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Abstract

Agrobacterium tumefaciens, a plant pathogen, is commonly used as a vector for the intro-
duction of foreign genes into plants and consequent regeneration of transgenic plants. A. 
tumefaciens naturally infects the wound sites in dicotyledonous plants and induces diseases 
known as crown gall. The bacterium has a large plasmid that induces tumor induction, 
and for this reason, it was named tumor-inducing (Ti) plasmid. The expression of T-DNA 
genes of Ti-plasmid in plant cells causes the formation of tumors at the infection site. The 
molecular basis of Agrobacterium-mediated transformation is the stable integration of a 
DNA sequence (T-DNA) from Ti (tumor-inducing) plasmid of A. tumefaciens into the plant 
genome. A. tumefaciens-mediated transformation has some advantages compared with 
direct gene transfer methods such as integration of low copy number of T-DNA into plant 
genome, stable gene expression, and transformation of large size DNA segments. That is 
why manipulations of the plant, bacteria and physical conditions have been applied to 
increase the virulence of bacteria and to increase the transformation efficiency. Preculturing 
explants before inoculation, modification of temperature and medium pH, addition chemi-
cals to inoculation medium such as acetosyringone, changing bacterial density, and co-
cultivation period, and vacuum infiltration have been reported to increase transformation. 
In this chapter, four new transformation protocols that can be used to increase the transfor-
mation efficiency via A. tumefaciens in most plant species are described.

Keywords: Agrobacterium tumefaciens, gene transfer, gamma radiation, magnetic field, 
squirting cucumber’s fruit juice, osmotic pressure

1. Introduction

Genetic engineering could use the genetic resources that exist in nature without any limitation. 

With the use of these techniques, a gene cloned to an organism from any living being (human, 
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animal, plant, and microorganisms) could be easily transferred. For instance, a gene cloned 

from bacteria could be placed in the plant cell to give resistance to the pests, and this trans-

fer gives an opportunity for the production of the organisms expressed as “genetically modi-

fied” or transgenic. These transferred genes replicate with the natural plant genes after they are 
placed in the organism and produce protein. The process of the studies on modern technology 

includes (i) recognizing, (ii) characterizing, (iii) isolating, and (iv) transferring desired genes to 

new hosts.

The basis of the techniques used for gene transfer to plants is the integration of a DNA seg-

ment including the gene of interest into chromosomes of the plant cells and thereof the recov-

ery of transgenic plants from transformed cells by using tissue culture methods. In general, 

the rate of transformed cells in tissue is quite low. That is why the prerequisite of success in 

gene transfer is high-frequency shoot regeneration. Most commonly used technique in gene 

transfer to plants is the bacterium Agrobacterium tumefaciens. A. tumefaciens is known as a 

“natural genetic engineer of plants” due to this trait [1]. Agrobacterium-mediated transforma-

tion method has been a widely used gene transfer method. The advantages of the method are 

wide host range of plants: agronomically and horticulturally important crops including soy-

bean, cotton, rice, wheat, flowers, and various trees [2] and transferring a small copy number 

of the transfer-DNA (T-DNA) into the cytoplasm and resulting in stable integration into plant 

chromosome. Although it has merits as compared to other transformation methods, such as 

particle bombardment, electroporation, and silicon carbide fibers, it is still hard to achieve 
high transformation efficiency and gene expression using this method.

2. Molecular mechanism of A. tumefaciens-mediated DNA transfer

Agrobacterium, of the family Rhizobiaceae, is a genus of Gram-negative bacterium that geneti-

cally transforms host plants and causes crown gall tumors at wound sites [3] (Figure 1). 

Agrobacterium can transfer DNA to a broad group of organisms: plants, fungi such as yeasts, 

ascomycetes, and basidiomycetes, and protist such as algae [4, 5]. Agrobacterium is usually clas-

sified by the disease symptomology (type of opine) and host range. The genetic  mechanism of 

Figure 1. Crown gall in sugar beet caused by wild (oncogenic) Agrobacterium strain.
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host range determination is still obscure, but it was reported that several virulence (vir) genes 

on the tumor-inducing (Ti) plasmid, virC [6], virF [7], and virH [8] were involved in determi-

nation for the range of plant species.

Bacterial recognition of monosaccharide and phenolic compounds secreted by the plant 

wound site initiates the tumor induction. “Activated” Agrobacterium transfers a particular 

gene segment called transfer DNA (T-DNA) from the Ti plasmid. After T-DNA is stably inte-

grated into the chromosomal DNA in the nucleus of the host plant, genes for opine synthesis 

and tumor-inducing factors on the T-DNA are transcribed in the infected cells. This expres-

sion of the foreign gene in the host plant results in neoplastic growth of the tumors, providing 

increased synthesis and secretion of opine for bacterial consumption [9]. Opine is the conden-

sation of an amino acid with a keto acid or sugar and is a major carbon and nitrogen source 

for Agrobacterium growth. Different A. tumefaciens strains produce different opine phenotypes 
of crown gall tumors because a particular opine expressed in the tumor is used for particular 

bacterial growth. Most common Agrobacterium strains produce an octopine or a nopaline form 

of opines [10]. Octopine and nopaline are derivatives of arginine. Agropine is discovered in 

octopine-type tumors, and it is derived from glutamate [11].

The studies on (virulent) Agrobacterium strains that create tumor have demonstrated that a 

small and round DNA molecule that exists in bacterium with a size of 150–250 kb creates 

tumor and opine synthesis [1]. This DNA molecule that exists in A. tumefaciens bacterium is 

called Ti (tumor inducing) plasmid [12]. Several components of Agrobacterium are necessary 

for transferring the piece of bacterial DNA into the plant cell [13]. These are the following:

1. The region on the Ti plasmid is called the transfer DNA (T-DNA) [14]. The T-DNA region 

is a small segment that integrates into the plant genome by being transferred from bac-

terium into the plant cell [15]. Previous studies have demonstrated that some genes in 
the T-DNA region (TMS1, TMS2 and TMS3) induce tumor genesis and opine synthesis 

in infected cells [16].

