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Chapter

Ferrocenes as One-Electron 
Donors in Unimolecular Rectifiers
Robert Melville Metzger

Abstract

Ferrocene is a good electron donor, and as such has been used to test asym-
metric conduction (rectification) in molecules that contain ferrocene. Of the five 
ferrocene-containing molecules that rectify (structures 11, 15, 19, 20, and 22), the 
last (22) exhibits a record rectification ratio, which should be a dramatic incentive 
for searching for more high-efficiency rectifiers.

Keywords: ferrocene, unimolecular electronics, rectification ratio,  
highest occupied molecular orbital, Aviram-Ratner proposal of 1974

1. Introduction

“Unimolecular electronics” (UME) [1] was born in 1974 with a theoretical 
proposal by Arieh Aviram and Mark Ratner (AR) for a one-molecule rectifier  
(or diode) of electrical current donor-bridge-acceptor (D-σ-A) [1] (Figure 1, struc-
tures 1 and 2): within that molecule D represents a π-electron-rich one-electron 
donor (D) moiety, σ is a short and saturated bridge of sp3-hybridized C atoms 
(between two and maybe eight C atoms long), and A is the electron-poor moiety 
that can act a one-electron acceptor. One small correction, AR had suggested that 
the first mechanistic step would move electron and hole from metal electrodes to 
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO) and the second step would involve the relaxation of the excited-
state zwitterion [1]. The experimental direction of rectification for D-σ-A molecules 
has been shown to be “anti-AR” (Figure 1 structure 3): in step (1), under applied 
electric field, the neutral ground-state molecule D-σ-A forms an excited-state 
zwitterion D+-σ-A−; in step (2) the electron and hole are transferred to the metal 
electrodes [2].

The first rectifier (4 in Figure 1) was measured in 1990–1993 as a Langmuir-
Blodgett (LB) multilayer between dissimilar metal electrodes by J. Roy Sambles 
(University of Exeter) and Geoffrey J. Ashwell (Cranfield University) [3, 4]. The 
asymmetric electrical current was confirmed at the University of Alabama (UA) as 
a LB monolayer of 4 between Al electrodes in 1997 [5] and then between oxide-free 
Au electrodes in 2001 [6, 7].

As of 2015, 53 unimolecular rectifiers had been measured worldwide [8], 15 
of which at the UA (Figure 1, structures 4–18 [7–20]). Also, 169 molecular wires 
were measured around the world [8]. Several more rectifiers have been published 
worldwide since and many review articles on this subject have appeared [21–32].

The present article focuses on the use of one particular powerful one-electron 
donor in rectifiers: ferrocene.
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2. Results

In the 1980s, UME had hoped to develop useful molecular-scale (~2 nm3) 
devices for ultrahigh-density and high-speed industrial electronics. To interrogate 
such molecules (or monolayers of molecules), metal electrodes or nanoelectrodes 
(Al, Ag, Au, etc.) are used: this is sketched below and explained in detail in many 

Figure 1. 
The Aviram-Ratner proposal of unimolecular rectification [1] with two specific molecules suggested (1, 2).  
Structure 3 shows the rectification direction (direction of larger and favored electron flow) seen (i) 
experimentally (bottom arrow from left to right, see Ref. [16])) and (ii) the rectification direction predicted by 
Aviram and Ratner (top arrow from right to left crossed out). Structures 4–18 are the unimolecular rectifiers 
studied at the University of Alabama (1997–2018) [7–20]: listed are the direction of enhanced current (hollow 
arrow), the rectification ratio RR = −I(Vmax)/I(−Vmax), and the maximum bias Vmax(Volts) measured; the 
word “decays” means that RR decreases monotonically as the measurement is repeated, while “persistent” means 
that RR does not decrease. The electron donor regions are shown in red, and the electron acceptor regions are 
shown in blue.
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review articles [8, 21–32]. UME learned how inorganic metals couple (associate 
with or bond to) single organic molecules and how one can reliably exchange 
electrons and photons with these molecules.

In the meantime the much wealthier and commercially driven electronic industry 
has made gigantic strides and has developed high-speed almost-nanoscale electronic 
circuits using inorganic semiconductors (Si, Ge, and GaAs). Therefore the original 
hope and promise of UME have been defeated. Nevertheless, UME has learned to 
interrogate and control individual molecules, and its present challenge is how to 
combine and exploit electronic, photonic, and spintronic functions in new ways.

