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Abstract

In this chapter, most of the methods used in the literature to prepare switchable and
reversible superhydrophobic surfaces are described. Inspired by Nature, it is possible to
induce the Cassie-Baxter�Wenzel transition using different external stimuli such as
light, temperature, pH, ion exchange, voltage, magnetic field, mechanic stress, plasma,
ultrasonication, solvent, gas or guest. Such properties are extremely important for vari-
ous applications but especially for controllable oil/water separation membranes, oil-
absorbing materials and water harvesting systems.
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1. Introduction

Superhydrophobic surfaces are characterized by a water apparent contact angle (θw) above 150
�

and ultra-low water adhesion or hysteresis (H). The obtaining of superhydrophobic surfaces is

crucial in a theoretical point of view and also for various applications such as in self-cleaning

windows and textiles, antifingerprint or antireflective properties for optical instruments and

mobile phones, liquid transportation, separation membrane, cell and antibacterial adhesion. In

Nature, many plants and animals have superhydrophobic properties [1]. These surface proper-

ties are extremely important for example to survive against predators or in hostile or arid

environments. One can cite the famous Lotus leaves with their self-cleaning properties and also

other plants and animals able to slide on the water surface, to see in fogging environments, to

walk on vertical substrates, to breath underwater or to swim very rapidly (Figure 1) [2–14].

For practical applications, it is often necessary to have “robust” superhydrophobic properties,

which is possible combining appropriate surface structures and low surface energy materials.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Indeed, robust superhydrophobic surfaces are obtained if the surface is able to stabilize the

Cassie-Baxter state. Using an extern pressure, it is possible to induce the Cassie-Baxter�Wenzel

transition but the transition is irreversible. Hence, in order to induce reversible Cassie-

Baxter�Wenzel transition, extern stimuli are often used. In this chapter, most of the methods

Figure 1. Various species with special wettability properties. A (golden Candock leaves) Ref. [4], Copyright 2011.

Reprinted with permission from American Chemical Society, USA. B (Strelitzia reginae leaves) Ref. [5], Copyright 2012.

Reprinted with permission from American Chemical Society, USA. C (rose petals) Ref. [9], Copyright 2008. Reprinted

with permission from American Chemical Society, USA. D (springtails) Ref. [8], Copyright 2013. Reprinted with permis-

sion from American Chemical Society, USA. E (insect and animal foot) Ref. [13], Copyright 2009. Reprinted with

permission from American Chemical Society, USA. F (Juncus pith) Ref. [14], Copyright 2017. Reprinted with permission

from American Chemical Society, USA.
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used in the literature to obtain switchable and reversible superhydrophobic surfaces are summa-

rized. Indeed, different extern stimuli can be used such as the light, temperature, magnetic

field, mechanical stress or ion exchange. Such materials are extremely used for applications in

controllable oil/water separation membranes and water harvesting. One of the main applica-

tions is membranes with controllable wettability for oil/water separation. This application is

extremely important to find solutions the spill of oil tankers. Another application is their use in

car or building windows in order to see clearly even when it is raining. Water is also not

wanted in building materials because it has a high thermal conductivity. Methods to remove

quickly water are highly expected. Water harvesting is another important application and

systems able to control water wettability are extremely promising especially in hot and arid

environments.

2. Theoretical part

Both the surface energy (γSV) and the presence of surface roughness are key parameters to reach

superhydrophobic properties. As reported by Young, the contact angles of a “smooth” substrate

are governed by three surface tensions following the reaction: cos θY = (γSV � γSL)/γLV, where

γSV, γSL and γLV are the surface tensions at the solid-vapor, solid-liquid and liquid-vapor inter-

faces, respectively [15]. However, the presence of surface roughness is fundamental to reach

contact angles above 150�, as reported by Wenzel and Cassie-Baxter [16, 17] (Figure 2). These

two equations take into account the effect of surface roughness, contrary to the Young equation

but are also related to the Young equation. When the water droplet follows theWenzel regime, it

penetrates inside all the surface roughness leading to a full solid-liquid interface but amplified by

the roughness parameter following the equation: cos θ = r cos θY (r is the roughness parameter)

[16]. Hence, the adhesion of water droplet is important because the roughness parameter

increases the solid-liquid interface. Moreover, it is possible to reach contact angle above 150�

but only using intrinsically hydrophobic materials (θY > 90�). However, it is now admitted the

possible to obtain superhydrophobic and even superoleophobic properties using intrinsically

hydrophilic and oleophilic materials, respectively. This is possible only if air is present inside the

surface roughness, as reported by Cassie-Baxter [17]. The Cassie-Baxter equation has to be

applied when there is air trapped inside the surface roughness between the water droplet and

the surface. The Cassie-Baxter equation is cos θ = rf fcos θ
Y+ f � 1 where rf is the roughness ratio

of the substrate wetted by the liquid, f the solid fraction and (1 � f) the air fraction. Moreover,

Figure 2. Schematic representation of a water droplet following the Wenzel and Cassie-Baxter equations.
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with the Cassie-Baxter, it is possible to obtain superhydrophobic properties with ultra-low

adhesion if the air fraction between the water droplet and the surface is extremely important.

The Wenzel and Cassie-Baxter are two extreme states, and it is possible to induce the Cassie-

Baxter-to-Wenzel wetting transition by applying an extern pressure. Indeed, the Cassie-Baxter

equation is a metastable state, and it is possible to switch from the Cassie-Baxter to the Wenzel

state by supplying a sufficient energy. “Robust” superhydrophobic surfaces are surfaces that

can repel water even if a high pressure is applied [18, 19]. This is the case of the lotus leaves,

which remain superhydrophobic even during rainfalls. It was also shown that the presence of

re-entrant surface structures often to increase the surface robustness [20–23]. However, the

Cassie-Baxter-to-Wenzel wetting transition by applying an extern pressure is irreversible

because the dewetting forces are too strong [24, 25]. In this review, by supplying other energies

to the system, it will be shown how it is possible to obtain reversible Cassie-Baxter-to-Wenzel

wetting transition with the possibility to obtain, for example, reversible superhydrophobic-to-

superhydrophilic properties. Indeed, it is possible to obtain reversible superhydrophobic

properties if this energy modifies the surface energy (γSV) and/or the surface roughness. Most

of the extern stimuli used in the literature to obtain reversible superhydrophobic properties

will be reviewed.

