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Abstract

Production of biochars from agricultural wastes reduces significantly the volume and 
weight of the wastes, and hence, it can be considered as a promising means for managing 
the agricultural wastes. Biochar has received great interest during the last few years, due 
to its beneficial role to mitigate CO

2
 emission through enhancing the long-term carbon 

sequestration. The effects of biochar on soil properties vary widely, depending on the 
characteristics of soil and the biochar. Most types of biochars are of alkaline nature and of 
high C content. Addition of biochar to the soil can improve the cation exchange capacity 
enrich soil with the nutrients and enhance the microbial growth, and improve some soil 
physical properties such as water retention and aggregation. For contamination control, 
biochars have proven to be a suitable tool for controlling the contaminants in the environ-
ment. The high surface area, porous structure, alkaline nature, and the presence of func-
tional groups characterized the biochar as alternative option for the remediation of heavy 
metal contaminated waters and soils. However, there is a lack of knowledge regarding 
the effects of biochar in the presence of mineral and/or organic fertilizers on the plant 
growth and nutrient transformation in soils. In addition, biochar is successfully used for 
treating the acid soils; therefore, future studies are needed to investigate the neutraliza-
tion of alkaline performance of biochar to be used safely in alkaline soils.

Keywords: biochar, soil, mineral fertilizers, contaminants, environmental management

1. Introduction

The increasing demand for food and the fertilizers (inorganic and organic) is a day fact. Mineral 
fertilizers are of great importance for food production. Accordingly, the world demand for 
mineral fertilizers has increased during the last few decades to meet the increased demand 
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for agricultural products in response to the growing population [1]. However, several studies 
indicated that mineral fertilizers contain various amounts of heavy metals as impurities [1, 2]. 

Consequently, the addition of large amounts of mineral fertilizers to the soil for long periods 
may result in the accumulation of heavy metals in soils and plant grown thereon, as confirmed 
by previous studies [1, 3].

Intensive researches have been performed to overcome the infertility problems of the agricul-
tural soils. The addition of organic residues in forms of compost, manure, and other organic 

forms has proven to be suitable alternative options for mineral fertilization. However, these 
materials need to be applied intensively due to their low nutritive contents and rapid deg-

radation rate. Biochar is a charcoal produced from the pyrolysis of biomass at relatively low 
temperature (<700°C) [4]. Biochar has received great interest during the last few years, due 
to its beneficial roles in environmental management. Several beneficial objectives could be 
achieved through biochar application for environment, that is, waste management, energy 
production, soil improvement, maximizing agricultural production, contamination control 
(soils and waters), and greenhouse gases (GHGs) mitigation [5–10].

2. Production and characterization of biochars derived from different 
wastes

2.1. Historical view of the biochar

Biochar production is an ancient practice over that past 70 centuries in the Egyptian societies. 
It seems that the production of biochar was not the main target, the Egyptian societies used 
the liquid wood tars to embalm the bodies of their dead, and the liquid preserving agent 
was produced from charring processes [11]. Similarly, the use of biochar as soil amend-

ment first began over the past 2,500 years in South America (terra preta), the place which 
named “the black earth.” Biochar is created both naturally by forest fires and by human 
through burning bits for different practices, that is, cooking and manufacturing. Terra preta 
is a famous soil located in the Amazon Basin. The acidic condition of terra preta in the 
past due to the toxic levels of exchangeable aluminum hindered the agricultural produc-

tion; however, the continuous accumulation of biochar in the soils led to enrich the soil in 
calcium and phosphate and elevated pH level in comparison with the surrounding soils. 
In addition, terra preta soil contains about 50 Mg ha−1 carbon in a form of biochar within 

approximately 1 m depth [12]. Consequently, aluminum toxicity in this soil was neutralized, 
and soil status in terms of physical, biological, and chemical features has been modified that 
made it one of the most fertile soils over the world. The promising benefits of biochar have 
alerted the sign for researchers in the past to determine the positive performance of biochar, 
for example, the role of biochar for improving vegetative growth and enhancing soil fertility 
has been studied by Trimble [13] and Retan [14]. Due to the several benefits of biochar, many 
researches and extension initiatives of biochar have been established all over the world in 
order to spread the knowledge and cooperation of biochar and its applications, for example, 
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the Australia New Zealand Biochar Research Network (www.anzbiochar.org/project.html), 
the US Biochar Initiative (http://biochar-us.org/biochar-research), the European Biochar 
Research Network (http://cost.european-biochar.org/en), the UK Biochar Research Center 
(http://www.biochar.ac.uk/), the China Biochar Network (http://www.biochar-interna-

tional.org/chinanetwork), the Japan Biochar Association (http://www.geocities.jp/yasizato/
JBA.htm), the New Zealand Biochar Research Centre (http://www.massey.ac.nz/massey/
learning/colleges/college-of-sciences/research/agriculture-environment-research/soil-earth-
sciences/biochar-research-centre/biochar-research-centre_home.cfm) and the Biochar India 
(www.biocharindia.com).

2.2. Production of biochar

2.2.1. Biomasses for biochar production

The rapid population growth led to subsequent increases in food production, and conse-

quently, large amounts of organic residues are produced annually [8]. Therefore, it is essen-

tial to recycle their organic residues effectively. Various types of biomass have been used for 
biochar production, including: (i) agricultural and forestry by-products, that is, wood chips, 
straw, nut shells, rice hulls, tree bark, wood pellets, and switch grass, (ii) industrial by-prod-

ucts, that is, sugar cane bagasse, paper sludge, and pulp, (iii) animal wastes such as chicken 
litter, dairy and swine manure, and (iv) sewage sludge. Producing the biochar from biomass, 
especially wastes offer an excellent way for the recycling of wastes into beneficial materials. 
Pyrolysis treatment reduces the volume of biomasses by 44–90 and 75–80% and weight by 
44–93 and 71–77% [8, 15].

2.2.2. Production technologies of biochar

Biochar is produced through the pyrolysis process, in which the biomasses are burned in the 
absence of oxygen. As mentioned above, the main objective of biochar production is to use 
it as a soil amendment or for usage in other aspects such as remediation and industrial tech-

nologies. The process is closely similar to those of gasification; however, in case of gasifica-

tion, the process is performed in two steps, firstly, the biomass is heated to around 600°C, and 
hydrocarbon gases and tar are evaporated; secondly, char is gasified by reaction with oxygen, 
hydrogen, and steam under high temperature. However, in case of pyrolysis, the biomass is 
burned in the absence of oxygen along the production time. There are many important sec-

ondary products upon producing the biochar, including a synthetic gas that can be used to 
generate electricity and bio-oil, which can be used as diesel fuel. As shown in Table 1, biochar 

can be produced through fast and slow pyrolysis techniques; the main difference between 
them is the heating rate and the amount of the produced bio-oil.