 The T-DNA region of octopine and nopaline type plasmids is marked by right and left 

borders of 25 bp long random nucleotide sequences, and they have the genes that form 

tumor [17]. Previous studies have shown that any DNA segment inserted between these 
borders is easily transferred into the plant cell. Besides, it has been found out that remov-

ing the genes that forms tumor from the T-DNA region via restriction enzyme does not 

affect gene transfer into the plant cell [1]. The plasmids with no genes that form tumor are 

named as nononcogenic Ti-plasmids.

2. The second condition that plays an important role in gene transfer from Agrobacterium to 

the plant cell is the virulence (vir) region that is outside of the T-DNA and close to the left 

border with a nearly 25 kb length. Previous studies have shown that vir region contains 

six main genes (virA, virB, virC, virD, virE, and virG) [18]. VirA codes for a receptor that 

detects and correlates with phenolic compounds leaking out of damaged plant cells, and 

as a consequence, virG is stimulated. Stimulated VirG takes charge of the transcription 

operator task for itself and the other vir genes. virC enables to separate from the borders, 

while virD gene provides the regeneration of the T-DNA strand; virB and virE genes 

facilitate the move of the T-DNA from the bacterium to the plant cell [19].
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3. The third condition that is influential in gene transfer into the plant cells is the com-

pounds coded by three loci (chvA, chvB and pscA) in the chromosomes of Agrobacterium, 

being of great importance for the bacterium to attach to the plant cell and to respond to 
the specific chemical (chemotaxis) [20].

3. Structure and function of Ti plasmid

Ti plasmid contains 35-kb virulence (vir) region, which is composed of seven loci (virA, virB, 

virC, virD, virE, virG, and virH). Vir proteins are involved in signal recognition, transcriptional 

activation, conjugal DNA metabolism, intercellular transport, nuclear import, and probably 

T-DNA integration into the plant chromosome. Expression of vir genes is triggered by phenolic 

compounds, which are secreted from the wound site of the host plant. After bacterial and plant 

cell binding, virA gene within the bacterium is activated by signal molecules, such as sap with 

acidic pH (5.0–5.8), phenolic compounds, acetosyringone, and lignin or flavonoid precursors 
secreted from plant wound [21]. Monocyclic phenolics, such as acetosyringone, are the most 

effective vir gene inducers [22]. Uninjured plants do not produce these phenolic compounds 

or produce them at low levels. Phenolic compound is dramatically increased in the wounded 
plant and enhances transferring T-DNA during bacterial infection. Sugars also assist activation 

of the major phenolic-mediated wound-signaling pathway. The major role of the VirA coupled 

with VirG protein is activating other vir genes. VirA activates VirG, which is a cytoplasmic 

DNA-binding protein and works as a transcriptional factor to induce the expression of other 

vir genes. Heterologous system, VirD1 and VirD2, proteins act like endonucleases that cut 
between the third and fourth base pairs of 24 bp right and left border repeats of the T-DNA 

bottom strand [23]. A linear single-stranded copy of the T-DNA region is oriented from 5′ to 3′ 
direction, initiating at the right T-DNA border and terminating at the left border [24]. Howard 
and Citovsky [25] reported the structural model of the T-strand when it is transferred out 

of the bacterium into the plant cells. They suggested a protein-nucleic acid complex called a 

T-complex. This T-DNA transport intermediate has at least three components: a T-strand mol-

ecule, VirD2, and VirE2 single-strand DNA-binding protein. Citovsky et al. [26] showed that 

VirE coats the single-stranded DNA and forms strong, stable unfolded VirE2-ssDNA complex 

that is protected from external nucleolyic activity. VirC1 also helps generate a T-strand when 

VirD1 and VirD2 are limiting. VirD2 and VirE2 have specific nuclear localization signal (NLS) 
to drive T-complex into the nucleus. The direct relevance of the NLS for T-strand transfer to 
the host plant nucleus was confirmed by NLS deletion mutants of VirD2 and VirE that resulted 
in reduced T-DNA expression and tumor formation [27]. The T-DNA transfer system is simi-

lar with interbacterial conjugative transfer system of broad host range plasmids. Eleven virB 

genes in the Ti-plasmid make proteins that seem to be involved in T-DNA transfer [28]. VirB 

proteins are primarily linked with the cytoplasmic and periplasmic membranes to be a part of 

putative trans-membrane pore or channel for transferring bacterial DNA to another bacterium 

or host plant [29]. The main proteins for pilus formation were identified, and they are studied 
to find the mechanism for pili formation [30]. Three VirB proteins (VirB1, VirB2, and VirB5) are 

the structural subunits of the promiscuous conjugative pilus structure. VirB1, VirB2 and VirB5 

needed each other for the stability and cellular localization [31].
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Another main component of Ti plasmid is T-DNA, which is actually integrated into the plant 

cell chromosome. The T-DNA is on average 25 kb, ranging from 10 to 30 kb in size. T-DNA 

region is flanked and delineated by two 25-bp direct repeats, known as the right border and 
left border [21]. These border sequences are highly homologous and are targets of the border-

specific endonuclease (VirD1/VirD2). Excised single strand of T-DNA from the Ti plasmid is 
exported from the bacterial cell to the plant cell by the activity of the other Agrobacterium Vir 

proteins through pili. The studies have shown that a deletion of segment in the left border 

does not affect genetic material transfer from the bacterium into the plant cell, while the right 
border nucleotide sequence of the T-DNA is of vital importance for Agrobacterium pathogenic-

ity, and the transfer of the T-DNA is directed from the right to left border by creating polarity 

[32]. Wild-type T-DNA also has genes that are involved in plant hormone synthesis in the 

host plant. They are tml, tms, and tmr regions for leafy tumor, shooty tumor, and rooty tumor, 

respectively, in a plant wound site [33]. After T-DNA is integrated into the host plant, opine 

is synthesized, and then secreted out and imported into Agrobacterium. The absorbed opine 

molecule is catabolized by a specific enzyme in Agrobacerium and degraded into amino acid 

and the sugar moieties, which can be used as carbon and energy sources for bacterial growth. 

