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Abstract

In this chapter, the proposal that green tea polyphenols can be used effectively to protect 
against genotoxic effects associated with hexavalent chromium (Cr(VI)) exposure is ana-
lyzed. After explaining the chemical mechanisms involved in oxidative stress associated 
with the reduction of Cr(VI) compounds, the relationship between green tea polyphenols 
and oxidative stress is analyzed. Particular emphasis is given in elucidating how these 
proposals fit with our own experimental results with green tea polyphenols and Cr(VI) 
compounds, which show an increase of apoptotic cells and a decrease in micronucleus 
frequency. Finally, the gaps in our understanding of the role of green tea and its polyphe-
nols, as well as their key importance to human health, are highlighted.

Keywords: green tea polyphenols, genotoxic damage, hexavalent chromium, 
antioxidants, oxidative stress

1. Introduction

Recently, the food industry and the consumer sector have shown a growing interest in the 
research, development and commercialization of beverages with high nutritional content and 
particular properties relevant to human health. In this context, green tea infusions (Camellia 

sinensis) are rich in bioactive compounds, particularly in phenolic compounds with antioxi-
dant activity. It is therefore not surprising that green tea has attracted significant attention for 
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its positive effects on health-related issues of oxidative stress such as cancer, cardiovascular 
and neurodegenerative diseases [1, 2].

The tea manufacturing process is designed to either preclude or permit tea polyphenolic com-

pounds to be oxidized by naturally occurring polyphenol oxidase in the tea leaves during fer-

mentation (white and green tea are unfermented; oolong tea is semi-fermented; and black tea 
is fully fermented). Green tea is produced by inactivating the heat-labile enzyme polyphenol 
oxidase in fresh leaves by either applying heat or steam, which prevents the enzymatic oxi-
dation of polyphenolic compounds. Although the components of green tea include proteins, 
carbohydrates, lipids, alkaloids, vitamins and minerals, its health-beneficial properties are 
attributed mainly to its high content of catechins (flavan-3-ols, or flavanols), such as (−)-epi-
catechin (EC), (−)-epigallocatechin (EGC) and their gallate forms (+)gallocatechin (GC), (−)
epicatechin-3-gallate (ECG) and (−)epigallocatechin-3-gallate (EGCG). Recent studies have 
also identified biological functionality of other phenolic compounds found at lower concen-

trations, particularly flavonols and phenolic acids [1, 3–5].

A cup of green tea contains approximately 300 mg of catechins. It is considered that EGCG 
intake in the form of green tea infusions should be safe up to a maximum consumption of 
734 mg EGCG/person/day and even a regular or high dose of green tea (8–16 cups a day) has 
positive effects in general health [4–7]. The catechin content of green tea also depends on a 

number of factors including the growing conditions of the plant, age of leaves harvested and 
the method used to prepare the infusion [4, 8].

In the last part of the twentieth century, interest in food polyphenols has increased due to 
activities such as free radical scavenging, modulation of signal transduction and metal chela-

tion, as well as anti-inflammatory, anti-microbial and anti-proliferation activities [9–11]. In 

addition, polyphenols may exert an indirect antioxidant effect by protecting endogenous anti-
oxidant enzymes in the human body [12]. Thus, substances with antioxidant properties such 
as polyphenols emerge as putative preventives and coadjuvants in the treatment of chronic 
degenerative diseases related to oxidative stress and DNA damage [13].

2. Oxidative stress, antioxidants and green tea flavonoids

“Oxidative stress” is a term used mainly in the fields of biology and medicine since 1985. 
Initially, it was defined as the lack of balance between the formation of reactive oxygen spe-

cies (ROS) and molecules capable of counteracting their action (antioxidant defense system). 
Naturally, as our understanding has increased over the past years, this concept has been 
accordingly redefined and more elements like the interruption of signaling and redox control 
have been added [14]. Nevertheless, oxidative stress has always had a negative connotation 
because it has been linked to various potentially severe human diseases, including neurologi-
cal diseases such as Alzheimer’s and Parkinson’s, and metabolic diseases, like diabetes and 
atherosclerosis, in addition to being involved in the development of some types of cancers, 
inflammatory processes and cardiomyopathies, among others [15].
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The terms “ROS” and “free radicals” are often used interchangeably. However, it is impor-

tant to note that even though both terms might fulfill operational and practical purposes 
in some contexts, they are not always fully interchangeable. The term “free radicals” refers 
to a reactive chemical species that has an unpaired electron in its last orbital, identified in 
the nomenclature as a dot “•,” which makes them highly reactive species. However, ROS 
includes oxygenated free radicals, such as the superoxide radical (•O

2
−) and the hydroxyl 

radical (•OH), as well as the oxygenated molecule precursors of free radicals, such as hydro-

gen peroxide (H
2
O

2
) and singlet oxygen (1O

2
) [15, 16]. In short, all oxygenated free radicals are 

ROS, but not all ROS are free radicals.

