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Abstract

Nerve root avulsion is the most severe form of brachial or lumbosacral plexus injury.
Spontaneous recovery is extremely rare, and when all the nerve roots of the affected
plexus are avulsed, the therapeutic options are very limited. Nerve root reimplantation
has been attempted since the 1990s, first in experimental animal models and afterwards in
human beings. Currently, only partial recovery of the proximal limb muscles has been
achieved. New therapeutic strategies have been developed to improve motor neuron
survival and axonal regeneration, with promising results. Neurotrophic factors and some
drugs have been used successfully to improve the regenerating ability, but long-term
studies in humans are needed to develop complete recovery of the affected limb.

Keywords: brachial plexus injury, nerve root avulsion, nerve root reimplantation,
motor neuron death, muscle atrophy, neurotrophic factor, axonal regeneration, motor and
sensory recovery

1. Introduction

A common event in brachial plexus (BP) injury is nerve root avulsion (NRA) in which the

nerve rootlets (NRts) are torn from the spinal cord (SC) [1–3]. Once avulsed, the NRts retract

towards the nerve root (NR) sleeve [4]. The most common cause is traumatic NR stretching

due to road accidents or parturitions [3, 5]. These injuries can also happen but are much rarer

at the lumbosacral plexus [6]. The ventral rootlets (motor) are weaker and thus get injured

more often and more seriously than their posterior counterparts [7].
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Soon after avulsion anterior horn motor neurons (MN) and sensory neurons at the dorsal

root ganglion (DRG) undergo apoptosis [8–17]. Inside the avulsed NR itself, there is a

Wallerian degeneration with axonal and myelin loss [18]. The muscles, devoid of nervous

impulses, undergo atrophy and fibrous transformation [19, 20]. At the SC, the neurons suffer

loss of synapses with destruction of previous neuronal networks and creation of new anoma-

lous ones that will lead to abnormal nerve impulses which might induce chronic neuropathic

pain [21–24].

After complete NRA, spontaneous regeneration is impossible [9]. In case of a single NRA,

recovery coming from nearby healthy ones can be expected in neonates but not in adult

patients [25]. Ventral root surgical reimplantation has been attempted both in experimental

animals and in human beings with partial recovery [26, 27].

Axonal regeneration is stronger in direct ventral NR reimplantation [26, 28]. This is rarely

possible [4, 7, 29, 30], so peripheral nerve grafts (NGs) are used to cover the gap between the

SC and the remains of the avulsed NR [31–33]. These NGs are usually taken from a peripheral

sensory nerve (medial antebrachial cutaneous, radial cutaneous, and saphenous), which is not

the ideal situation as motor nerve regeneration is worse if sensory nerves are used as donors

compared to mixed or pure motor nerves [34–36]. Acellular conduits have also been used, but

the regeneration does not grow further than 2 cm [37, 38].

1.1. Historical background

Surgical repair of spinal NRs after traumatic avulsion in live human beings was considered

technically impossible until the pioneering work of Carlstedt et al. [39]. The first studies were

done in rats [40], then in cats [41] and finally in primates [42, 43], before attempting NR

reimplantation in humans [44]. Initially, the efforts were directed at repairing the ventral

rootlets (motor), but in adult human beings, it provided only mild improvement in shoulder

and elbow movements [45]. In children, some hand movement was recovered but with limited

function [29]. In addition, it was found that the number of surviving MNs and the number of

axons that regenerated after NR reimplantation had a direct relationship with the final func-

tional recovery [7, 30]. Ever since, many research groups have focussed on understanding

the underlying pathophysiology and to find surgical strategies and drugs that can enhance

regenerating capacities.

2. Pathophysiology

The interface between the central and peripheral nervous systems is known as the transitional

zone (TZ) [46], and the regenerating capacities are influenced by both of them. The first is rich

in astrocytes that create channels through which motor fibers pass [15]. The latter has Schwann

cells that secrete neurotrophic factors (NFs) with higher regeneration abilities [47].

NRA disconnects the transverse arch that exists at each spinal level between the posterior horn

sensory, the lateral horn autonomic and anterior horn neurons [23] as well as disconnection of
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the DRG neurons from the bulbar and thalamic sensory nuclei [48]. NRA also induces loss of

synapses and dendritic arborisation, fiber degeneration, neuronal death, posterior spinal col-

umn degeneration and glial proliferation [23, 48]. The synaptic and neuronal changes in the

posterior horn produce neuropathic pain [24, 48, 49].

NRA is followed by an intense inflammatory SC reaction [50] with microglia, macrophage and

glial proliferations [51]. At the TZ a dense scar tissue and a neuroma from the avulsed MN

develop [15, 46, 52–55]. In the normal situation, the central nervous system is rich in astrocytes

that create channels through which the nerve fibers pass [15]. After NRA, astrocytes proliferate

and rearrange, blocking those channels and making it difficult for the regenerating nerve fibers

to grow [15, 46, 56]. Axonal and dendrite regeneration is inhibited by the secretion of some

substances by the astrocytes (chondroitin sulphate proteoglycans or CSPGs) [57–59] and oli-

godendrocytes (myelin protein [60–62] and semaphorin-3 [63]). Additionally, the glia secrete

neurotoxic products like glutamate [15] and free radicals [64] that induce massive neuronal

death among motor [8], sympathetic [12], parasympathetic [12] and posterior horn sensory

neurons [17].

