
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Vacuum-Free Fabrication of 
Transparent Electrodes for Soft 
Electronics
Arshad Khan, Shawkat Ali, Saleem Khan, Moaaz Ahmed, 

Bo Wang and Amine Bermak

Abstract

Optoelectronic devices are advancing from existing rigid configurations to 
deformable configurations. These developing devices need transparent electrodes 
(TEs) having high mechanical deformability while preserving the high electrical 
conductivity and optical transparency. In agreement with these requirements, 
vacuum-fabricated conventional TEs based on transparent conducting oxides 
(TCOs) are receiving difficulties due to its low abundance, film brittleness, and 
low optical transmittance. Novel solution-processed TE materials including regular 
metal meshes, metal nanowire (NW) grids, carbon materials, and conducting 
polymers have been studied and confirmed their capabilities to address the limita-
tions of the TCO-based TEs. This chapter presents a comprehensive review of the 
latest advances of these vacuum-free TEs, comprising the electrode material classes, 
the optical, electrical, mechanical and surface feature properties of the soft TEs, 
and the vacuum-free practices for their fabrication.

Keywords: fabrication, transparent electrodes, solution processed, soft electronics, 
stretchable electronics

1. Introduction

Nanofabrication means the manufacturing techniques of material or structures 
with critical dimensions in range of one to few hundreds of nanometers. These tech-
niques realizes exceptionally small, features, structures, devices and systems those 
have applications in numerous fields of basic and applied sciences. It is compara-
tively a new class of manufacturing that signifies recent areas of sciences as well as 
creates new markets. Unlike conventional fabrication approaches, research in nano-
fabrication is multidisciplinary and needs combined work crosswise conventional 
fields. In nanofabrication, the final product is based on nanoscale materials, such 
as powders or fluids, and the components are realized either in “bottom up” or “top 
down” fashion, using various nanotechnologies. Similar to other fields, the applica-
tions of nanofabrication approaches are enormous in optoelectronic devices, [1] for 
instance, solar cells, [2] smart windows, [3] light-emitting diodes, [4] displays, [5] 
transparent sensors, [6] and touchscreens. [7] Transparent electrodes (TEs) are the 
key components in such optoelectronic devices. In addition to high optical transmit-
tance and low sheet resistance [8] required for traditional TEs, next-generation 



Nanofibers - Synthesis, Properties and Applications

2

soft optoelectronic devices also need decent mechanical deformability [1, 9] in TEs. 
Currently, the most utilized TEs are based on vacuum-processed TCOs, comprising 
fluorine-doped tin oxide and indium tin oxide (ITO). [10, 11] Although TCOs based 
TEs have demonstrated the required optoelectronic performance, several limita-
tions, such as low abundance, [12] film brittleness, [13] low infrared transparency, 
[14] and failure during high temperature sintering, undermine their appropriateness 
for utilization in the future soft optoelectronic systems. Thus, researchers have 
developed novel TE materials and vacuum-free approaches for its fabrication to 
substitute the TCOs. [15, 16]

Novel intrinsically transparent materials including graphene, [17] carbon 
nanotubes (CNTs), [18] and conducting polymers [19, 20] have been explored to 
replace the TCOs. Besides, other promising class of soft TEs designed from metals 
are widely employed due to their excellent electrical, optical, and mechanical per-
formance. This typically include metal NWs networks [21, 22] and systematic metal 
meshes, [23–28] and ultra-thin metal films. [29–31] In addition to the advancement 
of new materials for soft TEs, plenty of research is performed on the development 
of vacuum-free technologies for the low-cost fabrication of soft TEs. The list of 
these techniques is mainly consists of spin coating, [32] spray deposition, [33] inkjet 
printing, [34] screen printing, [35] transfer printing, [36] and slot-die coating. [37]

There have been several reviews published over the years, aiming at soft TEs from 
applications perspective. [1, 11, 38] However, few of them focuses on the soft TEs 
from the fabrication perspective. In this chapter, latest review of the vacuum-free 
fabricated TEs for emerging soft electronic devices is presented. The chapter begins 
with the discussion of key properties of TEs for soft electronics (sections 2). We 
then introduce the TE materials including metals, carbon materials, and transpar-
ent conducting polymers (section 3,4). Finally in section 5, the recent progress on 
vacuum-free methods that are typically employed for the realization of TEs, discuss-
ing their merits and demerits. We hope this chapter will enlighten the readers about 
the emergent soft TEs to better design and fabricate low-cost soft electronics devices.

