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Abstract

Regenerative medicine requires materials that are biodegradable, biocompatible, struc‐
turally and chemically stable, and that can mimic the properties of the native extracellular
matrix (ECM). Hydrogels are hydrophilic three-dimensional networks that have long re‐
ceived attention in the field of regenerative medicine due to their unique properties. Hy‐
drogels have a potential to be the future of regenerative medicine due to their desirable
mechanical and chemical properties, ease of their synthesis, and their multiple applicabil‐
ity as drug delivery vehicles, scaffolds, and constructs for cell culture. In this chapter, we
have described hydrogels in terms of their cross-linking and then discussed the most re‐
cent developments in the use of hydrogels for peripheral nerve regeneration, tooth regen‐
eration, and 3D bioprinting.

Keywords: Hydrogels, nerve regeneration, 3-D printing, tooth regeneration

1. Introduction

Two-dimensional (2D) substrates such as tissue culture polystyrene (TCPS), thin films, and
other flat surfaces have traditionally been used to culture mammalian cells in vitro. These
experiments with the 2D cell constructs have not only provided the basis for understanding
complex biological processes but have also led the way in exploring the stem cell differentia‐
tion, cell–material interactions, and cell–cell interactions [1]. Three-dimensional (3D) scaffolds
were designed to mimic the important physiochemical features of the native cellular micro‐
environment for in vitro cell culture. Among these 3D scaffolds, hydrogels are defined as the
cross-linked polymer networks with high water content. Hydrogels are viscoelastic in nature,
encompassing both the viscous and the elastic properties. They swell strongly in aqueous
media and are typically composed of a hydrophilic organic polymer component that is cross-
linked into a network by either covalent or noncovalent interactions [2, 3]. Cross-linking
provides structural stability, and the high water content provides fluid-like transport proper‐
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ties [4]. Variation in the cross-linking of these hydrogels also allows for tunable mechanical
properties which can be used to evaluate the structure–function relationship at the cell/
biomaterial surface. Currently, hydrogels used for mammalian cell culture are synthesized
from natural and synthetic materials. Bioactive hydrogel constructs are extensively being used
to repair, regenerate, or engineer tissues by being able to promote cell adhesion, migration,
proliferation, and stem cell differentiation appropriate to particular tissues [5]. To fully
understand the cell functional responses in the context of a particular tissue, recently, many
researchers have tried to develop physiologically relevant, biocompatible, biodegradable
hydrogel constructs that resemble native tissue and very closely mimic the actual in vivo
conditions [5–7].

In this chapter, we will review the classification of natural and synthetic polymer-based
hydrogels in terms of their cross-linking. Recent advances in the application of novel hydrogels
for regenerative medicine areas such as their use in peripheral nerve regeneration, tooth
regeneration, and 3-D printed scaffolds would also be addressed.

2. Classification of hydrogels

One way of classifying the hydrogels is through the type of cross-linking [8]. Cross-linking
maintains the hydrogel network structure and prevents dissolution of the hydrophilic chains.

2.1. Physically cross-linked hydrogels

Physically cross-linked gels, also known as reversible gels, are networks that are held together
by attractive noncovalent forces between the polymer chains (Figure 1). These hydrogels have
a tendency of going through a transition from a three-dimensional stable state to eventually
degrade and dissolve as a polymer solution. These forces that hold these polymer networks
together to form a hydrogel, which includes hydrophobic interactions, hydrogen bonding, or
ionic interactions [9, 10].