The present review looks at how ferrocene-containing molecules have contrib-
uted valid and promising and most recently also very dramatic UME rectifiers: in 
particular molecules 11 [14] and 15 [17] already mentioned in Figure 1 and four 
other molecules shown in Figure 2, 19 [33, 34], 20 [33, 34], and 21 [33, 34] studied 
by the Whitesides group at Harvard University and 22 [36] studied by the Nijhuis 
group at Singapore National University. As discussed below, molecule 21 should 
not, and does not, rectify.

Electrical measurements of rectifiers. Rectification can be measured with 
some difficulty at the single-molecule level, but more conveniently as a monolayer 
between macroscopic metal electrodes as a “metal | molecule | metal” sandwich [32]. 
All molecules discussed here were studied either as a Langmuir-Blodgett monolayer 
(11 [14]) or as self-assembled monolayers (SAMs) with thiol terminations that could 
be bound covalently to either super-flat “template-stripped” AgTS or ATS electrodes 
(15 [17], 19 [33, 34], and 20 [34]) or PtTS electrodes (22 [37]). Most (but not all) 
rectifier measurements have been done with direct current [8, 32].

Candidate unimolecular rectifiers can be (i) electron donor molecules,  
(ii) electron acceptor molecules, or (iii) D-σ-A molecules [8, 32]. The search for 
organic rectifiers started in the era of quasi-one-dimensional organic metals with 
an enduring synthetic emphasis toward strong (easily oxidized) donor moieties 
D and strong (easily reduced) acceptor moieties A, connected by a covalently 
saturated and electrically insulating “sigma” (σ) bridge, forming a D-σ-A molecule. 
For instance, the proposed tetrathiafulvalene (TTF)-σ-tetracyanoquinodimethane 
molecule (Figure 1, structure 1) would have a presumed low barrier to form the 
corresponding excited zwitterion D+-σ-A−. Yet in 1974, a (weak donor)-σ-(weak 
acceptor) molecule (Figure 1, structure 2) was also proposed [1]. Surprisingly, 
the recently studied (and dimensionally very tiny) molecule 18 (that resembles 
molecule 2) incorporates a weak electron donor D and a moderate electron acceptor 

Figure 2. 
Ferrocene-containing unimolecular rectifiers studied by the groups of Whitesides [33–35] and Nijhuis [36]: all 
are “asymmetry-type A” rectifiers; the hollow arrow denotes the preferred direction of electron flow through the 
“metal | molecule | metal” sandwich (from electrode far from the electron donor part to the nearest electrode). 
Corrigenda for Ref. [8]: (i) the arrows for 19 (i.e., “molecule 193”) and 20 (i.e., “molecule 196”) are drawn 
in the wrong direction: they would apply to D-σ-A rectifiers); (ii) for 20 (i.e., “molecule 196”), the reference in 
Ref. [8] should be [124] instead of [122], [123]; and (iii) for 21 (i.e., “molecule 197”), the reference in Ref. [8] 
should be [125] instead of [122], [123].
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A, yet is an excellent rectifier [20]. We have also seen that a strong, easily oxidized 
donor like tetramethyl-para-phenylenediamine in molecule 16 blocks the current 
across the monolayer between −0.5 and +0.5 Volts (Coulomb blockade) [18].

Table 1 shows some relevant gas-phase ionization potentials ID for electron 
donors D and gas-phase electron affinities AA for electron acceptors A [8]. It 
should be noted that ferrocene (Fc or Cp2Fe, where Cp is cyclopentadienyl) is as 
good an electron donor (i.e., has a relatively small ID value) as tetrathiafulvalene 
TTF, but not as good as N,N,N′,N′-tetramethyl-para-phenylenediamine (TMPD). 
Perylenebisimide (PBI) is as good an electron acceptor (i.e., has a similarly large AA 
value) as 7,7,8,8-tetracyanoquinodimethane (TCNQ ).

Four mechanisms for rectification. Four potential mechanisms for electrical 
rectification in molecules have been discussed [38–40]:

1. Schottky barriers (“S” rectifier) [38, 40].

2. Asymmetric placement of the electrophore in the electrode gap  
(“A” rectifier) [38].

3. Unimolecular processes depending on molecular energy levels (“U” recti-
fier) [38].

4. A recent fourth mechanism for rectification is asymmetric polarization  
(“AP” rectifier), when highly polar solvents can induce an asymmetric con-
ductance of a symmetrical molecule between very asymmetric electrodes in a 
scanning break junction (SBJ) [41].

