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1. Introduction 

Marine algae contain large amounts of polysaccharides, notably cell wall structural, but also 

mycopolysaccharides and storage polysaccharides (Kumar et al. 2008b; Murata and 

Nakazoe 2001). Polysaccharides are polymers of simple sugars (monosaccharides) linked 

together by glycosidic bonds, and they have numerous commercial applications in products 

such as stabilisers, thickeners, emulsifiers, food, feed, beverages etc. (McHugh 1987; Tseng 

2001; Bixler and Porse, 2010). The total polysaccharide concentrations in the seaweed species 

of interest range from 4-76 % of the dry weight (Table 1). The highest contents are found in 

species such as Ascophyllum, Porphyra and Palmaria, however, green seaweed species such as 

Ulva also have a high content, up to 65 % of dry weight. 

Seaweeds are low in calories from a nutritional perspective. The lipid content is low and 

even though the carbohydrate content is high, most of this is dietary fibres and not taken up 

by the human body. However, dietary fibres are good for human health as they make an 

excellent intestinal environment (Holt and Kraan, 2011). 

The cell-wall polysaccharides mainly consist of cellulose and hemicelluloses, neutral 

polysaccharides, and they are thought to physically support the thallus in water. The 

building blocks needed to support the thalli of seaweed in water are less rigid/strong 

compared to terrestial plants and trees. The cellulose and hemicellulose content of the 

seaweed species of interest in this review is 2-10 % and 9 % dry weight respectively. Lignin 

is only found in Ulva sp. at concentrations of 3 % dry weight (Table 2).  

The cell wall and storage polysaccharides are species-specific and examples of 

concentrations are given in Table 3. Green algae contain sulphuric acid polysaccharides, 

sulphated galactans and xylans, brown algae alginic acid, fucoidan (sulphated fucose), 

laminarin (β-1, 3 glucan) and sargassan and red algae agars, carrageenans, xylans, floridean 

starch (amylopectin like glucan), water-soluble sulphated galactan , as well as porphyran as  
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Table 1. Content of total polysaccharides (% of dry weight) and structural and dietary fibres (% of dry 

weight) in seaweed species of interest in North-west Europe.  
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Class Genus  Uses 

Chlorophyta   

 Monostroma  edible, human food 

 Enteromorpha edible, human food 

Phaeophyta   

 Laminaria alginates, edible, human food 

 Undaria edible, human food 

 Cladosiphon edible, human food 

Rhodophyta   

 Asparagopsis medical applications 

 Gelidiella agar, food and medical 

 Gelidiopsis agar, food and medical 

 Gelidium agar, food and medical 

 Gracilaria agar, food and medical 

 Pterocladia  agar, food and medical 

 Chondrus  carrageenan, human food 

 Eucheuma  carrageenan, human food 

 Kappaphycus  carrageenan, human food 

 Gigartina carrageenan, human food 

 Hypnea carrageenan, human food 

 Iridaea  carrageenan, human food 

 Palmaria  human and animal feed 

 Porphyra human food 

Table 2. Most common genera and uses of seaweeds produced in aquaculture. 

 

Product Global 

Production 

Retail 

Price 

Approximate Gross 

Market Value 

Amount Used 

   (ton/year) (US$/kg) (US$million/year) Food (%) Pharmacy(%) 

Agars   9,600 18 173 80 ca 15 

Alginates 26,500 12 318 30 5 

Carrageenans 50,000 10.5 525 80 10 

Table 3. Phycocolloids and their global production, retail price, gross value and percentage used in 

food and pharmacy(Data; McHugh, 2003; Bixler and Porse, 2010) 

mucopolysaccharides located in the intercellular spaces (Table 3; Kumar et al. 2008b; Murata 

and Nakazoe 2001). Contents of both total and species-specific polysaccharides show 

seasonal variations. The mannitol content varied markedly in the fronds of Saccharina and 

Laminaria species with maximum amounts found during summer and autumn, from June to 

November. The laminaran showed extreme variations during the year with very small 

amounts or none at all in February to June and maximum in September to November (Haug 

and Jensen 1954; Jensen and Haug 1956). The maximum content of alginic acid in the fronds 

of Saccharina and Laminaria species was generally found from March to June and the 
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minimum from September to October (Haug and Jensen 1954). However, highest contents of 

alginic acid were found during winter in other seasonal studies on Laminaria species from 

the same areas in Norway (Jensen and Haug 1956). 

