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Abstract

The technological and biomedical applications of low toxicity and eco-friendly organic 
compounds are nowadays increasingly attracting the attention of researchers in nano-
science, who are aiming for more biocompatible and nanostructured systems for their 
application in antineoplastic therapies. This study presents the significance of “green 
components” in the production of graphene, metallic, and semiconductor nanoparticles, 
due to their antioxidant and antitumor properties. The formation of nanostructures is 
caused during green synthesis methods by organic molecules or carboxylic acid groups 
present in some plant extracts; for this reason, we include here a recapitulation and 
analysis of the role of carboxylic acids in those systems (organic). Furthermore, we pro-
pose the use of the extract from Opuntia ficus-indica cladodes to obtain metallic and car-
bon nanostructures, as an alternative biosynthesis method for the development of future 
nanobiotechnological applications.

Keywords: green synthesis, nanoparticles synthesis, carbon nanostructures, carboxylic 

acid

1. Introduction

Several nanoparticle synthesis methods are applied nowadays in different scientific fields; 
furthermore, based on the type of process (physical, chemical, or biological) and the condi-

tions the synthesis is undertaken, they allow a control of the shape of the material, thus man-

aging their application more accurately [1, 2]. With the objective of adopting eco-friendly 

methods that help to reduce the pollution caused by some toxic compounds and to exploit 

the local natural resources, the biosynthesis of nanostructured materials (green methods) 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



has been undertaken through antioxidant microorganisms and agents obtained from local 

plant extracts [3–5]. Thus, the use of green synthesis in nanotechnology is fundamental in 

scientific research in nanoscience, mainly, in order to find medical applications of the nano-

structures that reduce toxicity risks while being biocompatible [6–8]. There is evidence of 

nanoparticles obtained through size-tunable biosynthesis [9, 10] and different technological 
and biocompatible applications. For instance, Ag nanoparticles show antibacterial and anti-

tumor properties and have potential use in antineoplastic treatments [11–14]; furthermore, 

they are applicable in SERS (surface-enhanced Raman spectroscopy) [15]. Gold nanoparticles 

between 20 and 25 nm present catalytic activity [16], and ZnO nanoparticles with a range 

between 9.6 and 25.5 nm present antibacterial and photocatalytic applications [17]. Pooja et 

al. synthesized biocompatible gold nanoparticles using karaya gum, which can be used in 

the elaboration of antineoplastic medications [18]. Biocompatible silver nanoparticles were 

obtained from the extract of Rosa damascen petals, which have anticarcinogenic properties 

against pulmonary adenocarcinoma [19]. Patra et al. synthesized gold and silver nanopar-

ticles with Butea monosperma leaves; this nanoparticle system inhibits the growth of cancer 

cells, and these authors consider that the synthesis of these nanoparticles is important in 

biomedicine for the development of cancer treatments [20]. The biosynthesis of nanostruc-

tured systems thus appears to be a valuable tool for nano-biotechnological applications in 

nanoscience around the world.

Similarly, the green synthesis is used in the graphene and bimetallic nanoalloys obtained. 

Coconut water and pomegranate juice were reported as reducing and capping agents of 

graphite oxide (OG) to obtained graphene [21, 22]. Other authors have obtained Au-Ag bime-

tallic nanoparticles with pomegranate juice [23] and extract from leaf of mahogany [24], as 

well as the bioreduction synthesis in bimetallic nanostructure-type core/shell of Ti/Ni between 

1 and 4 nm employing Medicago sativa [25]. Sheny and collaborators used plant extract of 

Anacardium occidentale for the formation of bimetallic nanoparticles of Au-Ag, considering 

that polyols play an important role in the reduction of metal ions [26].

Table 1 lists a variety of plants that have been recently used for the synthesis of metallic, bime-

tallic, and semiconductor nanoparticles.