Figure 1. Physical cross-linking in hydrogels, in which the cross-links are formed via noncovalent interaction. Repro‐
duced from ref. [11] © John Wiley and Sons.
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Physically cross-linked hydrogels have found their use as matrices for cells/drug encapsulation
and release, as scaffolds for cell growth, proliferation, and adhesion. Collagen, gelatin,
hyaluronic acid (HA), and alginate are the most commonly used natural polymers, which form
physical hydrogels. However, these physically cross-linked hydrogels are prone to premature
degradation by proteolytic enzymes such as gelatinase for gelatin, collagenases for collagen,
and hyaluronidase for HA [12]. On the other hand, physically cross-linked gels such as pure
non-modified HA exhibits poor biomechanical properties [13] and gelatin dissolves into a
solution at higher temperatures. Many researchers have therefore tried to formulate physically
cross-linked hydrogels with improved mechanical properties and better cell adhesion prop‐
erties. For example, a composite hydrogel of HA and gelatin was formulated by intercalating
the polymer chains into laponite clay by ion exchange. The resulting hydrogel had improved
mechanical properties and cell-adhesive surface [7, 14]. Another example of cross-linking by
ionic interactions is that of dextran, which forms a hydrogel in the presence of potassium ions
[15]. Alginate, a polysaccharide, can also be cross-linked with divalent calcium ions to form a
hydrogel [8].

Synthetic polymers such as the triblock copolymer poly(ethylene oxide)99–poly(propylene
oxide)67–poly(ethylene oxide)99 (PEO99-PPO67-PEO99, Pluronic F127) can also form a
physical hydrogel via hydrogen bonding. Pluronic F127 is unique for its hydrophobic inter‐
actions between triblock copolymer chains. At low temperatures, both PPO and PEO chains
are soluble in water. Above the critical solution temperature (CST) at which gelation occurs,
the polymers dissolve due to the breaking of hydrogen bonds between water molecules and
the chains, and PPO becomes hydrophobic PPO core and PEO corona, forming a face-centered
cubic nanostructured hydrogel. At even higher temperatures, the micelles aggregate together
into hexagonally packed cylinders [16, 17]. Blends and interpenetrating networks of two
dissimilar polymers can also form physical hydrogels through noncovalent cross-links. The
pure F-127 hydrogel has reduced mechanical properties and, therefore, it has been blended
with HA and gelatin to improve its mechanical properties [6]. Other synthetic polymers such
as poly(acrylic acid) and poly(methacrylic acid) form physical hydrogels by forming hydrogen
bonds with poly(ethylene glycol). This kind of hydrogel formation is pH-dependent since the
hydrogen bonds are formed only when the acid groups are protonated [18, 19].

2.2. Chemically cross-linked hydrogels

Chemically cross-linked hydrogels, also known as “permanent” gels, were cross-linked
networks formed due to covalent bonds. These gels are usually more stable than the physically
cross-linked hydrogels and have a permanent structure [8, 20, 21]. Polymerizing monomers in
the presence of cross-linking agents typically forms chemically cross-linked gels. Poly(2-
hydroxyethyl methacrylate) is a well-known hydrogel-forming polymer which is generally
synthesized by radical polymerization of HEMA in the presence of a suitable cross-linking
agent (e.g., ethylene glycol dimethacrylate) [8]. Figure 2 shows a schematic example of the
formation of a chemically cross-linked hydrogel via radical polymerization. Hydrogels can
also be formed by cross-linking of the various functional groups present in the polymer
backbone. Polymers containing hydroxy, amine, or hydrazide groups can be cross-linked by
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using glutaraldehyde, which forms covalent bonds with each of these functionalities [4]. The
swelling, mechanical strength, elastic modulus, diffusional, and other physical properties of
these chemical hydrogels are mainly dependent upon their degree of cross-linking, method of
preparation, polymer volume fraction, temperature, and swelling agent [22].

Figure 2. Schematic of methods for formation of cross-linked hydrogels by free radical reactions, including a variety of
polymerizations and cross-linking of water-soluble polymers. Examples include cross-linked PHEMA and PEG hydro‐
gels. Reproduced with permission from ref. [2] © Elsevier.