Further investigations on the hydrolysates of some brown algae showed complex mixtures 

of monosaccharides. The components of galactose, glucose, mannose, fructose, xylose, 

fucose and arabinose were found in the total sugars in the hydrolysates. The glucose content 

was 65 %, 30 % and 20 % of the total sugars in an autumn sample of 50 individual plants of 

Saccharina, Fucus (serratus and spiralis) and Ascophyllum, respectively (Jensen 1956). 

Several other polysaccharides are present in and utilised from seaweed e.g. furcellaran, 

funoran, ascophyllan and sargassan, however these are not described in this chapter.  

Seaweed polysaccharides are separated into dietary fibres, hydrocolloids etc. in the 

following paragraphs, even though the polysaccharides belong to more than just one of the 

functional groups.  

2. Seaweed production and extraction 

Harvesting or aquaculture of marine algae or seaweeds is an extensive global industry. 

This seaweed industry provides a wide variety of products that have an estimated total 

annual production value of about US$ 6 billion. Food products for human consumption 

contribute about US$ 5 billion to this figure. Substances that are extracted from seaweeds – 

hydrocolloids – account for a large part of the remaining billion dollars, while smaller, 

miscellaneous uses, such as fertilizers and animal feed additives, make up the rest. The 

industry uses almost 20 million ton of wet seaweed annually (FAO, 2012 

http://www.fao.org/fishery/statistics/global-aquaculture-production/en), harvested either 

from naturally growing (wild) seaweed or from cultivated (farmed) crops. The farming of 

seaweed has expanded rapidly as demand has outstripped the supply available from 

natural resources. Commercial harvesting occurs in about 35 countries, spread between the 

northern and southern hemispheres, in waters ranging from cold, through temperate, to 

tropical (Mc Hugh, 2003). 

In Asia, seaweed cultivation is by far more important in terms of output and value than any 

other form of aquaculture. Looking at a global scale cultivated, seaweeds account for 87% of 

all seaweed harvested and processed of which the bulk is derived from aquaculture in Asia. 

The most valued of the cultivated seaweeds is the red alga Porphyra, or Nori. It is a major 

source of food for humans throughout the world, although it is almost exclusively cultivated 

in Japan, South Korea and China. Worldwide production has an annual value of over € 1.5 

billion. In addition to Porphyra, other edible seaweeds include Gracilaria, Undaria, Laminaria 

and Caulerpa with their collective value exceeding € 3.0 billion. New applications of seaweeds 

and specific seaweed compounds in different sectors, such as food supplements, cosmetics, 

biomedicine and biotechnology are developed (Chritchley et al., 2006) 

Seaweeds are also the industrial sources of polysaccharides such as carrageenans 

(Chondrus, Eucheuma and Kappaphycus), alginates (Ascophyllum, Laminaria, and 
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Macrocystis) and agars (Gelidium and Gracilaria; Table 2 ) and have a global value of 

approximately $ US 1 billion (Table 3). These important polysaccharides are used in the 

food, textile, paint, biotechnological and biomedical industries and have recently come 

under the spotlight as functional food ingredients. (Critchley et al., 2006).The majority of 

these species are used in some form for food or, in a few cases, for chemical extracts. The 

costs of production of the biomass tend to exceed the value of the biomass as a raw material 

for phycocolloid extraction, although it is known that some Chinese kelps produced by 

aquaculture are used for the production of salts of alginic acid, and applying low-

technology extensive forms of aquaculture are used to produce Gracilaria for agar extraction 

(table 2). The value of red seaweed produced by aquaculture showed a declining trend to 

US$1.3 - 1.4 billion over the 1997 - 2000 period. This is probably due to the high volumes of 

carrageenophytes Kappaphycus and Eucheuma produced by cultivation in south-east Asia 

and, to some extent, Gracilaria cultivated in South America, and as such, showing trends 

towards commoditization. 

3. Phycolloid industry 

The term phycocolloid is used to refer to three main products (alginate, carrageenan and 

agar) which are extracted from Brown and red seaweeds respectively. The estimated world 

market value for phycocolloids is $ US 1 Billion (Bixler and Porse, 2010). European output of 

phycocolloids is estimated to have an annual wholesale value of around €130 million which 

is 97.5% of the total for all algal products in Europe (Earons, 1994). 

3.1. Brown seaweeds and alginates 

Global alginate production is ca. 26,500 tons and valued at US$318 million annually, and is 

extracted from brown seaweeds, most of which are harvested from the wild. The more 

useful brown seaweeds grow in cold waters, thriving best in waters up to about 20 °C. The 

main commercial sources of phaeophytes for alginates are Ascophyllum, Laminaria, and 

Mycrocystis. Other minor sources include Sargassum, Durvillea, Eklonia, Lessonia, and 

Turbinaria (Bixler and Porse, 2010)..  