Nanoparticle Plant extract Size Reference

Ag Atrocarpus altilis 34 nm; 38 nm [27]

Artocarpus heterophyllus Lam. 10.78 nm [28]

Vigna sp. L 24.35 nm [29]

Hydrangea paniculata 36–75 nm [30]

Andrographis paniculata 13–27 nm [31]

Ficus religiosa 5–35 nm [32]

Alternanthera sessilis Linn 20–30 nm [33]

Lycium barbarum 3–15 nm [34]

Osmanthus fragrans 2–30 nm [35]

Sambucus nigra 26 nm [36]
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Nanoparticle Plant extract Size Reference

Au Citrus limon 32.2 nm [37]

Morinda citrifolia 12.1–38.2 nm [38]

Terminalia arjuna 20–50 nm [39]

Zingiber officinale 5–15 nm [40]

Dillenia indica 5–50 nm [41]

Plumeria alba flower 15.6 ± 3.4 nm [42]

Citrus maxima 25.7 ± 10 nm [43]

Gloriosa superba 20 nm [44]

Cinnamomum zeylanicum 25 nm [45]

Cassia auriculata 15–25 nm [46]

Cu Ginkgo biloba 15–20 nm [47]

Tamarind and lemon juice 20–50 nm [48]

Pt Azadirachta indica 5–50 nm [49]

Pd Chlorella vulgaris 5–20 nm [50]

Catharanthus roseus 38 nm [51]

Fe Citrus maxima 10–100 nm [52]

Eucalyptus 20–80 nm [53]

Ni Ocimum sanctum 12–36 nm [54]

Au-Ag Antigonon leptopus 10–60 nm [55]

Gloriosa superba 10 nm [44]

Guazuma ulmifolia 10–25 nm [56]

Ocimum basilicum 3–25 nm [57]

Commelina nudiflora 20–80 nm [58]

Au-Pd Cacumen platycladi ~7 nm [59]

CuO Calotropis gigantea 20–30 nm [60]

Carica papaya 140 nm [61]

Punica granatum 10–100 nm [62]

ZnO Solanum nigrum 20–30 nm [63]

Ocimum basilicum L. 50 nm [64]

Agathosma betulina 15.8 nm [65]

Aspalathus linearis 4.08 nm [66]

TiO
2

Jatropha curcas L. 25–50 nm [67]

Eclipta prostrata 49.5 nm [68]

Cicer arietinum L. 14 nm [69]

SnO
2

Aspalathus linearis 2.1–19.3 nm [70]

NiO Agathosma betulina 15–55 nm [71]

Table 1. Plant extracts used in the synthesis of metallic, bimetallic, and semiconductor nanoparticles.
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2. The role of carboxylic acids in nanoparticles

Nano-biosynthesis is classified as a chemical method that promotes the growth of a system by 
the aggregation of the metallic atoms reduced from the atoms in precursor solutions. Literature 

reports show that certain organic compounds are responsible for oxidation-reduction (redox) 

reactions, which trigger the formation and stabilization of nanoparticles. For instance, in the 

cases of the biometallic alloys Au, Ag, and Au/Ag, it is observed that polyphenols and polyoles 

that carry antioxidant properties present in plants have an important role in the formation 

of nanostructures [24, 72–74]. Quercetin (a flavonol with high antioxidant activity [75]) also 

appears in the reports as a main component in the formation of metallic nanostructures [76]. 

It is thus important to highlight the role that the antioxidant activity of the substances used in 

biosynthesis has on the fabrication of nanoparticles. Similarly, literature reports that carboxylic 

acids are commonly used in biological methods as reducing and sometimes stabilizing agents 

in the production and application of these materials. Yoosaf et al. show that it is possible to 

stabilize nanoparticles through electrostatic interactions with carboxylic groups (using gallic 

acid), which adhere to the surface of the nanoparticles [77]. This argument is supported by 