Covalently cross-linked hydrogels can also be formed via enzymatic cross-linking. For
example, gelatin, which is chemically cross-linked using glutaraldehyde and formaldehyde to
form a stable hydrogel, can also be cross-linked with microbial transglutaminase (mTG) to
form an enzymatically cross-linked system. Transglutaminases are a class of natural enzymes
that catalyze the acyl-transfer reaction between the ε-amino group of lysine and the γ-
carboxyamide group of glutamine in proteins [23, 24]. Microbial transglutaminase (mTG)
catalyzes the formation of N-ε-(γ-glutamyl) lysine amide bonds between individual gelatin
strands to form a permanent network of cross-linked gelatin [25]. This permanent network of
gelatin offers multiple focal adhesion sites for cell attachment, proliferation, and migration.

Another class of hydrogels is the stimuli-responsive hydrogels. These hydrogels can show
significant changes in their swelling behavior owing to subtle changes in the pH, temperature,
electric–magnetic field, and light [21]. The behavior of these stimuli-sensitive hydrogels
depends on the type of the polymer used in making the gel and/or any post-polymerization
modifications that are made [26, 27]. pH-responsive hydrogels are swollen ionic networks
containing either acidic or basic pendant groups which in an aqueous environment of appro‐
priate pH, ionize developing fixed charges on the gel and thus increasing the swelling forces
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[22]. The use of stimuli-sensitive polymers in fabricating hydrogels has led to many interesting
applications. Poly(N-isopropylacrylamide) (pNIPAm) is the most widely studied stimuli-
responsive polymer. It is formed from the monomer N-isopropylacrylamide
(H2C=CHCONHCH(CH3)2) that exhibits temperature-sensitive swelling behavior over a
temperature range of interest. pNIPAm has a lower critical solution temperature (LCST), below
which the polymer is soluble. This is attributed to its coil-to-globule transition [28, 29].
Researchers have shown that it is possible to form a strong, thermally responsive nanocom‐
posite hydrogel within a physiological temperature range by initiating free radical polymeri‐
zation of NIPA from the clay surface [30–32]. Unique properties of cross-linked nanocomposite
PNIPA hydrogels has enabled its use as drug delivery systems, rapid release cell culture
substrates (Figure 3), and as wound healing dressings.

Figure 3. Schematic representation of the structural model with organic/inorganic networks in the NC gel. Dic is an
interparticle distance of exfoliated clay sheets. ø, g1, and g2 represent cross-linked chain, grafted chain, and looped
chain. In the model, only a small number of polymer chains are depicted for simplicity. Reprinted (adapted) with per‐
mission from ref. [33] Copyright (2003) American Chemical Society
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3. Application of hydrogels in regenerative field

Field of regenerative medicine works with a common goal of repairing and regenerating
damaged tissues and organs. The regenerative process encompasses isolating living cells from
patients, expanding them in vitro using polymeric scaffolds, and then to re-implanting the
tissue-like constructs into the patient [34]. Because of their versatile properties, hydrogels have
found several applications in the field of regenerative medicine as scaffolds for cell culture and
delivery vehicles for cells and genes [35]. These hydrogels can be made biocompatible with
tunable mechanical and degradation properties. They can be equipped with biological cues to
guide adhesion, migration, and proliferation of cells and binding sites for growth factors,
peptides, or cytokines. This allows for the formation of biomimetic hydrogels that can mimic
the extracellular matrix (ECM) environment.

3.1. Hydrogels for peripheral nerve regeneration

Peripheral nervous system (PNS) can repair itself after an injury, but this process has its
limitations beyond the critical size gap. Nerve grafts are an alternative to repairing severe
peripheral nerve injuries. Nerve autograft and allografts are often used for nerve injuries that
cannot be repaired by direct coaptation. However, nerve autografts have several limitations
including donor site morbidity, limited availability of the donor tissue, and limited functional
recovery. On the other hand, allografts require the use of immunosuppressants for over 18
months and hence, have a significant drawback in their applicability [36]. Nerve guidance
tubes (NGTs) fabricated from natural or synthetic biomaterials, for this reason, have become
an attractive alternative to repairing critical size nerve defects. NGTs act as a connecting bridge
between the proximal and distal ends of the severed nerve, where the nerve stumps are
inserted into the ends of the tube and sutured together. A protein-rich fluid containing growth-
promoting substances is released into the NGTs. Within days, a fibrin cable is formed that
supports the migration of Schwann cells (SCs) and facilitates axonal regeneration from the
proximal to the distal stump (Figure 4) [37].