Brown seaweeds are also found in warmer waters, but these are less suitable for alginate 

production and are rarely used as food due to non-desirable chemical compounds such as 

terpenes. A wide variety of species are used, harvested in both the northern and southern 

hemispheres. Countries producing alginate include Argentina, Australia, Canada, Chile, 

Japan, China, Mexico, Norway, South Africa, the United Kingdom (mainly Scotland) and 

the United States. Most species are harvested from natural resources; cultivated raw 

material is normally too expensive for alginate production with the exception of China. 

While much of the Laminaria cultivated in China is used for food, when there is surplus 

production this can also be used in the alginate industry.  

Seaweed hydrocolloids, such as alginate, agar and carrageenan, compete with plant gums 

(such as guar and locust bean) and cellulose derivatives (such as carboxy methyl cellulose 

(CMC) and methyl cellulose) that are often cheaper.  
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Alginates are used in the manufacture of pharmaceutical, cosmetic creams, paper and 

cardboard, and processed foods (Chapman, 1970). Alginate represents the most important 

seaweed colloid in term of volume. Grades of alginate are available for specific applications. 

Sodium alginate, pharmaceutical grade (US$ 13-15.5 per kg), food grade (US$ 6.5-11.0 per 

kg). In Japan and Korea, high demands for Laminaria japonica (trade name kombu) have 

resulted in high prices and necessitated the import of supplies for alginate extraction 

(Critchley, 1998). Annual growth rate for alginates is ca. 2-3 percent, with textile printing 

applications accounting for about half of the global market. Pharmaceutical and medical 

uses are about 20 percent by value of the market and have stayed buoyant, with 2-4 percent 

annual growth rates, driven by ongoing developments in controlled release technologies 

and the use of alginates in wound care applications. Food applications are worth about 20 

percent of the market. That sector has been growing only slowly, and recently has grown at 

only 1-2 percent annually. The paper industry takes about 5 percent and the sector is very 

competitive, not increasing but just holding its own. The alginate industry faces strong 

competition from Chinese producers, whose prices do not reflect the real expense of 

cultivating Laminaria japonica, even in China, yet they do not appear to import sufficient 

wild seaweeds to offset those costs. The result is low profitability for most of the industry, 

with the best opportunities lying in the high end of the market, such as pharmaceutical and 

medical applications. 

3.2. Red seaweeds and Carrageenans  

Carrageenans are a group of biomolecules composed of linear polysaccharide chains with 

sulphate half-esters attached to the sugar unit. These properties allow carrageenans to 

dissolve in water, form highly viscous solutions, and remain stable over a wide pH range. 

There are three general forms (kappa, lambda and iota), each with their own gelling 

property. Kappa carrageenan today is almost exclusively obtained from farmed Kappaphycus 

alvarezii and iota from farmed Eucheuma denticulatum (Rasmussen and Morrissey 2007).  

The Carrageenan market is worth US$ 527 m with most Carrageenan used as human food-

grade semi-refined carrageenan (90%) and the rest going into pet food as semi-refined 

carrageenan. Chondrus crispus and Kappaphycus sp. are species containing up to 71 % and 

88 % of carrageenan, respectively (Chopin et al. 1999; Rodrigueza and Montaño 2007). Food 

applications for carrageenans (E 407) are many, including canned foods, desert mousses, 

salad dressings, bakery fillings, ice cream, instant deserts and canned pet-foods. In the 

1970s, an energy efficient process was developed in the Philippines to make a lower cost, 

strong-gelling kappa carrageenan and a weakly gelling iota. These semi-refined products 

gradually replaced the use of refined carrageenan as the gelling agent in canned meat pet 

foods. The process required lower capital investment than standard carrageenan refineries 

and the semi-refined extracts could be profitably sold for about two-thirds the price of 

conventionally refined carrageenan (Bixler and Porse, 2010). Industrial applications for 

purified extracts of carrageenans are equally diverse. They are used in the brewing industry 

for clarifying beer, wines and honeys, although less commonly than previously. There has 

been a fairly significant increase in production capacity for gel-press-refined carrageenan in 

recent years, particularly in Asia-Pacific.  
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3.3. Red seaweeds and agar 

Agar is a mixture of polysaccharides, which can be composed of agarose and agropectin, 

with similar structural and functional properties as carrageenans. It is extracted from red 

seaweed such as Gelidium spp. and Gracilaria spp. (FAO 2008; Rasmussen and Morrissey 

2007; Jeon et al. 2005). A total of 9600 mt were sold in 2009 with a value of US$ 173 m. Agar–

agar is a typical and traditional food material in Japan and it is used as a material for 

cooking and Japanese-style confectionary. In addition, agar-agar is used in the manufacture 

of capsules for medical applications and as a medium for cell cultures, etc. Food applications 

continue to grow as shown by an increase of 2100 mt in over the last decade, and have been 

driven by the growth of processed foods in developing countries (Bixler and Porse, 2010). 