The generation and elimination of ROS are closely related processes. Living organisms pos-

sess regulatory systems to maintain ROS at safe levels, that is, their production and elimina-

tion are well balanced. However, under certain circumstances this balance can be disturbed. 
These include (i) increased level of endogenous and exogenous compounds entering autoxi-
dation coupled with ROS production; (ii) depletion of reserves of low molecular mass antioxi-
dants; (iii) inactivation of antioxidant enzymes; (iv) decrease in the production of antioxidant 
enzymes and low molecular mass antioxidants; and, finally, (v) certain combinations of two 
or more of the listed above factors [16]. When ROS levels increase, aerobic organisms employ 
defense mechanisms such as “antioxidants” which remove reactive species or transform them 
into stable molecules. The maintenance of tissue redox homeostasis is only possible through 
a balance between the generation and elimination of ROS. Therefore, an antioxidant can be 
defined as a molecule capable of delaying or preventing the oxidation of the substrate when 
it is at a lower concentration than the oxidizable substrate. In biological terms, a good anti-
oxidant should be characterized by high effectiveness, versatility and operational variability 
to prevent formation, inhibit propagation and enhance the elimination of ROS and stimulate 
cell repair processes. In addition, they may act as chelating agents, inhibitors of oxidizing 
enzymes or cofactors of antioxidant enzymes [17].

Antioxidants can be classified as enzymatic or non-enzymatic based on their reactivity to 
ROS. Enzymatic antioxidants metabolize and stabilize ROS, while non-enzymatic antiox-

idants sequester metals that participate in the formation of ROS [17]. Therefore, the “first 
line of defense” is identified as the enzymatic antioxidant system, whose main function is to 
reduce the production of ROS by preventing interaction between reactive species or with tran-

sition metals that could give rise to species of greater reactivity. Since an imbalance or inter-

ference in the equilibrium of these enzymes could favor the increase of ROS and therefore 
cause cellular damage, the cellular maintenance of this system is essential for homeostasis.

The enzymatic antioxidant system is based on the joint action of three systems: (i) superoxide 
dismutase (SOD) catalyzes a dismutation reaction where one molecule of •O

2
− is oxidized 

to O
2
, while the other is reduced to H

2
O

2
; (ii) catalase (CAT) catalyzes the reduction of H

2
O

2
 

into H
2
O and O

2
 and (iii) glutathione peroxidases (GPx) catalyze the reduction of a large 

variety of peroxides (including H
2
O

2
) with the aid of a hydrogen acceptor substrate, in this 

case glutathione (GSH), which is oxidized (GSSG) and then returned to its original state by 
the enzyme glutathione reductase [17, 18]. In addition to the endogenous enzymatic system, 
the intervention of other non-enzymatic compounds, the “second line of defense,” is essential 
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to ensure redox cell homeostasis. Reduced thiols and low molecular weight antioxidants like 
coenzyme Q, urate, lopoic acid and GSH are some examples of these non-enzymatic antioxi-
dant compounds.

On the other hand, some exogenous dietary antioxidants can interfere with oxidative cycles 
to inhibit or retard oxidative damage to biomolecules. The major classes of compounds with 
antioxidant activity are ascorbate (AscH−), tocopherol, carotenoids and polyphenols. These 
compounds show significant antioxidant power in the organism and can reach up specific 
sites of the cell with oxidative damage. Furthermore, it has been shown that these compounds 
also contribute to the endogenous antioxidant defense. It is suggested that the total amount 
and position of OH groups in the structure of these compounds may play a role in their anti-
ROS activity (12, 17). Figure 1 shows the main dietary sources of these compounds.

AscH− is the water-soluble bioactive form of vitamin C and is present in all body fluids. At 
physiological pH, 99% of vitamin C is present as AscH−, 0.05% in the form AscH

2
 and 0.004% 

as dianion ascorbate (Asc
2
−). AscH− is the chemical form that confers its main antioxidant 

effects. The antioxidant activity of vitamin C is either direct, through the purification of ROS, 
or indirect, through the regeneration of other antioxidant systems. Its antioxidant effects have 
been observed both in vitro and in vivo [19, 20].