About 80% of the MNs die in the following weeks [13, 65, 66], but this death does not happen

immediately after NRA [13, 67, 68]. Instead, there is a 12-day period in which different

treatment strategies can reduce this MN loss [65, 69]. The chemical compounds that counteract

the glutamate toxic effects can reduce the MN loss by 70%, provided that they are adminis-

tered in the first 2 weeks after the NRA [16, 65, 69].

The closer the axonal injury to the neuronal body [55], the smaller the regenerating capacity of

the axon and the higher the chance that the neuron will die. Four millimeters is the minimum

amount of peripheral nerve that should remain to avoid MN death [70].

The surviving MNs develop axonal sprouts within 1 month after the NRA [41], but to achieve

a successful regeneration, the axons must cross the gliotic TZ, grow inside the distal peripheral

nerves, and reach the motor end plates [71]. The long distance to cover is a big impediment to a

successful functional recovery [72, 73]. By the time the muscles get reinnervated, they are

atrophic and with fibrotic changes, particularly the most distal ones [74]. The regeneration is

not privative to the axon, and the dendrites can also regenerate as axon, creating what has been

called a dendraxon. These also have the capacity to grow into the peripheral nerves and

reinnervate muscles [75, 76].

Although the MN regenerating axon has a chance to cross the anterior SC white matter to

reach its surface and then attempt to grow in a possible reimplanted NR [77, 78] for the DRG

growing axon, the same is almost impossible as they have to cross a very hostile and gliotic

posterior SC Dorsal Root Entry Zone (DREZ) [79–81].

In the human being, the avulsion damages more frequently the ventral NRts as they are more

fragile than their posterior counterparts [15].

NRA creates four problems that have to be addressed to achieve a successful repair. First, if the

axon is torn closer than 4 mm to the cell body, motor and preganglionic parasympathetic

neurons undergo apoptosis [10–13, 23, 67, 68, 70, 82–84]. Second, muscles are fibrotic by the
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time the regenerating axonal sprouts reach the motor end plates [72, 73]. In rats, functional

recovery is seen only in cervical but not in lumbosacral avulsion models as the distance to

cover is much shorter for the cervical NRs [9, 40, 85–87], and in any case only proximal limb

muscle recovery is seen [86–89]. Third, the regenerating fibers may reach the wrong target due

to misrouting [53], and in the absence of NG or conduit, the regenerating axons will grow

along the surface of the SC [27, 43, 53, 83, 87]. The misrouting is responsible for simultaneous

contractures in agonist and antagonist muscles leading to ineffective limb movements [30].

Fourth, there is severe muscular atrophy due to lack of use [74]. Hence, for a successful clinical

result, MN survival must be improved, axonal regeneration has to be enhanced and acceler-

ated, misrouting should be minimized and muscle atrophy should be prevented [15, 72].

Although the MN cell body can regenerate and grow a new axon after this is torn [69, 90],

many MNs apoptose [13, 65, 69], and only 80% of the surviving MNs do finally project a

regenerating axon in the reimplanted ventral root or NG [26, 27, 31, 86]. Reimplantation of

avulsed NRs either directly or by means of a peripheral NG helps to reduce the number of

MNs undergoing apoptosis, probably because of local NF production [69, 77, 89, 91–93].

Exogenous NFs can be administered to enhance the regenerating capacity of cells [47, 94, 95].

Historically, the first attempts were directed at motor recovery with ventral rootlet

reimplantantion [96], but recently sensory recovery has been proved possible by reimplanting

dorsal rootlets [97]. The results of dorsal rootlet repair are dismal because the SC glial prolifer-

ation creates barriers that prevent the regenerating DRG axons from reaching the posterior SC

horn [81]. The lack of sensory recovery induces chronic neuropathic pain [49, 98], and the lack

of proprioception causes limb clumsiness [30]. This has been partially avoided by direct

implantation of the dorsal rootlets or their NGs’ extensions inside the posterior horn itself

rather than on the surface of the SC [81, 99]. The repair of both motor and sensory NRts leads

to better functional results with more accurate movements and less muscular synkinesis [100].

Functional MRI studies have corroborated affected limb sensory cortex function recovery in

the area corresponding to the reimplanted NR [100].

The timing of NR reimplantation is crucial, as a longer waiting period will correlate with a

greater amount of MNs undergoing apoptosis [20, 27, 91, 93, 101–103]. The percentage of dead

MNs increases from 20% by 10–12 days post-avulsion [13, 65, 69] to 50% by 4 weeks [104, 105],

85% by 6 weeks [106] and 90% by 20 weeks [27, 83, 93, 107]. Early NR reimplantation seems to

have neuroprotective effects [27, 83, 89, 93, 108, 109], but some MN loss will happen even if

repair occurs immediately after avulsion [93, 101]. In animal models, NRA followed by imme-

diate reimplantation in the same surgical procedure minimizes MN apoptosis and achieves

muscle reinnervation with some limited functional recovery, which is better in the brachial

plexus than in the lumbosacral plexus [27, 69, 83, 110]. Ideally, the surgical repair must be

performed no later than 10 days post-injury [65] as a delay over 2 weeks will lead to poor

clinical results [20, 26, 27]. In clinical practice, patients suffering from brachial or lumbosacral

plexus avulsions often experience other concomitant injuries, sometimes quite serious, that

force delaying NR repair [111]. Another common scenario is that the precise diagnosis takes

weeks or even months [3]. In any case, in human beings NRA repair has to occur no later than

1 month after the injury to allow any motor function recovery [45, 74, 97, 100]. NGs are almost
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always needed as torn NRts retract and undergo fibrosis with time, making direct

reimplantation to the SC impossible unless the repair is done just a few days after the injury

[74]. This is a further difficulty as regeneration is worse with NGs than with direct NRt

reimplantation [26].