2. Important properties of the soft transparent electrodes

2.1 Optical transmittance and electrical conductivity

Preferably, TEs must exhibit both high optical transmittance and high electrical 
conductance, and these are rather contrary from the physics perspective. It is due 
to an essential requirement for the electrical conductance of a material is the high 
charge density, that is restricted via the optical absorption of the free charges. [9] 
Figure of merit (FoM) is commonly used for evaluation of the overall performance 
of the transparent electrodes. FoM, which is the proportion of electrical conductiv-
ity to optical conductivity (σdc/σopt), and is measured by means of the commonly 
used expression, as given below: [20, 22, 25, 26].
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σ
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Where, T represents the optical transparency value at a wavelength of 550 nm 
(as it is close to most sensitive wavelength of the human eyes, [39]) and Rs repre-
sents the sheet resistance. A larger FOM value discloses a smaller sheet resistance 
value at a particular optical transmittance value, and vice versa. Figure 1 presents 
a comparison of FoMs for metallic soft TEs reported in recent studies. Among 
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these classes, metal-mesh based TEs has higher FoM values, both alone and as part 
of the hybrid TEs. The detailed FoM values of metal based TEs are presented in 
Tables 1–3.

2.2 Mechanical stability

Mechanically resilient TEs remarkable optoelectronic properties are vital for 
the development of soft optoelectronic devices as without this, these systems will 

Figure 1. 
Comparison of the FoMs of soft TEs (metal NW, metal mesh, and hybrid) and industrial standards. The data 
was acquired from the literature. [15] The dashed lines represent typical industrial standard (green line) and 
minimum industrial standard (red line). [40].

Rsh (Ω-□−1) T (%) FoM Applications Reference

40 85 55 Low-cost TEs [41]

35 84 60 Low-cost TEs [42]

6.2 85 360 Low-cost TEs [43]

10 70 100 GaN-based LEDs [44]

12 82 150 OLEDs [45]

4.5 80 357 Photodetectors [46]

10 89 300 Touch-screens [47]

92 92 40 Touch-screens [48]

3.5 76 366 Low-cost TEs [49]

10 90 350 Large-area TEs [50]

2.5 97.3 4920 High-performance TEs [51]

130.5 92 35 Touch-screens [52]

30 85 80 OSCs [53]

Table 1. 
Optical and electrical performance, and applications of metal NWs based soft TEs published in recent 
literature.
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not be not able to preserve electrical conductivity under significant mechanical 
deformation. [69] Various approaches are developed to enhance the mechanical 
stability of the soft TEs. For example, metal meshes are embedded and mechani-
cally anchored into the soft polymer substrates, which significantly enhanced its 
adhesion with the substrate and as a result improves its mechanical stability under 
deformation. [15, 16, 86] In addition to the mechanical stability of the TEs, the 

Rsh (Ω-□−1) T (%) FoM Applications Reference

0.036 75 34000 DSSCs/Heaters [15]

4 70 242 OLEDs [54]

15 96 410 Touch-screens [24]

21 85 90 Stretchable TEs [55]

40 80 38 OFETs/ OLEDs/OSCs [56]

22 78 62 OSCs [57]

30 85 75 Touch-screens [23]

3 82 600 Transparent Heaters [58]

8 77 170 OSCs [59]

0.3 70 3200 Large-area TEs [27]

1.7 82 2700 EL displays [60]

0.03 86 80,000 Transparent Heaters [61]

4.8 81 355 Printed TEs [62]

18 76 145 High-durable TEs [26]

5 82 360 Touch-screens [25]

9.8 85.2 237 Touch-screens [63]

6 97 1900 Transparent Heaters [64]

8 94 800 Printed TEs [65]

7 96 12600 Nanofiber based TEs [66]

0.43 97 27000 Wearable TEs [67]

0.07 72 15000 Transparent Heaters [16]

0.13 86 20000 Transparent Heaters [68]

1.32 82 1400 DSSCs [69]

0.84 84 2500 EL displays [70]

3.8 90 900 Wearable Heaters [71]

2.1 88.6 1450 QLEDs [72]

13 87 200 Touch-screens [73]

10 75 120 Solar Cells [74]

11 86 220 Transparent Heaters [75]

4.7 87 550 OLEDs [76]

6.2 90 550 Transparent Heaters [77]

3.9 84 490 Highly Bendable TEs [78]

Table 2. 
Optical and electrical performance, and applications of regular metal mesh based soft TEs published in recent 
literature.
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intrinsic mechanical stability of the other functional materials are equally impor-
tant concerning the successful operations of the soft electronic devices.