Tocopherols and tocotrienols make up vitamin E. In humans, α-tocopherol is particularly 
important because it is found in cell membranes and plasma lipoproteins. The reactivity of 

Figure 1. Main sources of diet with high in the antioxidant compounds ascorbate, tocopherol, carotenoids and 
polyphenols.
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tocopherols with the organic peroxyl radicals is associated with the redox properties of the 
chroman ring, which is responsible for its antioxidant capacity. Peroxyl radicals formed dur-
ing lipoperoxidation have a higher affinity for α-tocopherol OH, which makes it a less active 

Figure 2. (I) The classification of the phenolic structures of polyphenols. (II) Structure of flavonoids; the core structure 
contains a diphenylpropane skeleton. The main flavonoids found in fresh green tealeaves are: (a) flavanols, (b) flavonols 
and (c) theaflavins.
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radical and unable to react with other fatty acids, thus stopping the chain of lipoperoxidation 
reactions. At this point AscH− plays an important role as it regenerates the antioxidant form 
of vitamin E [21].

Carotenoids are lipid-soluble antioxidants and can react with ROS by three possible 
mechanisms: electron transfer, hydrogen abstraction and radical addition. The antioxidant 
activity of carotenoids is mainly due to their double-bond conjugate structure that can 
delocalize unpaired electrons, hence the excellent ability of carotene to neutralize 1O

2
, •O

2
−, 

•OH and peroxyl radicals (ROO•). Nevertheless, it has to be highlighted that although 
carotenoids are considered antioxidants, there is not enough evidence yet to support the 
notion that carotenoids actually function as antioxidants in vivo, except for their well-
documented role as photoprotectors in the inhibition of 1O

2
 generated by UV light in the 

skin and in the eyes [17, 22].

Polyphenols are compounds with variable phenolic structures that are generally classified as 
flavonoids, phenolic acids, stilbenes and lignans (Figure 2 I). The flavonoid compounds have 
a central structure containing a diphenylpropane skeleton. The primary flavonoids found 
in fresh green tea leaves are flavanols, flavonols and theaflavins (Figure 2 II). It has been 
observed that polyphenols act as inhibitors of lipoperoxidation and are capable of interacting 
directly with ROS, as well as acting as chelating agents, and they have indirect effects through 
their ability to modulate the levels of transcription factors and enzymes [23]. Furthermore, in 
the context of prophylaxis and cancer therapy polyphenols have manifested beneficial effects 
through the cytoprotective antioxidant response and proapoptotic action [24]. It has been 

observed that the anticarcinogenic activity of polyphenols is attributed to their pro-oxidant 
properties, which occur under certain conditions (i.e., low or very high concentration and 
presence of metal ions) increasing oxidant DNA damage [25, 26].

The flavonoids are the most powerful and effective antioxidants among the known plant phe-

nols. For instance, EGCG is 20 times more active than vitamin C and 30 times more active than 
vitamin E. Just like other molecules, the chemical structures of catechins contribute to their 
antioxidant properties. Some catechins, including EGCG, possess an esterified gallate moiety 
at the third position of the C ring, the catechol group on the B ring and the OH groups at the 
fifth and seventh positions on the A ring (Figure 2 II). The potential free radical scavenging 
activity of EGCG has been attributed to the presence of the gallate group [10, 27].

3. Genotoxic roles of chromium and oxidative stress

The initial stages of the biological processes of mutagenesis, carcinogenesis and aging show 
permanent alterations of the genetic material. In fact, it has been well documented that in 
various cancer tissues, free radical-mediated DNA damage has occurred. Of all the ROS (half-
life <1 ns), •OH is the most reactive and interacts with all components of the DNA molecule, 
inducing single- or double- stranded DNA breaks, DNA cross-links and purine, pyrimidine 
or deoxyribose modifications [22, 28, 29]. Most of the hydroxyl radicals (•OH) generated 
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in vivo are derived from the metal-catalyzed breakdown of hydrogen peroxide (H
2
O

2
) via the 

Fenton and Haber-Weiss reactions [30, 31]:

  Transition metal ion ( n   + )  +  H  
2
    O  

2
   → Transition metal ion (n + 1)  + •OH +  OH   −   

Exposure to transition metal ions(n+) such as chromium (Cr) represent a real in vivo produc-

tion of ROS and free radicals due to intra-cellular reduction, since it has been established 
that redox-active metals participate closely in the generation of different free radicals [32]. 