Hydrogels as conduit material: Collagen is an important extracellular matrix (ECM) compo‐
nent that has been studied quite extensively in peripheral nerve regeneration. Collagen
hydrogels have been used successfully for the in-vitro culture of many neuronal cell types.
Many researchers have developed collagen-based nerve conduits to repair short nerve gaps
[38]. Few examples of commercially available, FDA-approved collagen-based tubes that have
been clinically used are NeuroGen, NeuroFlex, NeuroMatrix, NeuroWrap, and NeuroMend
[39–43]. A nerve tube fabricated from highly purified type I + III collagen derived from porcine
skin, Revolnev, has also been used to repair 1 cm rat peroneal nerve with satisfactory functional
recovery [44]. Aligned collagen conduits developed by Phillips et al. were shown to orient SCs
in vitro and their implantation in vivo resulted in higher axonal regeneration in a rat sciatic
nerve injury model [45]. Hyaluronic acid, a naturally occurring polysaccharide, is another ECM
component that has been used to fabricate nerve conduits in a modified form. Sakai et al. made
an HA-based nerve conduit that facilitated cellular and axonal ingrowth during peripheral
nerve regeneration by identifying viability of disseminated Schwann cells and neuron cells
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into HA conduits in vitro [46]. Jansen et al. prepared nerve conduits from an esterified
hyaluronan derivative (Hyaff) by individual knitting of the strands and strengthening it by
coating a thin layer of the same polymer [47]. Fibrin glue/gel is an FDA-approved sealant that

Figure 4. Principle of nerve entubulization and the sequence of events leading to the growth of a new nerve cable: (A)
chamber walls with a protein-rich fluid (containing neurotrophic factors); (B) generation of a fibrin-rich scaffold; (C)
cell migration (perineural, endothelial, and Schwann cells); (D) axonal cables elongation. Reproduced with permission
from ref. [37] © Elsevier.

Hydrogels for Regenerative Medicine
http://dx.doi.org/10.5772/62044

111



contains fibrinogen and thrombin. Fibrin is a protein that is involved in normal blood clotting,
while fibrin gel has been extensively used in peripheral nerve regeneration as a sealant for
coaptation of nerves [48]. Fibrin gels have also been used as nerve conduit to promote nerve
regeneration [49–52]. Pettersson et al. [52] showed that hollow fibrin conduits supported
muscle recovery and axonal growth in short nerve gaps. However, in longer nerve gaps, the
hollow tubes failed in comparison to autografts. In larger nerve defects, the fibrin cable that
facilitates SCs migration is not formed in the hollow NGTs. Therefore, NGTs are limited to
nerve lesions < 4 cm and result in poor functional recovery at longer gaps.

Hydrogels as luminal fillers: The empty lumen of a nerve conduit lacks the necessary support
structure for the ingrowth and migration of SCs and axons, thus making it an undesirable
environment for axonal repair. Hence, in the longer nerve gaps, there is a need for a substrate
inside the lumen of the NGTs that can provide necessary mechanical and biological cues for
SCs migration and enhance nerve regeneration [36, 53]. Hydrogels are owing to their injectable
behavior and their drug encapsulation and delivery capability have found their use as luminal
fillers inside the conduits. Figure 5 shows how NGTs filled with hydrogels provide mechanical
support in addition to serving as a carrier of bioactive molecules needed for proper functional
recovery. This property is absent in the hollow tubes where bioactive cues are not present to
direct proper axonal regeneration [54].