2.3 Other surface properties

TEs Surface roughness is significant as this considerably influences the  
morphology and uniformity of the subsequent printed/coated layers. Though, it’s 
hard to define a strict extreme roughness value vital for the effective production 
of soft electronic devices. Yet, bottom TEs with lower surface roughness value are 
preferred to minimize the possibility of electrical short circuiting. For instance, the 
roughness (root-mean-square) of a coated/printed continuous PEDOT:PSS film 
is normally <10 nm, which is adequately flat for most of the functional thin-films 
involved in fabrication of electronic devices. But, the surface roughness of metal 
TEs is much higher (hundreds of nm to few μm). For example, screen printed silver 
mesh is >2 μm thick, making the subsequent functional layer uniform deposition 
impossible. [87] To address this, researchers have has embedded the metal-mesh 
into the polymer substrates to flat the TEs top surface. [16, 69] Similarly, metal NW 
networks also demonstrate decent FoM as stated above, however, its high rough-
ness resulted in poor device performance. [88] Therefore, multiple approaches 
have been established to flatten the metal NWs TEs by compacting the unattached 
networks to a dense structure or filling the openings with supplementary TE 
materials. [89, 90]

Chemical compatibility of the TEs/functional materials interface is another 
important concern for TEs. An unsteady interface can cause substandard perfor-
mance and also fast deprivation of the TEs. For instance, the acidic behavior of 
PEDOT:PSS TEs can corrode the base ITO layer, causing the diffusion of indium 
at the TE/active layer boundary. Such erosion might result in critical gap condi-
tions which further caused the degradation of device. [91] To minimize the risk of 
chemical/electrochemical decay of the sensitive metallic TEs, a traditional method 
is covering the sensitive metallic materials with a thin-film. [92] This thin-film 

Rsh (Ω-□−1) T (%) FoM Applications Reference

1 92 5000 High-performance TEs [40]

2 95 4000 High-performance TEs [40]

1.2 80 1330 OSCs [79]

19 92 232 Perovskite Solar Cells [80]

9.1 79 165 OSCs [81]

5 80 325 Long-term Stable TEs [82]

0.6 93 8900 High-performance TEs [40]

0.36 92 12000 E-chromic Devices [83]

0.7 65 1100 Stretchable TEs [55]

11 98 1800 High-performance TEs [84]

3 92 1400 High-performance TEs [84]

60 90 60 PLEDs [85]

11 88 1050 Stretchable TEs [55]

Table 3. 
Optical and electrical performance, and applications of hybrid soft TEs published in recent literature.
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can be either from another class of conductor, for example, graphene, [93] and 
less-sensitive metals, [94] or an insulating material, for instance, poly(methyl 
methacrylate) (PMMA) and alumina, [95] The insulating film must be ultra-thin 
(< few nanometers) for proficient charge transport. [96] In addition to roughness 
and chemical compatibility, surface energy of TEs is also an essential factor to be 
considered for the efficient performance of the active materials in soft electronic 
devices. [97]

3. Metal based soft TEs

Due to the high density of free electrons, metals demonstrate the uppermost 
electrical conductance among all the conductive materials. Yet, metallic materials 
in bulk are unable to work as TEs directly as it has high light reflection at visible 
wavelength. [11] Thus, shape structuring is essential for metallic materials to 
attain the required optoelectronic characteristics. Following are the classes of 
metal-based TEs frequently reported in recent years. These typically include metal 
nanoparticle/nanowire/nanofiber networks, regular metal meshes, and ultra-thin 
metal films.