The main genotoxic mechanism of Cr(VI) compounds has been linked to the intracellular 
reduction and generation of •OH [33, 34]. Furthermore, the way Cr(VI) produces ROS is a 
sophisticated step-wise process that starts by entering the cells through the mechanism of 
pinocytosis and endocytosis using channels for the transfer of isoelectric and isostructural 

anions, such as those for SO4
2− and HPO4

2− [35]. Inside the cell, Cr(VI) immediately binds 
with GSH-forming complexes, which causes it to reduce to Cr(V) and Cr(IV) intermediates 
(Figure 3 R-I). Alternatively, nicotinamide adenine dinucleotide phosphate (NAD(P)H) can 
reduce Cr(VI) to Cr(V), mediated by AscH− (Figure 3 R-II). The generated Cr(V) and Cr(IV) 
intermediates can react with H

2
O

2
 forming •OH and 1O

2
 [33, 36] via the Fenton reaction 

(Figure 3 R-III).

Nevertheless, the genotoxic mechanism of Cr(VI) can be neutralized or altered. Antioxidants 
such as AscH- could react with •OH, quenching and converting it into a poorly reactive semi-
hydroascorbate radical, which is harmless to the DNA molecule. The C8-OH-adduct radical 
of deoxyguanosine is formed during catalysis of •OH in the reaction of 2-deoxyguanosine 
with molecular oxygen, (Figure 3 R-IV); since it induces DNA strand breaks, it is considered 
a form of oxidative DNA damage [37, 38]. Therefore, by activating repair mechanisms, this 
adduct can be removed through 8-hydroxydeoxyguanosine (8-OHdG, 7,8-dihydro-8-oxode-

oxyguanosine), which is a marker repairer of oxidative stress in biological systems that can be 
measured in fluids such as blood, urine and saliva (Figure 3 R-VII). 8-OHdG undergoes keto-
enol tautomerism, which favors the oxidized 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-
dG) product. In the scientific literature both 8-OHdG and 8-oxo-dG are equivalent and refer 
to the same compound. The formation of the 8-OHdG adduct is of particular importance as it 
indicates the interaction between •OH and guanine [22, 39].

Although the direct relationship between DNA damage and •OH is not completely clear, it 
has been suggested that the ROS have a role in Cr(VI)-induced genotoxicity and cytotoxicity 
by showing Cr(VI)-induced genomic DNA damage through the formation of 8-OHdG [40]. 

Furthermore, it has also been observed that Cr(VI) produces oxidative stress by inducing 
time- and concentration-dependent cytotoxicity through suppression of antioxidant systems 
and by activation of p53-dependent apoptosis [41]. Other studies have called into question 
the genotoxic/mutagenic effect of •OH by Cr exposure, suggesting that reduction of Cr(VI) 
by physiological concentrations of AscH− generates ascorbate-Cr(III)-DNA cross-links and 
binary Cr(III)-DNA adducts. Therefore, Cr-DNA adducts are responsible for both the muta-

genicity and genotoxicity of Cr(VI) [42].
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Compounds of Cr are major inorganic environmental pollutants. Its valence states range from 
−2 to +6 and mainly exists in two different redox forms: (i) Cr(III), an essential micronutrient 
that plays an important role in protein, sugar and fat metabolism and (ii) Cr(VI), known to be 
highly toxic, with well-documented carcinogenesis in lung, nasal and sinus tissues in toxico-
logical and epidemiological studies. The increase of Cr(VI) compounds in the environment 
is caused by anthropogenic sources such as metallurgy, electroplating, inorganic chemical 
production, pigment and fungicide manufacturing, wood preservation, leather tanning and 
refractory industry. The high mobility, solubility and bioavailability of Cr(VI) compounds 

Figure 3. Routes of Cr(VI) and polyphenols in the induction, protection and modulation of DNA oxidative stress damage.
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increase risk in human populations [36, 43–46]. There are three ways in which Cr(VI) could 
induce effects on human health: first, by the generation of •OH (oxidative stress); second, by 
the modification of antioxidant enzymes like SOD, CAT and peroxidase (POX) [10, 36, 46]; 
and finally, by the intervention of non-oxidative mechanisms of Cr(VI) [47].