The Ti plasmid also has other components: opine catabolism region, conjugal transfer region, 

and vegetative origin of replication of the Ti plasmid (oriV).

The successful expression of the transgene depends on where the T-DNA integrates within 

the chromosome. T-DNA can be inserted near or far from transcriptional activating elements 

or enhancers, resulting in the activation of T-DNA-carried transgenes. The failure of trans-

gene expression (gene silencing) can be caused by methylation or posttranscriptional gene 
silencing of multiple copies of transgenes. RNAs from these transgene copies may interfere 

with each other and then be degraded. This is one of the important merits of Agrobacterium-

mediated transformation method because fewer gene copies are integrated compared to the 

direct gene transfer method (e.g., polyethylene glycol liposome-mediated transformation, 

electroporation, or particle bombardment) [34].

4. Adoption of plant molecular biology

A. tumefaciens has been used for plant genetic engineering extensively. Plants were geneti-
cally engineered for the purpose of developing resistance to herbicides, insect, or virus, tol-

erance to drought, salt, or cold, and increasing the yield [35]. The Agrobacterium-mediated 

transformation method has not only been used for commercial purpose but also for basic 

biology research to test study gene regulation or protein function in transgenic plants [36]. 

The Agrobacterium-mediated transformation method was improved by the strategy of devel-

oping modern binary Ti plasmid. Ti plasmids have been engineered to separate T-DNA and 

vir regions into two distinct plasmids, resulting in a binary vector and a vir helper plasmid, 

respectively [37]. Many Agrobacterium strains containing nononcogenic vir helper plasmids 

are called disarmed plasmid. LBA 4404, GV3101 MP90, AGL0, EHA101, and its derivative 
strain EHA 105 bacterial strains have been commercially developed to have disarmed plas-

mid [4]. The wild-type Ti plasmid was around 200 kb, and the sizes of the processed binary 
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vector from wild-type Ti plasmid were reduced to less than 10 kb, which resulted in increas-

ing transformation efficiency. Binary vector has a replication origin for both Escherichia coli 

and Agrobacterium, an antibiotic selectable marker for bacteria and plants, a reporter gene, 

such as β-glucuronidase (GUS), luciferase, or green fluorescent protein (GFP), and a T-DNA 
region containing a multicloning site in which genes of interest can be inserted into. In the 

binary vector system, T-DNA region on the binary vector from the bacterium is transformed 

into the host plant with the help of another plasmid containing vir genes [38].

5. Agrobacterium-mediated plant transformation protocol development

Transformation efficiency can be increased through the manipulation of either the plant or 
the bacterium by enhancing competency of plant tissue and vir gene expression, respec-

tively [2]. To increase the virulence of bacterium by inducing the vir gene expression, tem-

perature, media pH, chemical inducers such as acetosyringone [2] has been tested. These 

factors likely enhance bacterial pili formation required for gene transfer between bacte-

ria and host plants. Manipulation of other factors such as bacterial density, co-cultivation 

duration, surfactant, and vacuum infiltration has also increased transformation efficiency in 
many experiments [39].

Temperature is an important environmental factor that mainly affects transfer pilus (T-pilus; 
pili) biogenesis in Agrobacterium. Agrobacterium produced higher amounts of exocellular 

assembly of the major T-pilus components, VirB2 and VirB5, at 20°C and expression of VirB2 

and VirB5 was inhibited at 26°C to 28°C [40]. Schmidit-Eisenlohr et al. [31] reported that 

optimized virulence gene induction was detected from the Agrobacterium grown on an agar 

plate at 20°C. Co-cultivation temperature effects on plant transformation have been studied. 
Dillen et al. [41] tested optimal co-cultivation temperature for Nicotiana tabacum and Phaseolus 

acutifolius transformation and highest GUS expression was detected at 19°C or at 22°C co-

cultivation. A temperature of 22°C resulted in higher GUS expression than at 28°C in tobacco 

Agrobacterium mediated-transformation study [42]. It implies that low temperature during 

co-cultivation induces pili formation and results in high T-DNA transformation efficiency 
into host plants.

Other factors affecting transformation efficiency were studied. Whalen et al. [43] first 
reported that Silwet L-77 could be used to increase the susceptibility of Arabidopsis leaves to 