3. Pharmacological aids to enhance regeneration after nerve root

reimplantation

Several pharmacological aids have been introduced to improve MN survival and axonal

regeneration after anterior spinal NRt reimplantation. They can be classified into NFs, drugs

and cell-derived products (Table 1).

NF administration improves MN survival as well as synaptic and axonal regrowth [87, 112–115]

improving the NR reimplantation results. NFs enhance Schwann cell migration, axonal regener-

ation and myelination [8, 16, 69, 93, 105, 116–120] and delay MN apoptosis—by 6 weeks 80–90%

of them are still alive [8, 69, 116, 118–121]. To be maximally effective, they must be administered

locally at the SC-NR interface within the first 3 days and no later than 2 weeks post-avulsion [20,

87, 93, 116]. NFs ought to be applied with Gelfoam or fibrin glue to avoid dilution in the CSF [72],

but free intrathecal application by means of an injecting pump is not recommended [122]. Their

short half-life limits their use, particularly because NFs have to be applied directly to a surgically

exposed SC [123]. Although NFs increase MN survival and axonal regeneration, their effect on

muscle recovery and final functional results is very limited [4, 7, 18, 20, 27, 37, 93, 105]. It has been

observed that in areas where the concentration of NFs is high, the regenerating axons get trapped

and do not grow to reach their final distal targets [18, 102]. Some have cautioned against the

possible adverse effects of using NFs in human clinical practice [124]. The currently used NFs are

brain-derived neurotrophic factor (BDNF) [115], glial-derived neurotrophic factor (GDNF) [8, 18,

20, 37, 102, 105, 125], ciliary neurotrophic factor (CNTF) [87] and intracellular sigma peptide (ISP)

[126]. GDNF shows the strongest action and a single direct application to the SC are enough,

provided that they are applied within the first 2 weeks after NRA [18, 20, 37, 102, 116, 127].

GDNF delays MN cell death for 6 weeks, therefore broadening the window for avulsed NR

reimplantation [20]. Similarly, the intracellular sigma peptide (ISP) blocks astrocytic inhibitory

action, thus facilitating axonal regeneration [126].

Moreover, the distance to cover by the regenerating axons from the SC avulsion site to the

muscular end plates is so long that by the time the axons reach their destination, the muscles

are atrophic and fibrotic [20, 128]. To avoid and delay this muscle atrophy as much as possible,

several strategies have been attempted: manipulating the molecular pathways involved in

muscle atrophy [129–131], nerve transfers from neighboring functioning nerves [132–136],

direct electrical stimulation of the affected muscles [137–139] and neuronal transplantation

inside the denervated muscle [20, 140–142]. In rats, the combination of GDNF at the SC-NR

injury site and embryonic spinal foetal neuron transplant inside the target muscles provided

the best possible functional result [20]. These embryonic neurons reinnervate the muscle end

plates just after the injury, preventing muscle atrophy while the regenerating axons arrived
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Agent Group Mechanism of action Administration

route

Motoneuron

survival

post-injury

Axonal

regeneration

Observation Applied

to

Current human

clinical use

Brain-

derived-neurotrophic-

factor (BDNF)

NF Reverses cholinergic

transmitter-related

enzyme deficiency

Intrathecal Motoneuron

survival 53%

by 16 weeks

Abundant

regenerating

fibers reaching

cord-avulsed

root interface

Active against many

neurodegenerative

disorders

Rat None

Glial-

derived-neurotrophic-

factor (GDNF)

NF ⇑ Survival of

dopaminergic

neurons

Direct

administration

on spinal cord

Completely

prevents

motoneuron

loss at

16 weeks

post-

avulsion

⇑ Axonal

regeneration

and coiling and

regeneration

Schwann cells

Strongest NF. ⇑ Effect

combined with

Riluzole

Administration

before 2 week post-

avulsion

Rat None

Ciliary NF (CNTF) NF Activates motor

neuron signal

transducer and

transcription 3

activator(STAT3)

Direct

administration

on spinal cord

Motoneuron

survival 23 �

4.3% by

3 weeks post-

avulsion

⇑ Axon

regeneration

across interface

spinal cord/

nerve root

Conjugation it with

transferrin prolongs

its action

Rabbit None

Intracellular sigma

peptide (ISP)

NF ⇓ Inhibition of

astrocyte secreted

chon-droitin sulfate

proteoglycans

Subcutaneous

injection

Motoneuron

survival

61.2% at

12 weeks

post-

avulsion

⇑ Amount and

size of

regenerated

axons

Act as synapse

organizing agent

Rat None

Resveratrol Drug Topoisomerase II

inhibitor

Added to nerve

graft culture

Motoneuron

survival 69%

at 8 weeks

post-

avulsion

⇑ Axonal

regeneration,

Schwann cell

migration and

myelination

Only tried on

autologous nerve

graft cultures

Rat Cancer, Chronic

diseases, Aging

Riluzole Drug Inhibitor presynaptic

glutamate release

Orally Motoneuron

survival 70%

by 5 weeks

post-

avulsion

⇑ Myelinated

axons in re-

implanted nerve

root. ⇓ Sensory

hypersensitivity

and allodynia

Administration

before 2 week after

injury. Maximum

effect combined with

GDNF

Rat Amyotrophic lateral

sclerosis, Nervous

Depression, Spinal

Cord Injury
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Agent Group Mechanism of action Administration

route

Motoneuron

survival

post-injury

Axonal

regeneration

Observation Applied

to

Current human

clinical use

Lithium Drug ⇑ Endogenous BDNF

secretion

Orally Motoneuron

survival 69%

by 12 weeks

post-

avulsion

⇑ Myelinated

axons inside re-

implanted nerve

root

Helps prevent muscle

atrophy

Rat Bipolar disorder

Minocycline Tetracyclyne

derivative

Inhibits glial

proliferation. Strong

anti-inflammatory

effect

Orally Motoneuron

survival

48�7% at

5 weeks.