2.2.3. Development of biochar production

Figure 1 shows the development of biochar production. The people used to simply gather 
piles of agricultural wastes and cover them and burn them slowly with limited air. They have 
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used several ways to exclude air penetration into burning places, such like covering with 
soil particles. This traditional method is still used today in developing countries; however, 
considerable amounts of smokes and almost half amount of carbon dioxide in the original 
biomass are released into the atmosphere. Briefly, biomasses were put together tightly and 
covered with a layer of soil in a large pit kiln then a small part of the biomass was burned 
up. To achieve a successful pyrolysis process, people used to make small holes in the soil sur-

face to provide amount of air uniformly in order to maintain a productive balance between 
burning and pyrolysis. The pit kiln has some disadvantages, that is, the release of almost 
50% of C into the atmosphere and the high ash content of the produced biochar. To over-

come these problems, brick kilns were developed to achieve more control for aeration. These 
kilns were better insulated and allowed a better airflow control, which allowed higher biochar 

Figure 1. Development of biochar production. Images obtained from Lehmann and Joseph [4], Abdelhafez et al. [7].

Parameter Biochar production

Fast pyrolysis Slow pyrolysis Gasification

Temperature ~500°C ~400°C 600–1800°C

Heating rate up to 1000°C min−1 Slow 5–30°C min−1 –

Time Few seconds Hours ~ days –

Aeration Oxygen free Oxygen free or limited Oxygen limited

Biochar ~12% ~35% ~10%

Syngas ~13% ~35% ~85%

Bio-oil ~75% ~30% ~5%

Data obtained from Roos [16].

Table 1. Differences between gasification and pyrolysis processes.
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yields and lower ash contents of the produced biochar. The above-mentioned techniques are 
in situ biochar production units, where the biochar was made at places where suitable raw 

material was abundant. By beginning of the 1930s, transportable, cylindrical metal kilns were 
developed in Europe and became popular in the 1960s, in developing countries. They are 
often made out of oil drums and are more easily to handle than traditional pits. The sealed 
container allows a high control of airflow, and the biochar can easier be recovered [17]. The 

portable kilns are still used in developing countries in the small farms and have been used 
experimentally by Abdelhafez et al. [8, 9] in China and Egypt, respectively. However, the tra-

ditional methods may contaminate the environment due to the emitted syngas and bio-oils. 
Therefore, advanced instruments have been developed successfully to eliminate the emitted 
syngas and bio-oil and to use them as by products by using specific condensers for gas and 
bio-oil collection.

2.3. Differences between biochar and charcoal

Man used to create charcoal instinctively for heating, industry and production beginning 
from the creation. Both biochar and charcoal contain high carbon materials; however, there 
are some major differences as follows [4]:

(i) Charcoal is produced primarily as a source of energy, while biochar is manufactured as a 
soil amendment for improving soil fertility, carbon (C) sink, or water filtration.

(ii) Wood is the major source of charcoal production; however, biochar can be produced 
from any biomass.

(iii) The carbonization trend of biochar is not complete as in charcoal; consequently, charcoal 
contains much ash content compared to the biochar.

Carbon is present in the biochar in a form of six C atoms linked together. The formation of 
graphite is more likely to occur when the C atoms arranged together without O or H ions. 
However, in case of biochar, graphite does not form because the arranged atoms of carbon are 
corrupted by O and H ions; as a result, C atoms are arranged irregularly according to the type 
of biomass used for biochar production and temperature of pyrolysis [4].

2.4. Physicochemical characteristics of biochar

All biochars are black but are not created equal and are not of the same physicochemical 
characteristics. Both the types of biomass and pyrolysis conditions play important roles for 
identifying the characteristics of the produced biochars [5, 18]. The produced material of 

biochar is a solid, structured, carbonaceous material and exhibits a high surface area [19], 

low oxygen and hydrogen contents [20], and little amount of nutrients [21, 22]. The physi-
cal characteristics of the produced biochar depend mainly on the type of biomass and the 
pyrolysis conditions, in terms of, heating rate, highest temperature of burning, pressure, 
burning time and the characteristics of burning vessel. It is well known that organic mate-

rials start to decompose after 120°C; hemicellulose compounds decompose at 200–260°C, 
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and lignins decompose at 240–350°C [23]. Biochar has proven to be a suitable tool for the 
removal of heavy metals from aqueous solutions [10] due to the presence of macrospores 

with an average pore size of 51–138 m2 g−1 [24],. The presence of functional groups on the 

surface of biochar candidate it for the removal of organic and inorganic contaminants from 
aqueous solutions. Abdelhafez and Li [10] demonstrated that the spectrums of sugar cane 

and orange peel biochars are quite similar; both biochars exhibited absorption bands on 
3448.13 and 3429.4 cm−1 corresponding to C─OH functional groups; around 1637.27 and 
1384.85 cm−1, there were C═O and C─C bands and the adsorption bands on 1101.43 cm−1 

present the C─O, C─C, and C─OH bands. Therefore, both biochars had the ability to 
adsorb Pb(II) ions from aqueous solutions. During the pyrolysis of biomass, heating causes 
some nutrients to be volatilized, especially at the surface of the material, while other nutri-
ents become concentrated in the remaining biochar. In case of wood-rich materials, carbon 

(C) begins to volatilize around 100°C, N above 200°C, S above 375°C, and potassium (K) 
and P between 700°C and 800°C. The volatilization of magnesium (Mg), calcium (Ca), and 
manganese (Mn) occurs at temperatures above 1000°C [25, 26]. Therefore, biochar contains 

much amount of alkali metal ions causing its liming performance when it is applied to 
the soils [8, 9]. As shown in Table 2, more than 80% of the produced biochars is C, while 
nitrogen contents are relatively low because most of nitrogen in the feedstock starts to be 
volatile at temperature above 200°C. Therefore, the nitrogen contents of biochars derived 
from agricultural wastes are quite low. However, the nitrogen content of sewage sludge 
biochar seems to be higher than the agricultural wastes biochars [15]. Furthermore, most of 
the stated biochars characterized by its high pH values, and this could be attributed to the 
presence of alkaline metal ions, that is, Ca, Mg, and K, which are stable and does not vola-