Agrobacterium infection by reducing surface tension with low phytotoxicity to allow aqueous 

droplets to spread evenly over leaf surface and to penetrate the stomatal opening. Due to 

these characteristics, Silwet L-77 enhances entry of bacteria into relatively inaccessible plant 
tissues. Silwet L-77 (0.001%) resulted in the development of disease phenotypes and toxicity 
at concentrations above 0.1% in Arabidopsis transformation study. Surfactant was reported 

as a most critical factor for increasing GUS activity. GUS activity was enhanced with 0.01% 
Silwet L-77 treatment, and highest activity was detected at 0.05%. When the concentration 
was greater than 0.05%, most of the immature wheat embryos could not survive [44]. Curtis 

and Nam [45] compared other surfactants, Pluronic F-68 and Tween-20, to Silwet L-77. It was 
confirmed that 0.05% (v/v) Silwet L-77 treatment was the most beneficial.
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Vacuum infiltration has also been used mostly as an aid for efficient Agrobacterium inoculation 

for flowering stage of Arabidopsis [46], Brassica napus [47], or Chinese cabbage [48] transforma-

tion. Kapila et al. [49] reported that vacuum infiltration, ranging from 1 to 0.1 mbar for 20 min 
application to Proteus vulgaris leaf transformation via A. tumefaciens, resulted in high transient 

expression, and all infiltrated leaves showed high GUS expression sectors. Dillen et al. [41] 

used the vacuum infiltration method on tobacco leaves and P. vulgaris leaf transformation 

to increase transformation efficiency. Vacuum and Silwet L-77 combination effect has been 
studied in Arabidopsis flower dipping method and tobacco leaf disk transformation study, 
and vacuum with the low concentrations of the surfactant together resulted in the highest 

transformation efficiency in both studies [50].

Effect of bacterial growth phase and cell density on transformation efficiency had been con-

sidered as an important factor also. In standard protocol, cells are grown to the stationary 

phase (OD
600 nm

 ≈ 2–2.4), pelleted and resuspended in inoculation medium to stationary or log 
or mid-log phase (OD

600 nm
 ≈ 0.1–1.15). High concentrations of bacteria at the stationary phase 

have normally been used for rice, legume, and tobacco transformation [49], and low concen-

trations of bacteria at the log or mid-log phase have been used for broccoli [51], cabbage [52], 

wheat [44], cottonwood [53], and tobacco [54]. Clough et al. [46] reported that different bacte-

rial concentration ranging from 0.15 to 1.75 of OD
600 nm

 resulted in different transformation 
efficiency in Arabidopsis transformation.

Co-cultivation duration also affects transformation efficiency. Co-cultivation for 2–5 days 
has been normally used in Agrobacterium-mediated transformation under various co-culti-

vation temperature [55]. Coculture for 3 days resulted in high transformation efficiency and 
reached to a maximum at day 5 in citrange (Citru sinensis L. Osbeck × Poncirus trifoliate L. Raf.) 
[56]. Co-cultivation period of more than 5 days caused bacterial overgrowth and decreased 

the transformation efficiency. Many transformation experiments in different plant species, 
such as tea (C. sinensis L.), cauliflower, white spruce (Picea glauca), and citrange, showed that 

2–3 days of co-cultivation gave rise to higher transformation efficiency under room tempera-

ture [2]. Therefore, 2–3 days co-cultivation has been routinely used in most transformation 

protocols, since longer co-cultivation causes bacterial overgrowth, which covers the leaf tissue 

and brings toxicity under room temperature co-cultivation condition.

Bacteria preculture on minimal media for 3 days has been routinely practiced to induce pili 

formation before co-cultivation. Clough et al. [46] compared vir genes induction in liquid 

medium culture to the plate culture for 20 h at 19°C. However, they reported that two differ-

ent preculture methods showed similar transformation in Arabidopsis.

Acetosyringone (AS) is a phenolic compound produced from wounded plant cells. AS concentra-

tion has been known as a very important factor affecting transformation efficiency. Fullner and 
Nester [57] reported that Agrobacterium did not produce pili without 200 μM AS at both 19°C and 

25°C. Results from a wheat inflorescence transformation experiment showed that T-DNA cannot 
be transformed to the plant tissue without AS [39]. These results indicated that AS is the main fac-

tor in the low temperature co-cultivation condition that induces VirB protein, which is a subunit 

of pili. Various optimal concentrations of AS depended on the plant species. But in most experi-

ments, optimal AS concentrations for different plant species are in the range of 50–400 μM AS.
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6. New methods for high-transformation frequency via A. tumefaciens

6.1. Utilizing explant’s negative atmospheric pressure for increased gene transformation

In the study conducted by Beyaz et al. [58], the aim was to increase transformation efficiency 
in flax (Linum usitatissimum L.) by increasing osmotic pressure of the tissue as plant material 
flax cultivars “Madaras,” “Clarck,” and “1886 Sel.” were used in the study. Sterilized seeds 
got cultured on Murashige and Skoog (MS) [59] medium for germination and seedling estab-

lishment. A. tumefaciens strain, GV2260 harboring plasmid p35S GUS-INT that contains neo-

mycin phosphotransferase II (npt-II) gene, was used for inoculation. GV2260 strain carrying 

p35S GUS-INT plasmid was grown overnight in a liquid Nutrient Broth (NB) medium con-

taining 50 mg l−1 kanamycin and 50 mg l−1 rifampicin at 28°C in a rotary shaker (180 rpm) (0.6 

of OD
600 nm

) and used for transformation. In the study, conventional transformation method 

in which hypocotyls were directly cultured on co-cultivation medium after inoculation with 

500 μl bacterial solution for 20 min was compared to the method in which 7-old-day flax 
seedlings having cotyledon leaves without root system dried for 35 min in laminar flow were 
inoculated with 500 μl bacterial solution for 20 min (Figure 2). In both the transformation 

methods, after inoculation, hypocotyl segments—0.5 cm in length—were cultured on co-cul-

tivation medium for 2 days. Then, the explants were transferred to a regeneration medium 

supplemented with 1 mg l−1 BAP, 0.02 mg l−1 NAA, 100 mg l−1 kanamycin, and 500 mg l−1 aug-

mentin and cultured for 4 weeks in a culture room at a temperature of 24 ± 1°C. Shoots were 

transferred to a rooting medium containing 3 mg l−1 indole-butyric acid (IBA) and 100 mg l−1 

Figure 2. Explant isolation from inoculated 7-old-day flax seedlings having cotyledon leaves without root system.
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kanamycin in Magenta vessels to culture for 3 weeks at 24 ± 1°C. After root formation, plant-

lets were transferred to pots in a growth room for 3 weeks to recover putative transgenic 

plants. The presence of neomycin phosphotransferase II (npt-II) gene in transformants was 

confirmed by PCR.