Agar melts and gels at higher temperatures than carrageenan so it finds uses in pastry 

fillings and glazes that can be applied before the pastry is baked without melting in the 

pastry oven. In processed meats, carrageenan is the favored water binder or texturing agent, 

but agar hold on to the gelatine replacement market in canned meats and aspics. The texture 

of agar in fruit jellies also compete with kappa carrageenan jellies, but the agar texture is 

preferred in parts of Asia, particularly in Japan. Although significantly smaller, the markets 

for the specialty grades are quite attractive because of better profit margins. Agarose, a 

sulfate-free very pure form of agar finds widespread use today in gel electrophoretic 

analysis of the molecules of biotechnology. 

4. Bioactive algal polysaccharides and functional properties  

While food has long been used to improve health, our knowledge of the relationship 

between food components and health is now being used to improve food. Strictly speaking, 

all food is functional, in that it provides energy and nutrients necessary for survival. But the 

term “functional food” in use today conveys health benefits that extend far beyond mere 

survival. Food and nutrition science has moved from identifying and correcting nutritional 

deficiencies to designing foods that promote optimal health and reduce the risk of disease.  

The combination of consumer desires, advances in food technology, and new evidence-

based science linking diet to disease and disease prevention has created an unprecedented 

opportunity to address public health issues through diet and lifestyle. Widespread interest 

in select foods that might promote health has resulted in the use of the term “functional 

foods.” Although most foods can be considered “functional,” in the context of this Chapter 

the term is reserved for algal polysaccharides that have been demonstrated to provide 

specific health benefits beyond basic nutrition, such as, alginates, agars, carrageenans, 

fucoidan, mannitol, laminarin, and ulvan. 

4.1. Dietary fibres 

The dietary fibres are very diverse in composition and chemical structure as well as in their 

physicochemical properties, their ability to be fermented by the colonic flora, and their 

biological effects on animal and human cells (Lahaye and Kaeffer 1997). Edible seaweed 
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contain 33-50 % total fibres on a dry weight basis, which is higher than the levels found in 

higher plants, and these fibres are rich in soluble fractions (Lahaye 1991). The dietary fibres 

included in marine algae are classified into two types, i.e. insoluble such as cellulose, 

mannans and xylan, and water soluble dietary fibres such as agars, alginic acid, furonan, 

laminaran and porphyran. The total content of dietary fibres is 58 % dry weight for Undaria, 

50 % for Fucus, 30 % for Porphyra and 29 % for Saccharina (Murata and Nakazoe 2001). Fucus 

and Laminaria have the highest content of insoluble dietary fibres (40 % and 27 % 

respectively) and Undaria pinnatifida (wakame), Chondrus and Porphyra have the highest 

content of soluble dietary fibres (15 % – 22 %; Fleury and Lahaye 1991).  

The undigested polysaccharides of seaweed can form important sources of dietary fibres, 

although they might modify digestibility of dietary protein and minerals. Apparent 

digestibility and retention coefficients of Ca, Mg, Fe, Na and K were lower in seaweed-fed 

rats (Urbano and Goñi 2002). The seaweed dietary fibres contain some valuable nutrients 

and substances, and there has been a deal of interest in seaweed meal, functional foods, and 

nutraceuticals for human consumption (McHugh 2003), because among other things 

polysaccharides show anti-tumour and anti-herpetitic bioactivity, they are potent as an anti-

coagulant and decrease low density lipid (LDL)-cholesterols in rats (hypercholesterolemia), 

they prevent obesity, large intestine cancer and diabetes, and they have anti-viral activities 

(Lee et al. 2004; Murata and Nakazoe 2001; Amano et al. 2005; Athukorala et al. 2007; Ghosh 

et al. 2009; Murata and Nakazoe 2001; Ye et al. 2008). Moreover, glucose availability and 

absorption are delayed in the proximal small intestine after the addition of soluble fibres, 

thus reducing postprandial glucose levels (Jenkins et al. 1978). Water insoluble 

polysaccharides (celluloses) are mainly associated with a decrease in digestive tract transit 

time (see also digestibility of polysaccharides; Mabeau and Fleurence 1993). 