Purists would prefer pure-“U” rectifiers, requiring “S” = 0 and “A” = 0. For many 
molecules, for reasons of assembly, “U” and “A” effects are combined [39]  
(e.g., Figure 1 for structures 4, 5, 6, 10, 11, 14, 15, 16). For molecules 19, 20, and 22 
in Figure 2, only the “A” effect is operative: the chromophore donor moiety (indi-
cated as “D” and shown in red) yields rectifiers because it is asymmetrically placed 
within the “metal | monolayer | metal” sandwich. When the D moiety is in the 
middle of molecule 21, there can be and is no rectification [33, 34], as predicted [38].

Molecule ID(g) AA(g)

Benzene 9.24 −1.15a

Pyrene 7.37 0.56

Perylene 6.90 0.97

Pc 6.41 —

TMPD 6.20 —

TTF 6.83 —

Fc = Cp2Fe 6.81b —

1,4-benzoquinone 9.99 1.91

TCNQ 9.50 3.30

PBI — 3.93c

aFrom Ref. [42].
bFrom Ref. [43].
cCalculated from Ref. [18].

Table 1. 
Gas-phase ionization potentials ID (eV) and gas-phase electron affinities AA(eV), updated from [8], except 
where noted.
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Reversal of rectification: “Janus effect.” The molecules studied routinely at the 
UA rectify in the “anti-AR” direction, that is, intramolecular electron flow occurs from 
D to A (e.g., Figure 1 structure 3) [2, 8]. However, D-σ-A rectifiers 13, 14, 15, and 16 
also show an additional “Janus effect”: at lower bias they rectify one way, and at higher 
bias (e.g., at ±2.5 V), they rectify the other way [17, 18]! At lower bias, AR rectification 
may involve only one energy level (e.g., LUMO); at higher bias, anti-AR rectification 
may involve both HOMO and LUMO. Such bias-switchable rectifiers may be useful!

Rectification ratio. The asymmetry in electrical current I is quantified by 
the rectification ratio:

  RR ( V  max  )  ≡ − I ( V  max  )  / I (−  V  max  )   (1)

where V is the applied bias or voltage. Typical RR values span several orders 
of magnitude; for the rectifiers 4–18 studied at the UA, RR(Vmax) is reported in 
Figure 1. The first rectifier, 4, had RR = 26 [7]; 16 has a large RR = 3000 [19]. Why 
is the RR typically seen for unimolecular rectifiers (RR ≤ 103) [8] so much smaller 
than the RR for commercial inorganic pn junction devices (RR = 105–106) [8]? If 
low RRs were intrinsic to UME rectifiers, then traditional Ge, Si, and Ga As semi-
conductor physicists could safely look down at UME as a harmless curiosity, not as a 
competitor. But, as discussed next, a huge increase in RRs was imminent.

We next discuss rectifier 16, in which the electron donor moiety is the powerful 
electron donor TMPD instead of ferrocene (Figure 5). Figure 6 shows a surpris-
ingly large room temperature Coulomb blockade [18]: too much of a good thing, the 

Figure 3. 
IV scans for a “Au | LB → SAM of 15 | Cold Au | Ga2O3 | EGaIn” sandwich in the bias range from −1.0 
to +1.0 Volts for the bias V increasing: (left) I (ampères) vs. V (Volts). (Center) log10I vs. V. (Right) 
RR(V)°−I(V)/I(−V) vs. V: (the average < RR > = 96.3 ± 36.7). The horizontal arrows indicate the scan 
direction; the vertical hollow arrows show how the ordinate values evolved with repeated scans [18].

Figure 4. 
Current-voltage (IV) curves (I/ampères vs. V/Volts) for a “EGaIn | Ga2O3 | Au | Z-type LB monolayer of 
11 | Cold Au | Ga2O3 | EGaIn” sandwich. (left) I vs. V. (Center) log10|I| vs. V. (Right) RR = 14–28 vs. V. RR 
persists for up to 40 measurement cycles, with a minimal decrease in the currents (which are relatively small). 
Rectification was even seen for biases up to ±2 Volts [14].
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TMPD oxidizes too easily and prevents current from flowing for a large bias range 
[18]! Beyond where the Coulomb blockade was operative, a relatively impressive 
RR ≈ 3000 is reached.

The Whitesides group (including Nijhuis) studied the rectification of self-
assembled monolayers of thiol-containing molecules 19 and 20 and the non-
rectification of the symmetric 22 [35], in sandwich “Au | SAM | Ga2O3 | GaIn” with 
a thorough effort to isolate the potential influence of the disordered Ga2O3 oxide 
that forms at the surface of the GaIn eutectic (without completely covering it) 
[33–35] (Figure 7).