It has been demonstrated that Cr(VI) compounds induce DNA damage, gene mutation, sister 
chromatid exchange, chromosomal aberrations, micronuclei and cell transformation. Dominant 
lethal mutations have also been observed in a variety of test systems in cultured human and ani-
mal cells and in experimental animals. These effects are related to multiple mechanisms of DNA 
damages including DNA adducts, DNA modification caused by the covalent attachment of a 
chemical, cross-links such as DNA protein cross-links and DNA–DNA cross-links, abasic sites 
and oxidized DNA bases. Cr(VI) also plays a critical role in altering gene expression [10, 36].

4. Protection against chromium(VI)-induced DNA damage by green 

tea polyphenols

Green tea and its polyphenols have shown the ability to quench free radicals generated 
by oxidative environmental toxicants and, consequently, to reduce genotoxic damage and 
cancer [48]. Particularly, it has been observed that the administration of green tea to mice 
CD-1 protects against genotoxic damage induced by metal compounds with carcinogenic 
potential such as Cr(VI), suggesting that its antioxidant compounds such as polyphenols 
have an antigenotoxic effect on the oxidative stress generated during reduction of Cr(VI) 
to Cr(III) [49]. However, the protection is only partial, and this may be related to different 
factors such as the origin of the tea, because the amount of polyphenols in plants is influ-

enced by environmental factors (i.e., weather, light, nutrients, preparation process, storage, 
horticulture leaf age, etc.) [50]. In order to eliminate this source of variation, the effects of 
polyphenols (polyphenon60®, extracted from green tea) have been evaluated directly. The 
results showed that these polyphenolic extracts reduce almost 100% of the genotoxic damage  
induced by Cr(VI) compounds [13].

In other studies in which specific polyphenols of green tea have been tested individually, 
it has been observed that protection from the genotoxic damage induced by Cr(VI) com-

pounds has the following order: rutin (82%) > EGCG (71%) > quercetin (64%) > quercetin-
rutin (59%) (Figure 4) [10, 25]. Due to their phenolic structure, it is possible that these 
polyphenols may act as hydrogen donors to suppress the formation of lipid radicals and 
free radicals, including the •O

2

− and •OH generated during reduction of Cr(VI) to Cr(III), in 
addition to being able to chelate metals [51, 52]. The decrease in genotoxic damage by these 
extracted polyphenols was greater than those observed when administering green tea or red 
wine (Figure 4) [49, 53].

Apparently, the sugar of rutin makes it more efficient by protecting against the genotoxic dam-

age induced by Cr(VI) by increasing its bioavailability and absorption. Rutin is hydrolyzed to 
its aglycone forms (quercetin) by β-glycosidase and is thus metabolized more slowly, which 
leads to increased activity [54]. The route of administration of polyphenols plays an important 

The Role of Green Tea Polyphenols in the Protection from Hexavalent Chromium-Induced…
http://dx.doi.org/10.5772/intechopen.76651

59



role in how efficiently they protect against genotoxic damage. For example, EGCG protected 
cells against Cr(VI)-induced genetic damage more effectively when administered orally than 
when administration following the ip route was done [10, 25]. While the ip route is more sensi-
tive and direct [55] and therefore useful for detecting inducibility of micronuclei in polychro-

matic erythrocytes in short-term protocols (peripheral blood); when testing compounds with 
potential clastogenic properties, it is an artificial exposure route, and the route for human expo-

sure to EGCG is oral. This is important because it has been observed that polyphenols might be 
biotransformed into more bioavailable forms in the gut [56] sometimes by intestinal bacteria 
[57]. Therefore, it is considered that the effects of polyphenols may be affected by (i) the kinet-
ics of their absorption and elimination, (ii) the nature and the extent of their metabolism (e.g., 
conjugation and methylation) and (iii) the activity of each circulating compound [25].

There are two ways in which polyphenols can protect from DNA oxidative damage induced 
by Cr(VI) compounds. First, polyphenols can react with •OH, generating an unreactive 
radical and therefore preventing damage to DNA (Figure 3 R-V). Second, polyphenols can 
activate repair mechanisms to remove adducts through 8-OHdG (Figure 3 R-VI) which is sub-

sequently eliminated (Figure 3 R-VII). If the oxidative damage to DNA is not repaired, breaks 
can lead to formation of micronuclei [13]. The administration of green tea polyphenol extracts 
and EGCG led to an increase in the average number of apoptotic cells. Even when green tea 
polyphenol extracts and EGCG was administered prior to Cr(VI), the frequency of apoptotic 
cells was higher than with Cr(VI) treatment alone. The enhanced induction of apoptosis fol-
lowing polyphenols and Cr(VI) treatments suggests that this process may contribute to elimi-
nation of the cells with Cr(VI)-induced DNA damage (micronuclei) [10, 13]. Also, it has been 

observed that in vivo dietary polyphenols in combination with other antioxidants such as 
ascorbic acid enhance inhibition of micronuclei formation induced by endogenous nitrosation 
in mice [58]. This proposal is consistent with the observed protection against genetic damage 
by antioxidants, since the frequencies of apoptotic cells increase with the administration of 