4.2. Alginates 

Alginates were discovered in the 1880s by a British pharmacist, E.C.C. Stanford; industrial 

production began in California in 1929. Algins/alginates are extracted from brown seaweed 

and are available in both acid and salt form. The acid form is a linear polyuronic acid and 

referred to as alginic acid, whereas the salt form is an important cell wall component in all 

brown seaweed, constituting up to 40 % - 47 % of the dry weight of algal biomass (Arasaki 

and Arasaki 1983; Rasmussen and Morrissey 2007). Alginates are anionic polysaccharides. 

They contain linear blocks of covalently (1–4)-linked β-D-mannuronate with the C5 epimer 

α-L-guluronate. The blocks may contain one or both of the monomers and the ratio of 

monomers A and B, as well as a number of units (m and n) in a block is species dependent. 

It has been reported that alginic acid leads to a decrease in the concentration of cholesterol, 

it exerts an anti-hypertension effect, it can prevent absorption of toxic chemical substances, 

and it plays a major role as dietary fibre for the maintenance of animal and human health 

(Kim and Lee 2008; Murata and Nakazoe 2001; Nishide and Uchida 2003). These dietary 

polysaccharides are not found in any land plants. They help protect against potential 

carcinogens and they clear the digestive system and protect surface membranes of the stomach 
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and intestine. They absorb substances like cholesterol, which are then eliminated from the 

digestive system (Burtin 2003; Ito and Tsuchida 1972) and result in hypocholesterolemic and 

hypolipidemic responses (Kiriyama et al. 1969; Lamela et al. 1989; Panlasigui et al. 2003). This 

is often coupled with an increase in the faecal cholesterol content and a hypoglycaemic 

response (Dumelod et al. 1999; Ito and Tsuchida 1972; Nishide et al. 1993). 

Alginates, fucoidans and laminarin extracts were tested against nine bacteria, including 

Escerichia coli, Staphycococcus, Salmonella and Listeria. They appeared to be effective against E. 

coli and Staphylocococcus. Sodium alginate seemed to demonstrate a strong anti-bacterial 

element. It not only binds but also kills the bacteria. Studies conducted on seaweed extracts 

found that fucoidan appeared to function as a good prebiotic (a substance that encourages 

the growth of beneficial bacteria in the intestines). An anti-inflammatory effect from some of 

the extracts has also been found, and so far no toxic effects have emerged in use for human 

health (Hennequart 2007). Furthermore, alginates with molecular weights greater than or 

equal to 50 kDa could prevent obesity, hypocholesterolemia and diabetes (Kimura et al. 

1996). Clinical observations of volunteers who were 25 % - 30 % overweight showed that 

alginate, a drug containing alginic acid, significantly decreased body weight (Zee et al. 

1991). In type II diabetes treatment, taking 5 g of sodium alginate every morning was found 

to prevent a postprandial increase of glucose, insulin, and C-peptide levels and slowed 

down gastric transit (Torsdottir et al. 1991). Meal supplemented with 5 % kelp alginates 

decreased glucose absorption balance over 8 hours in pigs. Similar studies have been done 

on rats and humans (Vaugelade et al. 2000). Another health effect is that the binding 

property of alginic acid to divalent metallic ions is correlated to the degree of the gelation or 

precipitation in the range of Ba<Pb<Cu<Sr<Cd<Ca<Zn<Ni<Co<Mn<Fe<Mg. No intestinal 

enzymes can digest alginic acid. This means that heavy metals taken into the human body 

are gelated or rendered insoluble by alginic acid in the intestines and cannot be absorbed 

into the body tissue (Arasaki and Arasaki 1983).In several countries such as the USA, 

Germany, Japan, Belgium and Canada, the use of alginic acid and its derivatives for the 

treatment of gastritis and gastroduodenal ulcers, as well as the use of alginates as anti-ulcer 

remedies, is protected by patents (Bogentoff 1981; Borgo 1984; Reckitt and Colman Products 

Ltd 1987; Sheth 1967). Several products of alginate containing drugs have been shown to 

effectively suppress postprandial (after eating) and acidic refluxes, binding of bile acids and 

duodenal ulcers in humans. Examples are “Gaviscon” (sodium alginate, sodium 

bicarbonate, and calcium carbonate), “Algitec” (sodium alginate and cimetidine, an H2 

antagonist) and “Gastralgin” (alginic acid, sodium alginate, aluminium hydroxide, 

magnesium hydroxide and calcium carbonate) (Khotimchenko et al. 2001; Washington and 