Amornkitbamrung et al. who attribute the reduction of Pd+2
→Pd0 to the functionality of the 

carboxylate ion (R-COO-) [78]. On the other hand, Hosseini-M et al. address that carboxylic 

acids are crucial in the morphology, size, and distribution of Fe
3
O

4
 nanoparticles; furthermore, 

they present a co-catalyst effect [79]. Au nanoparticles were synthesized with dicarboxylic acids 

(oxalic, malonic, succinic, glutaric, and adipic) as reducing agents of HAuCl
4
, without the pres-

ence of any other surfactant agents, the synthesis resulted in different morphologies and SERS 
applications [80]. Similarly, other reports reiterate the importance of the carboxylic groups in the 

formation of nanoparticles [81, 82]. On nonmetals, Dwivedi et al. obtained selenium nanopar-

ticles of 40–100 nm using carboxylic acids (acetic, oxalic, and gallic acids) for the synthesis 

method [83]. Propionic acid is used as a stabilizing agent in the fabrication of ZnO quantum 

dots (3.6–5.2 nm) [84]; similarly, carboxylic acids were used in manganese oxide nanoparticles, 

which work as catalysts in the conversion of CO to CO
2
 [85]; additionally, pimelic dicarboxylic 

acid is used as a nucleating agent for the synthesis of TiO
2
 nanoparticles [86]. Thus, the carbox-

ylic acid groups stick to nanoparticles transferring stability (Figure 1), as reported by Zhi-Mei 

Qi et al. who synthesized gold nanoparticles through infrared (IR) spectroscopy [81].

Carboxylic acids are the most common type of organic acids in the carboxylic group (made 

by the fusion of one hydroxyl and carboxyl group) at the extreme end of the carbon chain. 

Under certain conditions, proton donors transfer H+ hydrons through heterolysis. The general 

formula of the carboxylic acid group is R-COOH, where R is a monovalent functional group 

(one hydrogen or carbon chain), when the carbon structure is replaced by t   

wo functional carboxylic groups, the acid is dicarboxylic acid (HOOC-R-COOH). When the 

proton H+ is transferred to the remaining ion, the formula changes into R-COO- carboxylate 

[87]. These acids are used in the food and pharmaceutical industries and in the manufacture 

of detergent and surfactant agents, among other applications [88]. Recent reports have dem-

onstrated that when COOH groups are applied to certain biological complexes, they present 

excellent antitumor and antioxidant activity [89]; furthermore, other reports indicate that the 

carboxylic acids in Rhinacanthus nasutus show antiviral activity [90].
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The use of these compounds in the synthesis processes of metallic and nonmetallic 

nanoparticles is increasing due to the biocompatible and antioxidant properties of car-

boxylic acids.

Table 2 shows scientific reports on carboxylic acids used in biosynthesis for the production of 
nanomaterials; the table focuses on the different applications of the acids. In regard to the reduc-

tion-oxidation process of metallic ions, Zoya Zaheer and Rafiuddin [91] propose a reduction 

Figure 1. Representation of the electrostatic interaction of the carboxylic acid group on the nanoparticles.

Carboxylic acid NPs Size (nm) Function report. used as: Reference

Formic acid Ag

Pd

13–25

4.1–5.7

Formic acid—used as a solvent and reducing 

agent of Ag precursor.

Formic acid as a reducing agent in the 

presence of polyvinylpyrrolidone (PVP) for the 

synthesis of size-tunable Pd NCs.

[92]

[93]

Propionic acid Au 12–41 Functionalization of gold nanoparticles 

synthesized on reaction of propionic acid with 

aqueous HAuCl
4
.

[94]

Caprylic acid Au 5–15 Gold NPs—synthesized by reduction 

technique-based redox-active amphiphiles 

(e.g., caproic acid, caprylic acid, and capric 

acid).

[95]

Nonanoic acid Ag 7.6 Silver nanoparticles—stabilized in nonanoic 

acid. Capping agent.

[96]

Oxalic acid Ag 3.5–9 Colloidal silver nanoparticles were prepared 

with oxalic acid in the presence of CTAB.