3. Reversible superhydrophobic surfaces

The surface energy and surface morphology are two main key parameters governing surface

wettability. Extern stimuli are very interesting approaches to induce a change in surface energy

and/or surface morphology and lead to a transition from hydrophobic/superhydrophobic to

hydrophilic/superhydrophilic. The stimuli used in the literature will be described in order to

induce reversible changes in surface wettability (Figure 3).

Figure 3. Schematic representation of reversible changes in the surface wettability using extern stimuli.
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3.1. UV light

Light is one of the major extern stimuli used in the literature because of the easiness of

utilization and high changes in surface wettability [26]. Various photosensitive inorganic

oxides and organic polymers can undergo transitions from hydrophobic/superhydrophobic

to hydrophilic/superhydrophilic after UV light irradiation and come back to the original state

after storing in dark or exposing to visible light (VIS). This transition is often reversible during

many cycles.

3.1.1. Inorganic materials

Among the photosensitive inorganic oxides, TiO2 and ZnO are the most studied semiconduc-

tors. TiO2 films are now largely used as steamtight and self-cleaning windows for their

intrinsic photocatalytic properties and photo-induced hydrophilicity. Indeed, as shown in

Figure 4, the presence of UV irradiation induces the formation of photoexcited electrons,

which can reduce O2 to generate superoxide radicals (•O2
�) or hydroperoxyl radicals (HO2

•).

These reactive oxygen species are able to convert organic pollutants into CO2 and water and as

a consequence clean the surface [27, 28].

In 1997, Watanabe et al. [29, 30] showed that the water contact angle (θw) of polycrystalline

anatase TiO2 was 72 � 1� and that their wettability properties could reversely change after UV

light irradiation. Indeed, as shown in Figure 4, the surface of TiO2 consists of oxygen bridges and

UV irradiation creates oxygen vacancies converting Ti4+ into Ti3+. These defects can then react

with water forming hydrophilic group at the surface and as a consequence increase the surface

hydrophilicity. Then, the wettability conversion was observed on both polycrystalline/monocrys-

talline anatase and rutile [31, 32]. Many works were dedicated to the modulation of the wetta-

bility of TiO2 films [33, 34]. Among these works, low surface energy coatings were used to

enhance the surface hydrophobicity. For example, the contact angle of colloidal crystal of TiO2

films modified by fluoroalkylsilanes (FAS) was 100� [35]. Then, as observed in Nature, a huge

attention was dedicated to the increase in surface roughness of TiO2 films in order to obtain

superhydrophobic properties (θw > 150� and low water adhesion). For example, based on Al2O3

Figure 4. Left: Schematic representation of photocatalytic processes; right: schematic representation of photo-induced

hydrophilicity, occurred during UV light irradiation of TiO2.
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colloids with flower-like morphology, rough colloidal TiO2 films modified by fluoroalkylsilanes

(FAS) was prepared in 2000 [36]. The combination of surface microstructures with low surface

energy materials allowed reaching superhydrophobic properties with θw > 150�. After exposure

to UV light irradiation, the films became superhydrophilic with θw < 5�.

Then, with the development of fabrication techniques, many processes were employed to

obtain rough surface with various surface morphology [37–54]. TiO2 nanorods with hierarchi-

cal dual-scale roughness were obtained using a hydrothermal process in the presence if TiO3

and NaCl. The surfaces displayed superhydrophobic properties with θw = 154 � 1.3� without

using low surface energy materials and superhydrophilic properties with θw ≈ 0� after UV

light irradiation. Moreover, after dark storage, the surface properties could reversely change

from superhydrophobic to superhydrophilic during different cycles [37].

Vertically aligned TiO2 nanotubes were also reported by anodization of Ti substrates in the

presence of F� [38–40]. The tube diameter and length were 175 nm and 3.3 μm, while the

density of TiO2 the nanotubes was 2.3 � 107 tubes mm�2. After modification with a fluoroalk-

ylsilane, the substrates displayed superhydrophobic properties with low water adhesion

before UV irradiation and parahydrophobic with high water adhesion after UV irradiation.

Moreover, the substrates could reversely switch from non-sticky to sticky by UV irradiation

and heat annealing. Other authors also report the possible switching from highly hydrophobic

and superhydrophilic using N-doped TiO2 nanotubes but without low surface energy mate-

rials (Figure 5) [39]. Superhydrophobic TiO2 surfaces with nanostrawberry-like morphology

were also reported using a seeding growth process [41].

Now, TiO2-based superhydrophobic surfaces with reversibility are largely used for the concep-

tion of smart surfaces and other functional materials. However, some rough morphologies lead

to a severe dispersion of the light if their roughness is higher than the wavelength of the light and

as a consequence to a loss in transparency. Hence, a promising strategy is the use of surfaces with

low surface roughness [42]. In order to obtain an easy and reproducible method, Fujishima et al.

Figure 5. TiO2 nanotubes with reversible wetting properties upon UV light irradiation and dark storage. Ref. [39],

copyright 2013. Reprinted with permission from American Chemical Society, USA.
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used a CF4 plasma etching to reach microstructured TiO2-based superhydrophobic properties

[43, 44] after coating with octadodecylphosphonic acid (ODP). After an etching time of 30s,

surfaces with θw > 165� were obtained with reversible conversion by UV irradiation. Ti substrates

with switchable and reversible wettability from underwater superoleophobic to superoleophilic

were also obtained by femtolaser laser treatment. The substrates are excellent candidates for

separating oil/water mixtures [45]. TiO2 nanoparticles were also deposited on microstructured

surfaces in order to enhance the surface properties [45–54]. For example, Franssila et al. used

substrates with microscale overhang pillars before depositing TiO2 nanoparticles by atomic layer

deposition [46, 47]. Depending on the UV irradiation time, the surfaces could switch from

superhydrophobic to parahydrophobic (1 min), hydrophilic (5 min) or superhydrophilic

(10 min). TiO2 nanoparticles were also deposited on pre-patterned substrates such as paper,

membranes or sponges in order to induce different special wettabilities [51–54].