tile in the biomass during the production of biochars. The previous studies demonstrated 
that increasing the pyrolysis time and temperature led to increase the surface area and 
pours structure of the produced biochar [27, 28]. Similarly, the pH of the produced biochar 
depends on the pyrolysis temperature and time; by increasing the pyrolysis temperature, 
the pH of the produced biochars increased to reach 11.5 in some studies [29]. A point to note 
that, biochar has a liming effect when it is applied to the soil; therefore, possible increment 
in soil acidity (pH) might occur [8]. In addition, adsorption of macronutrients (N, P and K) 
on the surfaces of biochar might hinder its uptake by the growing plants. Applying biochar 
to the soils has been found to increase the bioavailability and plant uptake of phosphorus 
(P), alkaline metals and some trace metals [30], but the mechanisms for these increases are 

still a matter of speculation. Moreover, the benefits of biochar for the removal of organic and 
inorganic contaminants from water are well documented [31, 32]. However, to date, only 
limited studies are available on biochar effects combined with different mineral and organic 
fertilization levels on soil properties and plant growth. The behavior of biochar is not equal 
for all elements; some studies have reported that biochar has the potential for the stabiliza-

tion of Pb in shooting range and metal smelter contaminated soils [7, 10]. Abdelhafez et al. 
[7, 8]. illustrated the beneficial effect of biochar for soil improvement and Pb remediation 
in a military shooting range and metal smelter contaminated soils. Moreover, it was found 
that biochar increased the bioavailability of Cu (shooting range soil) and As (metal smelter 
soil). Therefore, the chemical behavior of biochar with heavy metal ions is not constant and 
needs to be investigated.
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Feedstock Temperature pH % CEC, 

cmolc kg−1
C/N  

ratio

% H/C 

ratio

O/C 

ratio

SSA,  

m2 g−1
Reference

C N P S Ca Mg K O.M Ash

Peanut hull 500.00 8.60 82.00 2.70 0.30 0.10 – – – – 30.37 – 9.30 0.44 0.03 200.00 [5]

Sugar cane 
bagasse

<500 8.63 74.02 1.00 0.24 – 0.17 0.32 2.00 69.62 74.02 87.80 12.21 0.42 0.23 92.30 [10]

Orange peel <500 8.75 66.36 2.13 0.25 – 1.04 0.28 1.86 68.28 31.15 88.80 11.17 0.65 0.32 0.20

Cattle waste 380.00 8.20 62.10 0.10 – – – – – 39.00 621.00 – 25.60 1.90 0.27 – [15]

Sewage 
sludge

380.00 8.50 38.30 5.20 – – – – – 0.50 7.37 – 44.90 0.94 0.25 –

Oak wood 600.00 6.38 87.50 0.20 – – – – – 75.70 489.00 – 0.01 0.33 0.07 642.00 [33]

Corn stover 350.00 9.39 60.40 1.20 – – – – – 419.30 51.00 – 11.40 0.75 0.29 293.00 [34]

600.00 9.42 70.60 1.07 – – – – – 252.10 66.00 – 16.70 0.39 0.10 527.00

Corn stalk 400.00 9.60 51.10 1.34 0.25 – – – 1.34 – 38.13 – – – – – [35]

500.00 10.10 48.40 0.55 0.44 – – – 2.65 – 88.00 – – – – –

Wheat straw 425.00 10.40 46.70 0.59 – – 1.00 0.60 2.60 – 79.15 – 20.80 – – – [36]

Coco peat 500.00 10.30 84.40 1.02 0.03 0.27 0.06 2.30 – – 82.75 – 15.90 0.41 0.10 13.70 [37]

Coconut 
charcoal

<500 8.86 76.50 0.20 – – – – – – 426.60 – 2.90 0.12 – – [38]

Pine wood <500 8.47 53.20 0.40 – – – – – – 143.40 – 65.70 0.35 – –

Eucalyptus 
deglupta

350.00 7.00 82.40 0.57 0.06 0.03 – – – 4.69 144.56 – 0.20 – 0.12 [39]

Hard wood 

saw dust

500.00 – 63.80 0.22 – 0.01 – – – 290.00 – 22.80 0.60 0.14 1.00 [40]

Chinese pine 600.00 8.38 66.67 2.21 – – – – – 31.58 30.17 – 12.50 0.58 0.31 – [41]

Table 2. Physicochemical characteristics of different types of biochar.
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3. The beneficial effect of biochars derived from different wastes on  
soil fertility

3.1. Fresh organic matter versus biochar as soil amendment

Soil organic carbon is originated by photosynthesis under highly reduced conditions (esti-
mated by 600 mV) which are presented in leaf chloroplast [42]. Such fresh materials are proba-

bly the most reduced fraction when added to soils, acting as electron pumps to more oxidized 
species [43]. Generally, organic residues are used as amendments to improve soil quality and 
productivity [44].

The organic amendments that persist longer in soil might exert high impacts on soil physico-

chemical reactivity [45]. In deep soil layers, organic materials are relatively more stable than 
in the surface ones due to the absence of fresh organic carbon, an essential source of energy 
for soil microbes [46]. Probably, compounds that contain less oxygen (lower electron rich-

ness) are less easily decomposed than do compounds having comparable size, solubility, and 
molecular complexity [47].

Specific mechanisms might guarantee stabilization of organic C in soil, for example, biotic 
exclusion which might take place through adsorption of organics and aggregation with soil 
minerals forming mineral-bound OM [48]. Also, preservation of recalcitrant (stable) com-

pounds might stabilize organic C [49]. It is thought that the recalcitrant compounds are pres-

ent in organic materials in much higher proportions than those classified as labile [50].

Pyrolysis is the converting of unstable organic matter into more stable forms (biochar) that can 
be applied to soils [51]. This can be attained by heating carbon bearing solids in the absence 
of oxygen [52] to produce porous materials of low density [53] and more stable forms of car-

bon [54] which are more resistant to biodegradation as compared to fresh organic materials. 

Biochars’ half-life in soil is relatively long [55].

3.2. Effect of biochar on soil properties

Biochar is used as an amendment to improve soil properties. It improves soil-water holding 
capacity [56, 57], saturated hydraulic conductivity [58], increases cation exchange capacity (CEC) 
[8, 59], decreases bulk density [60], and minimizes the loss of nutrients and other agricultural 

chemicals in soil run-off [4]. It also decreases soil penetration resistance and increases aggrega-

tion and infiltration [61]. On the other hand, biochar does not show any significant effect on soil 
porosity either directly through pore contribution, or indirectly through improving aggregate 
stability [62]. Besides, applications of biochar increase soil electrical conductivity (EC) in addi-
tion to its high contents of phosphorus and nitrogen [63].

3.3. Effect of biochar on the plant growth and soil biota

The main roles of biochar for enhancing plant growth are directly through its nutrients contents, 
and indirectly through its effects on nutrients use efficiency. Biochar serves as energy provider 
[64] for wheat [65], rice [36], maize [6], soy bean [66], and spring barley [67]; thus, it improves 
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root density, crop growth, and productivity [68]. It was found that chicken manure-derived 
biochar increased the dry weights of the shoot and root of the Indian mustard by 353 and 572% 
upon its application to soil at a rate of only 1% [69]. Even biochar produced from wastewater 
sludge increased the productivity of cherry tomatoes by 64% as compared to the control [63]. 