[97]

Green Synthesis of Metallic and Carbon Nanostructures
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mechanism of Ag+ by oxalic acid (HOOC-COO-) with CTAB as the stabilizing agent; the reduc-

tion mechanism takes place in an aqueous solution with a pH control of pK = 1.2 and pK2 = 4.2.

Since the organic compounds of carboxylic acids can be found in nature (for instance, in 

plants such as fungi) and they are not harmful for human consumption or the environment, 

Carboxylic acid NPs Size (nm) Function report. used as: Reference

Malic acid Ag ~10 Citric acid present in S. lycopersicums fruit 

extract is used as reducing agent and malic 

acid is used as capping agent of the bioreduced 

silver nanoparticles.

[98]

Gallic acid Au@Pt ~50 nm Gallic acid (GA) as both a reducing and a 

protecting agent.

[99]

Acetic acid CuS

CuInSe
2

5

400

CuS nanoparticles using carboxylic acid (acetic, 

propionic) as a solvent have been developed

The CuInSe
2
 nanoparticles for thin-film solar 

cells were synthesized using acetic acid as a 

mineralizer.

[100]

[101]

Decanoic acid ZnO 100 Zinc oxide (ZnO) nanoparticles were examined 

using surface modifiers (oleic acid and 
decanoic acid) in supercritical methanol.

[102]

Lauric acid Fe
3
O

4

Ag

9.4 ± 2.3

8

The nanostructured material was coated with 

lauric acid.

Capping agents.

[103]

[104]

Trifluoroacetic acid TiO
2

5 Trifluoroacetic acid—used as an electron 
scavenger and a morphological control agent.

[105]

Benzoic acid ZnO 5–50 ZnO precursors—obtained by the intimate 

mixing of zinc acetate dihydrate and carboxylic 

acids as capping agents.

[106]

Glutaric acid Ag

NiO-Ni

30–50

22–41

The morphologies of silver nanoparticles are 

impacted by glutaric acid.

Nanocomposite has been fabricated via the 

thermal decomposition of nickel salts by using 

glutaric acid as a spacer agent.

[107]

[108]

Table 2. Influence of some carboxylic and dicarboxylic acids on the synthesis of nanoparticles.
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they are used in the food and pharmaceutical industries. Studies on the synthesis of metallic 

and semiconductor nanoparticles are beginning to be used in these fields in order to improve 
processes that are beneficial to the environment and human beings. It is important to mention 
that some carboxylic acids functionalized with nanoparticles are also used in technological 

applications (Scheme 1).

A recent study shows a simpler unsaturated carboxylic acid (acrylic acid) that works with 

silver nanoparticles in the process of membrane filtration that avoids nanoparticles to adhere 
to the surface of the modified membranes, which at the same time show antibacterial/bacte-

riostatic properties [109]. The main reaction of acrylic acid is polymerization; thus, it is com-

monly used in the production of plastics, paints, and adhesives. Due to these characteristics, 

Ag nanoparticles modified with polyacrylic acid was produced by the redox method showing 
excellent water solubility, stability, and biocompatibility, as well as antibacterial properties 

against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa [110]. Nanoparticles 

and formic acid have a similar role, since the electrochemical oxidation process of formic acid 

is an efficient energy supplier in direct formic acid fuel cells (DFAFCs) for mobile and portable 
applications [111–113]. The biodegradability and low cost of formic acid makes it a valuable 

resource in energy storage, in spite of its toxicity [114–117]. Thus, metallic and bimetallic 

nanoparticles Pt [118], Pt-Cu [119], Pt-Au [120, 121], Pd-Ag [122], and so on are used as cata-

lysts in the electro-oxidation of formic acid.