ZnO is another extremely important photosensitive semiconductor for its intrinsic optical,

electronic and acoustic properties, reacting similarly to TiO2 [55, 56]. Here, also many works

were dedicated to induce ZnO structures with high roughness [57–79]. Jiang et al. reported the

obtaining of ZnO nanorod arrays using hydrothermal processes (Figure 6). Their diameter and

length were 50–150 nm and 1.2 μm, respectively. The surfaces displayed switchable and

reversible properties from superhydrophobic (θw = 161.2�) to superhydrophilic by alternating

UV light irradiation and dark storage [57]. These kinds of materials could also be used as

memristors controllable with the illumination direction [60].

Another application is the preparation of controllable membranes for oil/water separation with

specific wetting properties. For example, Jiang et al. developed switchable and reversible

superhydrophobic-superhydrophilic and underwater superoleophobic properties by growth

of ZnO nanorods on stainless steel meshes (Figure 7). More precisely, the meshes were both

superhydrophobic and underwater superoleophilic but became both superhydrophilic and

underwater superoleophobic after UV light irradiation [61].

ZnO nanorods were also reported using other processes, including chemical vapor deposition

(CVD) [62], spray [63, 64] or electrodeposition [65, 66]. Otherwise, ZnO nanostructures of various

shapes, including nanosheets, nanowires or nanoflowers, can be easily produced [67–77]. For

example, nanoflower structures were obtained just by adding NH3 during the hydrothermal

process in order to form Zn(NH3)4
2+ complexes before the formation of ZnO structures [76]. ZnO

nanowires were also reported by annealing Zn films at 500�C [70]. Otherwise, the growth of ZnO

can also be induced on pre-structured surfaces. For example, a smooth ZnO film was added to Si

nanospikes to reach reversible wettability and photocatalytic behavior [78, 79].

Various other oxides, including WO3, V2O5, SnO2, CuO, Fe2O3, In2O3, SiC and GaN, were used

to reversibly change the surface wettability from superhydrophobic to superhydrophilic

by alternating UV light irradiation and dark storage or heat treatment [80–92]. For example,

Wang et al. showed that the protein adsorption and cell adhesion on GaN nanowires can be

modulated by UV irradiation because the surface wettability changes from superhydrophobic to

superhydrophilic. It was also sometimes necessary to add a hydrophobic molecule to enhance

the surface hydrophobicity and the UV treatment is often able to remove this molecule [93–97].

For example, Bi2O3 hyperbranched dendritic structures were superhydrophobic but only after

immersion in stearic acid solution [96]. Then, the UV irradiation was able to remove stearic acid
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and the surface became superhydrophilic. However, to obtain superhydrophobic properties

again, it was necessary to add stearic acid again.

Similarly, carbon-based materials, including carbon nanotubes and graphene films, were also

found to change from superhydrophobic to superhydrophilic by UV light irradiation and dark

storage [98–101]. Here, the authors proposed that UV irradiation allows to change the

absorbed O2 molecules into hydrophilic groups such as hydroxyl ones [98]. Moreover, various

inorganic oxides (such ZnO, p-Si, Al2O3, SrTiO3, Sn, ZnS, CuO, Ag2O and Cr2O3) were found

to be also sensitive to X-ray with reversible wettability [102].

3.1.2. Nanocomposites

In order to enhance the stability of the light-sensitive materials, nanocomposites are often

performed [103–114]. For example, superhydrophobic TiO2/polystyrene (PS) nanocomposites

were prepared in the literature. The material wettability could be reversely switch from

Figure 6. ZnO nanorod arrays with reversible wetting properties upon UV light irradiation and dark storage. The panels a-d

represent FE-SEM top-images at low and high magnifications, cross-sectional view and XRD pattern of the ZnO nanorod

films. The materials were used as controllable memristors. Ref. [57, 96], Copyright 2004. Reprinted with permission from

American Chemical Society, USA [60].
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superhydrophobic to superhydrophilic by alternating UV light illumination and heat treat-

ment [103, 104]. Using Ag-TiO2/poly(methyl methacrylate) (PMMA) nanocomposites, it was

also possible to switch from superhydrophobic (low adhesion) to parahydrophobic (high

adhesion) after UV irradiation [105]. Moreover, the materials displayed anticorrosive proper-

ties. ZnO/polyurethane (PU) nanocomposites were also sprayed on stainless steel meshes

[110]. The resulting meshes displayed superhydrophobic and superhydrophilic/underwater

superoleophobic properties by alternating UV treatment and heat treatment. These meshes

could be used to separate oil/water mixtures. Chen et al. also used TiO2 � SiO2/polydimethyl-

siloxane (PDMS) to coat polyester-cotton fabrics [111]. The resulting fabrics were wash-

resistant, resistant to strong acids and could be used to separate oil/water mixtures. Moreover,

the photocatalytic properties of TiO2 were also useful to treat dye waste water. Fluorinated

compounds or polymers can also be used in order to enhance the superhydrophobic properties

[112–114]. For example, TiO2/poly(vinylidene fluoride) (PVDF) displayed both extremely high

θw = 160.1� and low sliding angle (5.5�), and anticorrosive properties [112].

3.1.3. Photochromic organic groups

Organic chemicals containing photochromic functional groups such as azobenzenes [115],

diarylethenes, spiropyrans [116], bipyridyl ethylenes [117], stilbenes [118] or pyrimidines [119]

can follow a reversible transition by UV/vis light, which can lead to differences of wettability.