3.1 Metal nanoparticle/nanowire/nanofiber networks

One of the major classes of soft TEs is prepared from the metal NPs/NWs 
networks [21, 22], that have exhibited enormous performance in optical transpar-
ency, electrical conductivity, and mechanical deformation. The metal NPs or NWs 
must be gathered to form transparent metal meshes using several vacuum-free 
fabrication methods to realize soft TEs. In reality, the porous arrangement of these 
class of TEs permit the light to go across the free spaces in the grids. Therefore, the 
electrical and optical conductivity of these electrodes are greatly reliant on the grid 
arrangement. Simply, the electrical conductance depends on the density of metal-
lic materials, while the optical transmittance is determined by the area fraction 
of metal coverage. Among these, TEs prepared from the metal NWs got much 
attention because of their shape and that they can easily be dispersed in various 
solvents. Therefore, these can be processed by multiple vacuum-free techniques to 
create TEs having decent optoelectronic performance for soft electronic applica-
tions. Table 1 reviews the electrical and optical performance, and applications of 
metal NWs based soft TEs published in recent literature. Similar to other classes, 
metal NWs soft TEs also suffer from quite a few difficulties such as problem in 
achieving smooth NWs distribution across the large-area substrates, and the NWs 
delamination from the substrate during deformation. [9] In addition, the dispersed 
NWs network cannot be employed directly as further processing steps are normally 
required to eliminate the polymer capping around the NWs to decrease the junction 
resistance. This is achieved either using selective welding, bulk heating, or chemi-
cal processes. In addition to metal NWs, nanofiber based TEs have also got great 
interest due to their wide range of unique capabilities. Nanofibers are fabricated by 
employing various approaches, however, electrospinning technique is considered 
to be facile and low-cost to realize nanofibers with decent reproducibility, well-
controlled shape, high aspect ratio, and saleable size. Moreover, the production of 
nanofibers can be enhanced by means of electrospinning system with multi-noz-
zles. [98] Despite this potential, TEs based on nanofibers [24, 67, 84, 99] have the 
randomly distributed patterns and because of this, the reproducibility of placing 
the nanofibers in precise locations and alignments remains a foremost challenge in 
these TEs. [15, 100]
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3.2 Regular metal meshes

Compared with metal NPs/NWs, metal-mesh based soft TEs look extra profi-
cient as their electrical and optical conductivity can easily be adjusted in a broad 
assortment via changing the line width, mesh opening, and thickness. [26] Besides, 
numerous metals can be employed as metal-mesh based TEs to attain the desired 
chemical characteristics and work functions for the targeted soft electronic applica-
tions. [24] Table 2 summarizes the electrical and optical performance, and applica-
tions of metal mesh based soft TEs published in recent literature. The presented 
data shows that the FoM values of metal-mesh based TEs are comparatively higher 
than that of metal NPs/NWs based TEs. This is mainly due to the low junction 
resistances, offered by the regular metal meshes. Regardless of the superior per-
formances, rough surface topography and poor adhesion between the meshes and 
substrates constrained the extensive use of metal-mesh based TEs in soft electronic 
industry.

3.3 Transparent thin metal films

Mostly, bulk metallic films having tens to hundreds of nanometers thicknesses 
are utilized as back-electrodes (opaque-cathodes). But, ultra-thin metal films with 
only few nanometers thicknesses can also be utilized as front-electrodes (trans-
parent-anodes). Since, these metal layers are thinner in comparison with the light 
visible wavelength, and thus are optically transparent to human-eye. The thickness 
and uniformity of the metal films determine the optoelectronic performance of 
these TEs for the desired soft electronic applications. Several metals having dif-
ferent work-functions, including silver, nickel, gold, and platinum are effectively 
employed as transparent electrodes in soft electronic devices. [100] However, the 
vacuum-free fabrication of these ultra-thin transparent metallic films over large 
area is difficult, and thus substantial advancements in the fabrication methods are 
required to efficiently mass-produce these thin metal films.

4. Other soft TEs

4.1 Carbon materials

Graphene: Graphene efficiently conducts electricity and heat, is stronger than 
steel (~200 times), and is nearly transparent. [101] Due to these unique character-
istics, it has been suggested as a substitute soft TE material. Over the years, various 
vacuum-free approaches are established to produce thin films of graphene on soft 
substrate materials. [102–104] Recently, significant advancement has been made 
to enhance the optoelectronic properties of the graphene based TEs. Large-area 
graphene film was made-up on copper catalyst (~30 inches diagonal size), which 
was then accurately transferred to the target soft substrate using transfer printing 
technique. [105] In an ideal world, graphene has massive capability and is currently 
offering the assurance of being the vital transparent material for soft TEs. However 
as a matter of fact, uniform ultra-thin films of graphene are exceedingly challenging 
and are costly to produce. In addition, optoelectronic performances of graphene 
based TEs reduce quickly, due to the wrinkles/folds and crystallographic defects 
formed in these ultra-thin films during mechanical deformation. [105, 106]

