k, obtaining the Cauchy
problem

(1.5) Up — Upgg + SUUL = 2UzUzy + UlUgeq, t>0, zeR,
‘ u(0,z) = up(z), z€R.

Equation (1.5) was found earlier by Fuchssteiner and Fokas (see [18], [19])
as a bi-Hamiltonian generalization of KdV.

A quite intensive study of equation (1.4) started with the discoveries
of Camassa and Holm [4]: besides deriving the equation from physical
principles, they obtained the associated isospectral problem and found
that the equation has solitary waves that interact like solitons. Numerical
simulations [5] support their results. The study of the associated isospectral
problem proves the integrability of (1.4) in the periodic case for a large
class of initial data [12]. The well-posedness of the shallow water equation
in H3(R) and results on the existence of global solutions and wave breaking
were obtained in [8] and [9].

As noted by Whitham [30], it is intriguing to know which mathemat-
ical models for shallow water waves exhibit both, phenomena of soliton
interaction and wave breaking. Equation (1.5) is the first such equation
found and “has the potential to become the new master equation for shal-
low water wave theory”, cf. [19], modeling the soliton interaction of peaked
traveling waves, wave breaking, admitting as solutions permanent waves,
and being an integrable Hamiltonian system.

Let us now turn to a geometrical interpretation of the equation (1.5).
Following the seminal paper of Arnold [1] and subsequent work by Ebin
and Marsden [16] for the Euler equation in hydrodynamics, equation (1.5)
can be associated with the geodesic flow on the infinite dimensional Hilbert
manifold D3(R) of diffeomorphisms of the line satisfying certain asymptotic
conditions at infinity, equipped with the right invariant metric, which, at

() In the case of KdV, the linear dispersion term balances the breaking effect of the
nonlinear term (cf. Burgers equation [30]).
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the identity, is given by the H!(R) inner product (see Section 2). With this
metric D3(R) becomes a weak Riemannian manifold®. The connection of
the shallow water flow with infinite dimensional geometry was announced
in [12] and [27] - for a more detailed discussion we refer to Section 2.

Let us now present a brief overview of the contents of this paper.

In Section 2, we review the manifold structure of D3(R) as analyzed
in [6] and (following [12], [27], [23], with some additions) the connection
between the shallow water equation (1.5) and the geodesic flow(®) on D3(R)
with respect to the weak Riemannian structure induced by the right-
invariant metric which at the identity is given by the H!(R) inner product
on the tangent space. We prove that the Riemannian exponential map is a
local diffeomorphism and deduce from this that two points on D3(R) which
are close enough can be joined by a unique geodesic - intuitively, this says
that one state of the surface of shallow water is connected to another nearby
state through a uniquely determined solution of equation (1.5).

The study of the local geometry on D3(R) leads us to introduce in
Section 3 some useful tools needed in Section 4 and Section 5 where we
deal with the existence of global solutions and the phenomenon of blow-up
of solutions for the shallow water equation (1.5), respectively. We describe
in detail the wave-breaking mechanism for solutions of (1.5) with certain
initial profiles and find the exact blow-up rate. For a large class of initial
profiles we also determine the blow-up set.

In the last part of this paper we apply the results on the shallow
water equation obtained in Sections 4 and 5 to the study of geodesics on
the diffeomorphism group D3(R): while there are geodesics which can be
continued indefinitely in time, we also exhibit geodesics with a finite life-
span(®),

Finally, let us mention that it is interesting to consider the problems
studied in this paper for spatially periodic solutions of the shallow water

(%) Since 'D3(R) is not a complete metric space with respect to the distance obtained
from the Riemannian metric.

The fundamental theorem of classical Riemannian geometry stating that every
Riemannian metric admits a unique smooth Levi-Civita connection fails in general for
weak Riemannian manifolds (see [16]). In the case of D3(R) the existence of geodesics
follows from the existence of a smooth metric spray (see Section 2).

©) 1t is interesting to note that it is not possible to study qualitative properties of
the KdV equation looking at the geodesic flow on the diffeomorphism group; one has to
consider a larger group that includes the group of diffeomorphisms, the Bott-Virasoro
group [2]. The geodesic equation on the diffeomorphism group with respect to the right-
invariant L2(IR) inner product is the nonviscous Burgers equation, cf. [2].
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equation (1.5). It is reasonable to expect that most of our results are valid
in the periodic case as well. For some investigations treating the blow-up
of solutions with special odd initial profiles we refer to [11].

2. Diffeomorphism group.

There are two standard coordinate systems used in classical fluid
dynamics. In material (Lagrangian) coordinates, one describes the fluid as
seen from one of the particles of the fluid (the observer follows the fluid). In
spatial (Eulerian) coordinates, one describes the fluid from the viewpoint
of a fixed observer. In this section we present the connection between the
shallow water flow given by (1.5) and the geodesic motion on the group
of diffeomorphisms of the line satisfying certain asymptotic conditions at
infinity, endowed with a weak Riemannian structure - working on the
diffeomorphism group corresponds to using Lagrangian coordinates while
working with the equation in u(¢, z) means working in Eulerian coordinates.

Following Cantor [6], we define for k, s € N the weighted Hilbert space
M?E as the completion of the space of smooth real functions f : R — R,
compactly supported on the line, with respect to the norm

IFIP = [ S +a?* (@i @) da.
R i<k
Define M := {n: R — R, (n—1d) € M3}, and consider the group of
orientation-preserving diffeomorphisms of the line modeled on M3,
D3(R) = {77 :R — R, 7 bijective increasing and n,177! € M}
The conditions at infinity are imposed on the diffeomorphisms in D3(R)
for technical reasons [6] in order to obtain a manifold.

D3(R) is an infinite dimensional manifold, which locally, around each
of its points 7, looks like a Hilbert space. Indeed, M is a translate of the
Hilbert space M3 and since D3(R) is open in M [6], D3(R) is an infinite
dimensional manifold modeled on a Hilbert space.

The group D3(R) admits a ‘Lie group’-like structure which allows to
extend some of the results valid for finite-dimensional Lie groups (see [28])
to the infinite-dimensional case.

D3(R) can be given a group structure with multiplication being de-
fined as the composition of two such diffeomorphisms. Right multiplication

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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Tn(®) := ¢ on is smooth (C'*°), but left multiplication and inversion are
only continuous so that D3(R) is not a Lie group in a strict sense. However,
it shares some important properties of a Lie group.

The Lie algebra of a Lie group G, consisting of all vector fields on G
which are invariant under the group multiplication, may be identified with
the tangent space to G at the identity, cf. [28].

Denote by H3(R) the vector space of all M3-vector fields on R. Any
tangent vector X, to D3(R) at n is of the form X on with some X € H3(R).
For a given X € H3(R), let X"(n) = X on denote the right-invariant vector
field on D3(R)(") whose value at the identity Id is X. H3(R) can be thought
of as the Lie algebra of D3(R). The (right) Lie algebra bracket on H3(R)
is defined as

(Lx-Y")(n) :=[X,Y]on, X,Y € H*(R), n€ D*(R),

where [X,Y] denotes the Lie bracket of the vector fields X and Y on R,
given in local coordinates by

x= (5 - 05) o

if X = f(z)Z and Y = g(z) Z. Note that H#*(R) is not a Lie algebra in
the strict sense since it is not closed under the bracket operation due to
loss of smoothness.

Let us now describe the weak Riemannian structure with which we
endow D3(R) in order to recover the shallow water equation as the metric
spray on the diffeomorphism group.

Recall that a Riemannian metric on a Lie group is called right-
invariant if it is preserved by all right multiplications [24]. If the Lie group
is connected, it suffices to prescribe such a metric at the identity (the metric
can be carried over to the remaining points by right multiplications).

Consider the H!(R)-inner product

g iy = / f(2)g(z) do + / F(2)d (@) dz, f.ge H'(R),
R R

) Right translation being smooth, we can talk about right-invariant vector fields on

D3(R).
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on TigD3(R) = H3(R). It induces a metric on the whole tangent space
TD3(R) by right multiplication, i.e. for V, W € T,,D3(R),

o -1 -1
(V, W)@ = (Von™,Won >H1(R).

This metric is right-invariant (by definition) but not left-invariant. As the
topology induced by this metric is weaker than the topology of D3(R),
D3(R) is said to be a weak Riemannian manifold.