Thus, such amendment is recommended for low-fertile and degraded soils [4] as well as highly 
weathered soil [70]. The zone of plant rhizosphere becomes larger with application of biochar 

[71]. Moreover, biochar increases plant resistance toward biotic stresses [72]. Some types of 
biochar amendments are rich in nutrients [73], and on the other hand, it minimizes the leaching 

of nutrients from soil, i.e., nitrate [74], ammonium, and probably phosphate [75]. However, the 
majority of biochars produce ethylene which is an inhibitor for soil microbes [68], beside of the 

released organic molecules which might suppress activities of some beneficial soil biota [76].

4. Biochar: alternative option for soil sustainability

Using biochar as a soil amendment can fulfill three main targets, that is, increasing plant pro-

ductivity, thus achieving food security [4], improving soil properties, and disputing land degra-

dation [77] beside of minimizing the change of climate [78]. Moreover, biochar changes organic 
wastes into value-added biochar which acts as sorbents for eliminating contaminants in waste-

water [79]. As mentioned above, the transformation of terra preta soil into a high fertile soil due 
to biochar addition is a great evidence of the role of biochar for soil sustainability. The recycling 
of agricultural wastes into benefit materials guarantees the sustainability of agricultural lands.

5. Biochar and the environmental change

5.1. Effect of biochar on CO
2
 emissions

Soils can store more carbon than do plants or atmosphere [47]. Globally, soil organic matter 
(SOM) contains about three times as much carbon as either the atmosphere or terrestrial veg-

etation [80]. In soils of low N content, CO
2
 is the dominant greenhouse gases (GHGs) compo-

nent [81]. Accordingly, strategies that migrate excess CO
2
 from atmospheric air might be more 

important than reducing equivalent emissions of CO
2
 to air [64]. The promising approach 

in lowering CO
2
 from air is biochar [78]. Thus, biochar could be considered as the geo-engi-

neering solution to control climate change [82] probably by means of carbon sequestration 
[83], thus minimizing the emissions of the greenhouse gases [84] while supplying energy and 
improving the productivity of the cultivated crops [64]. Roberts et al. [84] found that 62−66% 
of CO

2
 emissions could be sequestered within biochar. Accordingly, adopting biochar tech-

nologies can offer financial incentive in emission trading markets [82].

5.2. Effect of biochar on CH
4
 and N

2
O emissions

Pyrolysis process serves also in reducing emissions of the other GHGs such as methane 
(CH

4
) and nitrous oxide (N

2
O) when amended to agricultural soils and pastures [64]. Biochar 
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decreases the emissions of CH
4
 and, therefore, increases the stock of soil organic carbon [85]. 

This probably takes place through suppressing the oxidation of ambient CH
4
 [51]. On the 

other hand, the emissions of CH
4
 might increase in rice paddy soil amended with biochar [36].

The effect of biochar on the transformation processes of nitrogen (N) in soil is not well defined 
[86]. Probably, biochar reduced GHGs emissions only in neutral to acidic soils with high N 
content [87]. In this concern, emissions of N

2
O as well as leaching ammonium from soil could 

be reduced when using biochar rather than fresh organic material as soil amendments [86]. 

Generally, biochar suppresses production of N
2
O [54]. It is found that 10.7–41.8% of the total 

emissions of N
2
O decreased with application of biochar at rates of 20 and 40 Mg ha−1, respec-

tively [87]. Similar results show that soil N
2
O fluxes decreased up to 79% in soils amended 

with biochar as compared to the control [88]. In an experiment conducted by Mukherjee et 
al. [89], it was found that 92% of the cumulative N

2
O emissions reduced when amending 

soils with biochar. Even under the reduced conditions of the rice paddy soil, biochar can also 
minimize the emission of N

2
O [36]. Such reductions might be attributed to the oxidative reac-

tions that take place on the surfaces of biochar with ageing [86]. Accordingly, reductions of 
the emissions of N

2
O owing to application of biochar to soils improve the GHGs-to-yield ratio 

conditions [90].

Others found no significant differences in emissions of both CO
2
 and N

2
O from soils owing 

to application of biochar as compared to nonamended soils [56]. Likewise, Mukherjee et al. 
[89] found that the total cumulative emissions of CH

4
 and CO

2
 emissions were not affected 

significantly by amending soils with biochar. It is worthy to mention that biochar production 
itself can increase, to some extent, the greenhouse gases emitted to the atmosphere; however, 
more studies are needed to fulfill this point of study and to lessen GHGs emitted during pro-

duction process.

6. The beneficial role of biochar for contamination control of soils and 
waters

6.1. Biochar as means for decontaminating soils from heavy metals and pesticides

Biochars produced at relatively high temperature pyrolysis are more efficient in sorption of 
organic contaminants, whereas those produced at low temperatures are more efficient for 
removing heavy metals [102]. At low temperature, the produced biochar is of acidic nature, 
whereas those produced at high temperature were of alkaline nature [91]. This approach 

offers a new safe solution for decontaminating soil pollution [92]. Generally, biochars are 
efficient in reducing the phytoavailability of many organic pollutants in soil, that is, (1) her-

bicides, for example, atrazine and acetochlor [51], Fluometuron and 4-chloro-2-methylphen-

oxyacetic acid [93], (2) pesticides, for example, pyrimethanil [94], atrazine [95], simazine [96], 

azoxystrobin [97], (3) fungicides, that is, tricyclazole in alluvial paddy soil [98] in addition to 

(4) phenols [99], thus controlling their toxicity and transfer in soil [100]. Immobilization of 

these organic residues might be take place because of the high affinity and ability of biochar to 
sequester such organics [101]. High temperature pyrolysis biochar is characterized by its high 
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surface area, high micro-porosity, and hydrophobicity [102], and thus, combined adsorption 

and partition mechanisms might take place with the herbicide, pesticides, and the fungicide 
on carbonized and noncarbonized fractions [96]. In case of phenols, its sorption might take 
place on the microspores surface area of the biochar in addition to sorption on the carboxylic 
and lactonic groups [99]. Sorption affinity with the organic contaminants is found irreversible 
[94] and can increase with decreasing solid/solution ratio [96].