Figure 7. ZnO nanorod arrays grown on stainless steel meshes (Panel A). The Panels b-d represent SEM top view, local

enlarged view and side view of the aligned ZnO nanorod array-coated stainless steel mesh film. The resulting meshes could

switch from superhydrophobic and underwater superoleophilic to superhydrophilic and underwater superoleophobic upon

UV light irradiation. Ref. [61], Copyright 2012. Reprinted with permission from Royal Society of Chemistry, United Kingdom.
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Among them, azobenzene group and its derivatives are extremely promising as photo-

sensitive materials and were highly studied in the literature [120–135]. The azobenzene group

is able to reversely switch from the trans to the cis isomer by UV light and visible light

irradiation, as shown in Figure 8 [121]. After grafting azobenzene on a polymer, Jiang et al.

reported that the trans isomer is more hydrophobic because it has a smaller dipole moment

and a low surface energy, in comparison to the cis isomer. Indeed, the benzene substituent is

more present at the extreme surface in the trans isomer. However, the changes in θw on smooth

substrates are lower than 10� after UV irradiation [122].

In 2005, Jiang et al. prepared a rough micro-patterned silicon substrate by photolithography

and deposited on it a monolayer of azobenzene [121]. They showed that the difference in θw

between the trans and cis isomer is highly depending on the spacing between the pillars

(Figure 9). The highest θw difference was obtained for a spacing of 40 μm, for which a change

from 152.6 to 78.3� was observed after UV light irradiation. Hence, the maximal difference

observed was 66.3�.

In order to enhance the surface properties, hydrophobic substituents such as CF3 were grafted

on the benzene ring of azobenzene groups [123]. When azobenzene is in the trans form, the CF3
groups are at the extreme surface and the surface is expected to be more hydrophobic than

without CF3 groups. Combining fluorinated azobenzene with high roughness, Cho et al. were

Figure 8. Reversible change in the cis-trans configuration of azobenzene group upon UV light and visible light irradia-

tion. Ref. [121], Copyright 2005. Reprinted with permission from Royal Society of Chemistry, United Kingdom.

Figure 9. Variation of the water contact angle (Panel B) of a monolayer of azobenzene deposited on a micro-patterned

silicon substrate as a function of the pillar spacing (Panel A). Ref. [121], Copyright 2005. Reprinted with permission from

Royal Society of Chemistry, United Kingdom.
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the first to show the possibility reversibly switch from superhydrophobic to superhydrophilic

during the trans/cis transition [124, 125]. Using a layer-by-layer strategy alternating poly

(allylamine hydrochloride) (PAH) and SiO2 nanoparticles to obtain rough surfaces, the

azobenzene substituents were grafted during the last step. Even if the UV irradiation induced

a small θw difference (5�) for the smooth substrate, the increase in roughness induces a huge

θw difference up to 147� for nine deposition cycles. Similar results were obtained using core-

shell Fe3O4@SiO2 nanoparticles [126]. The surface hydrophobicity could be easily controlled

with the UVor visible light illumination time (Figure 10). These materials could also be used to

selectively induce water permeation inside membranes.

Other works showed the possibility to modify cotton and paper substrates with these kinds of

photosensitive polymers [127–129]. Using polyhedral oligomeric silsesquioxane (POSS) and fluo-

rinated azobenzene, Gao et al. reported the possibility to obtain cotton fabrics with switchable

from superhydrophobic/superoleophobic to highly hydrophobic/oleophobic [128, 129]. Indeed,

many works were dedicated to the switching from superhydrophobic (low adhesion) to

parahydrophobic (high adhesion) after UV irradiation. In order to achieve these properties, many

strategies were employed in the literature [130–135]. For example, Xu et al. used an

organotellurium-mediated controlled radical polymerization (TERP) in order to achieve polymers

Figure 10. Preparation of light-induced water permeation membranes by grafting azobenzene with CF3 groups on

Fe3O4@SiO2 nanoparticles. Ref. [126], Copyright 2014. Reprinted with permission from Royal Society of Chemistry,

United Kingdom.
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with micro/nanostructures [130–132]. Hu et al. used SiO2 nanoparticles and polydopamine in

order to graft the azobenzene moieties on SiO2 nanoparticles [131]. By contrast, other groups

deposited azobenzene-based materials on pre-structured surfaces [133–135]. For example,

Rühe et al. deposited the azobenzene moieties on Si nanograss obtained by etching Si sub-

strates with C4F8, SF6 and O2. The surfaces could switch from low adhesion to completely

sticky after UV irradiation [133]. Yu et al. used micro and nanostructures substrates obtained

by photolithography and etching before depositing the azobenzene moieties [134]. The

authors measured an adhesion force of 60.6 � 12.3 μN and 80.8 � 4.9 μN before and after

UV illumination, respectively. Liu et al. used anodized aluminum substrates with a “build-

ing blocks” morphology. After coating with a PDMS polymer grafted with azobenzene

moieties, the substrates displayed switchable wettability from superhydrophobic (low adhe-

sion: 6.2 μN for the trans isomer) to parahydrophobic (high adhesion: 44.8 μN for the cis

isomer) properties after UV irradiation [135].

Diarylethene derivatives were found to be another excellent choice for light-sensitive switch-

able wettability (Figure 11). In this case, the light induces a change in the chemical structure

from open-ring isomer to closed ring isomer. Uchida et al. reported the unique behavior of this

molecule. Upon UV light irradiation, the film became superhydrophobic with θw = 163� due to

the formation of microfibrils of diameter around 1 μm [136, 137]. Upon visible light irradiation,

the surface again became flat with θw = 120�. The chemical structure of the diarylethene can

also be changed in order to modify the microcrystalline structures. For example, the surface

morphology could be modified by sulfonation of the thiophene rings [138].

Different substituents were also introduced to change the material crystallinity [139–141]. The

authors demonstrated that in order to obtain superhydrophobic properties with θw > 170�, it is

preferable to form densely submicrometer sized needle-shaped crystals [139]. For that, it is

important that the eutectic temperature of the two isomers of the diarylethene is above that the

temperature of formation. Otherwise, large crystals are formed (Figure 12).

Figure 11. Reversible change of diarylethene from smooth open-ring isomer to microfibers of closed ring isomer upon UV

light irradiation. Ref. [138], Copyright 2011. Reprinted with permission from American Chemical Society, USA.

Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry134



Spiropyran is another kind of photochromic organic moiety with wetting properties sensitive

to light. Its closed form is apolar and hydrophobic, whereas its open form is polar and

hydrophilic (Figure 13). These two forms can be reversely switched by UV and visible light

irradiation [142–144].