The lowest results were noted in the first inoculation method in which hypocotyls were directly 
cultured on co-cultivation medium after inoculation (Table 1 and Figure 3a). Keeping 7-day-

old seedlings having cotyledon leaves without root system under air in laminar flow was 
aimed to enable seedlings to intake bacterial solution rapidly toward inner cells by increased 

osmotic pressure and consequently to increase the transformation efficiency. The highest 
results of all characters examined in all cultivars were obtained from a newly described inocu-

lation method in which 7-day-old sterile flax seedlings having cotyledon leaves and no root 
system were inoculated with 500 μl bacterial solution for 20 min after drying in sterile cabin 

for 35 min (Table 1 and Figure 3b). Shoot regeneration percentage, mean shoot number per 

explant, mean shoot number per petri dish, mean shoot number rooted per Magenta vessels, 

total plant number growing in soil, total PCR+ plant number, and transformation efficiency 
were recorded in a newly described transformation method as 70.83, 1.58, 29.50, 27.00, 97.66, 

82.00, and 84.19%, while they were 34.50, 1.09, 9.25, 6.91, 18.00, 5.66, and 30.45% in routinely 
used transformation method (Table 1).

Transformation efficiency was recorded as 84.19% from hypocotyl explants excised from inoc-

ulated 7-day-old sterile seedlings having cotyledon leaves without a root system, while it was 

Cultivars Inocu. 

method

Regeneration 

(%)

Mean shoot 

number per 

explant

Mean shoot 

number per 

petri dish

Mean shoot 

number rooted 

per Magenta 

vessel

Total plant 

number 

growing in 

soil1

Total PCR+ 

plant number2

Transfor. 

efficiency 
(%) (2/1 × 

100)

“Madaras” 1 41.00ᵇ 1.09ᵇ 11.25ᵇ 8.50ᵇ 25.00ᵇ 8.00ᵇ 30.76ᵇ

2 71.25ᵃ 1.65ᵃ 30.00ᵃ 28.75ᵃ 104.00ᵃ 88.00ᵃ 84.61ᵃ

“Clarck” 1 42.50ᵇ 1.03ᵇ 10.50ᵇ 8.25ᵇ 18.00ᵇ 6.00ᵇ 33.33ᵇ

2 73.75ᵃ 1.65ᵃ 33.25ᵃ 28.75ᵃ 103.00ᵃ 82.00ᵃ 79.61ᵃ

“1886 Sel.” 1 20.00ᵇ 1.15ᵇ 6.00ᵇ 4.00ᵇ 11.00ᵇ 3.00ᵇ 27.27ᵇ

2 67.50ᵃ 1.46ᵃ 25.25ᵃ 23.50ᵃ 86.00ᵃ 76.00ᵃ 88.37ᵃ

Mean of 

cultivars

1 34.50 1.09 9.25 6.91 18.00 5.66 30.45

2 70.83 1.58 29.50 27.00 97.66 82.00 84.19

Values followed by the different letters in a column are significantly different at the 0.01 level. Each value is the mean of 
4 replications containing 25 explants per replication. All experiments were repeated 2 times.

1. Hypocotyls were directly transferred to co-cultivation medium after inoculation with 500 μl bacterial solution for 
20 min.

2. Seven-day-old sterile seedlings having cotyledon leaves without root system were dried in sterile cabin for 35 min. 

Then, they were inoculated with 500 μl bacterial solution for 20 min. Finally, hypocotyls excised from inoculated 

seedlings were placed on co-cultivation medium.

Table 1. The development of shoots from hypocotyls inoculated with A. tumefaciens with two different methods on 
selection medium 4 weeks after culture initiation and transgenic plant development.
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30.45% in routinely used transformation method where hypocotyls were directly  cultured 
on selection medium after inoculation (Table 1). In the study, a new inoculation method 

was based on enabling seedlings to intake bacterial solution rapidly toward inner cells by 

increased osmotic pressure of explants to increase the number of cells inoculated and conse-

quently to higher transgenic shoots was developed.

6.2. The effect of squirting cucumber (Ecballium elaterium (L.) A. Rich) fruit juice on A. 

tumefaciens-mediated transformation

Squirting cucumber (E. elaterium (L.) A. Rich.), from the cucumber family, contains cucurbita-

cins such as α-elaterin (cucurbitacin E), β-elaterin (cucurbitacin B), elatericine A (cucurbitacin 
D), and elatericine B (cucurbitacin I) [60] that are poisonous and showed antibacterial activities 

[61]. However, it was found out that mature fruit juice of the plant stimulated growth of A. 

tumefaciens and increased gene transfer frequency in tobacco [62]. That was why, this study sup-

ported by a project numbered 113O280 from the Scientific and Technological Research Council 
of Turkey (TUBİTAK) was conducted to determine the effect of squirting cucumber (E. elaterium 

(L.) A. Rich.) fruit juice on A. tumefaciens-mediated gene transfer in flax (L. usitatissimum L.).