Carbon Nanotubes: Similar to graphene, CNT is one of the hardest materials 
recognized. Due to its decent electronic and mechanical characteristics, CNTs 
are productively employed as TE material in soft electronic devices. [107–110] 
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Numerous vacuum-free approaches, for example, spin coating [111] and transfer 
printing, [112] are developed to produce CNTs based soft TEs. While, CNTs based 
TEs have attractive characteristics, such as higher optical transmittance and 
superior mechanical deformation capability, these have typically poor electrical 
conductivity. This limitation makes CNTs less suitable for large-area commercial 
soft electronics.

4.2 Transparent conducting polymers

PEDOT:PSS: Few transparent polymers, having intrinsically poor electrical 
conductivity, are transformed into conducting polymers via addition of con-
ductive dopants into their iterating chains. Poly (3,4-ethylenedioxythiophene) 
polystyrene sulfonate (PEDOT:PSS) is one of the classic model of such conducting 
polymers. In PEDOT: PSS unit chain, PEDOT acts as the conducting polymer, 
while the PSS plays the role of a dopant, enhancing its electrical conductance 
via significantly increasing the charge carriers. Since, PEDOT:PSS has no visible 
absorptive resonances, therefore it is routinely used as TEs in small scale soft 
electronic devices. Yet, a number of concerns, for example, instable molecular 
structure and high water solubility have limited the use of PEDOT:PSS in large-
scale soft electronics. [113, 114]

Other Conducting Polymers: Besides PEDOT:PSS, other conducting polymers 
comprising poly(p-phenylene-vinylene) (PPV), polyaniline (PANI), polyfuran 
(PF), polypyrrole (PPy), are utilized as TE materials for several soft electronic 
devices, due to their decent electrical and optical conductivity. [115, 116]

As discussed above, each class of soft TEs offers unique set of favorable proper-
ties, and also has some disadvantages. Researchers have combined different classes 
of TEs into a single electrode structure to fabricate hybrid soft TEs. The objectives 
of developing this new class TEs are: (1) take advantage of the benefits offered by 
individual electrode. (2) overcome those challenges associated with the electrode 
once employed individually. Table 3 summarizes, the optical and electrical perfor-
mance, and applications of hybrid soft TEs published in recent literature.

5. Vacuum-free fabrication approaches for soft TEs

Vacuum-free thin film fabrication techniques are favored by soft electronic 
industry because of low cost, low material waste and high output as compared with 
conventional vacuum fabrication processes. Yet, accomplishing equivalent quality 
solution-processed TEs is a challenging job due to several reasons, including the 
substrate/TE adhesion, the solvent volatility, surface wettability, and solution rhe-
ology need to be accustomed. Following are the most commonly reported vacuum-
free printing and coating approaches for the fabrication of soft TEs.

5.1 Spin coating

It is a simple technique used to coat continuous thin films onto rigid flat surfaces. 
Typically a small amount of coating material is put on the substrate’s center, that 
is ideally spinning at low speed. The substrate is then rotated at high speed (max 
~10 k rpm) to uniformly spread the coat-material utilizing the centrifugal force, as 
schematically illustrated in Figure 2a. One main benefit of the spin coating process 
is its capacity of dense coating of uniform and thin films onto rigid flat surfaces. 
This ability is quite attuned along the requirement of excellent TEs, as the thickness 
of TEs needs to be optimized. It is an attractive method to fabricate transparent thin 
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graphene films (few nanometer-thick), as the optical transparency of these films 
will decline considerably with increase in thickness. For instance, each graphene 
layer absorbs 2.3% of white light. [117] Therefore, graphene-based TEs needs to 
be ultra-thin to obtain appropriate optical transmittance. Thin (3.1 nm) graphene 
TEs are fabricated using spin-coated for realizing OSCs. [118] Occasionally, the 
smoothness of spin-coated TEs is not perfect because of the material properties 
itself. For instance, silver NWs have decent dispersion in isopropanol, water, and 
few other frequently employed solvents and therefore can be easily spin coated on 
several substrates for the fabrication of TEs. Conversely, the spin coated silver NWs 
typically creates a nano-mesh (with certain thickness) on the substrates, making 
roughness for the subsequent processing, and therefore limits the applications of 
bottom TEs. In addition to the roughness concern, the weak silver NW/substrates 
adhesion causes mechanical failure of the devices, particularly in soft electronics. 
[88] This issue is resolved by spin coating a TiOx buffer layer (~200 nm) over the 
silver NWs to get a comparatively uniform film, as displayed in Figure 2b. [32] 
Despite such potential, spin coating process have few limitations for the realizing 
of soft TEs. First, flatness of the spin-coated TEs is typically sensitive to spin 
speed, humidity, and substrate cleanness, which make the processing difficult to 
reproduce in ambient environment. Second, spin coating on large-area substrates is 
precisely difficult as it is challenging to clamp a hefty substrate and keep it stable at 
a high rotating speed. As a result, the spin coated films thickness is spatially differ-
ent over a large substrate due to the variation of the localized centrifugation speed. 
Third, majority of the material is spun-off the substrate in spin coating, making this 
material-wasting approach. Bearing in mind, major portion of the total price of the 
raw materials of the soft electronic devices comprises of the material cost of TEs 