Autonomic

neurons ∅

effect

Improves axonal

sprouting and

migration

Neurotoxic at high

doses.

Prevents and reverses

hypersensitivity

Rat,

mice

Bacterial infections,

Stroke

Recombinant

erythropoietin

Drug Counteracts

glutamate’s cytotoxic

effect

Subcutaneously Motoneuron

survival

51.7 � 0.8%

at 12 days

post-

avulsion

Suppresses

microglia

proliferation.

Protects axon

regeneration

Induces a pro-

thrombotic state.

Neuroprotective

effect NOT long-

lasting

Rat Anemia

FK506-tacrolimus Drug Immunosuppression.

Target heat shock

protein 90

Sublingual Motoneuron

survival not

reported.

Used ONLY

in dorsal

nerve root

repair

⇑ Regenerating

axons

penetrating and

reaching the

posterior horn

Immunosuppression.

Long-term

administration

needed

Rat Organ transplant

immunosuppression

Geldamycin Ansamycin

antibiotic

On heat shock protein

90. NOT

immunosuppression

Parenteral

injection

⇑ Survival

dorsal

ganglion

neuron.

Motoneuron

not studied

Accelerates

axonal

regeneration

No

immunosuppression.

Toxic at high doses

Rat Cancer

Acamprosate Drug ⇓ Synaptic glutamate Orally Associated

with

ribavirin ⇑

Associated with

ribavirin

accelerates

Side effects if ethanol

consumption

Rat Alcoholism

N
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Agent Group Mechanism of action Administration

route

Motoneuron

survival

post-injury

Axonal

regeneration

Observation Applied

to

Current human

clinical use

motoneuron

survival by

64.62% at

1 week

axonal

regeneration

>4 weeks

Ribavirin Drug Synthetic guanosine

antiviral properties

Orally Associated

with

acamprosate

⇑

motoneuron

survival by

64.62% at

1 week

Associated with

Acamprosate

accelerates

axonal

regeneration

>4 weeks

Can induce anemia Rat Hepatitis virus C

N-acetyl cysteine Drug Stabilizes oxidative

metabolism

Orally Neuron

survival 26%

motor, 95%

sensory

Facilitates

axonal

regeneration

Vitamin C

counteracts side

effects

Rat Mucolytic

Glatiramer Drug Immunomodulator Subcutaneously ⇑

Motoneuron

survival but

NOT

quantified

Reduction in

astrocyte

proliferation

⇑ Risk of infection

and malignancy

Rat Multiple sclerosis

Table 1. NFs (neurotrophic factors) and drugs used in nerve root reimplantation with their effects.
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[20]. However, when the regenerating axons reached the muscular end plates, they had to

compete with the already existing axons coming from the locally injected embryonic foetal

neurons [20, 140, 143, 144].

Some drugs have been administered to minimize MN apoptosis and improve NR regenera-

tion: resveratrol (3,40,5-trihydroxystilbene) [145], riluzole (2-amino-6-trifluoromethoxyben-

zothiazole) [8, 69, 121], lithium [146, 147], minocycline [119], recombinant erythropoietin

[118], FK506-tacrolimus [148–151], geldanamycin [152, 153], acamprosate [67, 154], ribavirin

[154], N-acetyl cysteine [155] and glatiramer [156]. Some researchers have administered

combinations such as acamprosate and ribavirin [154] or riluzole and GDNF [8]. The main

advantage of acamprosate, ribavirin, and riluzole is that they can be administered orally

[67, 154, 157].

Resveratrol has been added to the autologous NG culture for a week in the rat experimental

C6 NRA and reimplantation model [145], finding that it improves axonal regeneration,

Schwann cell migration and myelination and MN survival—69% surviving 8 weeks after

NR repair.

In experimental brachial plexus avulsion (BPA) rat models, riluzole has been proved to

improve MN survival, prolonging the time period at which reimplantation can be successful

[65, 69, 101, 121]. If administered within 2 weeks post-avulsion, riluzole helps to keep 70%

of the MNs [65, 69, 121] alive and minimizes the sensory hypersensitivity and allodynia [119].

Its maximum effect is achieved when combined with GDNF [8], and it can be administered

orally [157].

In rat, experimental avulsion models and at doses used in the treatment of mood disorders,

lithium improves neuronal survival, axonal regeneration and myelination, allowing an earlier

and better functional recovery [146, 147]. One of its mechanisms of action is by increasing

endogenous BDNF secretion [158]. Its effect on growing axon myelination starts 4 weeks post-

NR reimplantation, reaching its pinnacle at 6 weeks and slowing down by 12 weeks [146].

Minocycline is a tetracycline derivative that inhibits glial proliferation [159]—a barrier against

axonal and dendrite growth [160]—and decreases neuronal [161] and oligodendrocyte cell loss

[120, 162, 163]. Minocycline can cross the blood–brain barrier and has anti-inflammatory

properties [120]. In rats, it has been administered intraperitoneally and intrathecally, with

better results through the latter route [106]. At low doses, minocycline has neuroprotective

properties, but at high concentrations it is neurotoxic [164], among other reasons, because glial

proliferation and Wallerian degeneration are a sine qua non for nerve regeneration [106].