Flax cultivar “Madaras” obtained from “Northern Crop Science Laboratories,” North Dakota, 
USA, was used in the study. Seed sterilization was achieved according to the protocol 

described by Yildiz and Er [63] and then seeds were sown on Murashige and Skoog (MS) 

[59] medium for germination and further seedling development. The mature fruits of squirt-

ing cucumber were squeezed manually and fruit juice collected in the glass jar was filter-
sterilized by using 0.45 μm filters and stored at −20°C. Different squirting cucumber fruit juice 
concentrations (0-control, 200, 400, 800, and 1600 μl l−1) were added to regeneration medium 

after autoclaving in order to determine the most effective concentration on shoot regeneration 
from hypocotyl explants. The highest shoot regeneration was recorded in 400 μl l−1 squirt-

Figure 3. Shoot regeneration from hypocotyl explants of cv. “Madaras” inoculated by two different methods (a) first 
inoculation method, (b) second inoculation method on selection medium 4 weeks after culture initiation.
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ing cucumber fruit juice concentration. A. tumefaciens strain GV2260 harboring plasmid p35S 

GUS-INT that contains neomycin phosphotransferase II (npt-II) gene was used for  inoculation. 

GV2260 strain carrying p35S GUS-INT plasmid was grown overnight in a liquid NB (Nutrient 

Broth) medium containing 50 mg l−1 kanamycin, 50 mg l−1 rifampicin, and different squirting 
cucumber fruit juice concentrations (0-control, 200, 400, 800 and 1600 μl l−1) at 28°C in a rotary 

shaker (180 rpm) (0.6 of OD
600 nm

) and used for transformation. Hypocotyl explants of 7-day-
old flax seedlings were inoculated with bacteria in a liquid medium having different squirting 
cucumber fruit juice concentrations (0-control, 200, 400, 800 and 1600 μl l−1) for 20 min. After 

inoculation, hypocotyl explants were transferred to a solid medium containing 1 mg l−1 BAP, 
0.02 mg l−1 NAA, and 400 μl l−1 squirting cucumber fruit juice for co-cultivation for 2 days in 

a culture room at a temperature of 24 ± 1°C. Explants were then transferred to the medium 

that had the same content as co-cultivation, supplemented with 100 mg l−1 kanamycin and 

500 mg l−1 duocid for selection for 4 weeks. Regenerated shoots were transferred to a rooting 

medium supplemented with 3 mg l−1 indole-butyric acid (IBA) and 100 mg l−1 kanamycin in 

Magenta vessels for 3 weeks at 24 ± 1°C. After root formation, plantlets were transferred to 

pots in a growth room for 3 weeks to recover putative transgenic plants. The presence of neo-

mycin phosphotransferase II (npt-II ) gene in transformants was confirmed by PCR.

At the end of the study, it was determined that 400 μl l−1 squirting cucumber fruit juice added 

to bacterial growth and inoculation medium was found the most effective fruit juice con-

centration on gene transformation frequency. The highest shoot regeneration percentage on 

selection medium, having antibiotics was recorded 54.00% as the highest from the medium 
containing 400 μl l−1 fruit juice 4 weeks after culture initiation. It was 41.25% in control treat-
ment having no fruit juice. The highest shoot number per explant was recorded in the treat-

ment where 1600 μl l−1 fruit juice was used as 2.06. From the medium having 400 μl l−1 fruit 

juice, 1.16 shoots per explant were recovered. The highest shoot length was noted as 1.73 cm 

from growth medium containing 1600 μl l−1 fruit juice. Total shoot number per petri dish 

was noted as 12.53 as the highest from medium containing 400 μl l−1 fruit juice (Table 2). In 

1600 μl l−1 fruit juice concentration in which the highest results were recorded in shoot num-

ber per explant and the highest shoot length per explant, total shoot number per petri dish 

was achieved as 7.75—the lowest.

After a 4-week-cultivation on selection medium, rooted explants were directly transferred to 

soil by skipping in vitro rooting stage (Figure 4a). From the medium having 400 μl l−1 fruit juice, 

11.00 rooted explants were transferred to soil, and finally, 3.00 putative plantlets were grown 
in soil, reached maturity, and all were morphologically normal (Figure 4b). On the other hand, 

5.57 putative transgenic plantlets were grown from a medium containing 800 μl l−1 fruit juice. 

Out of 8.70 rooted explants were transferred to soil, only 1.86 putative transgenic plants were 

grown in soil in control application where no fruit juice was used (Table 2). After PCR analy-

sis, all the plants grown in soil from selection medium containing 400 μl l−1 fruit juice were 

confirmed to be transgenic, while two plants were found transgenic from medium having 
800 μl l−1 fruit juice. The highest transformation efficiency was noted as 100.00% in 400 μl l−1 

fruit juice treatment. In control where squirting cucumber fruit juice was not used, transforma-

tion efficiency was 0.00% meaning that no transgenic plants were recovered (Table 2).
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Fruit j. concent. 

(μl l−1)

Regeneration (%) Shoot number 

per explant

The highest 

shoot length per 

explant (cm)

Total shoot 

number per petri 

dish

The number of 

rooted explants 

transferred to 

soil

The number 

of putative 

transgenic plants 

growing in soil1

The number of 

PCR+ transgenic 

plants2

Transfor. efficiency 
(%) (2/1 × 100)

0 41.25ᵇ 1.17ᵇ 1.24ᵇ 9.53ᵇ 8.70ᵃᵇ 1.86c 0.00ᵇ 0.00

200 49.00ᵃ 1.04ᵇ 1.05ᵇ 10.19ᵃᵇ 9.00ᵃᵇ 2.65ᵇ 1.00ᵇ 37.73

400 54.00ᵃ 1.16ᵇ 1.50ᵃ 12.53ᵃ 11.00ᵃ 3.00ᵇ 3.00ᵃ 100.00

800 42.00ᵇ 1.07ᵇ 0.97ᵇ 8.98b 7.65ᵇ 5.57ᵃ 2.00ᵃᵇ 35.90

1600 38.75c 2.06ᵃ 1.73ᵃ 7.75c 6.25c 2.00c 0.00b 0.00

Values followed by the different letters in a column are significantly different at the 0.01 level.
Each value is the mean of 5 replications containing 10 explants per replication. All experiments were repeated 2 times.