It turns out that D3(R), endowed with this metric, is the appropriate
configuration space for the shallow water equation

(2.1) Ut — Utzpr + SUUy = 2UzUgy + UUzzo, t>0, z€R,
' u(0,z) = up(z), =z €R,

in the sense that (2.1) is a re-expression of the geodesic flow on D3(R) with
the above described (right-invariant) metric. More precisely, if u solves
(2.1) with up € M3 on the time interval [0,T), u € C*([0,T); M3), and if
q € C%([0,T1); D3(R)) solves

(22) { qt = u(t7 q)
q(0,z) =z, z€R,

on the time interval [0,7}) with 0 < T} < T, then the curve {q(t,-) : t €
[0,T1)} is a geodesic in D3(R), starting at the identity in the direction uy €
M3. Conversely, if ¢ € C%([0,T3); D3(R)) is a geodesic, then u = g; 0 g1
solves (2.1) for 0 < t < T3. This interpretation of (2.1), announced in [12],
[27], and also discussed in [23], resembles the situation for Euler’s equation
in hydrodynamics [1], [16].

For a Riemannian metric on a Hilbert manifold a Levi-Civita (metric)
derivative can be defined and the local existence of geodesics is ensured [24].
However, for infinite dimensional weak Riemannian manifolds the latter is
not always true, cf. [16], and we have to prove the existence of geodesics
on D3(R). We will do this below(®).

Recall that, in local coordinates, the equations for a geodesic on a
n-dimensional Riemannian manifold are given by

d? x; "\, dzy dz;
Y TR g, =1,
J,k=1

dt? dt dt

®) In [23] the realization of the shallow water equation as metric spray on D3 (R) is
explained but the problem of the existence of geodesics is not dealt with.

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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where I‘; & are the Christoffel symbols. In some cases, cf. [24], it is profitable
to find geodesics on a finite dimensional Riemannian manifold by following
a different approach: the metric gives rise to a spray and one can recover
geodesics using this coordinate independent formalism. The spray of a
metric is the natural way to deal with geodesics in infinite dimensional
Riemannian geometry, cf. [24].

For an infinite dimensional manifold M modeled on a Hilbert space H,
denote by T(M) its tangent bundle and by T(T'(M)) the tangent bundle
of the tangent bundle. Let U be open in the Hilbert space H, so that
T({U) =U x H and T(T(U)) = (U x H) x (H x H). A second order
vector field on U x H has a local representation

F:UxH—-HxH, FuX)=(,fuX)), (uLX)eUxH,

with f : U x H — H. Following [24], we define a spray to be a second
order vector field F over M (that is, a vector field on the tangent bundle
T (M) with a chart representation as above) which satisfies a homogeneous
quadratic condition which is, in local coordinates as above, of the form

flu,sX) =35 f(u,X) for s€R, (u,X) € H x H.

A C2?-curve o : Jx — M, defined on an open interval Jx containing

zero, is said to be a geodesic with respect to the spray F with initial
condition ‘fi—?‘tzo-—— X € TyyM if the curve ‘fi—? : Jx — T(M) is an
integral curve of the vector field F. The homogeneity condition for the

spray translates into the following property for the geodesic flow

at,sX) =a(st,X) for teJsx with ste Jx.

For a weak Riemannian manifold M modeled on a Hilbert space H
with the property that M is at the same time a topological group with
C1-right multiplication, a spray depending on the right-invariant metric
induced by the scalar product (-,-) on the tangent space at the neutral
element e of M, T.M, can be constructed as follows (for more details, we
refer to [23]): Assume that a bilinear map B on T, M x T, M can be defined
implicitely by (9

<B(X’Y)’Z>:<Xa[YaZ]>» X, Y, Z eT.M,

(9) The existence of such a bilinear map must be proven in each individual case as
we deal with a weak Riemannian structure (its existence is not ensured by a general
argumentation).
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where [-, -] stands for the Lie bracket. The metric spray F is then locally
given by

F(u,X)=(u,B(X,X)), uelU, X €H,

where U is open in the Hilbert space H satisfying T(U) = U x H. In
other words, considering an integral curve V(t) € T, M of the metric
spray, we have for its pullback u = V o n~! (where o stands for the group
multiplication) the equation

(23) = B(u,u).

dt
Note that V (t) = %’}(t) where t — 7(t) is the geodesic of the metric spray.

For M = D3(R), the existence of the bilinear map can be easily
proved. As TiaD3(R) = M3, we have, using integration by parts,

(X0 2wy = = [ (1290 - )X +¥(1 - 09)X12),
while
(BEY), 2 = [ (1002 Bx.¥)) 2).
Thus B(X,Y) is given by
(2.4) B(X,Y)=—(1-82%)! (2Yz(1 — )X +Y(1— ag)Xz).

Actually, in order to justify these integrations by parts, we have to assume
decay properties of X,Y, Z, and B(X,Y) at infinity. The following auxiliary
result is needed.

LemMA 2.1.— If f € M3, then all three functions
g (1+22)if(z), z— (1+2)if(z) and z+— (1+22)if"(z)
belong to the space L>(R).

Indeed, assuming that this lemma holds, we have no problems with
the integration by parts involving X, Y, Z € M3. To complete the argumen-
tation, note that Q := (1 — 82)~! is an isomorphism between L?(R) and
H?(R) and by Lemma 2.1, the function z — 2Y,(1 - 83X +Y (1 - 82) X,
belongs to L?(R) if X,Y € M3.

Proof of Lemma 2.1. — Since all three cases are similar, we consider
only the function g(z) := (1 + z2)3 f'(z), z € R. From f € M3 we infer

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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that the function z — 9, g%(z) belongs to L!(R) and therefore g2 € L>(R)
as

Y
9*(z) - ¢*(v) =/ 0, g*(rydr for z<y

by the absolute continuity of the function g2. O

In conclusion, combining relations (2.3) and (2.4), we deduce that

t — g(t) is a geodesic on D3(R) if and only if u := ¢; o ¢~! solves the
equation

du

dt

or, applying the operator (1 — 82) to both sides,

= — (1 - 03" [Buuy — 2upug, + Uz

Ut — Utgg = —3UUg + 2UglUzy — Ulges
which is exactly equation (2.1).

For further use, let us derive an equivalent form of the differential
equation that must be fulfilled by a geodesic ¢ — g(t) on D3(R). Differen-
tiating q; = u o ¢ with respect to time, we obtain

Gt =UtOg+ Uz OG- Gt
(2.5) = (u¢ + uug) o g
= -((1 -1 0u(u? + Ju2)) 0 g = S(g, @)-

To obtain the last identity, note that by applying (1 — 82)~! to both sides
of (2.1), we obtain the equivalent form of the equation

U + uug + ((1 - 92719, (u2 + —;—ui)) =0.

‘We now investigate some local properties of the Riemannian exponen-
tial map expyy, defined as the exponential map associated with the metric

spray. This will enable us to obtain information about the local geometry
of D3(R).

For the moment, let us assume (cf. Theorem 2.2 below for a proof)
that for every u € TigD3(R) sufficiently small, there is a unique geodesic
a(t,u) starting at the identity Id € D3(R) in the tangent direction u(10).
The homogeneous quadratic property of the metric spray ensures that

(;0) Note that by right-translation, a similar statement will hold at any point q €
D3(R).
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a(ts,u) = a(t, su) for those t,s € R for which both expressions are well-
defined. This is used to prove that there exists a small neighborhood O
of zero in TigD3(R) = M3 so that for any u € O, a(t,u) is defined on
the interval [0,1] (for details we refer to [24]). We define the Riemannian
exponential map by

expyy : O C TiaD3(R) — D3(R), expq(u) = a(l,u), u € TigD*(R).

Let us now prove

THEOREM 2.2. — There exists an open neighborhood U of the identity
in D3(R) and an open neighborhood V of zero in TigD?(R) such that
the Riemannian exponential map is a diffeomorphism from V onto U.
Furthermore, any two elements in U can be joined by a unique geodesic
inside U.

In particular, Theorem 2.2 says that the Riemannian exponential map
is well-defined in a neighborhood of zero in TiaD3(R) = M3.

To make the proof of Theorem 2.2 more transparent, we collect some
auxiliary results in the following.

LEMMA 2.3.— Let p(z) := %e"‘""“, z € R. For every a > 0 we can
find a constant c¢(a) > 0 such that(*V)

(1 +2%)% [p * fl@) 2wy < e(@) (@)1 + 2% 2wy,  f € LA(R),
and
(L +22)* [pz * fl@) 2wy < e(@) [ (@)1 + 2%l 2wy, £ € L*(R).
Proof. — We first note the elementary inequality
(2.6) 1422 <2[1+(x -9 (1+9?), =z,yeR,

obtained from the identity 4y% — 4zy + 22 = (z — 2y)2.