Reports also show oxalic acid functionalized with biocompatible magnetite nanobars (oxalic 

acid-Fe
3
O

4
) prepared through the co-precipitation method for applications in electrochemical 

Scheme 1. Some nanobiotechnological applications of carboxylic acids functionalized with nanoparticles.
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biosensors [123]. Additionally, oxalic acid and malic acid play an important role in the syn-

thesis of tungstite nanoplates and nanoflowers (hydrated tungsten oxide: WO
3
⋅H

2
O) which 

show photocatalytic properties [124, 125]. Sedira et al. show that Ag nanoparticles oxidize 

easily in aqueous solutions, which in combination with acetic acid cause the liberation of 

Ag+ and improve the bactericidal effect in a higher range than with zinc oxide quantum dots 
[126]. Similarly, benzoic acid in the surface of TiO

2
 nanorods increases the power conversion 

efficiency of dye-sensitized solar cells (DSSCs), becoming at the same time an alternative and 
efficient method for the production of electrodes based on TiO

2
 nanorods [127]. It has been 

shown recently that the synthesis of Se nanoparticles induced by carboxylic acids (acetic acid, 

pyruvic acid, and benzoic acid) has antitumor properties with good potential in the treat-

ment of Dalton’s lymphoma (DLA) cancer cells [128]. On the other hand, caffeic acid (contain-

ing the functional groups phenolic and acrylic) is used as a reducing and stabilizing agent 

in the preparation of silver nanoparticles, which show antitumor properties and works as 

an alternative agent in human hepatoma therapies [129]. Reports show that green synthesis 

of gold nanoparticles obtained with chlorogenic acid presents anti-inflammatory properties; 
additionally, it has promising applications in nanomedicine [130]. Maleic acid (dicarboxylic) 

functionalized with gold nanoparticles is used in the colorimetric detection of high efficiency 
of lead [131]; correspondingly, copper nanoparticles functionalized with carboxylic acid act 

as catalysts, when reducing 2-nitrophenol to 2-aminophenol in a few minutes [132]. Hence, it 

can be concluded that the different applications of metallic and nonmetallic nanoparticles in 
combination with organic agents such as carboxylic groups are of great importance in future 

medical applications for the development of antineoplastic therapies.

3. Biosynthesis of nanoparticles with Opuntia ficus-indica

The cladodes from O. ficus-indica are characterized by their antioxidant properties, vitamin con-

tent, and by the presence of flavonoids and gallic acids [133–137], in addition to their content 

of uronic acid, a type of sugar acid with carbonyl and carboxylic functional groups [138]. In 

recent studies, gallic acid is used as a reducing and stabilizing agent in the mass production 

of silver nanoparticles with antioxidant properties and low cytotoxicity for normal cells [139, 

140]. Similarly, biocompatible gold nanoparticles are synthesized at environment temperature 

through the reduction of HAuCl
4
 with gallic acid and poly-(N-vinyl-2-pyrrolidone) (PVP) [141]. 

Thus, carboxylic organic agents (gallic and uronic acids) in the cladode extract are responsible 

for the reduction and stabilization of the nanoparticles (Figure 2).

O. ficus-indica is well known for its anti-diarrheal, anti-inflammatory, antiviral, and anticarcinogen 
properties [142, 143], as well as for being used in treatments for diabetes and indigestion. The plant is 

commonly used as a nutritional complement, and its fruits and cladodes can be consumed in salads 

[144–146]. In general, this plant contains vitamins, minerals, and sugars, indispensable for human 

health. A recent study by E. Ramirez M et al. reports that O. ficus-indica cladodes improve the physi-

cochemical properties of corn tortillas [147]; additionally, it increases the antioxidant activity in the 

blood and plasma of humans [148]. Furthermore, the extract has better anti-inflammatory potential 
than the drug indometacin [149]. Similarly, metallic and nonmetallic nanoparticles obtained with 

ecological methods are pioneering in the same fields as the extract O. ficus-indica (Scheme 2).
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For instance, silver nanoparticles obtained from the extracts of R. indica and European black elder-
berry show anti-inflammatory properties [150, 151]. Gold nanoparticles from Inonotus obliquus 

show antioxidant activity [152]. Synthesized ZnO nanoparticles from the root of Polygala 
tenuifolia show antioxidant and anti-inflammatory activity [153]. In the same way, Au and Ag 

nanoparticles obtained by biosynthesis are powerful nanomaterials in the control of diabetes 