Table 2. The effect of squirting cucumber fruit juice on shoot regeneration from hypocotyl explants inoculated with A. tumefaciens on selection medium containing 

100 mg l−1 kanamycin and 500 mg l−1 duocid 4 weeks after culture initiation and recovery of transgenic plants.
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Results showed positive effects of squirting cucumber’s fruit juice on regeneration and trans-

formation at 400 μl l−1 concentration as compared to control. At fruit juice concentrations over 

and below 400 μl l−1 in the culture medium, shoot regeneration and transformation were hin-

dered significantly. Kanamycin-resistant shoots were formed in a medium containing high 
concentration (100 mg l−1) of kanamycin that prevents the escaped shoots in the selection 

medium efficiently. PCR analysis confirmed that all raised plants were transgenic in the 
medium having squirting cucumber’s fruit juice at a concentration of 400 μl l−1.

The data presented here clearly indicates that the addition of squirting cucumber’s fruit juice 

to bacterial growth, inoculation, and co-cultivation media improved the transformation fre-

quency of flax significantly. We conclude that squirting cucumber’s fruit juice induces vir 

genes leading to increased transformation efficiency.

6.3. Use of magnetic field strength for high-transformation frequency via A. tumefaciens

Exposure of seeds to magnetic field for a short time was found to help in accelerated sprouting 
and growth of the seedlings. It was reported that magnetic conditions stimulated plant growth 

[64–66]. The current study was aimed to examine the effects of magnetic field strength on A. 

tumefaciens-mediated gene transfer in flax (L. usitatissimum L.). Seeds of flax cv. “Madaras” 
obtained from “Northern Crop Science Laboratories,” North Dakota, USA, were used. First, 
seeds were exposed to different magnetic field strengths (0-control, 75, 150, and 300 mT) for 
24 h. Then, they were surface sterilized with 40% commercial bleach containing 5% sodium 
hypochlorite at 10°C for 12 min with continuous stirring, and they were washed three times 

with sterile distilled water at the same temperature. Sterilized seeds were germinated on MS 

medium in Magenta vessels. Hypocotyl explants excised from 7-day-old seedlings were used 

Figure 4. Shoot regeneration from hypocotyl explants of cv. “Madaras” inoculated with A. tumefaciens on selection 

medium containing 100 mg l−1 kanamycin, 500 mg l−1 duocid, and 400 μl l−1 fruit juice 4 weeks after culture initiation (a) 

and PCR-confirmed transgenic plant growing in soil (b).
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for regeneration. GV2260 line of A. tumefaciens having p35S GUS-INT plasmid containing npt-

II gene that determines kanamycin resistance was used in transformation studies. Hypocotyls 
were kept in petri dishes containing 50 ml sterile water with 500 μl bacterial solution during 

20 min for inoculation. Inoculated hypocotyls were then cultured on MS medium containing 

1 mg l−1 BAP, 0.02 mg l−1 NAA, for co-cultivation for 2 days in culture room at a temperature 

of 24 ± 1°C. Then, explants were transferred to selection medium containing 1 mg l−1 BAP, 
0.02 mg l−1 NAA, 50 mg l−1 kanamycin, and 500 mg l−1 duocid and cultured for 4 weeks. Shoots 

were kept in a rooting medium containing 3 mg l−1 indole-butyric acid (IBA) and 100 mg l−1 

kanamycin in Magenta vessels for 3 weeks at 24 ± 1°C. Then, plantlets were transferred to pots 

in a growth room for 3 weeks to obtain putative transgenic plants. The presence of the npt-II 

gene was verified by PCR analysis in candidate plants.

The highest results with respect to regeneration percentage, shoot number per explant, the 

highest shoot length per explant, total shoot number per petri dish, the number of rooted 

explants transferred to soil, the number of putative transgenic plants growing in soil, and the 

number of PCR+ transgenic plants were recorded in the treatment, where seeds were exposed 
to 75 mT magnetic field strength as 82.00%, 2.40, 3.40, 27.60, 16.40, 12.60, and 8.00, respec-

tively. In control application where no magnetic field strength was used, the lowest results 
were obtained in all characters examined. Out of 12.60 putative transgenic plants growing in 

soil, 8.00 was found PCR positive (Figure 5).

Results clearly showed that 75 mT magnetic field strength increased A. tumefaciens-mediated 

transformation frequency in flax. At 75 mT magnetic field strength, out of 12.60 putative trans-

genic plants, 8 were confirmed transgenic after PCR analysis that meant 63.49% transforma-

Figure 5. PCR analysis of genomic DNA from putative transgenic plants cv. “Madaras” for amplification of 458 bp npt-II. 
L DNA ladder 100 bp, + Plasmid as a positive control. Water as a negative control. (a) Detection of the npt-II gene in 75 

mT magnetic field strength, (b) detection of chv gene in 75 mT magnetic field strength, (c) detection of chv gene in 300 mT 

magnetic field strength, (d) detection of the npt-II gene in 150 mT magnetic field strength, (e) detection of the chv gene in 

150 mT magnetic field strength, (f) detection of the npt-II gene in 300 mT magnetic field strength.
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Mag. field stren. 
(mT)

Regeneration (%) Shoot number 

per explant

The highest 

shoot length per 

explant (cm)

Total shoot 

number per petri 

dish

The number of 

rooted explants 

transferred to soil

The number 

of putative 

transgenic plants 

growing in soil1

The number of 

PCR+ transgenic 

plants2

Transfor. efficiency 
(%) (2/1 × 100)

0 41.25b 1.17c 1.24c 9.53d 8.70d 1.86d 0.00d 0.00

75 82.00a 2.40a 3.40a 27.60a 16.40a 12.60a 8.00a 63.49

150 78.00a 2.36a 2.76b 24.80b 15.60b 8.40b 5.00d 59.52

300 46.00b 1.70b 2.54b 12.80c 9.20c 5.50c 3.00c 54.54

Values followed by the different letters in a column are significantly different at the 0.01 level. 
Each value is the mean of 5 replications containing 10 explants per replication. All experiments were repeated 2 times.