Figure 2. 
(a) Schematic illustration of spin coating process. (b) AFM topographies of silver NW TEs without (left) and 
with the TiOx buffer layer (right). Reproduced with permission from Ref. [32].



Nanofibers - Synthesis, Properties and Applications

10

alone. Therefore, this wastage of material by spin coating is not financially viable 
for industrial mass-production, even though partially this may be reused.

5.2 Spray deposition

It is a coating process that uses a spray of particles or droplets to deposit a mate-
rial onto a substrate using a nozzle, as schematically illustrated in Figure 3a. The 
spray nozzle creates a spray that comprises small drops of TE material and leads the 
materials transportation to the substrate by the help of carrier gas or electric charge. 
[119] Compared with other vacuum-free deposition techniques, the main benefit of 
spray coating is its capability of uniform coating of materials on non-flat substrates. 
Figure 3b displays organic photodetector (fiber-based) using PEDOT:PSS TE, 
that was realized using spray coating. it difficult to coat smooth PEDOT:PSS film 
though spin coating on the curved optical fiber surface. [120] It is also useful for 
subsequent processing, for instance, to spray coat on uneven surfaces, for instance, 
metal NWs, metal mesh coated substrates, as spin-coating of solutions can create 
non-continuous surface coverage. [33] Besides condense and smooth TCO-free 
films, spray coating has also the capability to deposit TCO films. Figure 3c shows 

Figure 3. 
(a) Schematic illustration of spray coating process. (b) Schematic (left) and photo (right) of fiber-based 
organic photodetector produced by spray coating. Reproduced with permission from Ref. [120] (c) schematic 
illustration of electrospray system. Reproduced with permission from Ref. [121].
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the electrospray setup, utilized for deposition of zinc oxide (ZnO) and aluminum 
doped zinc oxide (AZO) films. [121] Despite such capabilities, spray processed 
TEs has the scalability problem, much more prominent as compared with other 
vacuum-free coating techniques. This limitation of low throughput has hammered 
its widespread adoption for production of large area soft TEs.

5.3 Inkjet printing

It is another highly used technique for making soft TEs. Inkjet printing is 
devised from dispenser printing where ink droplets exit the nozzles by a vibrant 
practice. By controlling the contraction expansion of the piezoelectric actuator, 
discrete ink drops are ejected from the nozzle making the anticipated design on 
top of the substrate, as schematically illustrated in Figure 4a. It is direct printing 
technique for high-resolution patterning, without the need of lithography other 
advantage key advantages that the printed design can be easily changed by modify-
ing the digital pattern that controls the actuator. [122] Inkjet printing is an effective 
approach to producing large area soft TEs. Figure 4b displays a large-area organic 
solar cell (OSC) having silver current collecting mesh fabricated by inkjet-printing. 
The printed silver mesh consisted only small portion (~8%) of the total substrate 
area due to the mesh relatively small line width (∼160 μm). The thickness of the 
printed silver mesh lines was >2 μm, which caused large height variation for the 
subsequent processing i.e. spin-coating of PEDOT:PSS and other active materials 
of the solar cell. This problem was resolved by embedding the silver mesh into an 
extra barrier film. The large-area OSCs having flexible Ag/PEDOT:PSS mesh TEs 
shown excellent performance as compared to that of TCO-solar cell, due to the 
high conductivity (sheet resistance ~1 Ω/□) of the silver mesh. [87] Inkjet printing 
processes based on mechanisms other than piezoelectric actuation are also utilized 