[154–156]. Thus far, literature only reports in vitro studies with antibacterial activity using O. 
ficus-indica extract, applied in the biofabrication of silver nanoparticles, considering the syner-

gic affects against E. coli and S. aureus [133]. As a consequence, the organic agents such as car-

boxylic acids, in the cladode extract of O. ficus-indica, and the nanoparticles obtained through 

eco-friendly methods, can improve the nanobiotechnological applications; furthermore, they 

secure innovative developments of the several application fields and the modern technology. 
It is still necessary to develop studies in order to validate the hypotheses presented in this 

study, concerning the nanoparticles obtained from the extracts from the cladodes.

4. Experimental section

4.1. Metallic nanoparticles

In this study, we synthesized metallic nanoparticles Ag, Au, Cd, Cu, Pb, and Ti with cladodes 

from O. ficus-indica in a colloidal medium. The synthesis presented excellent stability during 

long periods of time. The following were used as precursors during the synthesis processes: 
Nitrates AgNO

3
; Cu(NO

3
)

2
; Pb(NO

3
)

2
; Cd(NO

3
)

2
; Chlorides: HAuCl

4
. Small fragments of metal 

underwent a thermal treatment in nitric acid for the synthesis of Ti nanoparticles (Figure 2). 

Metal 

Ions ++
Uronic 

Gallic 

Metallic 

NPs 

O. ficus-indica

cladodes 

d

Figure 2. Carboxylic acids in O. ficus-indica play an important role in the formation of nanoparticles.

Antioxidant Anti-inflammatory Anti-viral Anti-cancer Anti-diabetic 

O. ficus indica Nanoparticles 

Scheme 2. Nanoparticles and cladodes from O. ficus-indica have similar range of technological applications.
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The method used in this study was made in collaboration with other authors [157]: 25 g of the 
cladode was mixed in 50 ml of deionized water; subsequently, the solution underwent ther-

mal treatment at a constant temperature of 60°C, and magnetic agitation for 1 h. The resulting 

solution is then filtered obtaining the O. ficus-indica extract. Three milliliters of the extract is 

mixed with 25 ml of the precursor solutions (nitrate and chlorides) for the reduction of the 

metallic ions. The solution undergoes the same thermal treatment and magnetic agitation 

described above. The nanoparticles are formed and stabilized during these processes.

4.2. Carbon nanostructures

The organic molecules containing the O. ficus-indica extract may have hydrophilic proper-

ties. This represents of the extract of the plant a strong candidate for the obtaining of laminar 

materials of carbon and small quantum dots both in colloidal means.

To obtain a few graphene sheets from commercial graphite, 5 ml of the extract of O. ficus-indica 

was used as mentioned in the previous section. Subsequently, 2 g of commercial graphite was 

added to 50 ml of deionized water and mixed with 5-ml extract of O. ficus-indica. The mixture 

was kept in an ultrasonic bath for 30 min. Finally, floating material was collected on the liquid 
surface with a slightly bright hue, to be analyzed by transmission electron microscopy (TEM), 

Raman, and X-ray photoelectron spectroscopy (XPS). To obtain carbon quantum dots (CQDs), 

a mixture with the same components was maintained under magnetic stirring and at 50°C for 

30 min and then subjected to an ultrasonic bath for 30 min. In the first minutes of subjecting 
the sample in the ultrasonic bath, a tone change in the surface of the liquid is observed. In the 

same way, floating material was collected on the surface of the liquid, finding small CQD.