Various hydrogels alone or supplemented with small molecules, growth factors, neurotrophic
factors, and cellular components have been used as luminal fillers for nerve conduits. For
example, agarose hydrogels containing gradients of laminin-1 and nerve growth factor (NGF)
molecules have been used in polysulfone (PSU) tubes [55]. Various researchers have also
investigated the role of collagen as a luminal filler [53]. However, just the mere presence of
these hydrogels sometimes is insufficient to achieve enhanced functional recovery. Therefore,
luminal collagen fillers have been supplemented with laminin, NGF, fibroblast growth factor
(FGF), etc. to promote better nerve regeneration. Similarly, fibrin gel has also been used to
enhance SC migration, myelination, and rate of regeneration inside silicone tubes in a 1 cm rat
sciatic nerve model [53].

Seckel et al. used hyaluronic acid gel in the conduits to produce better conduction velocity,
higher axon counts, and myelination [56, 57]. They postulated that HA improves fibrin matrix
formation and decreases scarring that might interfere with nerve regeneration. Mohammad et
al. [58] showed that when HA was used with NGF, there was a 45% increase in the myelinated
axon count. Most recently, keratin-based hydrogels that were used to fill commercial nerve
tubes showed an improved axonal area and myelination compared to the empty tube.
Electrophysiological analysis such as conduction delay and impulse amplitude were also
better than the hollow tube and comparable to the autografts [59, 60]. Luminal fillers in nerve
conduits supplemented with essential growth factors are promising ways to achieve nerve
regeneration at par with autologous grafts. With an appropriate nerve conduit designed for
long nerve gap, bioactive luminal fillers can aid in enhanced functional recovery.

Hydrogels have an added advantage in the field of peripheral nerve regeneration, as they can
serve as a support system inside the conduit and also as a mode of delivery of various growth
factors necessary for nerve regeneration. However, if the mechanical properties of the
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Figure 5. Hydrogels promote axonal regeneration after a peripheral nerve lesion. (A) After a lesion where peripheral
nerves are severed, inhibitory elements for axonal regeneration arise either in proximal or in distal segments. Although
there can be regeneration to unite both stumps, it is common that mismatches are formed. (B) When the lesion area is
connected with a rigid tubular structure, and this is filled with a hydrogel, there is a mechanical support and a suitable
substrate for axonal growth. In addition, the hydrogel can serve as a carrier of molecules that promote axonal regener‐
ation and ultimately functional recovery. Reproduced from ref. [54] © Carballo-Molina and Velasco under the terms of
Creative Commons Attribution License (CC BY).
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hydrogels are not adjusted appropriately, they can hinder the nerve regeneration. Therefore,
the limitation of using hydrogels as luminal fillers is primarily their cross-linking. Highly cross-
linked viscous gels can be disadvantageous for nerve regeneration. At the same time, the rate
of degradation of hydrogels plays an important role if they are used as conduit materials.
Hence, it is essential to tune the mechanical and chemical properties of the hydrogels for their
best use in peripheral nerve regeneration.

3.2. Hydrogels for tooth regeneration

Tooth regeneration similar to the construction of other tissues also requires an appropriate cell
source, a biodegradable scaffold that can mimic the natural extracellular matrix (ECM) and
bioactive molecules. Tooth organ is composed of enamel, dentin, cementum, and dental pulp.
Cells such as ameloblasts form the enamel, odontoblasts form the dentin, cementoblasts form
the cementum, and mesenchymal, fibroblastic, vascular, and neural cells form the dental pulp
[61]. Scaffold materials play a critical role in determining how cells proliferate and differentiate.
Those that mimic the characteristics of natural ECM can best promote appropriate cell and
tissue maturation. The tooth scaffolds should be such that they provide chemical and me‐
chanical integrity, are biocompatible, are able to restore the normal functioning of the tooth,
and are able to integrate with the surrounding tissues [25]. For dentin-pulp tissue engineering,
in particular, hydrogels come across as a favorable choice because they are injectable and have
a 3D morphology that helps in the encapsulation of cells and growth factors. Hydrogel
scaffolds made from natural biopolymers such as collagen, chitosan, hyaluronic acid, gelatin,
fibrin, and alginate have been used quite extensively since they are readily cross-linkable and
can be easily combined with various bioactive molecules [62]. Kim et al. [63] loaded collagen
gels with a series of growth factors and injected them into pulp chambers and root canals of
endodontically treated human teeth. They found that on in vivo implantation of endodontically
treated human teeth in mouse dorsum for the tested 3 or 6 weeks, there was a recellularized
and revascularized connective tissue that integrated to the native dentinal wall in root canals.