(11) Here * stands for the convolution.

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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Let f € L?(R) and a > 0 be fixed. We have that
11+ o * @I g
= 2+ ([ e Wi vy a) I
1 R Y)Y )iz (R

~ 1 L[+ ) do

< 22072 /]R(/R e W1+ y?) flz —y)[1+ (z —y)® dy)zdx

= 922 (e—lyl(l + y2)°‘) * (f(x)[l + $2]a]) ||2LZ(JR{)
<2272 em (1 + 7)1 2a ) 1 (@)1 + 2113wy,

where (2.6) was used to obtain the inequality on line 4 and where in the end
we applied Young’s inequality [29]. In a similar way we deal with (pg * f)
with the result that we may choose c(a) = 2°7!|le=I#I(1 + 22)*|| 1 (g). O

Proof of Theorem 2.2. — We can write the differential equation (2.5)
satisfied by a geodesic t — g(t) on D3(R) starting at the identity Id in the
direction ug € TiqD3(R) as a first order system on D3(R) x M3:

gt = X,

Xi = S(q)X)
g(0)=1d
X(O) = Ug,

(2.7)

with S : D3(R) x M3 — M3 defined by
5(0.X) = - (=)0 [(Xog 4 30, X 0 ] o

Let us first prove that the map
G:uw 0, (fP+1/2f2)

is smooth from M3 to M}.

For f € M3, we have by Lemma 2.1 that the function [z —

(1 4+ 22)f'(x)] belongs to L®(R) and since the definition of M3 ensures
that

[z (1+2%)% f(2)], [0 — (1+2%)? f"(2)] € L*(R),
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we deduce that the function [z — (1 + 22)2 (2f(a:)f’(:z:) + f’(a:)f”(x))] is
in the space L2(R). Along the same lines one can check that
1
[ (1422 (82(/2 + 369) (@) € LA(R),
thus we have showed that [z — 9;(f2 + 1 f2)] € Mi.

We claim now that the operator @ := (1 — 82)~!, defined on L?(R),
is a bounded linear map from M} into M3.

Indeed, @ is an isomorphism from H!(R) to H3(R) and we need only
to worry about the weights. Note that

Qf =pxf, felL*R),
where, as before, p(z) := %e"xl, z €R.
Let f € M3. Using Lemma 2.3 we deduce that
1 1 1
10+ [+ Al@)l2m) < (5) I @1 +22 2w,
while, in view of 9;(p * f) = p x f. and 82(p * f) = p; * fz, we have
(1 + ) [0:(p * (@) 2wy < () 1F' (@)1 + 22| L2 w),
respectively
; 3\
10 +29)2 020 % N @ e < e(5) 15 @)L+l

Finally, note that by definition (1 — 82)Qf = f for f € L%(R) so that
d2(p* f) =px f — f and therefore

Bp*f)=p*fo—fo fe€H'R).
Combining this with the result from Lemma 2.3, we obtain

I+ 2?2 020 * H@)2m) = 11+ 2%)? [p* fo = fol (@) 2wy
<N +2%)% [p* fo) @)l 2wy + 11+ 22)? f' (@)l 2wy
< (@) + D IF (@)1 +2*) [ 2w

and we proved that @ is a bounded linear map from M3 into M3.

At this point, observe that we can write
S(¢,X)=—-140Qo0Gor,-1(X)

where 74 stands for right multiplication by g.

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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The smoothness of conjugation (see [16], [6]) combined with the above
information on G and Q proves that S is of class C°®° on D3(R) x M3.
Its derivative being continuous it is necessarily locally bounded so that
S is locally Lipschitz by the mean value theorem (see [13]). The basic
existence and uniqueness theorem of ordinary differential equations on
Hilbert manifolds [24] applied to (2.7) shows that, given an arbitrary
up € M3, the initial value problem (2.7) has a unique solution (g,q;) €
C'([0,T); D*(R) x M3) for some T > 0. Moreover, the solution depends
smoothly on the initial data.

The smooth dependence of ¢ on the initial data shows that exp;q is
a smooth map, cf. [24]. It now follows from the inverse function theorem
that exppy is a local diffeomorphism near zero. Further, on the Hilbert
space M3 we can join two points u; and uz near zero by a straight line.
The image of this straight line by the Riemannian exponential map is a
geodesic connecting exprq(u1) and expyy(uz2). )

Let us observe that a curve t — g(t) in D3(R) is a geodesic with
respect to the metric spray starting at the identity in D3(R) if and only if
it coincides with ¢ +— expyy(tv) for some v € T}gD3(R). One can easily see
this by using the result on the local uniqueness of the geodesic flow (see
the proof of Theorem 2.2) combined with the fact that a(ts,u) = a(t, su)
for all {,s € R such that both expressions occuring in the equality are
well-defined, where a(t, u) stands for the geodesic on D3(R) starting at the
identity in the direction u € TiaD3(R).

Remark 2.4.— The result proved in Theorem 2.2 has the following
interpretation for the shallow water equation: A surface configuration
(state) of shallow water is connected to a nearby surface configuration by
a uniquely determined solution of equation (2.1). O

We conclude this section with a discussion of the ‘Lie group’ expo-
nential map of D3(R).

For a Lie group G one can define the Lie group exponential map exp
from T.G onto a neighborhood of the neutral element e of G. If X € TG,
let X be the right-invariant vector field on G whose value at e is X.
Then exp(X) is given by exp(X) = n(1) where {n(t) : t € R} is the
one-parameter subgroup of G defined by 5(0) = e and %—;l = X(n).

If G has also a Riemannian structure induced by a bi-invariant metric,
it is known (see [26]) that the Lie group exponential map coincides with
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the Riemannian exponential map. Note that a compact group always has
a bi-invariant metric, cf. [26].

For the diffeomorphism group D3(R) we can define a ‘Lie group’
exponential map by

exp : TIdD3(R) — ’D3(]R), exp(ug) = My (1), uo € TIdD3(]R) = M:f,

where {n,,(t) : t € R} is the flow of the right-invariant vector field on
D3(R) whose value at the identity is ug. In other words, 7,, solves

{m =ug(n), teR,

28) n(0,z) =z, ze&R.

Note that the metric we consider on D3(R) is right-invariant by
construction but is not left-invariant, as one can easily check. Therefore
the next result is not that surprising:

PrOPOSITION 2.5.— On D3(R) the Riemannian exponential map
differs from the ‘Lie group’ exponential map.

Proof. — Assume that the two exponential maps are equal on some
small neighborhood O of zero in TiaD3(R). We may assume that O is an
open ball centered at zero and identify TigD3(R) with the Hilbert space
M.

We know that the geodesic starting at the identity Id € D3(R) in the

direction ug € TigD3(R) is simply ¢ — expyq(tug), where, as before, expy
stands for the Riemannian exponential map.

On the other hand, for the one-parameter subgroup of D3(R) defined
by 7, for v € T}aD3(R), one can easily check that

N (St) = New (), s,t €R, v € TigD3*(R)
so that
(t) = exp(tv) for t€R, v € TiaD3(R),

where exp stands for the ‘Lie group’ exponential map.

We conclude that the equality of the two exponential maps forces the
two flows to be equal. We now show that they are not equal, obtaining the
desired contradiction.
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Indeed, if q(t) := expyq(tug) for ugp € O, we have, by the results of
the previous subsection, that

(29) qt = u(tvq)’ te [07 1]a

where u(t, z) solves (2.1) with the initial condition ug. On the other hand,
using (2.8) and the equality of the flows, we would also have that

(2.10) o =wuo(q), te€[01]

As g(t,-), for any t € [0,1], is a diffeomorphism of R, relations (2.9) and
(2.10) show that u(t, z) = uo(z) for t € [0, 1], z € R. This would mean that
for ug € M3 C H3(R) small enough, the only solutions of (2.1) with initial
data ug are stationary solutions.

We complete the proof of the proposition by showing that in the space
H3(R) the identical zero function is the only stationary solution of (2.1).

Let ug € H3(R) be a stationary solution to (2.1). Multiplying the
relation

Bugug = 2uguy + uoug
by ug and integrating on (—o0, z], an integration by parts in the last integral
term leads us to

ua(uo — ug) = 0.