5. Results and discussions

Nanoparticles of the precursors mentioned in the experimental section were obtained 

and characterized by transmission electron microscopy. In the case of the silver nanoparti-

cles, these mainly presented particle sizes that oscillate between 2 and 4 nm, and few cases 

are observed with sizes between 10 and 15 nm (Figure 3a). In both cases, morphologies of 

spherical type are observed. For the case of the precursor HAuCl
4
 after performing the syn-

thesis process mentioned in the experimental section, gold nanoparticles with different mor-

phologies such as triangular, pentagonal, hexagonal, and quasi-spherical were obtained. 

The mentioned macroscopic parameters allowed a diversity of morphologies for this precursor 

as seen in Figure 3b. In the case of cadmium nanoparticles (Figure 3c), an irregular shape with 

sizes located between 2 and 8 nm approximately was obtained.

In some cases, the organic molecules contained in the plant extract are manifested by inter-

acting with the surface of the nanoparticle, possibly as a consequence of molecular affinity. 
As is the case with copper nanoparticles (Figure 3d), in these, a region between 2 and 3 nm 

in thickness is observed that surrounds a nanoparticle with a diameter of approximately 10 

nm. Another similar case was presented when synthesizing titanium nanoparticles; in the 

TEM image (Figure 3f), we observed clusters of nanoparticles were stabilized by an organic 
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medium. The nanoparticles of titanium have sizes located at approximately 5 nm; we assume 

that this stabilizing medium may contain ascorbic acid, starches, proteins, and various vita-

mins naturally contained in the extract of the plant O. ficus-indica.

On the other hand, when using PbNO
3
 as a precursor of lead nanoparticles by the synthesis 

method presented, nanoparticles below 10 nm were obtained with well-defined crystalline 
phase as seen in Figure 3e. For the case of the synthesized metallic nanoparticles, we observed 

that the extract of O. ficus-indica facilitates the obtaining for a size smaller than 10 nm. This has 

several advantages for analyzing biomedical applications such as drug delivery, therapeutic 

applications, bioimaging, and magnetic energy storage [158–160].

For the laminar carbon nanostructures obtained by green synthesis methods, there are currently 

published results that start from graphite oxide as a precursor [161, 162]. In the present inves-

tigation, we use commercial graphite as a precursor, further reducing the costs of synthesis for 

the nanostructured laminar final product. Figure 3g and h show graphene layers made up of 

less than 10 layers. These were obtained by the simple ultrasonic sonication method shown in 

the experimental section. We assume that the method presented can be made repeatedly until 

a smaller number of graphene sheets are obtained because the hydrophilic components in the 

extract of O. ficus-indica favor the exfoliation.

*

*

Ag NPs 

a 

Au NPs Cd NPs 

Pb NPs Ti NPs Cu NPs 

b c 

d e f 

Graphene 

g 

Graphene 

h 10 nm 

Carbon Quantum dots

i 

Figure 3. TEM images of metallic nanoparticles and carbon nanostructures synthesized with cladode extract from O. 
ficus-indica. a) Ag Nps, b) Au Nps, c) Cd Nps, d) Cu Nps, e) Pn Nps, f) Ti Nps, g) Graphene, h) Graphene, i) Carbon 

Quantum dots.
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The use of green synthesis to obtain CQD is rarely documented. Few numbers of articles show 

evidence of the synthesis of CQD using plant extract [163, 164]. By combining the O. ficus-
indica plant extract with a small amount of commercial graphite and maintaining the mixture 

at 60° C for 1 h, it was possible to collect the surface liquid from the solution for further 

analysis by TEM and to find CQD (Figure 3i). In the same way as the metallic nanoparticles, 

the extract allowed to obtain CQD with a size smaller than 5 nm. This favors the applications 

of chemical sensors, photodetectors, and so on [165, 166].