Figure 4. 
(a) Schematic illustration of inkjet printing process. Reproduced with permission from Ref. [34]. (b) Photographs 
of inkjet-printed silver current mesh for large-area OSCs. Reproduced with permission from Ref. [87]. (c) 
Schematic illustration of high-aspect ratio metal grid along with electrohydrodynamic inkjet printing and the SEM 
image of the printed gold metal mesh electrode. Reproduced with permission from Ref. [65] (d) schematic diagram, 
SEM image, and photographs of the inkjet printed CNTs based TEs by “coffee ring effect”. Reproduced with 
permission from Ref. [123].
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for fabricating TEs. For instance, electrohydrodynamic inkjet process, as shown in 
Figure 4c, enabled the printing of high resolution gold meshes (feature size line 80 
to 500 nm line widths) for realizing high performance TEs (8 Ω/□ at 94% optical 
transmittance), that can be custom-made for the application in different electronic 
devices. [65]

One major obstacle in attaining uniform inkjet printed structures is the coffee-
ring effect, that initiates because of the capillary flow in the solvent evaporation 
step. [124] Though, this effect is also occasionally useful for making TEs with 
particular ring shapes. [125] Figure 4d demonstrates a CNTs based TE having 
joined ring patterns, that was made through inkjet printing the CNT ink on top of 
a pre-heated PET film. The height and diameter of the rings were the functions of 
applied temperature. Post heat-curing further lowered the sheet resistance of the 
CNT coatings. [123]

5.4 Screen printing

It is one of the attractive methods used to print soft TEs. In this technique, 
viscous inks are forced across stencils or patterned mesh (typically used as the 
template) using a scraper as shown in Figure 5a. The density of the used mesh 
and ink viscosity define the printing resolution and thickness of the pattern. [35] 
This handy and relatively simple technique is utilized mainly for graphene and 
PEDOT:PSS, however metals can also be printed. The resolution of conventional 
screen printing processes is not high, however, it can be improved to tens of 
micrometer using an improved screen-offset approach. [126] Figure 5b displays 
the screen printed graphite oxide (GO) arrays on PET film, which was afterwards 
reduced to rGO using hydriodic acid (HI) in modest environments. This technique 
developed an easy way to manufacture large-area graphene TEs (patterned), having 
thickness of few hundred nanometers. [127] Similar to other screen printable mate-
rials, mesh-patterned PEDOT:PSS TEs can be realized with various width/period 
ratios by adjusting the wire diameter, mesh size, and photoresist thickness. [128] 
Beside graphene and PEDOT:PSS, screen printing is also utilized for the patterning 
of metallic inks. Figure 5c shows the schematic illustration of the structure of OSC 
having printed silver mesh as TEs. This work relates the screen printed hybrid TEs 
having PEDOT:PSS on top of silver mesh with various other printing approaches for 

Figure 5. 
(a) Schematic illustration of screen printing process. Reproduced with permission from Ref. [35].  
(b) Photographs of GO (left) and rGO (right) films, fabricated by screen printing. Reproduced with 
permission from Ref. [127]. (c) Schematic illustration of the OSCs containing the layers of P3HT:PCBM, ZnO, 
PEDOT:PSS, and silver electrodes. The back silver electrode is printed by various processes including screen 
printing. Reproduced with permission from Ref. [129].
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the vacuum-free and TCO free OSCs. It concludes that the uniformity of screen-
printed silver meshes was superior as compared to inkjet printed and flexographic 
printed TEs, which were damaged by de-wetting in the subsequent PEDOT:PSS 
film processing. Consequently, the OSCs having screen-printed silver TEs showed 
better performance equated with inkjet printed and flexographic printed solar 
cells. [129]