In order to obtain superhydrophobic, spiropyran-based molecules can be deposited on rough

surface [145–148]. For example, the deposition on Si nanograss gave rise to superhydrophobic

properties. Moreover, the authors observed a change from superhydrophobic (low adhesion)

to parahydrophobic (high adhesion) properties upon UV light irradiation [145]. Smirnov et al.

also reported the possible control of water into a nanoporous aluminummembrane containing

a spiropyran moiety using light [147]. Here, the photosensitive membrane acts as a burst valve,

allowing the transport of water and ions across the membrane. Lu et al. also reported the

formation of melamine-formaldehyde sponge with spiropyran moiety for oil recovery. The

sponge was able to control oil absorption and desorption under light illumination [148].

Coumarin was also used in the literature to change the surface wettability. Here, the UV light

induces the dimerization of coumarin as shown in Figure 14. Hampp et al. deposited a self-

assembled monolayer (SAM) with coumarin moieties [149]. They observed a change of θw

from 70 to 55�. Xu et al. grafted coumarin on SiO2 nanoparticles [150]. The authors observed in

a change of the surface morphology from random nanoparticle aggregates to rings accompa-

nied with a change of θw from 102 to 163�.

Figure 12. Influence of the eutectic temperature of the diarylethene-type molecule of the parameters of the formed

crystals. Ref. [139], Copyright 2012. Reprinted with permission from American Chemical Society, USA.

Figure 13. Reversible change in the form of spiropyran upon UV light and visible light irradiation. Ref. [142], Copyright

2002. Reprinted with permission from American Chemical Society, USA.
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3.2. Temperature

The reversibility of surface wettability by thermal treatment has given rise to a huge interest

during the last years [151, 152]. Poly(N-isopropylacrylamide) (PNIPAAm) has been extensively

used as an example polymer with thermal response, which has a low critical solution tempera-

ture (LCST) of around 32–33�C [151]. On smooth substrate, the θw of modified PNNIPAAm can

changed from hydrophilic to hydrophobic when the temperature is over LCST, resulting from

competition between intra- and intermolecular interactions, as shown in Figure 15.

By grafting the polymer on rough silicon surface obtained by etching, the surface wettability

could be changed from superhydrophilic to superhydrophobic with θw = 149.3� when the

Figure 14. Reversible change of coumarin from aggregates of monomers to rings of dimers upon UV light and visible

light irradiation. Ref. [150], Copyright 2012. Reprinted with permission from Royal Society of Chemistry, United King-

dom.

Figure 15. Influence of heating on the intra- and intermolecular interactions in PNNIPAAm and the resulting surface

hydrophobicity [151].
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temperature changed from 25 to 40�C. Other works also reported this possibility using differ-

ent strategies [153–156].

PNIPAAm/PS and PNIPAAm/poly(L-lactide) (PLLA) nanocomposites were also produced by

electrospinning [157, 158]. Depending on the concentration of the constituents, the surface

morphology could be changed from beads to long nanofibers. At high concentration of

PNIPAAm, the surface could change from superhydrophilic to superhydrophobic when the

temperature changed from 20 to 50�C. It was also shown that the response time to switch is

depending on the size of the fibers [159]. When the diameter of the fiber was small (around

380–1500 nm), the response time was 4–5 s [160]. Other nanocomposites were also reported

with this technique. PNIPAAm/PS blends were used to obtain densely packed nanocupules of

284 nm diameter and 31 nm wall thickness using an anodized aluminum oxide (AAO) tem-

plate (Figure 16) [161]. Here, the surface could switch by changing the temperature from

parahydrophobic (high adhesion) to superhydrophobic (low adhesion) with a difference in

adhesion force of around 20 μN.

PNIPAAm was also polymerized on an elastic polyurethane (PU) microfibrous membrane by

free radical polymerization [162]. The membrane could be used for controllable oil/water

separation. At 25�C, the membrane was underwater superoleophobic, while at 45�C the mem-

brane was underwater superoleophilic (Figure 17).

Xin et al. reported the preparation of PNIPAAm-cotton fabrics able to collect different amount

of water from fog [163]. At room temperature, the cotton showed a water uptake of 340%,

while at 40�C the uptake was only 24%. Such materials are extremely interesting for water

harvesting systems. Microfluidic thermosensitive valves were also prepared [164, 165]. After

coating with PNIPAAm, the valve was hydrophilic at room temperature and allowed the flow

(opening status), while at 70�C, the valve was superhydrophobic and stopped the water flow

Figure 16. Densely packed PNIPAAm/PS blends nanocupules with reversible change from superhydrophobic (low

adhesion) to parahydrophobic (high adhesion) by heating and cooling. Ref. [161], Copyright 2014. Reprinted with

permission from Royal Society of Chemistry, United Kingdom.
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(closing status). Using a similar idea, an “ON-OFF” switchable enzymatic biofuel cell was

reported [166]. Here, gold nanoparticles protected glucose oxidase and laccase were entrapped

into PNIPAAm chains. At room temperature, the fuels and the mediator could access to the

catalytic centers of enzymes (“ON” state), while at 50�C the process of reactant transmission

was blocked (“OFF” state).

Poly(ε-caprolactone) (PCL) was also tested as a thermosensitive polymer with a transition from

crystalline phase to amorphous phase (Figure 18) [167]. Jiang et al. showed that PCL10000 is an

ideal material. For a smooth surface, θw of PCL10000 was 88.1�C at room temperature because the

polymer chains are frozen by crystallization. However, at 60�C, θwwas 60.8�C because water can

induce the reorientation of the hydrophobic/hydrophilic groups. Moreover, by depositing this

polymer rough substrate composed of arrays of square pillars (10 μm � 10 μm in width, 30 μm

in height), a change from superhydrophobic to superhydrophilic was observed after heat treat-

ment. The highest properties were obtained groove spacing of 40 μm.

SiO2 and carbon nanotube/PCL nanocomposites were also used in the literature [168, 169]. For

example, using carbon nanotubes, it was reported the possibility to switch from hydrophobic

to hydrophilic or from superhydrophobic (low water adhesion) to parahydrophobic (high

water adhesion), dependent on PCL concentration.