Collagen gels have also been used to deliver dental pulp stem cells (DPSCs) and dentin matrix
protein-1 (DMP-1) in vivo where it led to the ectopic formation of dental pulp-like tissue [64].
Although, collagen is a major ECM component used to fabricate hydrogel scaffolds in tissue
engineering, its moderate mechanical strength is a limitation [61]. For this reason, Bhatnagar
et al. [25] used cross-linked gelatin scaffolds for dentin regeneration without any external
chemical stimulus. These gelatin hydrogel scaffolds that were cross-linked with microbial
transglutaminase (mTG) provided variable mechanical properties and were capable of
differentiating DPSCs in vitro toward odontogenesis irrespective of their mechanical stimulus
and external chemical inducer (Figure 6). Alginate hydrogels have also been used for dentin-
pulp regeneration. When loaded with exogenous transforming growth factor TGFβ1, these
hydrogels were shown to promote dentin matrix secretion and odontoblast-like cell differen‐
tiation [65]. Among synthetic polymers, PLGA hydrogels with recombinant human growth
differentiation factor-5 (rhGDF-5) have been used in periodontal defects in a dog model.
Periodontal pockets (3 × 6mm, width × depth) were surgically created over the buccal roots of
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the second and fourth mandibular premolars in mongrel dogs and progressive alveolar bone
maturation was seen at 6 weeks on rhGDF-5/PLGA delivery [66].

Figure 6. (A) Cross-section of a non-induced hard gel (H (−)) after 35 days of DPSCs culture showing a self-support‐
ing sheet of biomineralized deposits present inside the gel.  EDX spectra (inset in (A)) confirm the hydroxyapatite
mineral. A cross-sectional view of the alizarin red-stained calcified biomineralized deposits in the (B) hard (+) and
(C) hard (−) gel. Top view of the alizarin red-stained calcified deposits and their corresponding SEM images after 35
days of DPSCs cultured on: (D, H) hard (+); (E, I) hard (−); (F, J) soft (+); (G, K) soft (−) gels. The calcified deposits
laid by the cells are stained dark red and have a defined pattern. Reproduced from ref. [25] © by permission of The
Royal Society of Chemistry.

Hydrogels have shown their potential in regenerating dentin-pulp tissue. Researchers have
demonstrated the successful use of hydrogel scaffolds for dentin-pulp matrix regeneration.
However, hydrogels have a limitation when it comes to regenerating the whole tooth organ.
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Not much research has been done in the field of using hydrogel scaffolds for regenerating the
whole tooth structure.

3.3. Hydrogels for 3D printing

3D printing is emerging as a potential tool in regenerative medicine for building complex 3D
structures across length scales ranging from micrometers to millimeters. 3D printing repre‐
sents a way to pattern and assemble the cells with materials in a controlled and functional 3D
architecture. The only limitation that arises is due to the materials being printed and necessi‐
tates a need for new inks to expand the utility of 3D printed structures [67]. 3D printing
techniques generally comprises of: (a) extrusion-based printing that requires a material to be
extruded through an orifice, (b) ink-jet based printing that requires a material to be ejected as
droplets onto a substrate, and (c) laser based printing where a material is cured using a laser [67].

Hydrogels for 3D printing should be printable, biocompatible, have desired mechanical
properties, shape, and structure (Table 2) [68]. Collagen has been extensively used for 3D
printing where in one case, sodium hydrogen carbonate (NaHCO3) vapor was applied to gel
the printed collagen layer and in another instance, NaHCO3 was mixed with collagen and cells
and then printed using laser-assisted bioprinting [68]. Several researchers have utilized the
temperature-responsive hydrogels, particularly pluronic F127 that gels in the temperature
range of 10 to 40oC. Pluronics have been combined with collagen and cross-linked gelatin
methacrylate (GelMa) to form bioinks. Kolesky et al. printed pluronic F127 as a sacrificial
vascular network embedded in GelMa matrix that mimic natural fine capillaries [69].