Recombinant erythropoietin injected subcutaneously once a day for 3 days has shown

neuroprotective properties in a rat NRA experimental model [118]. These neuroprotective

properties are short lasting but can help to delay motor neuron apoptosis after NRA, increas-

ing the period in which a NR reimplantation can be undertaken [118]. Recombinant erythro-

poietin seems to counteract the cytotoxic effect of glutamate, block free radicals, increase the

release of neurotransmitters and decrease microglial activation [165]. The positive effects of

recombinant erythropoietin are maximal when its administration is started within 96 hours

(4 days) after NRA and reimplantation [118]. The side effects related with the administration of

Nerve Root Reimplantation in Brachial Plexus Injuries
http://dx.doi.org/10.5772/intechopen.82431

53



this drug—increase in erythrocyte production and a prothrombotic state—are not problematic

because this drug is only administered for 3 days [118]. Perhaps administering this drug for a

longer period of time could provide additional neuroprotective effects, but 3 days are enough

to prolong the period in which a successful NR reimplantation can be performed [118].

FK506-tacrolimus improved the amount of regenerating posterior NR axons penetrating the

SC and reaching the posterior horn [151].

Acamprosate is a taurine analogue used to prevent relapse in alcoholic patients that acts as

neuroprotective and accelerates axonal regeneration [154, 166].

Ribavirin is a nucleoside antimetabolite antiviral agent that blocks nucleic acid synthesis that

is administered together with acamprosate to encourage axonal regeneration [154].

N-Acetyl cysteine administered intraperitoneally and intrathecally in rats enhances the rate of

MN survival and facilitates regeneration in case of NR reimplantation [155].

Glatiramer is a polymer of L-alanine, L-glutamic acid, L-lysine and L-tyrosine that structurally

resembles the myelin basic protein and that when administered daily reduces the gliosis and

the avulsed MN synaptic stripping [156].

To summarize, in NRA reimplantation GDGF applied directly to the anterior SC—to the point

where the motor rootlets go out—associated with oral riluzole provides the highest rate of MN

survival and axonal regeneration [8]. For the dorsal root, CNTF [87] applied directly to the

section of the posterior SC where the sensory rootlets get in combined with oral N-acetyl

cysteine [155] allows maximal sensory neuron survival. Other agents could be added, such as

oral minocycline [106, 120], tacrolimus [151] or recombinant erythropoietin [118, 165]to reduce

the reactive glial proliferation that impairs the axonal regeneration. ISP should be adminis-

tered subcutaneously to minimize astrocyte inhibition of axonal regeneration [126, 167]. The

data are summarized in Table 1.

Another strategy has been to apply pluripotent cells at the SC avulsion site to improve MN

survival and axonal regeneration. These have been particularly useful in minimizing neuronal

apoptosis. Among them are induced pluripotent stem cells (iPSC) [143], mesenchymal stem

cells (MSCs) [168–170], olfactory ensheathing glial cells (OECs) [85, 171], bone marrow stem

cells (BMC) [172], human fibroblast growth factor 2 (FGG2) [95], neuroectodermal stem cells

(ESC) [143], murine neural crest stem cells (MNCSC) [173], embryonic stem cell-derived neu-

ron precursors (ESCDNP) [173] and neural progenitor cells (NPC) [140, 141, 168, 174]. The

human embryonic stem cells overexpressing human fibroblast growth factor 2 (FGG2) applied

at the injury site improved MN survival and reduced the glial reactivity, thus improving the

regenerating capacities [95]. However, it has unknown effectivity, only shown in animal

experimental studies, and its application in the human being creates ethical issues.

Some researchers have found in vivo that a week time gap between NG harvest and its

subsequent use in nerve repair improves the regenerating capacities [175] by increasing the

number of Schwann cells and macrophages inside the NG [145, 176, 177] as well as by

inducing the local GDNF release [145, 178, 179]. This is another possibility but difficult to use

in clinical practice.
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Aword of caution is to be said about thematerials used to glue the peripheral NGs to the SC.

Only Tisseel® causes no long-term histological reaction [180, 181], while other preparations

available in the market (BioGlue®, Adherus®) induce local fibrous reaction with SC adherences

and at times neurological sequelae [181]. BioGlue® when applied close or in contact with

nervous tissues can create serious damages [182]. In rats, some researchers have used snake

(Crotalus durissus terrificus) venom-derived fibrin glue and reported excellent results [183, 184].

In clinical practice, fibrin glue from human origin is usually used [15, 30, 33, 45, 185].

On the other hand, conduits can be used to substitute autologous NGs. They have been

extensively tried in peripheral nerve repairs [186, 187], but in NR reimplantation the data

available are more limited [188, 189]. In peripheral nerve repair, these conduits have proved

useful up to distances of 70 mm in length [37, 38, 190]. Certainly, the central-peripheral

nervous tissue interface is a place in which autologous NFs provided by the autologous

NGs play a pivotal role in regeneration of the reimplanted NR [69, 77, 89, 91–93]. Some

researchers have tried nerve conduits enriched with BDNF that have had a good result in a

rabbit experimental model [191]. In human clinical practice, there are currently no published

reports [45, 74].

However, the applicability of all these studies is limited since they were generated with

experimental animal models and with reimplantation immediately following the avulsion.

On top of that, the regenerating capacities of the human nervous system are much less than

that observed in research animals (the rat especially [73]), and the reimplantation of an avulsed

NR has to be delayed weeks or even months until the patient is stabilized from other traumatic

lesions and when an adequate diagnosis and treatment strategy are well defined [111].