Denton 1995). Clinical trials showed that sodium alginate promotes regeneration of the 

mucous membrane in the stomach, suppresses inflammation, eradicates colonies of 

Helicobacter pylori in the mucous membrane and normalizes non-specific resistance of the 

latter in 4 to 15-year-old children. It also promotes restoration of the intestinal biocenosis 

(Miroshnichenko et al. 1998). Other studies show positive dietry effects of alginates on faecal 

microbial fauna, changes in concentrations of compounds and acids, and prebiotic 

properties that can promote health (Terada et al. 1995; Wang et al. 2006). 



 

Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology 498 

Sodium alginate is often used as a powder, either pure or mixed with other drugs, on septic 

wounds. The polysaccharide base stimulates reparative processes, it prepares the wound for 

scarring, and it displays protective and coating effects, shielding mucous membranes and 

damaged skin against irritation from unfavourable environments. Calcium alginate 

promotes the proliferation of fibroblasts and inhibits the proliferation of microvascular 

endothelial cells and keratinocytes (Doyle et al. 1996; Glyantsev et al. 1993; Swinyard and 

Pathak 1985). Profound wound healing effects have also been reported for a gelatine-

alginate sponge impregnated with anti-septics and anti-biotics (Choi et al. 1999). 

Another use of alginates is the absorbing hemostatic effect exploited in surgery. Gauze 

dressings, cotton, swabs, and special materials impregnated with a solution of sodium 

alginate are produced and used for external use and for application onto bleeding points 

during abdominal operations on parenchymatous organs (Khotimchenko et al. 2001; 

Savitskaya 1986). Studies on the effect of alginate on prothrombotic blood coagulation and 

platelet activation have shown that the degree of these effects depends on the ratio between 

the mannuronic and guluronic chains in the molecule, as well as on the concentration of 

calcium. However, a zinc ion containing alginate was shown to have the most profound 

hemostatic effects (Segal et al. 1998). A “poraprezinc-sodium alginate suspension” has been 

suggested as a high performance mixture for the treatment of severe gingivostomatitis (cold 

sores) complicated by hemorrhagic erosions and ulcers (Katayama et al. 1998). When 

applied to the tooth surface, alginate fibres swell to form a gel like substance, a matrix for 

coagulation. Alginate dressings are used to pack sinuses, fistulas, and tooth cavities 

(Reynolds et al. 1982). 

Furthermore, the algins have anti-cancer properties (Murata and Nakazoe 2001) and a 

bioactive food additive “Detoxal”, containing calcium alginate, has anti-toxic effects on 

hepatitis. This drug decreases the content of lipid peroxidation products and normalizes the 

concentrations of lipids and glycogen in the liver (Khotimchenko et al. 2001).  

4.3. Carrageenans  

From a human health perspective it has been reported that carrageenans have anti-tumour 

and anti-viral properties (Skoler-Karpoff et al. 2008; Vlieghe et al. 2002; Yan et al. 2004; Zhou 

et al. 2006b). Furthermore, Irish Moss or Carrageen (C. crispus and Mastocarpus stellatus) has 

a large number of medical applications, some of which date from the 1830s. It is still used in 

Ireland to make traditional medicinal teas and cough medicines to combat colds, bronchitis, 

and chronic coughs. It is said to be particularly useful for dislodging mucus and has anti-

viral properties. Carrageenans are also used as suspension agents and stabilisers in other 

drugs, lotions and medicinal creams. Other medical applications are as an anti-coagulant in 

blood products and for the treatment of bowel problems such as diarrhoea, constipation and 

dysentery. They are also used to make internal poultices to control stomach ulcers 

(Morrissey et al. 2001). 

New research on the biocide properties shows that applications of carrageenan gels from 

C. crispus may block the transmission of the HIV virus as well as other STD viruses such as 



 
Algal Polysaccharides, Novel Applications and Outlook 499 

gonorrhoea, genital warts and the herpes simplex virus (HSV) (Caceres et al. 2000; Carlucci 

et al. 1997; Luescher-Mattli 2003; Shanmugam and Mody 2000; Witvrouw and DeClercq 

1997). In addition, carrageenans are good candidates for use as vaginal microbicides because 

they do not exhibit significant levels of cytotoxicity or anti-coagulant activity (Buck et al. 