Biochars can also immobilize the phytotoxcity of heavy metals in soil forming less bioavail-
able organic bound fraction [69]. Biochar is of an alkaline nature, thus applying biochar to 
soils is associated with increases in soil pH [103]. The mechanism of immobilization might be 

a result of precipitation due to the rise in soil pH due to the application of the basic biochar 

or even by the electrostatic interaction on the carboxyl groups of the biochar [104] or through 

coordination by π electrons (C═C) of carbon [105].

Many experiments revealed the successfulness of biochar treatments on partitioning of heavy 
metals in soil, for example, Cd, Cu, and Pb [69]. Surprisingly, using biochar for decontaminat-
ing soils decreased the leachable fractions of Cd and Zn by 300 and 45-folds in compared to 
the untreated treatments [106]. In another experiment, it was found that treating soils with 
biochar removed Pb, Zn, and Cd by 97.4, 53.4, and 54.5%, respectively [107]. It is worthy to 
mention that the oxidized biochars, rich in carboxyl groups, showed higher affinity to immo-

bilize Pb, Cu, and Zn than did the un-oxidized ones [104].

6.2. Biochar as a means of decontaminating heavy metals and organic residues from 

wastewater

Biochars act as sorbents for decontaminating wastewaters from heavy metals [79]. This might 

take place mainly through sorption on the surface functional groups of biochar [108], for exam-

ple, oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups [109]. The 

kinetics of adsorption followed pseudo second order [10, 110]. The stability of heavy metals by 
biochar correlated significantly with the oxygen-containing functional groups of the biochar 
[108] with maximum adsorption attained within the pH range 5.0–6.0 [110]. Digested dairy 
waste biochar and digested whole sugar beet biochar were found to be efficient in removing 
Pb2+, Cu2+, Ni2+, and Cd2+ from wastewater [111]. Also, biochars can efficiently remove organic 
contaminants from wastewaters. It was found that the fast pyrolysis pine wood biochar could 
remove salicylic acid and ibuprofen from solutions [112].

Biochar can also effectively remove phosphate from wastewater [113]. This probably takes 
place on the colloidal and nano-sized MgO particles on its surface [114]. Most of the sorbed 

phosphate is bioavailable and can be added to soils as slow release P-fertilizers [115]. 

Moreover, 60% of the sorbed phosphate can be desorbed within 24 h [116].

Treating biochar hydrothermally with H
2
O

2
 increased its affinity to remove heavy metals 

from aqueous solutions because this treatment increased the oxygen-containing functional 
groups [117]. Another type of biochar is chitosan-modified one which is a low-cost synthe-

sized biochar efficient for immobilizing heavy metal in the environment [118]. Also, a gra-

phene/biochar composite is a safe economic adsorbent that can decontaminate heavy metals 
through surface complexation with C─O, C C, ─OH, and O C─ groups [119].
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7. Conclusion and future challenges of biochar

The previous demonstration showed that biochar plays an important role in environmental 
management and soil sustainability. Several beneficial roles of biochar have been observed. 
Biochar improves soil fertility and plant growth, mitigates the greenhouse gasses, and could 
be used successfully for the remediation of soils and waters from contaminants. However, 
several research questions are still unknown and need intensive researches, that is, the effect 
of biochar on minerals and/or organic fertilizers use efficiency and the neutralization of alka-

line performance of biochar to be used safely in alkaline soils. In addition, the stability of 
biochar in the amended soils needs a sustainable experiment to determine exactly the degra-

dation rate of different types of biochars.

Author details

Ahmed A. Abdelhafez1*, Mohamed H.H. Abbas2 and Jianhua Li3

*Address all correspondence to: ahmed.aziz@aun.edu.eg; leejianhua@tongji.edu.cn

1 Department of Soils and Water, Faculty of Agriculture, Assiut University (New Valley 
Branch), Egypt

2 Department of Soils and Water, Faculty of Agriculture, Benha University, Egypt

3 Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of 
Environmental Science and Engineering, Tongji University, Shanghai, China

References

[1] Abdelhafez AA, Abbas HH, Abd-El-Aal RS, Kandi NF, Li J, Mahmoud W. Environmental 
and health impacts of successive mineral fertilization in Egypt. Clean-Soil, Air and 
Water. 2012;40(4):356-363

[2] Milinovic J, Lukic V, Nikolic-Mandic S, Stojanovic D. Concentrations of heavy metals in 
NPK fertilizers imported in Serbia. Pesticide Phytomedicine. 2008;23:195-200

[3] Huang S, Jin J, He P. Effects of different patterns of land use on status of heavy metals in 
agricultural soils. Better Crops. 2009;93:20-22

[4] Lehmann J, Joseph S. Biochar for environmental management: An introduction. In: 
Lehmann J, Joseph S. (Eds.), Biochar for Environmental Management: Science and 
Technology. London: Earthscan; 2009. pp. 1-12

[5] Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts 
DW, Busscher WJ, Schomberg H. Characterization of designer biochar produced at  

Engineering Applications of Biochar18



different temperatures and their effects on a loamy sand. Annals of Environmental 
Science. 2009;3(1):195-206

[6] Major J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition dur-

ing 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 
2010;333:117-128

[7] Abdelhafez AA, Lee SS, Ok YS. Effects of biochar on soil quality and heavy metal bio-

availability in a military shooting range soil. Korean Society of Soil and Ground Water 
Environment (KOSSGE). 2010; pp. 236. Korea

[8] Abdelhafez AA, Li J, Abbas MHH. Feasibility of biochar manufactured from organic 
wastes on the stabilization of heavy metals in a metal smelter contaminated soil. 
Chemosphere. 2014;117:66-71

[9] Abdelhafez AA, Abbas MHH, Hamed MH. Biochar: A solution for soil Pb pollution. The 
8th International Conference for Development and the Environment in the Arab World 
Assiut University, Egypt. 2016; pp. 89-103

[10] Abdelhafez AA, Li J. Removal of Pb(II) from aqueous solution by using biochars derived 
from sugarcane bagasse and orange peel. Journal of the Taiwan Institute of Chemical 
Engineers. 2016;61:367-375

[11] Emrich W. Handbook of charcoal making. The traditional and industrial methods. D. 
Reidel Publishing Company - Dordrecht, Holland; 1985

[12] Verheijen FGA, Jeffery S, Bastos AC, van der Velde M, Diafas I. Biochar Application to 
Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. 
EUR 24099 EN. Luxembourg: Office for the Official Publications of the European 
Communities; 2009. 149 p

[13] Trimble WH. On charring wood. Plough, the Loom and the Anvil. 1851;3:513-516

[14] Retan GA. Charcoal as a means of solving some nursery problems. Forestry Quarterly. 
1915;13:25-30

[15] Shinogi Y, Yoshida H, Koizumi T, Yamaoka M, Saito T. Basic characteristics of low-
temperature carbon products from waste sludge. Advances in Environmental Research. 
2003;7(3):661-665