4. Surgical technique of human NR reimplantation

Surgical techniques can be useful, particularly in complete BPA and with a delay between the

injury and the surgical repair of no longer than 4 weeks [45]. Some significant problems are

that MN apoptosis is greater as the time goes by [20, 27, 91, 93, 101–103] and that by 4 weeks,

there is a dense scar around the BP as well as the avulsed NRs and in their intervertebral

foramina that hinders any surgical manoeuvres [45, 74].

The surgical approaches described can be summarized into posterior subscapular [192],

lateral [193], anterolateral [194, 195] and single-stage combined anterior (first) and posterior

(second) [33].

4.1. Posterior subscapular approach

With the patient in the prone position, a longitudinal incision is made halfway between the

spine and the scapula [39, 192, 196]. The trapezius muscle is sectioned transversally in the

direction of its fibers. The rhomboid major and minor muscles are also divided following the

direction of their fibers. The T1 transverse process is identified and removed with the aid of a

drill. A section of the first rib is also removed. A laminectomy and facetectomy are needed to
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access the spinal canal. The dura is opened and the dentate ligaments sectioned to rotate the

SC to reach the implantation site of the ventral roots. As no access to the anterior structures is

possible, another anterior approach to the BP is needed to identify and mobilize it and to pass

the NGs from one surgical field to the other [7]. Depending on the degree of bone removal, a

posterior cervical fusion might be required. This approach only allows access to the avulsed

NRs that lie inside the spinal canal or outside it but very close to the foramina [39]. Only one

case was reported in 1995 [39], which did not spark much interest within the BP surgical

community. Currently this technique is not used for NR reimplantation.

4.2. Lateral approach

This has been well described in the publications of Carlstedt and co-authors [7, 44, 45, 193]. The

patient is placed on the lateral decubitus position with the affected arm at the highest position

and slightly rotated outwards with the hand in supination. The head is supported in a Mayfield

head clamp (Integra LifeSciences, Austin, Texas, USA) and, slightly laterally, bent towards the

healthy side. The idea is not only to allow surgical access to the whole BP but also to the possible

donor sensory nerves (median antebrachial cutaneous and radial sensory nerves). The ipsilateral

lower limb saphenous nerve can also be accessed with ease. The surgical table is placed in a 15%

head-up position to reduce venous bleeding. A skin incision is performed from the mastoid to

the clavicle following the posterior border of the sternocleidomastoid muscle [7, 44, 45],or by

incising from the sternocleidomastoid muscle-clavicular incision and running parallel to the

clavicle about 2 cm above it in the direction of the C7 spinous process [193]. After dissecting the

platysma and sternocleidomastoid muscles, the spinal accessory and cervical plexus nerves are

identified and referenced with loops. Care has to be taken not to damage the spinal accessory

nerve at the junction between the upper and middle-third sternocleidomastoid muscle posterior

border. After careful subcutaneous fat dissection, the transverse processes of the cervical verte-

brae can be felt deep to the sternocleidomastoid muscle with the tip of the finger. The scalene

muscles anterior, middle and posterior as well as the levator scapula muscle are identified. Next,

the transverse cervical artery and vein are isolated and referenced. It is best not to sacrifice them

as they can be used in the future to vascularise a possible gracilis muscle graft [197]. The BP is

fully exposed and the avulsed NRs identified. The avulsed NRs are trimmed until normal-

appearing nervous tissue is seen. Many surgeons remove the dorsal root including its ganglion

[15, 45]. Unless the NR reimplantation is attempted in the first 2 weeks post-avulsion injury, the

BP retracts distally and undergoes fibrotic changes adhering to the nearby structures [1, 26, 33,

198, 199], so the BP has to be completely freed to be able to move it upwards. This maneuver can

be troublesome at times due to dense fibrotic tissue, particularly when surgical reimplantation

has been delayed over 4 weeks [15, 45]. When this is not possible or the BP cannot regain its

former position in contralateral C7 NR transfer, some have shortened the humerus shaft by 4 cm

[198]. The alternative is to use long autologous NGs that cover the gap between the SC and the

NR remnants [15, 26, 45, 109].

The C5-T1 NR foramina and zygapophyseal joints are approached between the elevator scap-

ula and the middle and posterior scalene muscles. Then the longissimus muscle is split longitu-

dinally to expose the spine. The multifidusmuscles are detached from the zygapophyseal joints
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and laminae. The transverse processes and the anterior and posterior tubercles are exposed by

removing all the muscles attaching to them. These bone structures plus a section of the lateral

mass are removed and a C5-C7 hemilaminectomy performed. The removed bone pieces are

saved for later use.

Care must be taken with the vertebral artery, as it does not need to be mobilized. As most of

the lateral mass, the disc and the contralateral facet joints are spared; the procedure usually

does not induce spine instability. The avulsed NRs can be identified by pseudomeningoceles.

The C5–C7 foramina are exposed with ease, while the C8 and T1 are much more difficult, and

some surgeons refuse to do it to concentrate in repairing only the C5–C7 NRs, even if the lower

ones are also damaged [45]. This is important because no improvement can be expected in

roots that have never been reimplanted and explains one of the reasons why the distal muscles

of the hand are seldom reinnervated [15, 45]. Some researchers have proven in rat experimen-

tal studies that a single reimplanted NR can attract regenerating axonal sprouts from nearby

levels [200].

The dura mater is exposed and opened longitudinally and the dentate ligaments sectioned.

Intraoperative neurophysiological monitoring is recommended particularly on rotating the SC

and when performing the longitudinal myelotomy and inserting the NGs inside it [45].