If ug is not identical zero, there is some open interval (a,b) C R where ug
has no zeros and ug — ug = 0. By (possibly) extending this interval we
may assume up(a) = ug(b) = 0. Here we do not exclude that one or both
endpoints are infinite, in which case the equality has to be understood as
a limit. We infer that uo(z) = c1€® + c2e”® on (a,b) for some constants
c1,¢2 € R. One verifies that in all possible cases (endpoints finite or not)
we cannot have ug(a) = up(b) = 0 with ug € H3(R) without ¢; = ¢z = 0.
Thus uo = 0 on R is the only stationary solution of (2.1). O

3. A family of diffeomorphisms of the line.

The geometric considerations of the previous section serve, in this
paper, as a main tool to investigate the question of existence of permanent
and breaking waves for the model (2.1).
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We associate to (2.1) a new equation

{qtzu(t,q), t>0, reR,

3.1
(3-1) q(0,z) =z, ze€R,

where u(t, z) solves (2.1). It is useful to consider solutions for the shallow
water equation (2.1) in the Sobolev space H3(R) instead of the weighted
spaces M3 C H3(R) defined in Section 2.

Assume ug € H3(R). Associating to a solution of (2.1) the potential
Y i= U — Ugy, ONE can write equation (2.1) in the following equivalent form:

= —y,u — 2Yuy, t>0, x€R,
(3.2) {yt Yo ]

y(0, z) = yo(x), z €R.
Equation (3.2) can be analyzed with Kato’s semigroup approach to

the Cauchy problem for quasi-linear hyperbolic evolution equations [20].
We have the following well-posedness result:

THEOREM A [9].— Given an initial data ug € H3(R), there exists a
maximal time T = T(ug) > 0 so that, on [0,T), equation (2.1) admits a
unique solution

u = u(-,up) € C([0,T); H3(R)) N C([0,T); H*(R)).
Further, if T < oo, then limsup;;r |u(t)|gs®r) = oo-

If ug € H*(R) then the solution possesses additional regularity,

we C(0,T); HA®) n C'(0,T); H¥(R)).

The solution depends continuously on the initial data, i.e. the map-
ping

uo = u(,uo) : H*(R) — C((0,T); HX(R)) n C'((0,T); H*(R))

is continuous. Moreover, the H'(R)-norm of the solution u(t, ) is conserved
on [0,T).

We prove now that for ug € H3(R), equation (3.1) defines, for
some time, a curve of orientation-preserving diffeomorphisms ¢(t,-) of the
line. By enlarging the class of diffeomorphisms we loose the manifold and
Riemannian structure but we can derive useful qualitative information
about the solutions to the shallow water equation (see Section 4 and
Section 5) for a wider class of initial profiles.
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THEOREM 3.1.— For ug € H3(R), let [0,T) be the maximal interval
of existence of the corresponding solution to (2.1), as given by Theorem A.
Then (3.1) has a unique solution q € C*([0,T) x R, R). Moreover, for every
fixed t € [0,T), q(t,-) is an increasing diffeomorphism of the line.

Proof.— For a fixed z € R let us consider the ordinary differential
equation

d T
(3.3) p v = u(t,v%), te(0,7),

v*(0) = z,

where u(t, z) is the solution to (2.1) with prescribed initial data ug. Since
u € CY([0,T); H%(R)) and H'(R) is continuously imbedded in L>°(R), we
see that both functions u(t,z) and u(t,z) are bounded, Lipschitz in the
second variable, and of class C! in time. The basic theory of ordinary
differential equations concerning existence on some maximal time interval
and dependence on the initial data guarantees that (3.3) has a unique
solution v*(t) defined on the whole interval [0,T). Moreover, the map
g : [0,T) x R —» R defined by ¢(t,z) := v*(t) belongs to the space
c'([0,T) x R,R).

Integrate relation (3.3) with respect to time on [0,t) with ¢t € (0,T),
then differentiate with respect to space and finally with respect to time to
obtain

d
Eqm =u.(t,q) gz, t€(0,T), z€R.

As ¢(0,z) = z on R, we have ¢,(0,z) = 1 on R and thus, by continuity,
gz(t,z) > 0 for t > 0 small enough.

Defining for every fixed z € R, t(z) :=sup{t € [0,T) : ¢.(¢t,z) > 0},

observe that

% qz(t7$)

o)~ tetat2), e H)).

Integrating, we obtain

t

q:(t,z) = efo ua(:9) “ te [0,¢(x)).

If for some z € R, we had t(z) < T we could deduce by continuity and the
way we defined t(z) that ¢,(t(z),z) = 0. However, the previous relation
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ensures that this can not hold. Therefore we have that t(z) = T for all
x € R, that is,

t
(3.4) ¢:(t,z) = elo we(sdds 410 T), zeR.

Recalling that u(t,-) € H3(R) for all t € [0,7) and using Sobolev
imbedding results (see [17]) to ensure the uniform boundedness of u,(s, z),
for (s, z) € [0,t] xR with ¢ € [0,T’), we obtain for every t € [0,T) a constant
K(t) > 0 such that

(3.5) e KO < go(t,x) <K, zeR.

We conclude from (3.5) that the function ¢(t,-) is stricly increasing
on R with lim__+__q(t,z) = oo as long as t € [0,T). O

The following result plays a key role in our further considerations. It
roughly says that the form of y(t,-) does not change on the time interval
where it is well-defined. We therefore found by means of the geometric
interpretation a very important invariant for the solutions to the shallow
water equation.

LEMMA 3.2. — Assume ug € H3(R) and let T > 0 be given as in
Theorem A. We then have, with y := u — Uz,

vo(z) = y(t,q(t,2)) ¢3(t,z), t€[0,T), z €R.

Proof. — For t = 0, the claimed identity holds. Thus, it suffices
to show that the right-hand side is independent of ¢. For ¢t € (0,7),
differentiate the right-hand side with respect to time and use equations

(3.1) and (3.2) to conclude that & (y(t, q(t, z)) ¢2(t, x)) =0. O

Remark 3.3.— The evolution problem (3.2) admits the conservation
laws

/R Vi (67) dz = /R V)@ dz, te0,T),

and

/R Vo (ta)de = /]R V)@ dz, te0,T),
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where fi, f— stand for the positive, respectively the negative part of the
function f and [0,7) is the maximal interval of existence for the solution
to (2.1) with initial data ug, as given by Theorem A.

The proof in [9] that these quantities are conserved is quite technical.

Lemma 3.2 provides an alternative proof of the validity of these
conservation laws for the flow defined by (1.5).

Indeed, note that ¢(t,-) is an increasing diffeomorphism of R as long
as t € [0,T). Assume that yo(z) > 0 on [a,b]. Then by Lemma 3.2, for
0 <t<T fixed, y(t,z) > 0 on [¢(¢,a), q(t,b)] and thus

) b b
Vs ta) do = / Vs 6 aGE) aa(t,€) de = / Vi@ dé. O

q(t,b

q(t,a)

4. Permanent waves.

In this section we consider the problem of the existence of permanent
waves for the model (2.1). Using the continuous family of diffeomorphisms
of the line associated to an arbitrary initial profile uy € H3(R) of the
shallow water equation described above, we show that for a large class of
initial profiles the corresponding solutions to (2.1) exist globally in time.

THEOREM 4.1. — Assume ug € H3(R) is such that yo := up — o zz
does not change sign on R. Then the corresponding solution u(t,z) to the
initial-value problem (2.1), given by Theorem A, exists globally in time. If,
in addition, ug € H*(R), we obtain a global classical solution to (2.1).

Proof. — Let T > 0 be the maximal existence time of the solution of
(2.1) for the initial profile ug, as given by Theorem A. For each t € [0,T),
let g(t,-) be the increasing diffeomorphism of the line given by Theorem
3.1.

As y(t,z) = u(t,z) — ugs(t, ), u(t,z) is given by the convolution
u(t,z) = p*y with p(z) := 3 eI, € R, and therefore

1 T
ut,z) =-e® ety(t,€) d¢
(4.1) 2 /—°°

1 o0
pe [ chtod ten ) ser
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from where we infer that
1 3 x
wilte) ==y [ eyt de
(4.2) o

1 o0
+35 ex/ e Sy(t,&)d¢, tel0,T), z€R.

(a) Consider first the case where yo(z) > 0 on R.

Relation (3.4) shows that g (t,z) # 0 for (¢,z) € [0,T) x R so that by
Lemma 3.2 we get y(¢,z) > 0 on [0,T) x R since ¢(t, ) is a diffeomorphism
of R. Using (4.1) and (4.2), we deduce
(4.3) ug(t, ) = —u(t,z), (t,z)€[0,T)xR.