[16] Roos CJ. Clean Heat and Power Using Biomass Gasification for Industrial and Agricultural 
Projects, U.S. Department of Energy Olympia; 2010. ss: 1-9

[17] FAO Forestry Department, editor. Simple Technologies for Charcoal Making. 2nd ed. 
Rome: FAO; 1987

[18] Chen B. Yuan M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil 
amended with biochar. Journal of Soils and Sediments. 2011;11:62-71

[19] Bird MI, Ascough PL, Young IM, Wood CV, Scott AC. X-ray microtomographic imaging 
of charcoal. Journal of Archaeological Science. 2008;35:2698-2706

Biochar: The Black Diamond for Soil Sustainability, Contamination Control and Agricultural Production
http://dx.doi.org/10.5772/intechopen.68803

19



[20] Abdullah H, Wu H. Biochar as a fuel: 1. Properties and grindability of biochars pro-

duced from the pyrolysis of mallee wood under slow-heating conditions. Energy and 
Fuels. 2009;23:4174-4181

[21] Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. Effect of low temperature pyrolysis 
conditions on biochar for agricultural use. Transactions of the ASABE. 2008;51:2061-2069

[22] Agblevor FA, Beis S, Kim SS, Tarrant R, Mante NO. Biocrude oils from the fast pyrolysis 
of poultry litter and hardwood. Waste Management. 2010;30:298-307

[23] Sjöström E. Wood Chemistry: Fundamentals and Applications. 2nd ed. San Diego, CA: 
Academic Press; 1993

[24] Laine J, Yunes S. Effect of the preparation method on the pore size distribution of acti-
vated carbon from coconut shell. Carbon. 1992;30:601-604

[25] Neary DG, Klopatek CC, DeBano LF, Folliott PF. Fire effects on belowground sustain-

ability: A review and synthesis. Forest Ecology and Management. 1999;122:51-71

[26] Knoepp JD, DeBano LF, Neary DG. Soil Chemistry, RMRS-GTR 42-4. Ogden, UT: US 
Department of Agriculture, Forest Service, Rocky Mountain Research Station; 2005

[27] Keiluweit M, Kleber M, Sparrow MA, Simoneit BR, Prahl FG. Solvent-extractable poly-

cyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feed-

stock. Environmental Science and Technology. 2012;46(17):9333-9341

[28] Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R. Algal biochar—Production 
and properties. Bioresource Technology. 2011;102(2):1886-1891

[29] Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop resi-
dues at different temperatures. Bioresource Technology. 2011;102(3):3488-3497

[30] Houben D, Evrard L, Sonnet P. Mobility, bioavailability and pH-dependent leaching of 
cadmium, zinc and lead in a contaminated soil amended with biochar, Chemosphere. 
2013;92:1450-1457

[31] Liu XH, Zhang XC. Effect of biochar on pH of alkaline soils in the loess plateau: 
Results from incubation experiments. International Journal of Agriculture and Biology. 
2012;14:745-750

[32] Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang J-Y, Gidarakos 
E. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricul-
tural by-products. Journal of Environmental Management. 2012;96:35-42

[33] Nguyen B, Lehmann J. Black carbon decomposition under varying water regimes. 
Organic Geochemistry. 2009;40:846-853

[34] Nguyen B, Lehmann J, Hockaday WC, Joseph S, Masiello CA. Temperature sensitivity 
of black carbon decomposition and oxidation. Environmental Science and Technology. 
2010;44:3324-3331

Engineering Applications of Biochar20



[35] Feng Y, Xu Y, Yu Y, Xie Z, Lin X. Mechanisms of biochar decreasing methane emission 
from Chinese paddy soils. Soil Biology and Biochemistry. 2012;46:80-88

[36] Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D. Effect of biochar 
amendment on yield and methane and nitrous oxide emissions from a rice paddy from 
Tai Lake plain, China. Agriculture, Ecosystems and Environment. 2010;139:469-475

[37] Lee Y, Park J, Ryu C, Gang KS, Yang W, Park Y, Jung J, Hyun S. Comparison of biochar 
properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource 
Technology. 2013;148:196-201

[38] Erin N, Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K. Physical and chemical char-

acterization of waste wood derived biochars. Waste Management. 2014;36:256-268

[39] Rondon MA, Lehmann J, Ramírez J, Hurtado M. Biological nitrogen fixation by common 
beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of 
Soils. 2007;43(6):699-708

[40] Fabbri D, Torri C. Spokas KA. Analytical pyrolysis of synthetic chars derived from 
biomass with potential agronomic application (biochar): Relationships with impacts 
on microbial carbon dioxide production. Journal of Analytical and Applied Pyrolysis. 
2012;93:77-84

[41] Liu XH, Han FP, Zhang XC. Effect of biochar on soil aggregates in the loess plateau: 
Results from incubation experiments. International Journal of Agriculture & Biology. 
2012;14:975-979

[42] Macías F, Camps Arbestain M. Soil carbon sequestration in a changing global environ-

ment. Mitigation and Adaptation Strategies for Global Change. 2010;15:511-529

[43] Chesworth W. Redox, soils and carbon sequestration. Edafologia. 2004;11:37-43

[44] Melero S, Porras JCR, Herencia JF, Madejon E. Chemical and biochemical properties in a 
silty loam soil under conventional and organic management. Soil and Tillage Research. 
2006;90:162-170

[45] Wander M. Soil Organic Matter Fractions and their Relevance to Soil Function. Soil 
Organic Matter in Sustainable Agriculture. CRC Press USA, Fred Magdoff and Ray R. 
Weil; 2004

[46] Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in 
deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277-280

[47] Kleber M. What is recalcitrant soil organic matter. Environmental Chemistry. 2010;7: 
320-332

[48] Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, 
Flessa H. Stabilization of organic matter in temperate soils: Mechanisms and their rel-
evance under different soil conditions—A review. European Journal of Soil Science. 
2006;57:426-445

Biochar: The Black Diamond for Soil Sustainability, Contamination Control and Agricultural Production
http://dx.doi.org/10.5772/intechopen.68803

21



[49] Lützow M, Kögel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger 
G, Marschner B, Kalbitz K. Stabilization mechanisms of organic matter in four temperate 
soils: Development and application of a conceptual model. Journal of Plant Nutrition 
and Soil Science. 2008;171:111-124

[50] Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and 
feedbacks to climate change. Nature. 2006;440:165-173

[51] Spokas KA, Koskinena WC, Bakera JM, Reicoskyb DC. Impacts of woodchip biochar 
additions on greenhouse gas production and sorption/degradation of two herbicides in 
a Minnesota soil. Chemosphere. 2009;77:574-581

[52] Brown R. Biochar production technology. In: Lehmann J, Joseph S, editors. Biochar for 
Environmental Management: Science and Technology. London: Earthscan; 2009. pp. 
127-146

[53] Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review 
of biochars’ potential role in the remediation, revegetation and restoration of contami-
nated soils. Environmental Pollution. 2011;159:3269-3282

[54] Spokas KA, Reicoky DC. Impacts of sixteen different biochars on soil greenhouse gas 
production. Annals of Environmental Science. 2009;3:179-193

[55] Verheijen FGA, Montanarella L, Bastos AC. Sustainability, certification, and regulation 
of biochar. Pesquisa Agropecuária Brasileira. 2012;47:649-653

[56] Karhu K, Mattila T, Bergström I, Regina K. Biochar addition to agricultural soil increased 
CH

4
 uptake and water holding capacity—Results from a short-term pilot field study. 