4.2.1. Ventral root repair

The SC is rotated, pulling from the dentate ligaments to expose its anterior aspect. Serial 2–

3 mm-long stab incisions are done at the same place where the anterior NRs formerly stood.

Peripheral nerve sensory NGs (medial antebrachial cutaneous nerve, superficial radial nerve,

saphenous nerve) are introduced 1 mm inside the SC tissue [201] and secured with Tisseel

fibrin glue (Immuno AG, Vienna, Austria). The distal stumps of these NGs are sutured with

the corresponding avulsed NR remnant. The dura mater is repaired with a dural substitute

and the suture reinforced with fibrin glue to prevent CSF leaks.

Some anatomical studies have found that the best spot where to insert the NGs in the SC is

where the anterior NRs formerly stood and not in the lateral SC side [201]. This latter place is

technically easier and achieves some regeneration by lateral MN axon sprouting, but the

results are inadequate [201]. As the NG implantation inside the SC will cause a further damage

to it [26], suturing the NGs to the SC pial surface in an experimental avulsion model has been

tried, finding that it allows adequate MN survival and axonal regeneration [27]. This ventral

root pial reimplantation is not only less risky but technically easier [26, 33].

4.2.2. Dorsal rootlet repair

This was first reported in 1997 in an experimental rat NRA model [202]. Peripheral NGs were

used to cover the gap between the remaining dorsal NR and the SC. A DREZ longitudinal

myelotomy was performed to insert the NGs 2 mm inside the posterior horn. Some regenera-

tion was seen with peroxidase staining [202]. The addition of olfactory ensheathing cells at the

DREZ in 2003 did not improve the results [171]. In 2004, Tang et al. [188] also in rats used

bioresorbable nerve conduits to repair a 6 mm dorsal NR gap, showing signs of recovery. This

Nerve Root Reimplantation in Brachial Plexus Injuries
http://dx.doi.org/10.5772/intechopen.82431

57



repair was enhanced by injecting a viral vector inside the DRG [203]. In 2017, Konig et al. [173]

reported the application of murine neural crest stem cells and embryonic stem cell-derived

neuron precursors at the DREZ in an experimental rat cervical dorsal NRA showing differen-

tiation into neurons and their migration, transforming into interneurons and facilitating the

creation of synapsis with the regenerating axons coming from the reimplanted dorsal NR.

In humans, dorsal rootlet repair has been recently attempted by Carlstedt et al. [97]. As they

noticed the extreme difficulty for the growing axons coming from the DRG to cross the glial

scar at the surface of the posterior horn, they sectioned the avulsed NR distal to the DRG and

sutured the peripheral sensory stump to the posterior horn by means of NGs introduced in the

SC through a longitudinal myelotomy. The rationale was to get some sensory recovery from

the growing axons of the posterior horn neurons that are expected to grow distally inside the

implanted NG [99]. As the neuronal bodies of the DRG are removed, the regeneration has to

depend on the neuronal plasticity of neurons coming from the posterior horn that have to

stretch their axons to reach the skin though the NGs and peripheral nerves. The results are

poor [99, 100], but it is the first strategy that has provided some success in humans. This is not

ideal as sensation could be recovered if the dorsal rootlets were replaced by NGs and the tip of

those grafts inserted inside the posterior SC horn through a longitudinal myelotomy while

maintaining the neuronal bodies that lie at the DRG. This technique proved effective in rats

[202], but no attempts in humans have been found in the literature. To improve the results,

CNTF [87] should apply locally to the posterior SC at the DREZ associated with N-acetyl

cysteine [155] orally to allow maximal sensory neuron survival. Oral minocycline [106, 120],

oral tacrolimus [151] or subcutaneous recombinant erythropoietin [118, 165] could be also

administered to reduce the reactive glial proliferation that acts as a barrier against dorsal root

axonal regeneration.

4.2.3. Wound closure

The dura mater is closed with a dural substitute and reinforced with fibrin glue to prevent CSF

leaks. The morcellized bone obtained from the transverse processes and lateral masses

supplemented together with demineralized bone matrix is laid on the cervical spinal column

defect to enhance bone fusion. A lumbar drain is inserted and kept for 5 days to prevent CSF

leaks.

Postoperatively, patients are kept with a sling for 6 weeks before starting any passive move-

ments, to prevent NG dislodgement [45]. Cervical X-rays are taken every 3 months for a year

to detect any possible instability that might require a cervical fusion.

The most important disadvantage of this approach is that it entails extensive muscular dam-

age, particularly at the scalene muscles [33]. The most significant advantage is that the NGs

needed for the repair are the shortest of all the NRA reimplantation approaches [45, 193].

4.3. Anterolateral approach

It is first described by George et al. for the treatment of cervical spinal spondylosis and tumors

[204, 205]. This approach is much more direct but demands a partial multilevel oblique partial
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corpectomy of the affected levels that can be C4 to T1 when the whole BP is involved. This

involves an extensive anterior cervical fusion, not optimal for younger individuals due to its

possible long-term consequences [206]. The anterolateral approach provides good access to the

BP and ventral NR, but the dorsal NR cannot be reimplanted [195]. This approach has been

reported in research animals—cats [207, 208]—in ten cadavers and four clinical cases [194], but

no long-term clinical results have been reported.