Table 3. The effect of magnetic field strengths on transgenic shoot regeneration and recovery of transgenic plants from hypocotyls inoculated with A. tumefaciens on 

selection medium containing 100 mg l−1 kanamycin and 500 mg l−1 duocid 4 weeks after culture initiation and recovery of transgenic plants.
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Gamma dose 

(Gy)

Regeneration 

(%)

Shoot number per 

explant

The highest 

shoot length per 

explant (cm)

Total shoot 

number per petri 

dish

The number of 

rooted explants 

transferred to soil

The number 

of putative  

transgenic plants 

growing in soil1

The number of 

PCR+ transgenic 

plants2

Transfor. efficiency 
(%) (2/1 × 100)

0 41.25c 1.17c 1.24c 9.53d 8.70c 1.86a 0.00d 0.00

40 70.00a 2.20b 1.79a 30.80a 13.20a 25.00a 25.00a 100.00

80 66.00b 2.11b 1.58b 27.85a 14.00a 25.00a 22.00b 88.00

120 61.00b 2.06a 1.57b 25.13a 12.20b 25.00a 20.00c 80.00

Values followed by the different letters in a column are significantly different at the 0.01 level. 
Each value is the mean of 5 replications containing 10 explants per replication. All experiments were repeated 2 times.

Table 4. The effect of gamma radiation on transgenic shoot regeneration from hypocotyls inoculated with A. tumefaciens on selection medium containing 100 mg l−1 

kanamycin and 500 mg l−1 duocid 4 weeks after culture initiation.
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tion efficiency (Table 3). To our knowledge, this was the first study indicating that magnetic 
field strength could increase A. tumefaciens-mediated transformation.

This study was supported by a project number 113O280 from the Scientific and Technological 
Research Council of Turkey (TUBİTAK).

6.4. The effect of gamma radiation on A. tumefaciens-mediated transformation

Gamma rays give rise to cytological, biochemical, physiological, and morphological changes 

in cells and tissues via producing free radicals in cells [67]. Although higher doses of gamma 

radiation were inhibitory [68], lower doses are stimulatory. Low doses of gamma rays have 
been reported to increase cell proliferation, germination, cell growth, enzyme activity, stress 

resistance, and crop yields [69–72].

In the study supported by the project number 113O280 from the Scientific and Technological 
Research Council of Turkey (TUBİTAK), the effects of gamma radiation of radioactive cobalt 
(60Co) γ rays on A. tumefaciens-mediated gene transfer to flax were examined. Flax seeds of cv. 
“Madaras” were irradiated with different gamma doses (0-control, 40, 80, and 120 Gy), and 
then surface sterilized by using the protocol described in Section 6.3. Sterilized seeds were 

then sown in Magenta vessels having MS medium for germination. Hypocotyls of 7-day-old 
seedlings were used for regeneration. GV2260 line of A. tumefaciens having p35S GUS-INT 

plasmid containing npt-II gene that determines kanamycin resistance was used in transforma-

tion studies. Hypocotyls were kept in petri dishes containing 50 ml sterile water with 500 μl 
bacterial solution during 20 min for inoculation. Inoculated hypocotyls were then cultured on 

MS medium containing 1 mg l−1 BAP, 0.02 mg l−1 NAA, for co-cultivation for 2 days in a cul-

ture room at a temperature of 24 ± 1°C. Then, explants were transferred to selection medium 

conta gamma dose with respect ining 1 mg l−1 BAP, 0.02 mg l−1 NAA, 50 mg l−1 kanamycin, 

and 500 mg l−1 duocid, and cultured for 4 weeks. Shoots were then transferred to a rooting 

medium having 3 mg l−1 indole-butyric acid (IBA) and 100 mg l−1 kanamycin in Magenta ves-

sels for 3 weeks at 24 ± 1°C. Plantlets were transferred to pots to develop for 3 weeks. The 
presence of the npt-II gene in putative transgenic plants was verified by PCR analysis.

The highest results were recorded in 40 Gy gamma dose with respect to the number of puta-

tive transgenic plants growing in soil, the number of PCR+ transgenic plants, and transforma-

tion efficiency as 25.00, 25.00, and 100.00% (Table 4). It could be concluded that low gamma 

radiation increased transformation efficiency significantly compared with control application 
where no gamma radiation was used.

7. Conclusion

A. tumefaciens as a plant pathogen naturally infects the wound sites in dicotyledonous plants 

and induces disease known as crown gall, and this bacterium has been widely used for the 

introduction of foreign genes into plants and consequent regeneration of transgenic plants. 

However, A. tumefaciens-medited gene transfer is quite difficult in most of the plant species. 
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The success of genetic transformation via A. tumefaciens is limited due to the fact that plant’s 

defence mechanism will be active when pathogen attacks. That is why manipulations of the 
plant and bacterium and physical conditions have been applied to increase the virulence of 

bacterium and to increase the transformation efficiency. To our knowledge, the four new 
transformation protocols described in this chapter are new and not reported elsewhere before. 

And newly reported protocols can be easily used to increase the transformation efficiency in 
most plant species. We hope that transformation protocols described in this chapter may help 

researchers to increase the success of transformation studies via A. tumefaciens.
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