Agriculture, Ecosystems & Environment. 2011;140:309-313

[57] Lal AMAR. Biochar impacts on soil physical properties and greenhouse gas emissions. 
Agronomy. 2013;3:313-339

[58] Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue 
Y, Shiraiwa T, Horie T. Biochar amendment techniques for upland rice production 
in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops 
Research. 2009;111:81-84

[59] Martin SL, Clarke ML, Othman M, Ramsden SJ, West HM. Biochar-mediated reductions 
in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass and 

Bioenergy. 2015;79:39-49

[60] Mukherjee A, Lal R. Biochar impacts on soil physical properties and greenhouse gas 
emissions. Agronomy. 2013;3:313-339

[61] Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAS, Ahmedna M. Influence of 
pecan biochar on physical properties of a Norfolk loamy sand. Soil Science. 2010;175:10-14

[62] Hardie M, Clothier B, Bound S, Oliver G. Close D. Does biochar influence soil physical 
properties and soil water availability?. Plant and Soil. 2014;376:347-361

Engineering Applications of Biochar22



[63] Hossain MK, Strezov V, Yin Chan K, Nelson PF. Agronomic properties of wastewater 
sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon 

esculentum). Chemosphere. 2010;78:1167-1171

[64] Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to 
mitigate global climate change. Nature Communications 2010;1(56):1-9

[65] Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, 
Peressotti A, Vaccari FP. The Biochar option to improve plant yields: First results from 
some field and pot experiments in Italy. Italian Journal of Agronomy. 2010;5:3-11

[66] Mete FZ, Mia S, Dijkstra FA, Abuyusuf M, Hossain A.S.M.I. Synergistic effects of biochar 
and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere. 2015;25:713-719

[67] Sun Z, Bruun EW, Arthur E, de Jonge LW, Moldrup P, Hauggaard-Nielsen H, Elsgaard 
L. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy 
loam soils. Biology and Fertility of Soils. 2014;50:1087-1097

[68] Spokas KA, Baker JM, Reicosky DC. Ethylene: Potential key for biochar amendment 
impacts. Plant and Soil. 2010;333:443-452

[69] Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. Biochar reduces the bio-

availability and phytotoxicity of heavy metals. Plant and Soil. 2011;348-439

[70] Lehmann J, Rondon M. Bio-char soil nanagement on highly weathered soils in the 
humid tropics. Biological Approaches to Sustainable Soil Systems. CRC Press -Taylor 
and Francis Group, LLC; 2006. pp. 517-529

[71] Prendergast-Miller MT, Duvall M, Sohi SP. Biochar-root interactions are mediated by 
biochar nutrient content and impacts on soil nutrient availability. European Journal of 
Soil Science. 2014;65:173-185

[72] Elad Y, Cytryn E, Harel YM, Lew B, Graber ER. The biochar effect: Plant resistance to 
biotic stresses. Phytopathologia Mediterranea. 2012;50:335-349

[73] Uchimiya M, Lima IM, Klasson KT, Wartelle LH. Contaminant immobilization and nutri-
ent release by biochar soil amendment: Roles of natural organic matter. Chemosphere. 
2010b;80:935-940

[74] Dempster DN, Jones DL, Murphy DV. Clay and biochar amendments decreased inor-

ganic but not dissolved organic nitrogen leaching in soil. Soil Research. 2012;50:216-221

[75] Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. Effect of biochar amendment on sorp-

tion and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere. 
2012;89:1467-1471

[76] Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects 
on soil biota—A review. Soil Biology and Biochemistry. 2011;43:1812-1836

[77] Barrow CJ. Biochar: Potential for countering land degradation and for improving agri-
culture. Applied Geography. 2012;34:21-28

Biochar: The Black Diamond for Soil Sustainability, Contamination Control and Agricultural Production
http://dx.doi.org/10.5772/intechopen.68803

23



[78] Lehmann J. Bio-energy in the black. Frontiers in Ecology and the Environment. 
2007;5:381-387

[79] Xu X, Cao X, Zhao L. Comparison of rice husk-and dairy manure-derived biochars for 
simultaneously removing heavy metals from aqueous solutions: Role of mineral compo-

nents in biochars. Chemosphere. 2013;92:955-961

[80] Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, 
Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri PRasse DP, Weiner S, Trumbore 
SE. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49-56

[81] Zheng J, Stewart CE, Cotrufo MF. Biochar and nitrogen fertilizer alters soil nitrogen 
dynamics and greenhouse gas fluxes from two temperate soils. Journal of Environmental 
Quality. 2012;41:1361-1370

[82] Cowie AL, Downie AE, George BH, Singh B-P, Van Zwieten L, O'Connell D. Is sustain-

ability certification for biochar the answer to environmental risks? Pesquisa Agropecuária 
Brasileira. 2012;47:637-648

[83] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—A 
review. Mitigation and Adaptation Strategies for Global Change. 2006;11:395-419

[84] Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. Life cycle assessment of biochar sys-

tems: Estimating the energetic, economic, and climate change potential. Environmental 
Science and Technology. 2010;44:827-833

[85] Xie Z, Xu Y, Liu G, Liu Q, Zhu J, Tu C, Amonette JE, Cadisch G, Yong JWH, Hu S. Impact 
of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil 

organic carbon dynamics in two paddy soils of China. Plant and Soil. 2013;370:527-540

[86] Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A. Influence of biochars on nitrous oxide 
emission and nitrogen leaching from two contrasting soils. Journal of Environmental 
Quality. 2010;39:1224-1235

[87] Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X. Effect of biochar amendment 
on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous 
loamy soil from Central China plain. Plant and Soil. 2012;351:263-275