5.5 Transfer printing

Transfer printing is an emergent method for fabrication of soft TEs, that 
empowers the processing of various materials into the chosen useful shapes. This 
produces manufacturing prospects in the field of soft electronics with comparable 
performance to that of traditional wafer-based processes, however with capacity 
to be deformed. In this technique, first the materials structures are fabricated on 
the conventional donor substrate and then wisely transferred onto unconventional 
soft substrates, as described in Figure 6a. [36] For instance, graphene ultra-thin 
films are first coated on Ni or Cu foils using the standard chemical vapor deposi-
tion (CVD) technique. [130] In order to be used as TEs, the this graphene has to 
be transferred directly to top of the devices or transparent substrates. There are 
two different transfer approaches (wet transfer and dry transfer) to transfer CVD 
graphene onto various soft substrates, as shown in Figure 6b. In wet transfer, 

Figure 6. 
(a) Schematic illustration of the transfer printing technique. Reproduced with permission from Ref. [36].  
(b) Schematics of wet (right) and dry (lift) transfer printing for graphene soft TEs fabrication. Reproduced 
with permission from Ref. [131].
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the graphene was initially covered by a PMMA thin film. Next, the underneath 
Cu film was removed by an etching step in FeCl3. The graphene film covered by 
PMMA was then lifted-off either using a PDMS stamp for transfer, or directly 
picked up using the target substrate itself. [131] To enhance the throughput and 
production speed, transfer printing has been integrated with R2R process for the 
fabrication of large-area graphene (30-in) soft TEs. [105] Despite such potential, 
wet transfer has a limitation for the fabrication of top graphene-based TEs for the 
soft thin-film devices as the functional materials used in these devices are sensitive 
to moisture. To overcome this a dry transfer approach is developed, where a the 
film is directly coated on the PDMS stamps before transfer. [132] Besides gra-
phene, other major transfer printable material for soft TEs is the metal nanowire/
mesh films. These films typically have weak adhesion with the transfer substrates. 
This poor adhesion between the transfer substrates and metal films makes it easier 
to lift these films up with the PDMS, or another sticky polymeric stamp/target 
substrate. [60, 69] The high optical transmittance and superior conductivity of 
fabricated soft TEs using transfer printing ensure the high performance of soft 
electronic devices. [15, 60, 69, 70]

5.6 Slot-die coating

It is an effective process for printing one-dimensional structures. Slot-die 
coating is typically integrated with the R2R system for rapid production of soft 
electronic devices. As shown in Figure 7a and b, the solution is pushed out of 
the slot-die using a pneumatic scheme, and the solution is printed laterally in the 

Figure 7. 
(a) Schematic illustration of the slot-die coating technique. Reproduced with permission from Ref. [37]  
(b) photograph of the slot-die coating system. Reproduced with permission from Ref. [133] (c) photographs of 
the large-area soft OCSs having PEDOT:PSS TEs fabricated by slot-die coating. Reproduced with permission 
from Ref. [134] (d) photographs of the OCSs with high geometric fill factor. The employed PEDOT:PSS TEs are 
fabricated by slot-die coating. Reproduced with permission from Ref. [135].
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direction of the moving head. The thickness of the printed structure is typically 
determined through the solution’s concentration and it’s flow rate, while the head 
speed controls the speed of printing. PEDOT:PSS is the most commonly processed 
TE material for slot-die coating. Figure 7c and d display flexible large-area OSCs, 
where, the PEDOT:PSS TEs and the organic active material were both printed by 
slot-die coating. [134] Key benefit of using slot-die coating is its capability to print 
on large-area substrates, as in slot-die coated films the center-to-edge thickness 
difference is negligible. Therefore, large-area OSCs having a high geometric fill 
factor (98.5%) were realized through integrating laser patterning with slot-die 
coating. [135] Besides PEDOT:PSS, slot-die coating has been effectively utilized for 
other conductive inks including silver NWs, [136] CNTs, [137] and graphene. [138] 
Similar to other processes, slot-die coating has also few limitations including, the 
harsh requirements regarding inks rheology for high quality coatings [139] and the 
existence of high density printing defects such as ribbing and rivulet. [140]

6. Conclusions

Recent progress of the development of vacuum-free TEs for soft  electronics 
has been promising. This chapter presents a detailed overview on the latest 
advances of the vacuum-free soft TEs, comprising the introduction of electrode 
materials classes, the optical, electrical, mechanical, and surface features of the 
soft TEs. The chapter summarizes the vacuum-free techniques for the fabrication 
of soft TEs. Regardless of all the shortcomings discussed, we are optimistic that 
the vacuum-free TEs be going to play vital roles in soft electronic industries in 
the future.
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