4.4. Single-stage combined anterior (first) and posterior (second) approach

The antecedent of this approach is the two-stage combined approach posterior (first) and

anterior (some days later) [185]. In the first stage, the cervical spinal canal was approached

with the patient prone. A C4–T1 laminectomy with medial-third facetectomy was performed

and the SC inspected after longitudinal dural opening. The dentate ligaments were sectioned

and SC rotated and inspected looking for avulsed NR. In case the avulsed NRts were inside the

dura mater, they were reimplanted where they formerly stood. Both ventral and dorsal NRs

were reimplanted. When the NRs were outside the spinal canal, NGs were inserted and

sutured to the SC tissue through small myelotomies and their distal end tunneled through the

paraspinal muscles and placed in the supraclavicular area with two metallic hemoclips to

facilitate their identification in the future. The dura mater was sutured and sealed with fibrin

glue. A posterior mass cervical fusion was performed to prevent postoperative kyphotic

deformities. Some days later the patient was taken back to the operating room and in the

supine position the BP identified and isolated in the supraclavicular region. The NG distal

ends were localized through the hemoclips with X-ray guidance and sutured to the

corresponding BP cords. Apart from the original report [116], no further publications on this

seem to exist.

The single-stage combined anterior (first) and posterior (second) approach was reported by

Amr el al. in 2009 [33]. The patient is placed in the lateral decubitus position and the skin

sterilized front and back of neck and chest as well as the whole affected upper limb and both

lower limbs. Then the patient is rotated backwards and placed supine. In this position a

traditional BP exploration is done through a transverse supraclavicular incision. If needed, a

second incision perpendicular to it can be done following the delto-pectoral groove. This

allows exploration of the infra-clavicular BP, particularly when it has migrated distally. Once

the whole BP is dissected free and the damages evaluated, several peripheral sensory NGs are

obtained from the affected upper limb and both lower limbs. These grafts are sutured to the

cords of the avulsed NR.

Next, the patient is placed again in the lateral position. Through a posterior midline incision

from occiput to T2, the whole cervical spine is exposed. The spinal muscles are detached from

the spinous process and separated laterally. A laminectomy and partial medial facetectomy

C4–T1 are performed on the affected side. The dura is opened through a longitudinal incision

and the dentate ligaments sectioned. The NG that had been previously sutured to the BP cords

in an end-to-side versus end-to-end technique [33, 209] is passed subcutaneously from the

anterior surgical field to the laminectomy area. These NG needs to be long enough to cover the

distance between the SC and the BP. Then the proximal ends of the NGs are sutured subpially
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in a longitudinal fashion, parallel to the side where the ventral roots stood. No SC incisions are

performed. The proximal ends of the NGs are sutured intradurally to C4 above and to T1

below. In the only publication that we have found, the dorsal NRs are not repaired [33]. The

dura is closed with interrupted stitches reinforced with fibrin glue. No cervical fusion is

applied.

The advantage of this double approach is that it is more conservative to the muscles. The

disadvantage is that long NGs are needed, making the distance between the motoneuron and

the muscular end plates still larger. To the best of our knowledge, there is only a single

publication attesting the validity of this technique [33]. It is of particular interest that ventral

NR regeneration can be achieved by laying the NGs subpially at the SC without having to

insert them inside the SC tissue through myelotomies [33].

5. Clinical results in human beings

Some clinical studies have reported definitive although limited motor and sensory improve-

ments particularly in the proximal limb areas after NR reimplantation in complete BPAs

[15, 30, 32, 33, 45, 185]. The best motor recovery was seen at the deltoid, pectoralis,

infraspinatus, biceps and triceps muscles [15, 30, 45, 185, 209]. One patient showed signs of

partial recovery of the flexor digitorum superficialis and another of the first dorsal inter-

osseous muscle [45]. A functional recovery of the hand has only been reported in a 9-year-old

child with a complete BPA [29]. Hand intrinsic muscle motor grade 2 recovery was reported

by Amr et al. [33]. The best sensory improvement was patent at dermatomes C5, C6 and T1,

particularly at C5 [33, 45]. One of the reasons by which only proximal muscles show signs of

reinnervation in the work of Kachramanoglou et al. is because only the C5–C7 NRs are

reimplanted as C8 and T1 are more technically demanding and they were reluctant to risk

neurological complications on handling the SC at these levels [45]. This could also be the

reason by which Amr et al. [33] report hand intrinsic muscle grade 2 motor recovery, as they

did repair the C8 and T1 roots. Another extremely important reason is that when the

regenerating axons reach the distal limb muscles, they are already atrophied and fibrotic

[72, 73]. The C5 and T1 sensory recovery can in part be due to overlapping sensory covering

from nearby dermatomes (C4 for C5 and T2 for T1) [32, 45].

6. Conclusions

NRA keeps being in an area in which improvement is desperately needed, particularly in

complete BPAs in which not many alternatives are possible. As clinical results in humans keep

being dismal, further research is needed. The administration of drugs, preferably orally, has to

be pursued to find a combination of them that helps to achieve a successful limb recovery. NR

reimplantation has to be undertaken as soon as the patients’ clinical condition allows it.

Ventral NRt implantation provides better results than its posterior counterparts.
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Abbreviations

BDNF brain-derived neurotrophic factor

BMC bone marrow stem cells

BP brachial plexus

BPA brachial plexus avulsion

CNF ciliary neurotrophic factor

GDNF glial-derived neurotrophic factor

iPSC induced pluripotent stem cells

ISP intracellular sigma peptide

MN motor neuron

MSCs mesenchymal stem cells

NF neurotrophic factor

NGs nerve grafts

NPC neural progenitor cells

NR nerve root

NRA nerve root avulsion

NRts nerve rootlets

NSC neuroectodermal stem cells

OECs olfactory ensheathing glial cells

SC spinal cord
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