We now prove that (4.3) yields a uniform bound from below for u(t,z) on
[0,T) x R.

Indeed, for x € R and t € [0,T),

u?(t,z) < /[uz(taﬁ) +ub(t,6)] d€ = |u(t, )in gy = luolin gy
R

using the conservation law given by Theorem A. Thus,

(4'4) iu’(t7$)| < ”uOHHl(]R)a zeR, te€ [O’T)

Combining (4.4) with (4.3) we obtain

(45) ul‘(tv LL‘) 2 —HUOHHI(R), (ta .’L‘) € [OvT) x R.

Going carefully through the steps of the proof of Theorem 3.5 in [9],
we deduce from (4.5) that T = oo.

(b) Now consider the case yo(z) <0 on R.

Since, by Theorem 3.1, (¢, -) is a diffeomorphism of R for all t € [0,T),
and g, (t,z) # 0 for (¢,z) € [0,T) x R in view of relation (3.4), we obtain
from Lemma 3.2 that y(t,z) < 0 as (¢,z) € [0,T) x R. A combination of
this fact with (4.1)-(4.2) yields

ug(t,z) > u(t,z), (t,z)€[0,T) xR,

which guarantees that (4.5) holds - recalling the conservation law from
Theorem A and using a Sobolev inequality. We infer again by the methods
used in Theorem 3.5 [9] that T' = oco. O
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Remark 4.2.— Theorem 4.1 improves the global existence result
obtained in [9] where the additional assumption yo € L!(R) is needed.
We are able to eliminate the condition yo € L!(R) since by Lemma 3.2 we
know a new interesting feature of the shallow water equation: the form of
y(t,-) does not change as t € [0, 7). O

Example 4.3. — In view of Theorem 4.1, the initial profile up = p*p
develops into a permanent wave. O

The next result shows that there are initial potentials which change
sign on R such that the corresponding solution of (2.1) still exists globally
in time.

THEOREM 4.4.— Assume ug € H3(R) is such that the associated
potential yo = ug — Uo zo satisfies yo(x) < 0 on (—o0,zo] and yo(z) > 0 on
[0, 00) for some point zo € R. Then the corresponding solution u(t,z) to
the initial-value problem (2.1), as given by Theorem A, exists globally in
time.

Proof.— Let T > 0 be the maximal existence time of the corre-
sponding solution of (2.1), as given by Theorem A. We associate to (2.1)
the equation (3.1). For t € [0,T), let ¢(¢, -) be the increasing diffeomorphism
of the line whose existence is guaranteed by Theorem 3.1.

Since ¢(t, -) is an increasing diffeomorphism of R as long as t € [0,T),
we deduce from Lemma 3.2 (relation (3.5) guarantees g¢;(t,z) > 0 on
[0,T) x R) that for ¢t € [0,T"), we have

(46) {y(t, z)<0 if z
})=0 x

We infer from (4.6) and the formulas (4.1) and (4.2) that

@7 ug(t, ) = —u(t, ) + € ] e Cy(t, &) de
> —u(t,z) for z > q(t,xzo),

while

s o I (L

—00
> u(t,z) for =z < q(t,zo)-

ANNALES DE L’INSTITUT FOURIER



A GEOMETRIC APPROACH TO A SHALLOW WATER EQUATION 343
The relations (4.6)-(4.8) show that
uz(t,z) > —||ut,)lee®), (t,2)€[0,T) xR,

and this guarantees T' = oo as relation (4.5) is again fulfilled (in view of a
Sobolev inequality and the conservation law from Theorem A). O

Let us recall the following blow-up result for (2.1):

THEOREM B [9]. — Assume that ug € H3(R) is odd and u)(0) < 0.
Then the corresponding solution of (2.1) does not exist globally. The
maximal time of existence is estimated from above by 1/(2]ug(0)]).

Remark 4.5.— Assume that yo € H}(R), yo # 0, is odd, yo(z) < 0
on R_ and yo(z) > 0 on R,;. By Theorem 4.4, the solution u(t,z) to the
initial-value problem (2.1) correponding to ug := Qyo exists globally in
time. This case is of interest if we compare it with the blow-up result from
Theorem B: since ug = p * yo with p(z) := % e~ 121, z € R, one verifies that
up is odd as well. However, the representation formula (4.2) shows that
up(0) > 0. O

Example 4.6. — By Theorem 4.4, the initial profile uo(z) = p *
[ze~!#!] on R develops into a permanent wave. O

5.Wave breaking.

In the present section we use the existence of a continuous family
of diffeomorphisms of the line associated above to each initial data ug €
H3(R) to analyze in detail the possible blow-up phenomena for solutions
for the shallow water equation.

Let us recall

TueoreM C [10].— Let T > 0 and v € C*([0,T); H(R)). Then for
every t € [0,T) there exists at least one point £(t) € R with

m(t) = inf [v2(t,2)] = va(t, (1)),

and the function m is almost everywhere differentiable on (0,T) with

dm
E(t) = v (t,€(2)) a.e. on (0,T).
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We will use Theorem C and the connection with the diffeomorphism
group of the line in order to investigate the breaking of waves for the model
(2.1).

Let us first show that a classical solution to (1.5) can only have
singularities which correspond to wave breaking. Note that the conservation
law given by Theorem A, implies that every solution is uniformly bounded
as long as it is defined.

THEOREM 5.1. — Let ug € H3(R). The maximal existence time T > 0
of the solution u(t,z) to (2.1) with initial profile ug is finite if and only if
the slope of the solution becomes unbounded from below in finite time.

Proof.— Let T < oo and assume that for some constant K > 0 the
solution satisfies

ug(t,z) > —K, (t,z)€[0,T)xR.

By Sobolev’s imbedding theorem and the conservation of the H*(R)
norm stated in Theorem A we deduce that u satisfies

(5.1) sup |u(t,z)| < oo.
te[0,T)xR

Using (3.2) and integration by parts we find for ¢t € (0,7) that

% /R[y(t>$)]2 dr = —3/Ruz(t, x) [y(t,x)]2 dz < 3KA[y(t,m)]2 i,

Gronwall’s inequality yields
62) [Pt [@Pds te©.D).
R R

Let us now approximate ug € H3(R) in the space H3(R) with a
sequence ul € H*(R), n > 1. We denote by u™ the solution of (2.1) with
initial data ug, defined on the maximal interval of existence [0,7T;) given
by Theorem A, and let y” := u" — u?, for n > 1.

The additional regularity of u™ (ensured by Theorem A) enables us
to differentiate (3.2). This leads to

d n 2dx = — ul(t, z) [y (t, =) dz
oy Luztard = =5 [ o) bz

4 / WPt 2) 5" (8 7)o (1 @) da, ¢ € (0, T,).
R

ANNALES DE L’INSTITUT FOURIER



A GEOMETRIC APPROACH TO A SHALLOW WATER EQUATION 345

As before, we obtain
d

(5.4) — /[y"(t,x)]zdx =-3 / ul(t,z) [y"(t,z))*dz, te€(0,T,).
dt Jr R

We first claim that there is a sequence ny — oo with

: inf | inf u™ = —o0.
(55) ol (im0, = o0

Otherwise, we find that infycjo 7,) [infzeR ul (¢, w)] > —oo for n > 1 large
enough and by (5.4)-(5.5), taking into account (5.1), we would obtain

& (vt 0P + b)) do

dt Jr
<Ko [ (W) + 2o do te (0.7.)
R
for some K,, > 0. But then, Gronwall’s inequality gives

[y™(t, )] + [y (t, z)]?) dz
R

et [ (362 + (e 0)F) do, e O.T)

N

By Theorem A, we would obtain 7T,, = oo for all n > 1 large enough
which is in contradiction to the continuous dependence on initial data (we
assumed T < 00).

Therefore (5.5) holds and we obtain SUPse(0,T,,, ) [uk (t, -)| oo () = 00,
which implies on its turn that sup;c(o 7, ) |u™* (t, -)|g2(r) = co. Taking into

account that y™ :=u"™ —uZk, we find

sup  |y™*(t,-)|L2r) = 0.
te(0,Tn,)

The latter relation and (5.2) cannot hold simultaneously in view of the
continuous dependence on initial data. The obtained contradiction shows
that our assumption on the boundedness from below of the z-derivative of
the solution is false. The converse of the claimed statement is immediate
and therefore the proof is complete. O

We will give now sufficient conditions to ensure wave breaking.
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THEOREM 5.2. — Assume ug € H3(R) is such that the associated
potential yo = ug — Uo 2 Satisfies yo(x) > 0 on (—o0,zo] and yo(z) < 0 on
[0, 00) for some point zo € R and yo changes sign. Then the corresponding
solution u(t, z) to the initial-value problem (2.1) has a finite existence time.