Figure 4. Levels of protection of different compounds from DNA damage caused by CrO3.
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antioxidants. Hence, it is suggested that the combined treatments of antioxidants contribute 
positively to the elimination of cells with DNA damage through apoptosis [10, 59].

Apoptosis plays a crucial role in a number of physiological and pathological processes and 
is accompanied by characteristic morphological changes that include cytoplasmic shrinkage, 
plasma membrane blebbing, condensation or fragmentation of nuclei and extensive degrada-

tion of chromosomal DNA. Polyphenols are capable of regulating cell signaling pathways 
related to proliferation and apoptosis [60, 61]. It has been observed that polyphenols such as 
EGCG not only protect normal cells against genotoxic alterations induced by N-methyl-N´-
nitro-N-nitrosoguanidine but that they are able to remove cancer cells by apoptosis in vitro 
[62]. In addition to other mechanisms, at a human achievable dose, EGCG is known to activate 
cell death signals and to induce apoptosis in precancerous or cancer cells, resulting in inhibi-

tion of tumor development and/or progression [63]. Therefore, it is plausible that substances 

able to induce apoptosis in cancer cells could be used as new anticancer agents. In fact, these 
findings suggest and strongly encourage more investigation into the potential of polyphenols 
in the treatment of cancer. Currently, few clinical trials are being carried out, and further stud-

ies are urgently needed to assess the anticancer activity of polyphenols in vivo.

Figure 5 summarizes the proposed interaction between polyphenols and Cr(VI) compounds; 
polyphenols can: (i) scavenge ROS such as •OH generated by Cr(VI) during its reduction to 
Cr(III), inhibiting their genotoxic effects; (ii) reactivate the repair mechanisms inactivated by 
Cr(VI), contributing to the elimination of 8-OHdG; (iii) regulate cell signaling pathways to 
eliminate the cells with DNA damage (micronuclei) via apoptosis.

Figure 5. Summary of the interaction between polyphenols and heavy metals.
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5. Conclusions

The relationship between diet and health has aroused great scientific interest. The consump-

tion of antioxidants naturally present in the diet is of particular interest due to their action 

against the harmful effects of oxidative stress. The World Health Organization (WHO) and 
the Food and Agriculture Organization of the United Nations (FAO) recommend the intake 
of a minimum of 400 g of fruit and vegetables a day (excluding potatoes and other starchy 
tubers) to prevent chronic diseases such as cancer, especially in less developed countries, on 
the basis that at least one-third of all cancers can be prevented [1].

A healthy diet with a sufficient daily intake of fruits and vegetables with a high content 
of antioxidants can contribute to the prevention of diseases caused by exposure to pollut-
ants with carcinogenic potential, such as heavy metals associated with oxidative stress. 
Antioxidants found in fresh fruits and vegetables can be easily absorbed and distributed 
at a physiologically relevant level in tissues and biofluids where they can play an essential 
role in capturing ROS, chelating redox metals and regenerating other antioxidants within 
the “antioxidant network.” Dietary antioxidants such as polyphenols are able to protect 
against genotoxic damage caused by Cr(VI) metal compounds, which could be related to 
the prevention of carcinogenic processes associated with these metals. Although the main 
mechanism described for antioxidants is the clearance of ROS, DNA repair and apoptosis 
are possible additional pathways involved in the protection and modulation of damage to 
genetic material.

Although compelling new evidence shows promising protective effects of the polyphenols 
in green tea against genotoxic damage induced by Cr(VI) compounds, there is a lack of 
clinical evidence that needs to be addressed in future studies. `Some suggestions include 
the development of predictive biomarkers for green tea polyphenols consumption in the 
human population. These markers will greatly improve our current understanding of the 
relationship between polyphenols and the endogenous and exogenous factors that affect 
its bioavailability, which will in turn help establish safe and effective doses for human 
consumption.
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