Liquid crystalline polymers also showed thermosensitivity when the temperature induces a revers-

ible change from liquid crystalline to isotrope. After grafting liquid crystalline segments (butyl-oxy

biphenylcarbonitrile) on a smooth PDMS elastomer, the authors observed a change of θw from 92.4

to 89.3� due to a change of the polymer from smectic A to isotrope [170]. The same polymer was

also used to cover rough substrates composed of arrays of square pillars (10 μm� 10 μm in width,

Figure 17. PU membrane grafted with PNIPAAm to induce reversible change from underwater superoleophobic to

underwater oleophilic by heating and cooling. Ref. [162], Copyright 2016. Reprinted with permission from American

Chemical Society, USA.
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30 μm in height). A huge influence of the groove spacing was observed. Interestingly, a change

from superhydrophobic (low water adhesion) to parahydrophobic (high water adhesion) was

observed for a groove spacing of 15 μm. Liquid crystalline elastomers were also prepared using a

side-on liquid crystalline monomer 400-acryloyloxybutyl 2,5-di(40-butyloxybenzoyloxy)benzoate

[171]. Here, a change from nematic to isotrope was observed at a temperature up to 70�C

depending on the used polymer. By depositing the polymer on a smooth substrate, a change in

θw of only 3� was observed, while by depositing rough substrates composed of arrays of cylindri-

cal pillars (3 μm in diameter, 6 μm in height, 1.5 μm in spacing), a change from 127 to 86� was

measured.

Various inorganic materials also showed thermal response. Shirtcliffe et al. studied the wetta-

bility of porous SiO2 foams obtained by sol-gel from methyltriethoxysilane (MTEOS) [172,

173]. The resulting materials displayed switchable wettability from superhydrophobic to

superhydrophilic (Cassie-Baxter-to-Wenzel transition) when they are heated at 400�C. To

become hydrophilic, the surface must become more polar. The authors think that this could

occur by the formation of new groups or by a change in the relative abundances of apolar

methyl groups and polar silica species. Sol-gel foams were also prepared using varying pro-

portions of phenyltriethoxysilane (PhTEOS) and TEOS. The temperatures at which switching

occurred were increased when larger fractions of PhTEOS and reversely. SiO2 suspensions,

made from SiO2 nanoparticles hydrophobically modified with chlorotrimethylsilane and

PDMS vinyl terminated, were deposited by spraying [174]. The resulting substrate could

reversely switch from superhydrophobic to hydrophobic after cooling at very low temperature

(�15�C). Here, the authors attributed this possibility to water vapor condensation on the

surface. When the subfreezing film was placed in ambient environment, the humidity in the

air condensed to the subfreezing surfaces and increased the surface hydrophilicity. Otherwise,

inorganic materials could also be coated using a hydrophobic material in order to achieve

superhydrophobic properties [175–179]. Here, the heat treatment could induce the desorption

Figure 18. Influence of heating on the phase transition from crystalline to amorphous of PCL10000 and the resulting

surface hydrophobicity. Ref. [167], Copyright 2008. Reprinted with permission from Royal Society of Chemistry, United

Kingdom.
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of the hydrophobic material and switch the surface from superhydrophobic to superhydrophilic.

However, these kind of materials are reversible but only after surface remodification with the

hydrophobic material.

3.3. pH

Materials containing functional acid or basic groups such as amines or carboxylic acids can

be used to induce switchable properties by pH changing [180, 181]. For example, at low pH,

the COOH group is protonated, while at high, pH it is deprotonated (COO�) with a much

higher hydrophilicity [182]. Zhang et al. modified rough gold substrates with micro/

nanostructures by self-assembly of different thiols. They used the dendron thiol 2-(11-

mercaptoundecanamido)benzoic acid (MUABA) [183] or mixed solution of HS(CH2)9CH3

and HS(CH2)10COOH [184].

Depending on the surface roughness and the pH, it was possible to obtain switchable surface

from superhydrophobic to superhydrophilic. Using mixed solution of HS(CH2)9CH3 and HS

(CH2)10COOH, the wetting properties were highly dependent on the percentage of each

constituent [185, 186]. Using 40 mol% of HS(CH2)10COOH, the surface could change from

superhydrophobic (θw = 154�) to superhydrophilic (θw ≈ 0�) as the pH increases.

Mixed solution of HS(CH2)9CH3 and HS(CH2)10COOH was also used on rough mesh sub-

strates [187–191]. Cu(OH)2 nanoneedles were grown on copper meshes by anodization in

KOH solution or by immersion in (NH4)2S2O8 and NaOH (Figure 19) [187–189]. After

surface modification with mixed solution of HS(CH2)9CH3 and HS(CH2)10COOH, the best

properties were obtained with 60 mol% of HS(CH2)10COOH. The best properties were also

obtained for a mesh pore size of 58 μm. Indeed, the authors showed that the pressure that

the meshes can support is depending on the mesh geometry and pore size, formation of

surface structures on the meshes (nanoneedles) and the surface energy, which here changes

with the pH [187–190]. For acidic and neutral water, the meshes were superhydrophobic

and underwater superoleophilic. For basic water, the meshes were superhydrophilic and

underwater superoleophobic. Here, both the immiscible oil/water mixture and oil-in-water

emulsions could be separated on-demand through changing the water pH and with high

efficiency and high flux. pH-responsive fabrics were also reported after growth of Ag

structures and surface modification with mixed solution of HS(CH2)9CH3 and HS

(CH2)10COOH [192].

The change of wettability of DNA nanodevices was also studied [193]. DNA molecules mod-

ified with fluorinated hydrophobic groups were fixed to gold substrates by SAM. The confor-

mation of the DNA molecules on the substrate could change with the pH. The substrate was

superhydrophilic at low pH and superhydrophobic at high pH.