Proof. — Let u € C([0,T); H3(R)) N C*([0,T); H?(R)) be the solu-
tion of the initial value problem (2.1), as given by Theorem A. We associate
to (2.1) the equation (3.1). For ¢t > 0, let g(¢, -) be the increasing diffeomor-
phism of the line whose existence is guaranteed by Theorem 3.1.

The idea of the proof is to obtain a differential inequality for the time
evolution of u(t,q(t, o)) which can be used to prove that T' < oco.

With p(z) := exp(—|z|), z € R, the resolvent (1 — 62)~! can be
represented as the convolution operator

Q'f=(1-0)""f=pxf,  felL*R),

where @ denotes the operator (1—082) acting in L?(R) with domain H?(R).
We can write (2.1) as (see Section 2)

1
us + uugy = —0; (p * (u2 + 5“?:)) .

Differentiating this relation with respect to z, we find

1
Utz + Uy + U2 = —02 (p * (u2 + 5“2))

= (Q - Id) (p * (u2 + %ui))

1 1
=u2+—2~ug—p*(u2+—2—ui),
that is,
1, 2 2, 14
. tx TT 5 = - 5 .
(5.6) Uty + Ullzg + SUg = U p*(u +2um)

Combining (5.6) with (3.1), we obtain

gi uz(ty Q(t, 11,'())) = utz(ta Q(t7 11,'0)) + 'u'zav(t, q(t’ ill())) (%q(t, .’to))
= U (t, q(t, T0)) + Usa (t, q(t, zo))u(t, q(t, o))

= —%ui(t,q(t, o)) + u(t, q(t, o))

- (p * [u2 + %ug])(t,q(t, Zo)).

(5.7)
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Observe that the inequality

T

e“”"/ e"[u(t,n) + u2(t,n)] dn > 26‘”/ eu(t, n)ug(t,n) dn

—c0 —00

=u?(t,z) —e® / e"u’(t,n) dn

yields
68) e [ et + ) dn > (),
whereas

& / e 3(t,m) + 3 (¢, )] dp > 26 / e u(t, myus(t,7) dn

= u?(t,x) — e””/ e~"u?(t,m) dn
leads to

(5.9) e / ) e”"[2u?(t,m) +uz(t,n) dn > v’ (t, 7).

Using (5.8)-(5.9) and taking into account that p(z) = 1 e~12l, z € R,
we obtain

(p* [u? + %ui]) (t,z) = %u2(t, z), (t,x)€[0,T)xR.

Combining this inequality with (5.7) we deduce that on (0,7,
d 1, 1,
(5.10) = Ua(t a(t, 20)) < (8, (t, 20)) — Suz(t a(t, 20)).

For t € [0,T) note that the function ¢(t,-) is an increasing diffeomor-
phism of R with g,(¢,z) # 0 on [0,T) x R, in view of relation (3.5). We
deduce from Lemma 3.2 that as long as t € [0,T") we have

t,) >0 if x<q(t,xo),

(5.11) {y( ) ' q(t, zo)

y(t,z) <0 if x> q(t,zo).
Here y := u — u,, is the potential associated to u.

Introduce
q(t,xo)

V(t) := e_q(t’“’)/ egy(t,f) d¢, tel0,T),

—00
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and
Wit = e [ etyr e, e o)
q(t,zo)
Since y(t, q(t,zo)) =0 for t € [0,T"), we have
d d
V(1) = —(Z alt,20)) V()
(5.12)

q(t,zo)
n e—q(t,zo)/ egyt(t, &) d¢, te(0,7).

—00

From (3.2), using y = u — ug,, we obtain, integrating by parts,

/““’“) Sy (t, ) dé = — /q(m) et (y(t,é)u(t@))md‘5

—00 —00

q(t,x0) q(t,xo)
- / Sy t, Eus(t, £) dé = /_ eEy(t, E)ult,€) de

— 00

q(t,xo) q(t,xo)
- / eSu(t, €)ug (t, &) dé + / efug (t, €)ugy (t, €) d€

—00 —o0
q(t,zo) 1 [atzo)

:/ eSu(t, €) de + 5/ eSul(t, €) dg
—00 —o0

1
— [e”u(t, n)ucc (ta 77) - Ee”ui(t, 77)] n=q(t,x )
=q(t,To

Recall that y(t,q(t,z¢)) = 0 on [0,T). Substituting the above obtained
expression into (5.12) and using (3.1), we obtain that

q(t1x0)

%V(t) = —u(t, q(t,z0)) V (t) + e~ 91t%0) /

— 00

[P (0,€) + U (1,6)] de
— u(t 6, 20))us (1,6, 20)) + 502 (0, a(1,70)), € (O,7).

We therefore infer from (5.8) the inequality

SV > —ult,at,20)) V(E) = ult,a(t, 20w 1, (6 )

(5.13) + %ui(t,q(tvwo)) + %uz(t,q(t, )

1 1
= §ui(t,q(t,$0)) - §U2(t,q(t, IQ)),
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for all ¢t € (0,T'), since the representation formulas (4.1) and (4.2) yield
V() + ue(t, q(t, 7o) = u(t, q(t,20)) for t€[0,T).

In an analogous way we obtain

(o]

% W (t) = ult, q(t, zo)) W (t) — 2= /

q(t,illo)

e S[u(t, &) + %Ui(t,f)} /3

~ u(t,a(t,20))ua(t, a(t,20) — 502 (8, 4(t,20))

and, using (5.9), we get

LW (1) < ult,a(t,20)) W (1) — ut alt, z0) el a(t, o)
(514) — 5t alt,20)) - 50 (t,a(t, o)

1. 1
= §’U/2(t,q(t, l'())) - iui(t q(tva))v te (OvT)’

since W (t) — uz(t, q(t,z0)) = u(t, q(t, z0)) by (4.1) and (4.2).

Taking into account the inequalities (5.11) and the representation
formulas (4.1)-(4.2), we observe that

uz(t,q(t,20)) > u?(t, q(t,20)), te€[0,T).

The differential inequalities (5.13) and (5.14) show therefore that V(¢)
is strictly increasing while W (t) is strictly decreasing on [0,7"). The
hypotheses ensure V(0) > 0 and W(0) < 0 so that

(5.15) VIOW () < VOW(0) <0, tel0,T).

By (4.1)-(4.2) we see that
u?(t,q(t, o)) — uz(t,q(t,z0)) = V()W (t) on [0,T)
so that from (5.10) and (5.15) we obtain

(5.16) % () < %V(t)W(t) < %V(O)W(O), te(0,T),

where we defined

g(t) :=ug(t,q(t,zo)) for te[0,T).
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Assume now that T' = oo, i.e. that the solution exists globally in time.
We now show that this leads to a contradiction.

From (5.16) we would obtain, by integration,
1
(5.17) 9(t) < 9(0) + SVOW(0)t, € [0,00).

Since V(0)W(0) < 0 and |u(t,-)| = (r) is bounded on R, as the H'(R)-
norm of the solution of (2.1) is a conservation law, there exists certainly
some tg > 0 such that

gz(t) 22 “u(t’ ')Il%‘”(R)’ t > to.
Combining the latter inequality with (5.11) yields

d 1
= 9(t) <=7 8°(0), tE (to,00)

4
By (4.2), 9(0) < 0 and thus by (5.17) g(¢) < 0 for ¢t > 0. Thus we can divide
both sides of the above inequality by g?(t) and integrating, we get
1 1 1

—— ——=+=(t—t) <0, t>to.
o) g Tt ’

Taking into account that —;(1—5 > 0 and 3(t — to) > oo as t — oo, we

obtain a contradiction. This proves that T < oo. O

We are now concerned with the rate of blow-up of the slope of a
breaking wave for the shallow water equation (2.1).

THEOREM 5.3.— Let T < oo be the blow-up time of the solution
corresponding to some initial data ug € H3(R). We have

Jim (inf {ua(t,2)} (T - 1)) = -2

while the solution remains uniformly bounded.