[88] Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, 
Miglietta F. Impact of biochar application to a Mediterranean wheat crop on soil micro-

bial activity and greenhouse gas fluxes. Chemosphere. 2011;85:1464-1471

[89] Mukherjee A, Lal R, Zimmerman AR. Effects of biochar and other amendments on 
the physical properties and greenhouse gas emissions of an artificially degraded soil. 
Science of the Total Environment. 2014;487:26-36

[90] Kammann C, Ratering S, Eckhard C, Müller C. Biochar and hydrochar effects on green-

house gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. Journal of 
Environmental Quality. 2012;41:1052-1066

Engineering Applications of Biochar24



[91] Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF. Influence of pyrolysis tem-

perature on production and nutrient properties of wastewater sludge biochar. Journal of 
Environmental Management. 2011;92:223-228

[92] Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H. Using bio-

char for remediation of soils contaminated with heavy metals and organic pollutants. 
Environmental Science and Pollution Research. 2013;20:8472-8483

[93] Cabrera A, Cox L, Spokas KA, Celis R, Hermosín MC, Cornejo J, Koskinen WC. 
Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-
2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sor-

bents. Journal of Agricultural and Food Chemistry. 2011;59:12550-12560

[94] Yu X, Pan L, Ying G, Kookana RS. Enhanced and irreversible sorption of pesticide 
pyrimethanil by soil amended with biochars. Journal of Environmental Sciences. 
2010;22:615-620

[95] Cao X, Ma L, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and 
atrazine. Environmental Science and Technology. 2009;43:3285-3291

[96] Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N. Sorption properties of greenwaste 
biochar for two triazine pesticides. Journal of Hazardous Materials. 2010;181:121-126

[97] Sopeña F, Bending GD. Impacts of biochar on bioavailability of the fungicide azoxys-

trobin: A comparison of the effect on biodegradation rate and toxicity to the fungal com-

munity. Chemosphere. 2013;91:1525-1533

[98] García-Jaramillo M, Cox L, Knicker HE, Cornejo J, Spokas KA, Hermosín, MC. 
Characterization and selection of biochar for an efficient retention of tricyclazole in a 
flooded alluvial paddy soil. Journal of Hazardous Materials. 2015;286:581-588

[99] Han Y, Boateng AA, Qi PX, Lima IM, Chang J. Heavy metal and phenol adsorptive prop-

erties of biochars from pyrolyzed switchgrass and woody biomass in correlation with 
surface properties. Journal of Environmental Management. 2013;118:196-204.

[100] Smernik RJ. Biochar and sorption of organic compounds. In: Lehmann J, Joseph S, 
editors. Biochar for Environmental Management: Science and Technology. London: 
Earthscan; 2009. pp. 289-300

[101] Yu X, Ying G, Kookana RS. Reduced plant uptake of pesticides with biochar additions 
to soil. Chemosphere. 2009;76:665-671

[102] Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, 
Ok YS. Biochar as a sorbent for contaminant management in soil and water: A review. 
Chemosphere. 2014;99:19-33

[103] Peng X, Ye LL, Wang C, Zhou H, Sun B. Temperature and duration-dependent rice 
straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in 
southern China. Soil Tillage Research. 2011;112(2):159-166

Biochar: The Black Diamond for Soil Sustainability, Contamination Control and Agricultural Production
http://dx.doi.org/10.5772/intechopen.68803

25



[104] Uchimiya M, Bannon DI, Wartelle LH. Retention of Heavy Metals by Carboxyl Functional 
Groups of Biochars in Small Arms Range Soil. Journal of Agricultural and Food Chemistry. 
2012;60:1798-1809

[105] Uchimiya L, Lima IM, Klasson KT, Chang S, Wartelle LH, Rodgers JE. Immobilization 
of heavy metal ions (CuII, CdII, NiII, and PbII) by Broiler litter-derived biochars in 
water and soil. Journal of Agricultural and Food Chemistry. 2010;58:5538-5544

[106] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium 
and zinc by biochar. Environmental Pollution. 2011;159:474-480

[107] Liang Y, Cao X, Zhao L, Arellano E. Biochar- and phosphate-induced immobilization of 
heavy metals in contaminated soil and water: Implication on simultaneous remediation 
of contaminated soil and groundwater. Environmental Science and Pollution Research. 
2014;21:4665-4674

[108] Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM, Influence of pyrolysis 
temperature on biochar property and function as a heavy metal sorbent in soil. Journal 
of Agricultural and Food Chemistry. 2011;59:2501-2510

[109] Uchimiya M, Chang S, Klasson KT. Screening biochars for heavy metal retention in soil: 
Role of oxygen functional groups. Journal of Hazardous Materials. 2011;190:432-441

[110] Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes MHB, Kwapiński W, Hubicki Z. Kinetic 
and adsorptive characterization of biochar in metal ions removal. Chemical Engineering 
Journal. 2012;197:295-305

[111] Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X. Removal 
of heavy metals from aqueous solution by biochars derived from anaerobically digested 
biomass. Bioresource Technology. 2012;110:50-56

[112] Essandoh M, Kunwar B, Pittman Jr CU, Mohan D, Mlsna T. Sorptive removal of sali-
cylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis bio-

char. Chemical Engineering Journal. 2015;265:219-227

[113] Chen B, Chen Z, Lv S. A novel magnetic biochar efficiently sorbs organic pollutants and 
phosphate. Bioresource Technology. 2011;102:716-723

[114] Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L. Removal 
of phosphate from aqueous solution by biochar derived from anaerobically digested 
sugar beet tailings. Journal of Hazardous Materials. 2011;190:501-507

[115] Yao Y, Gao B, Chen J, Yang L. Engineered biochar reclaiming phosphate from aque-

ous solutions: Mechanisms and potential application as a slow-release fertilizer. 
Environmental Science and Technology. 2013;47:8700-8708

[116] Sarkhot DV, Ghezzehei TA, Berhe AA. Effectiveness of biochar for sorption of 
ammonium and phosphate from dairy effluent. Journal of Environmental Quality. 
2013;42:1545-1554

Engineering Applications of Biochar26



[117] Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS. Hydrogen peroxide 
modification enhances the ability of biochar (hydrochar) produced from hydrothermal 
carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. 
Chemical Engineering Journal. 2012;200:673-680

[118] Zhou Y, Gao B, Zimmerman AR, Fang J, Sun Y, Cao X. Sorption of heavy metals on 
chitosan-modified biochars and its biological effects. Chemical Engineering Journal. 
2013;231:512-518

[119] Tang J, Lv H, Gong Y, Huang Y. Preparation and characterization of a novel graphene/
biochar composite for aqueous phenanthrene and mercury removal. Bioresource 
Technology. 2015;196:355-363

Biochar: The Black Diamond for Soil Sustainability, Contamination Control and Agricultural Production
http://dx.doi.org/10.5772/intechopen.68803

27