Various polymers with pH-sensitive groups were also used in the literature. Polymers with

carboxylic groups were reported [194–199]. In 2006, Jiang et al. deposited colloidal crystal

films made of poly-(styrene-methyl methacrylate-acrylic acid) via a batch emulsion poly-

merization in the presence of sodium dodecylbenzenesulfonate (SDBS) (Figure 20) [194]. At

pH 6, the carboxylic groups are in the protonated state (COOH), which could do hydrogen

bonds with the SO3
� groups of SDBS. As a consequence, the hydrophobic tails of the SDBS
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are spread toward air and the surface was superhydrophobic (θw = 150.4�). At high pH

(pH = 12), the COOH groups are deprotonated (COO�) suppressing the hydrogen bonds.

Here, the surface was superhydrophilic due to the presence of both COO� and SO3
�.

Figure 19. Cu(OH)2 nanoneedles grown on copper steel meshes. The resulting meshes could switch from superhydrophobic

and underwater superoleophilic to superhydrophilic and underwater superoleophobic by changing the pH. Ref. [188],

Copyright 2015. Reprinted with permission from American Chemical Society, USA.

Figure 20. Reversible change from superhydrophobic to superhydrophilic of colloidal crystals (Panels A–D) made of

polymers with COOH groups as a function of the pH (Figure on the right). Ref. [194], Copyright 2006. Reprinted with

permission from American Chemical Society, USA.
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Orthophosphoric acids (ROPO3H2) were also studied. These acids are diacids with a pKa1

between 1 and 2 and a pKa2 between 6 and 7 (Figure 21). Three different acids are present

dependent on the pH [200–202]. Poly(methacryloyl ethylene phosphate) (PMEP) brushes were

used. At pH > 8, the phosphate groups are deprotonated and the electrostatic repulsions

between the charged polymer chains led to a swollen state with high hydrophobicity, while at

pH < 2, the brushes are protonated and in a collapsed state.

In order to induce basicity, amino groups were also highly used in the literature using different

strategies [203–205]. Liu et al. used a triblock copolymer: one block with a hydrophobic group,

one block with a pH-sensitive amino group and another one with a functional group for

grafting on SiO2 nanoparticles [203]. The material could be dip-coated on different substrates

such as cotton fabric, filter paper and PU foam and could be used for pH-responsive oil/water

separation membranes. Among the basic groups, pyridine was also reported. Wang et al.

reported the grafting of block copolymer brushes of poly(4-vinylpyridine-block-dimethyl-

siloxane) (P4PV-b-PDMS) on SiO2 nanoparticles [206]. After casting the suspension particles

on non-woven cellulose textiles and PU sponges, the resulting materials displayed

superhydrophobic and underwater superoleophilic properties at pH 6.5, and superhydrophilic

and underwater superoleophobic properties at pH 2.0. Such materials could also be used for

controlling the separation of oil/water mixtures by changing the pH. Graphene foams with

switchable oil wettability were also reported by grafting block copolymer brushes of poly(2-

vinylpyridine-block-hexadecyl acrylate) (P2PV-b-PHA) [207]. By contrast, other authors chose

to graft the polymer directly on substrates [208, 209].

Luo et al. also reported the fabrication of fiber membrane by electrospinning of the block

copolymer poly(4-vinylpyridine-block-methyl methacrylate) (P4PV-b-PMMA) on stainless steel

meshes (Figure 22) [210]. Using oil/water mixtures, oils can selectively pass through the mem-

brane at pH 3, while at pH 7, water pass selectively. Finally, other authors used block copolymers

with both acid and amino groups [211, 212]. For example, Zhou et al. showed that using these

kind of polymers it is possible to control the slip length of fluids by changing the pH.

3.4. Voltage

The best advantage of using electrical sensitivity as extern stimulus is the rapidity of imple-

mentation [213, 214]. Among the most used materials, conducting polymers are extremely

interesting because they can exist in different doping states. The neutral dedoped state is

uncharged, while the doped states are charged (Figure 23). Moreover, in their doped states,

conducting polymers incorporated doping agents (most of the time counter-anions) in order to

neutralize the charges present inside the polymer backbone.

Figure 21. Different species present using orthophosphoric acids as a function of the pH. Ref. [202], Copyright 2005.

Reprinted with permission from Royal Society of Chemistry, United Kingdom.
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For example, smooth poly(3-alkylthiophene) films prepared by spin coatingwere studied (Figure 24)

[215]. In their doping state, different anions (Cl�, NO3
�, PO4

3�, CO3
2� and SO4

2�) were introduced.

The authors observed that all the anions induced a decrease of θw. The highest decrease (from 105.9

to 76.7�) was observedwith SO4
2� anions. In order to enhance thewettability difference between the

reduced and the oxidized state, the authors also deposited micro-patterned substrates. Then, they

observed a much higher decrease from 147.4 to 62.2�.

Figure 22. Preparation of pH-induced oil permeation membranes by electrospinning of P4PV-b-PMMA. Ref. [210],

Copyright 2015. Reprinted with permission from American Chemical Society, USA.

Figure 23. Reversible change in the doping state of conducting polymers by oxidation and reduction [163].
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Otherwise, various other techniques can be used to prepare structured conducting polymer

films. Among them, using an electrochemical cell, the electropolymerization allows in one step

having polymerization, deposition of conducting polymer film and obtaining of structured

films. The surface structures are highly dependent on electrochemical parameters (deposition

method, time, solvent, electrolyte…) and on the monomer used [216–222]. For example,

superhydrophobic rough polypyrrole films were reported by electropolymerization of pyrrole

by galvanostatic deposition (constant current of 0.25 mA cm�2) in the presence of highly hydro-

phobic perfluorooctanesulfonate (C8F17SO3
�) doping ions and also FeCl3 in order to induce by

polymerization and electropolymerization [162]. Here, the surface structures consisted in submi-

cron particles (1–3 μm) forming a porous film. The surface could easily and reversibly switch

from superhydrophobic to superhydrophilic by oxidation/reduction using different voltages.

Moreover, Chang et al. reported a faster electrical process (3 s) and also eliminated the need to

immerse the substrate within an electrolyte [165]. Jiang et al. also reported that the oil adhesion

can also be controlled during the doping/dedoping process [222].