Recent huge rectification ratio. A very dramatic result was published 
recently for the (“A-type”) rectifying monolayer sandwich “PtTS-S-C15H30- 
Fc-C≡C-Fc | EGaIn” (Figure 2, structure 22) consisting of a diad of ferrocene 
(Fc) donors (linked by an alkynyl-C ≡ C-), with a pentadecanethiol “tail” [36]. 
This sandwich was studied between a bottom template-stripped electrode MTS 
(=PtTS, AuTS, or AgTS) and an EGaIn droplet top electrode. The new record is a 
very dramatic RR = 6.3 × 105 at ±3 Volts for PtTS (but much less for AuTS or AgTS) 
(Figure 8) [36]. Also, the conductance “plateaued” around −2 Volts when the 
AgTS electrode was used [36].

The key improvements in [36] were (i) using Pt as the “bottom” electrode, 
because PtTS tolerates a larger bias range than AuTS or AgTS, (ii) a presumed efficient 
van der Waals contact between Fc-C ≡ C-Fc and EGaIn, and (iii) a “long enough 
alkyl tail” to get a very small reverse-bias current [38].

Also, light emission was measured (with blinking) for 22, with a broad peak 
at 1.7 eV (λmax = 730 nm), but only at the large negative bias V that corresponds 

Figure 5. 
IV scans for a “EGaIn | Au | LB → SAM of 15 | Cold Au | EGaIn” sandwich in the bias range from −2.5 to 
+2.5 Volts for the bias V increasing: (left) I (ampères) vs. V (Volts). (Center) log10I vs. V. Note that the position 
of minimum current, which for normal tunneling curves of this type should occur at zero volt bias, as in 
Figures 3 (center) and 4 (center) shown above, is displaced here very significantly to the left by about 0.8 Volts: 
This is incipient Coulomb blockade. (Right) RR(V)°–I(V)/I(−V) vs. V [18].

Figure 6. 
IV scans for a “EGaIn | Au | LB → SAM of 16 | Cold Au | EGaIn” sandwich in the bias range from −2.5 to 
+2.5 Volts for the bias V increasing: (left) I (ampères) vs. V (Volts) (average of 50 scans). (Center) log10I vs. V. 
True Coulomb blockade. (C) RR(V)°−I(V)/I(−V) vs. V. (right) RR vs. V [18].
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Figure 7. 
JV scans for “AgTS | SAM of alkanethiol CH3(CH2)11SH | Ga2O3 | EGaIn” sandwich in the bias range from 
−1.0 to +1.0 Volts, (A) J vs. V (B) detail of (A) showing hysteresis (C) log10 J vs. V. RR ≈ 100. From  
Ref. [33, 34].

Figure 8. 
IV data for “PtTS | SAM of 22 | Ga2O3 | EGaIn” sandwich: (A) log10J vs. V and (B) rectification ratio RR(V) 
vs. V. the current densities J = I/A are calculated from the measured currents I and the estimated areas A of 
the EGaIn drops. The “heat map” shows in false color the number of times that any point in the xy plot was 
recorded (see color code on the right of each xy plot) From Ref. [36].
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to rectification: this emission was attributed to surface plasma polaritons excited 
distally within the Pt electrode after tunneling. Thus, the electrical excitation 
at large negative bias may have accessed the HOMO and HOMO-1 of Fc, but 
the energy is emitted neither directly (electroluminescence from Fc+ with an 
expected narrow energy distribution) nor indirectly (as lattice phonons), but 
indirectly and effectively, as surface plasma polaritons with a wide spectral 
distribution [36].

3. Conclusion

The frustrating issue of historically low measured RRs [8] has thus been resolved 
experimentally [36]: organic monolayer rectifiers may finally challenge the RR of 
inorganic pn junction rectifiers.

However, the measured RRs for alkanethiols are hundreds of times smaller than 
expected from careful theoretical simulations [42]: this puzzle must be solved, 
so that measurements are not victims of unforeseen inefficiencies in the “metal | 
molecule” interface. The number of measured unimolecular rectifiers has grown 
dramatically, but their preselection as candidate rectifiers has been somewhat 
haphazard. Once the “metal | molecule” interface is brought under experimental 
control, better measurements may provide valid physical organic criteria to guide 
the design of the better unimolecular rectifiers of tomorrow.

There has also been a recent brief review on this exact topic [43]; for the sake 
of brevity, we refer the reader to the papers cited for other significant rectifiers 
containing the donor ferrocene [43–49].

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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