Proof. — The solution is uniformly bounded on [0,7) x R by the
H'(R) conservation law (cf. Theorem A). Moreover, by Theorem 5.1 we
know that

(5.18) liminf m(t) = —oo

t—T
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where m(t) := inf g {uz(t,x)} for ¢ € [0,T). It is not hard to check
that the function m is locally Lipschitz (see [10]) with m(t) < 0 for
t € [0,T). Moreover, if £(t) € R is such that

m(t) = us(¢,¢(t), t€(0,T),

by Theorem C and relation (5.6) we deduce that for a.e. t € (0,T),

(519)  Gm(t) =2.0) - gm0 - (px a2+ 2] ) e,

since uz4(t,£(t)) =0 for t € (0,T) - we deal with a minimum.

Young’s inequality yields

1 1
Il(p  [u® + 5“3;])@ Mire®y < llpllLe ) 4 + 5“3;||L1(R)
< uts ) @y = Huol 7 -

Since the solution itself is uniformly bounded, we can find a constant K > 0
such that

6200 1600 - (p+ |12+ 3] ) e@) <K, e

Choose now € € (0,3). Using the inequality (5.20) combined with
relation (5.19), we deduce that

%m(t) < —%mz(t) + K forae te(0,7T).

Using (5.18), we find to € (0,T) such that m(to) < —1/2K + £. Note now
that m is locally Lipschitz and therefore absolutely continuous, cf. [17].
By integrating the above differential inequality on intervals [to,t) with
to < t < T and using the absolute continuity of m, we infer that m is
decreasing on [tg,T'). Therefore,

(5.22) m(t) < —@, t € [to, T).

We saw that m is decreasing on [tg,T’) and by (5.18) we obtain
tl:n} m(t) = —oo.
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Since m is locally Lipschitz and less than m(ty) < 0 on (to,T),
1

one can easily check that -- is also locally Lipschitz on (to,T). Moreover,

differentiating the relation m(t) - ﬁj =1 on (to,T) yields

d 1 4 m(t)
— =— for a.e. .
dim@)  miy oree teoD)

From (5.20) and (5.21) we deduce that
1
>5 € for a.e. te€ (to,T).

Integrating this relation on (¢,T) with ¢t € (¢o,7) and taking into account
that lim;—,7 m(t) = —oo, we obtain

() -0l

m(t)

WV

(%_6> (T —1t), te (to,T),

or, since m(t) < 0 on [to, T),

1 1
<—m@t) (T —1) < . te(to,T).
%-‘}-6 m()( ) %—'6 (O )

(5.22)

In view of the definition of m(t) and the fact that € € (0, 3) was arbitrary,
(5.22) implies the statement of the theorem. O

In the case of breaking waves corresponding to initial profiles satisfy-
ing the hypotheses of Theorem 5.2, we have

THEOREM 5.4.— Let T < oo be the blow-up time of the solution
corresponding to some initial data ug € H3(R) such that the associated
potential yo = ug — ug, z¢ Satisfies yo(x) > 0 on (—oo, zo] and yo(z) < 0 on
[0, 00) for some point zy € R and yo does not have a constant sign. Then

lim (sup {|ua (t,)[} (T~ 1)) =2
t—T zeR
while the solution remains uniformly bounded.

Proof. — 1t has been already established that w is uniformly bounded,

sup lu(t, z)| < oco.
te[0,T), zeR
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By Theorem 5.3 we also know that

Jim (inf {us(t, )} (T - 1)) = -2,

We associate to (2.1) equation (3.1). For ¢t € {0,T), let q(t,-) be the
increasing diffeomorphism of the line given by Theorem 3.1.

Taking into account relation (5.12), we obtain from (4.1)-(4.2) that

T

ug(t, z) = u(t,z) — e_‘”/ efy(t, &) de <u(t,z) if z < q(t,zo),

—0o0

whereas

ug(t,z) = —u(t,z) + €* /oo e Sy(t, &) de < —u(t,x) if = > q(t,zo).

T

We deduce that

sup uz(t,z) <sup |u(t,z)|, te€[0,T).
zeR zeR
The solution u being uniformly bounded we infer from the latter inequality

a uniform upper bound for the z-derivative of the solution to complete the
proof. O

Let us now provide some information about the blow-up set of a
breaking wave for the shallow water equation (2.1).

The first result gives a more precise description of the blow-up
mechanism that occurs in the case of Theorem 5.4: while the solution
remains bounded (as known), there is at least one point where the slope of
the wave becomes infinite exactly at breaking time.

THEOREM 5.5.— Assume up € H3(R) N LY(R) is such that the
associated potential yo := ug — Ug g Satisfies yo(x) > 0 on (—oo,zy] and
yo(z) < 0 on [zg, 00) for some point xg € R and yo does not have a constant
sign. With T' < oo denoting the finite blow-up time of the corresponding
solution of (2.1), we have

uw(t’ Q(taxO)) — —00 as t— T1

where q(t, ) are the diffeomorphisms of the line given by (3.1).
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Proof. — By Theorem 5.2 we know that we have finite time blow-up
and from the proof of Theorem 5.4 we have a uniform bound from above
for the z-derivative of the solution.

Assume the statement of the theorem is false. Then there exists M > 0
such that

luz(t, q(t, z0))| < M, te€0,T).

As already noted in the first part of the proof of Theorem 5.2, we can
write (2.1) in the equivalent form

1
Uy + Uty + O <p* [u2+§u§]) =0.

Use this equation to conclude that forany 0 < ¢ < T and —oo < a < b < o0,

d b b

dt J,

u(t,z)dz = —%u2(t,b) + %uz(t,a) —px [u2 + -;-ui]

a

Inequality (5.20) and the uniform boundedness of u imply that there exists
a constant K > 0 independent of a,b, and ¢, with

d [
la / u(t,z)dm‘ <K, a,beR te(0,7).
Integrating over the time interval [0, ], this estimate yields

(5.23)

b b
/u(t,w)dw—/ uo(w)da:|<KT, a,be R, t€[0,T).

Fix t € [0, 7).
For = > q(t,zo) we have by relation (5.11) that

e (1,2) = ealt,2) = u(t, ) — (t,7) > ult,2).

Integrating on [q(¢, o), ], this inequality leads to

T

(5:24)  ua(t,z) > ualt, q(t, %)) + / u(t,€)d¢, > gt z0).

Q(t710)

If x < q(t, xo) we have again by (5.11) that

& ia(t,2) = u(t, ) — y(t,) < ),
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and integrating on [z, ¢(t, )], we obtain in this case

q(t,z0)

(5.25)  wlt,z) > ua(t, qlt, z0)) — / u(t,€)d¢, T < q(t, z0).

Combining (5.23)-(5.25) we get
ug(t,z) > =M — KT — |uo| 1 (v), (t,2) € [0,T) xR,

or

hﬂl_}lf (;Eg{ux(t’ m)}) > —00
and, according to Theorem 5.1, the solution does not blow-up as t — T.

The obtained contradiction completes the proof. O

Remark 5.6. — Assume ug € H3(R) N L}(R) is odd and satisfies the
hypotheses of Theorem 5.5. In this case, we have that ¢(¢,0) = 0 for
t € [0,T). Indeed, according to (3.1), f(¢t) := q(t,0),t € [0,T) satisfies
the ordinary differential equation

510 =ult, £9), ¢ (0,7)
Note that
v(t,z) = —u(t,—z), t€[0,T), z€R,

is also a solution of (2.1) in C([0,T); H3(R)) n C([0,T); H%(R)) with
initial data ug. By uniqueness we conclude that v = u and therefore u(t, -)
is odd on R for any t € [0,T). As u(t,0) = 0, we have that the zero function
is a solution of the differential equation for f. Taking into account the fact
that wu(t,-) is locally Lipschitz on R, as one can easily see, we conclude
from the uniqueness theorem for ODE’s that f(t) = 0 for all ¢t € [0,T)
since f(0) = 0. Therefore, by Theorem 5.5 we obtain that at breaking time
T < oo we have lim;_,7 uz(¢,0) = —oco. O

Remark 5.7.— For initial data ug € H3(R) such that yo := uo—u0 2z
changes sign we may have global existence or blow-up of the solution to
(2.1) according to Theorem 4.4, respectively Theorem 5.2. Note the contrast
with the periodic case where as soon as yo € H(S), yo # 0, (S being the
unit circle) satisfies [qyo(z)dx = 0, we have finite time blow-up (cf. [] -
see also [7] for the special case of odd initial data). a
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For a large class of initial data, the blow-up set consists of one point:

THEOREM 5.8.— Let ug € H3(R), ug # 0 be odd, and such that
the associated potential yo := uo — Ug z, is nonnegative on R_. Then the
solution to (2.1) with initial profile ug breaks in finite time at zero but
nowwhere else.