Other monomers were also studied [223–228]. Yan et al. reported the use of aniline to produce

helical polyaniline fibers in aqueous electrolyte and in the presence of perfluorooctanesulfonic

acid by galvanostatic deposition (constant current of 0.2 mA cm�2) [223]. Polyaniline is an

interesting polymer because different chemical forms can be produced also depending on the

pH. In the presence of tetraethylammonium perfluorooctanesulfonate, the authors reported

the possible switching from superhydrophobic (emeraldine salt form) to superhydrophilic

(leucoemeraldine base form) by changing the voltage. Poly(3,4-ethylenedioxythiophene)

(PEDOT) was also used (Figure 25) [224]. Here, two different fluorinated electrolytes were

chosen: tetrabutylammonium nonafluorobutanesulfonate (Bu4NC4F9SO3) and tetrabuty-

lammonium heptadecafluorooctanesulfonate (Bu4NC8F17SO3). Their electropolymerization

was performed in acetonitrile and at constant potential. Porous films were obtained and the

surface morphology was highly dependent on the electrolyte. Superhydrophobic properties

were obtained with Bu4NC8F17SO3 and using a deposition charge (Qs) of 300 mC cm�2 [226,

227]. Lu prepared first a porous PEDOT film on which a second was electrodeposited by cyclic

Figure 24. Influence of doping anions in the surface hydrophobicity of smooth poly(3-alkylthiophene). Ref. [215], Copy-

right 2009. Reprinted with permission from American Chemical Society, USA.
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voltammetry. Using poly(3-methylthiophene), a switchable and reversible surface from

superhydrophobic to superhydrophilic was obtained after doping/dedoping in the presence of

ClO4
� anions [170]. By contrast, using poly(3-hexylthiophene), the surface could switch from

superhydrophobic to parahydrophobic (high water adhesion) [227]. The surfaces could also

induce switchable cell adsorption [228].

Advincula created first polystyrene colloidal crystals in hexagonal packing, on which a

polythiophene film with short alkyl chains was electrodeposited by cyclic voltammetry [229].

The surface could switch from superhydrophobic to highly hydrophilic. Here also, the protein

and bacterial cell adsorption could also be switched at the same time [230].

Otherwise, different strategies were employed to create nanostructured conducting polymers

in solution. For that, polyaniline is a choice material due to the presence of amine groups that

allow to induce self-assembly by hydrogen bonds [231–237]. Jiang et al. reported the polymer-

ization in-situ on fabrics in the presence of perfluorosebacic acid (HOOC-C8F16-COOH) and

FeCl3, as dopant and oxidant, respectively [232]. Nanoparticles were formed on the fabrics.

The resulting fabrics could switch from superhydrophobic to superhydrophilic by doping/

dedoping while the dedoping could be performed in the presence of NH3 gas. Fabrics with

switchable wettability from superoleophobic to superoleophilic were also reported using

perfluorooctanoic acid [233, 234]. In order to prepare membranes with selective responsivity

for oil/water separation, stainless steel meshes were coated with root-like polyaniline

nanofibers fabricated by emulsion polymerization [235]. The meshes could switch from

superhydrophobic to superhydrophilic at different voltages.

Metal ions and organic molecules sensitive to redox reactions can also be used to switch the

surface wettability by voltage [238, 239]. For example, Ag + �biphenyldithiol (BPDT) SAMS

could be converted to Ag0-BPDT by applying a difference potential [238]. Ferricyanide ([Fe

(CN)6]
3�) could also be converted into [Fe(CN)6]

4� [240]. Huck et al. showed that polycationic

[2-(methacryloyloxy)-trimethylammonium chloride] (PMETAC) brushes coordinated to [Fe

(CN)6]
3� had θw = 41–44� while the brushes coordinated to [Fe(CN)6]

4� had θw = 26–27� [241].

The reorientation of polyelectrolyte conformation is another phenomenon induced by electric

potential [242, 243]. Choi et al. observed that a SAM of (16-mercapto)hexadecanoic acid

Figure 25. Rough PEDOT substrates obtained in the presence of (a) Bu4NC4F9SO3 and (b) Bu4NC8F17SO3 [224].
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(MHA) deposited on a gold substrate could undergo a transition from a straight conformation

to a curved one by applying an electric potential. The molecules in the straight conformation

are hydrophilic due to the presence of carboxylate ions and that in the curved conformation

are hydrophobic due to the presence of the hydrophobic chains.

Electrowetting is another method allowing the control of the surface wettability by applying

an extern electric field. In this process, a water droplet is placed on a superhydrophobic

surfaces coated with an insulating layer. The applying of the electric field induces an accumu-

lation of charges and decreases the solid-liquid interface (γSL) and as a consequence the surface

hydrophobicity, as shown in Figure 26 [244, 245].

In 2004, Krupenkin et al. studied the electrowetting of superhydrophobic substrates prepared

by modifying nanostructured silicon substrates with a low surface energy material [246].

After electrowetting, they could change the surface wettability from superhydrophobic to

superhydrophilic. Vertically aligned superhydrophobic carbon nanofibers and ZnO nanorods

Figure 26. Schematic representation of electrowetting experiment. Ref. [244], Copyright 2003. Reprinted with permission

from American Chemical Society, USA.

Figure 27. Relationship between the resistance to drop impact impalement and electrowetting impalement using silicon

nanowires with double nanotextures. Ref. [254], Copyright 2008. Reprinted with permission from American Chemical

Society, USA.
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were also highly used in the literature to induce a switch from superhydrophobic to hydro-

philic or superhydrophilic [247–251]. Boukherroub et al. reported the possible obtaining of

reversible electrowetting on silicon nanowires with double nanotextures (length of 10 and

30 μm) [252–255]. They found a relationship between the resistance to drop impact impale-

ment and electrowetting impalement (Figure 27) [254]. The thresholds for drop impact and

electrowetting irreversibility increase and the contact angle hysteresis decrease when the

length and the density of nanowires increase. Other mechanisms for reversible electrowetting

were also reported in the literature [256, 257]. Otherwise, electrowetting could also be used to

control protein adsorption or for accelerating reaction by mixing liquid droplets [258, 259].
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