2006; Zeitlin et al. 1997). Results of sexual lubricant gels raised the possibility that use of 

such lubricant products, or condoms lubricated with carrageenan-based gels, could block 

the sexual transmission of HPV (human papillomavirus) types that can cause cervical cancer 

and genital warts. However, carrageenan inhibition of herpes simplex virus and HIV-1 

infectivity were demonstrated as about a thousand-fold higher than the IC50s observed for 

genital HPVs in vitro (Witvrouw and de Clerck 1997; Luescher-Mattli et al. 2003). A 

carrageenan-based vaginal microbicide called Carraguard has been shown to block HIV and 

other sexually transmitted diseases in vitro. Massive clinical trials by the Population Council 

Centre began in two severely affected African countries; Botswana and South Africa in 2002. 

Carraguard entered phase III clinical trials involving 6000 non-pregnant, HIV-negative 

women in South Africa and Botswana in 2003 (Spieler 2002). 

Many reports exist of anti-coagulant activity and inhibited platelet aggregation of 

carrageenan (Hawkins et al. 1962; Hawkins and Leonard 1963; Kindness et al. 1979). Among 

the carrageenan types, λ carrageenan (primarely from C. crispus) has approximately twice 

the activity of unfractioned carrageenan and four times the activity of κ-carrageenan 

(Eucheuma cottoni and E. spinosum). The most active carrageenan has approximately one-

fifteenth the activity of heparin (Hawkins et al. 1962), but the sulphated galactan from 

Grateloupa indica collected from Indian waters, exhibited anti-coagulant activity as potent as 

heparin (Sen et al. 1994). The principal basis of the anti-coagulant activity of carrageenan 

appeared to be an anti-thrombotic property. λ-carrageenan showed greater anti-thrombotic 

activity than κ-carrageenan, probably due to its higher sulphate content, whereas the 

activity of the unfractionated material remained between the two. It was found that toxicity 

of carrageenans depended on the molecular weight and not the sulphate content. Similar 

results were obtained with λ-carrageenan of Phyllophora brodiaei which gave the highest 

blood anti-coagulant activity (Sen et al. 1994). In addition, the hypoglycaemic effect of 

carrageenan may prove useful in the prevention and management of metabolic conditions 

such as diabetes (Dumelod et al. 1999).The use of carrageenan for food applications started 

almost 600 years ago. Due to its long and safe history of use, carrageenan is generally 

recognised as safe (GRAS) by experts from the US Food and Drug Administration (21 CFR 

182.7255) and is approved as a food additive (21 CFR 172.620). The World Health 

Organisation (WHO) Joint Expert Committee of Food Additives has concluded that it is not 

necessary to specify an acceptable daily intake limit for carrageenans (van de Velde et al. 

2002). Although carrageenans are used widely as a food ingredient, they are also used in 

experimental research in animals where they induce pleurisy and ulceration of the colon 

(Noa et al. 2000). Furthermore, carrageenans can cause reproducible inflammatory reaction 

and they remain a standard irritant for examining acute inflammation and anti-

inflammatory drugs. Two test systems are used widely for the evaluation of non-steroidal 

anti-inflammatory drugs and cyclooxygenase activity: (1) The carrageenan air pouch model 
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and (2) The carrageenan-induced rat paw edema assay (Dannhardt and Kiefer 2001). The 

role of carrageenans in promotion of colorectal ulceration formation is controversial and 

much seems to depend on the molecular weight of the carrageenan used. The international 

agency for research on cancer classified degraded carrageenan as a possible human 

carcinogen but native carrageenan remains unclassified in relation to a causative agent of 

human colon cancer and as mentioned it has GRAS status (Carthew 2002; Tobacman 2001).  

4.4. Agar 

The agar content in Gracilaria species can reach 31 % . It has been reported that agar-agar 

leads to decreases in the concentration of blood glucose and exerts an anti-aggregation effect 

on red blood cells. It has also been reported to affect absorption of ultraviolet rays (Murata 

and Nakazoe 2001). Anti-tumour activity was also found in an agar-type polysaccharide 

from cold water extraction of another Gracilaria species and hydrolysates of agar resulted in 

agaro-oligosaccharides with activity against α-glucosidase and antioxidant ability (Chen et 

al. 2005; Fernandez et al. 1989). Agarose can be separated from the agar with a yield of 42 %, 

and the agar content varied seasonally from 26 % - 42 % in Gelidium spp. in another 

experiment (Mouradi-Givernaud et al. 1992; Jeon et al. 2005). Agaro-oligosaccharides have 

also been shown to suppress the production of a pro-inflammatory cytokine and an enzyme 

associated with the production of nitric oxide (Enoki et al. 2003). 