Proof.— Let T > 0 be the maximal existence time of the solution
u(t, z) to (2.1) with initial data ug, as given by Theorem A. We associate
to (2.1) equation (3.1). For t € [0,T), let ¢(t, ) be the increasing diffeomor-
phism of the line whose existence is guaranteed by Theorem 3.1.

Note that u(t,-) is odd on R for any t € [0,T), cf. Remark 5.6.
Let s(t) := u,(¢,0). Due to the form of the initial profile, s(0) < 0
and, setting z = 0 in (5.6),
1
St + 582 < O, t e [0, T),
we conclude that T < oo: the solution u(t,z) of (2.1) blows-up in finite
time.

‘We give now a precise description of the blow-up mechanism. As noted
before, we have a uniform bound on u(t,z) for t € [0,T) and z € R. We
will see below that at any z # 0, the slope u,(¢,z) remains bounded on
[0,T) while u;(t,0) — —oo as t T T the wave breaks in finite time exactly
at zero and nowwhere else.

Let y := u — uz, be the potential associated to the solution u(t,z).
Using the fact that y(t,z) is odd in z, we obtain

u(t.a) = (p9)(t.o) = 5 [ eyt ) de
= sinh(z) /oo e Sy(t, &) d¢

and

urltoa) = 0[5 [ e ely(e) ae
= cosh(z) /°° e Cy(t, &) d¢
- [Conh©ue e e (e) € 0.T) x Ry
4}
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But y(t,€) < 0 for € > 0 and u(¢, z) is uniformly bounded on [0, T') xR.
Therefore, there exists a constant K > 0 such that

[sinh(2) /ooe—sy(t,g—“) d| <K, (tz)edT) xR,
and
kﬂ/ZM%Mm9ﬂ<K,@@emij+
0

Using these estimates in the above formula for u, (¢, z) one obtains

cosh(z)

te[0,T), z>0.

This shows that |uz(t, z)| = |uz(t, —z)| is uniformly bounded on 0 < t < T,
x > € for € > 0 arbitrarily small and completes the proof of the theorem. O

6. Geodesic flow on the diffeomorphism group.

In this last section we will use the qualitative aspects of the shallow
water flow analyzed in the previous sections to obtain information about
the geodesics on D3(R).

THEOREM 6.1.— On D3(R) there are geodesics with infinite life span.

Proof.— Let ug € M3 0 H*(R), ug # 0, be such that the associated
potential yo := up — g,z does not change sign on R or changes properly
sign exactly once by passing from nonpositive to nonnegative. Further,
assume that

sup ([ luo(a) -+ 105 o (2)]| + 10 uo(@)] + 105 uo(@) ] fal”) < oo.

From Theorem 4.4 or Theorem 4.1 we know that the shallow wa-
ter equation (2.1) has a unique global solution v € C(Ry; H*(R)) N
C'(R,; H3(R)) with initial profile ug. Moreover, if we take into account
Lemma 3.2, we can easily show that the assumed decay property for ug
ensures that u(t,-) € M3 for every t > 0.

Then the geodesic t — ¢(t) on the diffeomorphism group D3(R)
starting at the identity in direction ug can be continued indefinitely in

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)



358 ADRIAN CONSTANTIN

time. This statement follows by combining the above information with the
local existence result for geodesics proved in Theorem 2.2. O

Remark 6.2. — Note that by right multiplication, a similar statement
holds for the geodesic starting at a diffeomorphism gy € D3(R) in the
tangent direction ug. a

We show now that the formation of singularities of certain solutions
to the shallow water equation in finite time yields the breakdown of the
geodesic flow on D3(R).

THEOREM 6.3. — Ifug € M3 satisfies the hypotheses of Theorem 5.2,
then the geodesic starting at the identity with initial velocity ug breaks
down in finite time.

Proof. — Assuming that the geodesic could be continued indefinitely
in time, we would obtain from the results in Section 2 a global solution
of the shallow water equation (2.1) with initial profile ug € M3 C H3(R),
which contradicts the statement of Theorem 5.2. O

One might think that the breakdown of the geodesic flow is caused
by the smoothness assumptions on the diffeomorphisms in D3(R) or by an
unfortunate choice of the weighted space. The next result shows that this
is not the case, as sometimes the breakdown occurs due to the flattening
out of the diffeomorphisms.

THEOREM 6.4. — Let ug € H4(R), ug # 0, be such that the associated
potential yo := up — Ug z¢ IS odd and such that yo(z) = 0 for x € [—x¢, o]
for some o > 0 while yo(x) < 0 for © > x¢. Moreover, assume that

sup ([luo(@)] + 10 uo(@)| + 103 wo(a)| + 103 uo(a) ] Jel”) < co.
TE

Then the geodesic t — q(t) on the diffeomorphism group D3(R), starting
at the identity Id in direction ug, breaks down in finite time T < oco. At
time T, the diffeomorphisms ¢(t,z) flatten out.

Proof.— Let T > 0 be the maximal existence time of the solution
u(t, ) to the shallow water equation (2.1) with initial profile ug, as given
by Theorem A. We know by Theorem 5.2 that T' < co. Moreover, a simple
argumentation based on Lemma 3.2 shows that for every t € [0,T), the
wave u(t,-) preserves the stated decay at infinity of the initial profile.
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We deduce from the previous observations that u(t,-) € M3 for all
t € [0,T). Now, from the results in Section 2 we infer that the geodesic
t — ¢(t) is well-defined at least until the wave-breaking time 7.

Our goal is to understand what happens with the diffeomorphisms
qit) e D3(R) ast 1 T.
As a solution to (2.1) with odd initial profile remains spatially odd(?)

on the time-interval [0,7"), it follows that y := u — uy, is odd in the space
variable on [0, 7).

Setting z = 0 in (3.1) we see that g(t,0) = 0 for t € [0,T) by the
uniqueness theorem for ODE’s, cf. Remark 5.6.

Lemma 3.2 implies that y(¢, z) remains nonpositive for z > 0 as long
aste0,7).

Since ¢(t,0) = 0 for t € [0,T) and ¢(t,-) is an increasing diffeomor-
phism of the line, we have that ¢(¢t,z) > 0 for (¢,z) € [0,T) x (0,00). On
the other hand, y(¢t,z) <0 on [0,7) x R, and u(¢,0) = 0 on [0,7) by the
oddness property. We claim that u(t,z) < 0 for (¢t,z) € [0,T) x R4.

Indeed, observe that u(t,-) € H3(R) implies lim; oo u(t,z) = 0 for
fixed t € [0,T'), so that the existence of some z;(t) > 0 with u(¢, z1(t)) > 0
would mean that the supremum of u(t,-) on Ry is positive and attained

at some z3(t) > 0. But in this case uy,(t,z2(t)) < 0 and the desired
contradiction follows by

0 < u(t,z2(t)) = y(t, z2(t)) + ugs (¢, z2(t)) <0,

thus u(t,z) < 0on [0,T) x R, as claimed.

According to (3.1), q(t,z) satisfies the differential equation

& () = ultalt,2), t€OT)

so that, for every fixed z € Ry, ¢q(t,z), by the diffecomorphism property
and the fact that ¢(¢,0) = 0, is nonincreasing by nonnegative values as
t 1 T. Therefore limyyr q(t, z) exists and is nonnegative for every z € R,.
If z € [0, z], we have, by the monotonicity of g, that

0<q(t,2z) <q(t,z) as t€0,7T)

so that lim;7 g(t, z) = 0 implies lim¢y7 g(¢, 2) = 0 for all z € [0, z].

12) See Remark 5.6.
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The previous observations show that in order to prove that q(t,z)
flattens out in the limit ¢ T T, it is enough to prove that for some z € R,
we have limgy7 g(t,z) = 0.

Assume the contrary. Then

(6.1) q(t,zo) > ltlTr{rl q(t,xzg) =€>0, te][0,T).

The relation

y(t7 q(t,.’L’)) qz(tvm) = yO(m)7 te [OvT)v z € R,

obtained in Lemma 3.2 shows that y(t, q(¢,z)) = 0 for all (¢,z) € [0,T) x
[0, z0], that is, y(t,2z) = 0 on [0, q(t,zo)] for every t € [0,T). Combining
this with (6.1), and the oddness of y with respect to the spatial variable,
one gets

(6.2) y(t,z) =0, (t,2) € [0,T) X [—¢,€].

As a consequence we do not have that u,(t,0) — —oo as t 1 T3
contradicting Theorem 5.8.

The obtained contradiction proves that g(t, x) flattens out in the limit
t T T and we have the breakdown of the geodesic flow. a
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