Ideal bioprinting hydrogel properties

Printability

Viscosity
Shear-thinning property
Response and transition time
Sol–gel transition stimulus

Biocompatibility

Degradability
Cell-binding motifs
Non-toxic
Non-immunogenic

Mechanical Properties
Stiffness
Elasticity
Strength

Shape and structure
Pore size
Micro/Nanostructure

Table 1. Ideal bioprinting hydrogel properties. Reproduced from ref. [68] © Wang et al., under the terms of Creative
Commons Attribution-Non-commercial 4.0 International License.

Photocross-linking property of the hydrogels has been utilized to bioprint tough and rigid
hydrogel constructs with cells. For example, partially photocross-linking gelatin methacry‐
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late (GelMA) was combined with hyaluronic acid methacrylate (HAMA) to form a gel-like
fluid which was then printed with a defined pattern. This printed layer was further irradiat‐
ed to obtain a tubular tissue construct [70]. Hong et al. [71] combined sodium alginate and
poly (ethylene glycol) (PEG) to constitute an interpenetrating network. Laponite clay was
used to form a nanogel. Poly(ethylene glycol) diacrylate (PEGDA) and alginate mixture were
combined with laponite clay to form a pre-gel solution. To cross-link PEGDA and alginate,
a photoinitiator and calcium sulfate solution were added to the pre-gel solution. The PEGDA–
alginate–nanoclay pre-gel solution was 3D printed via extrusion-based printing (Figure 7).
The resulting hydrogels were tough and had the potential to encapsulate cells for tissue
regeneration.

Figure 7. 3D printing of tough and biocompatible PEG–alginate–nanoclay hydrogels. (a) Various 3D constructs printed
with the hydrogel (from left to right: hollow cube, hemisphere, pyramid, twisted bundle, the shape of an ear, and a
nose. Non-toxic red food dye was added postprint on some samples for visibility). (b) A mesh printed with the tough
and biocompatible hydrogel. The mesh was used to host HEK cells. (c) Live–dead assay of HEK cells in a collagen hy‐
drogel infused into the 3D printed mesh of the PEG–alginate–nanoclay hydrogel. (d) The viability of the HEK cells
through 7 d. (e) A printed bilayer mesh (top layer red, bottom layer green) is uniaxially stretched to three times its
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initial length. Relaxation of the sample after stretching shows almost complete recovery of its original shape. (f) A
printed pyramid undergoes a compressive strain of 95% while returning to its original form after relaxation. Repro‐
duced with permission from ref. [71] © John Wiley and Sons.

Recent developments in 3D printing of hydrogels offer a potential to produce constructs with
the higher structural organization, fine-tuned mechanical and chemical properties to control
cell behavior and an environment that mimics in vivo tissue. 3D printing of hydrogels is
promising and requires further development such that the hydrogels are easy and inexpensive
to print, are favorable toward promoting cell viability, differentiation, migration, and cell–cell
interactions, and are functionally versatile. However, hydrogels are soft, and their use for 3D
printing largely depends on their viscosity, their structural integrity, and their ability to be
cross-linked in a way such that the cells can be encapsulated.

4. Conclusion

Hydrogels have found extensive applicability in various fields of tissue engineering and
regenerative medicine due to their underlying similarity to the native ECM. The role of
hydrogels in regenerative medicine has progressed remarkably with their widespread use in
peripheral nerve regeneration, tooth regeneration, and more recently in 3D printing. Long
nerve gap repair, dentin-pulp complex reconstruction, and 3D printing of organs are few of
the areas in regenerative medicine that are at the forefront. Understanding and development
of functionally bioactive smart hydrogels could help tremendously in these regenerative
therapies.
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