6. Optical properties in metallic nanoparticles

As is well known, the metallic and semiconductor nanoparticles have new optical properties 

in relation to the bulk material. These properties can be detected by ultraviolet/visible spec-

troscopy (UV/Vis) and are associated with the existence of surface plasmon. Surface plasmon 

resonance (SPR) physically represents the oscillation of free electrons on the surface of the 

nanoparticles, constituting a characteristic fingerprint of each nanostructured material. The 
nanoparticles obtained using the extract of O. ficus-indica were analyzed experimentally by 

UV/Vis spectroscopy. All spectra were considered from 200 to 800 nm.

In the case of silver nanoparticles, these showed an absorption band centered on 390-nm char-

acteristic of the SPR due to quantum confinement in silver, as seen in Figure 4a. The depen-

dence of the location of the SPR is associated with the morphology of the nanostructures as 

well as the size. Silver nanostructures can be found in the literature with an SPR located at 

408, 430, 440, and so on [167–169], associated with different sizes of silver nanoparticles.

The gold nanoparticles probably represent the most studied metal nanostructured in terms of 

behavior and shifts of SPR. The gold nanoparticles have absorption bands located at 500, 550, 

800, and so on, for nanoparticles with different morphologies. This indicates the dependence 
and sensitivity of the location of the SPR with the morphology of the gold nanostructures 

[170–172]. The gold nanoparticles obtained in this work show a large amplitude absorption 

band associated with the presence of the SPR centered at 55 nm. We assume that this band 

implicitly considers the contribution of several SPRs associated with the different morpholo-

gies obtained, as shown in Figure 4b. This can be seen in the large amplitude of the absorption 

band, with a range from 500 to 670 nm. For cadmium nanoparticles, an absorption band cen-

tered at 232 nm is shown in Figure 4c. For lead, there are reports of nanocubes with absorp-

tion bands located at approximately 320 and 400 nm [173]. A band detected at 300 nm was 

associated with SPR due to the confinement in these lead nanoparticles (Figure 4e).

The obtained copper nanoparticles had a well-defined absorption band centered at 580 nm 
approximately as shown in Figure 4d. The synthesis of copper nanoparticles it faces to copper 

oxidation easily in a colloidal medium, the extract of O. ficus-indica facilitates the stabilization 

of these nanoparticles. Prabsash et al. obtained nanoparticles of copper with a size of 10 nm, 

using chemical reduction by the reducing agent sodium borohydride [174].

On the other hand, titanium (metal) nanoparticles are difficult to find in the literature. There 
are reports from Mohammadi and Halali who used the electromagnetic levitation melting gas 
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method to evaporate titanium particles [175]; the nanoparticles obtained by them have sizes 

between 28 and 40 nm. Although the method presented is effective, it represents a require-

ment of special equipment to carry out the synthesis of titanium nanoparticles. The titanium 

nanoparticles obtained in the present work were based on the modified method presented 
by R. Britto et al. [176], varying slightly the amount of extract of the plant O. ficus-indica. The 

absorption band obtained for titanium nanoparticles (Figure 4f) was located at 350 nm, asso-

ciated with the SPR of this metal.

Figure 4. Optical absorbance of metallic nanoparticles synthesized by O. ficus-indica extract.
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7. Conclusions

In conclusion, the current importance of organic agents functionalized with nanoparticles in 

the nanotechnological and biomedical fields has been exposed in this study. The properties 
of carboxylic acids make the fabrication of biocompatible nanostructured systems attractive 
for future attention. The biosynthesis process used in the fabrication of graphene layers and 
nanoparticles initiates an ecological and low-cost alternative in biocompatible applications 

for the treatment of diseases, mainly for antineoplastic therapies. The cladode extract from 

O. ficus-indica is highly efficient in the formation of nanoparticles, which can play an impor-

tant role in the biocompatibility for the benefit of health and nutrition. Metallic and nonmetal-
lic nanoparticles with nanobiotechnological applications synthesized with ecological methods 

(carboxylic groups) will be a fundamental tool for biocompatible applications in nanoscience 

and nanotechnology.
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