4.5. Fucoidan/fucans/fucanoids 

Fucoidans are a group of polysaccharides (fucans) primarily composed of sulphated L-

fucose with less than 10 % of other monosaccharides. They are widely found in the cell walls 

of brown seaweed, but not in other algae or higher plants (Berteau and Mulloy 2003). 

Fucoidan is considered as a cell wall reinforcing molecule and seems to be associated with 

protection against the effects of desiccation when the seaweed is exposed at low-tide. 

Fucoidans were first isolated by Kylin almost one century ago and have interesting 

bioactivities (Kylin 1913). According to Table 4b the species Fucus vesiculosus contains the 

highest concentration of fucoidans (up to 20 % on a dry weight basis). Fucanoids can make 

up more than 40 % of dry weight of isolated algal cell walls and can easily be extracted 

using either hot water or an acid solution (Berteau and Mulloy 2003). Fucoidan is viscous in 

very low concentrations and susceptible to breakdown by diluted acids and bases. 

Fucoidans are produced as complex, heterogeneous polysaccharides, which contribute to 

intercellular mucilage. Their structural complexity varies in the degree of branching, 

substituents,sulfatation and type of linkages, the fine structure depending on the source of 

the polysaccharide. Although their composition varies with species and geographical origin, 

fucoidans always contain fucose and sulfate with small proportions of uronic acids, 

galactose, xylose, arabinose and mannose. Algal fucoidans have one of two types of 

homofucose backbone chains, with either repeated (13)-linked -L-fucopyranosyl residues 

or alternating (13)- and (14)-linked -L-fucopyranosyl residues  Cumashi et al 2007). 

Sulfonato- and acetyl-groups as well as -L-fucopyranosyl, -D-glucuronopyranosyl and 
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some other sugar residues may occur at O-2 and/or at O-4 of the -L-fucose units of the 

backbone. Fucoidans with backbones of first type have been isolated from seaweeds 

Saccharina latissima, Laminaria digitata, Chorda filum, and Cladosiphon okamuranus. The second 

type of backbone was found in fucoidans from Fucus evanescense, Fucus distichus, and 

Ascophyllum nodosum. 

A Tasmanian company, Marinova Pty Ltd, is able to supply commercial volumes of 

fucoidan extract and their derivates, formulated to purity levels of up to 95 %. All fucoidans 

of the species Undaria sp., Lessonia sp., Macrocystis sp., Cladosiphon sp., Durvillea sp., 

Laminaria sp., Ecklonia sp., Fucus sp., Sargassum sp., Ascophyllum sp., and Alaria sp. are Halal 

and Kosher certified. Marinova has isolated fucoidans from a range of species (species-

specific), and can provide characterised fractions for either investigational research or as 

ingredients for nutraceutical and cosmetic applications. Different therapeutic profiles are 

primarily due to the molecular structure. The company has developed the Maritech™ 

coldwater extraction process, which maintains the integrity of fucoidans, and produces 

nature-equivalent high molecular weight molecules with optimal bioactivity. Solvent-based 

extraction, which is commonly used, causes degradation of fucoidans, and limits the activity 

of these molecules in biological assays.  

Sector % Demand Sector Growth Ton Value US$ 

Textile printing and 

technical grades 

41.5 Flat 11,000 140.0m 

Food and Pharma 49 60% 13,000   150.0m 

Animal feed 3.8 -75%   1,000   18.0m 

PGA 5.7 -25%   1,500   10.0m 

Total  100  26,500 $318m 

Table 4. Alginate markets (2009) – Tonnage, value and sector growth over last decade (Data; Bixler and 

Porse, 2010) 

Although the major physiological purposes of fucans in the algae are not thoroughly 

understood, they are known to possess numerous biological properties with potential 

human health applications (Berteau and Mulloy 2003). The list of bioactivity of fucoidan for 

human health is long. Fucoidan found in seaweed such as Undaria and Laminaria shows anti-

coagulant, anti-viral and anti-cancer properties; Chevolot et al. 1999; Zhuang et al. 1995). 

Fucoidan preparations have been proposed as an alternative to the injectable anti-coagulant 

heparin, because fucoidan originates from plant matter and is less likely to contain 

infectious agents such as viruses (Berteau and Mulloy 2003). No toxicological changes were 

observed when 300 mg/kg body weight per day fucoidan was administered to rats, 

however, significantly prolonged blood-clotting times were observed when concentrations 

were increased three-fold (Li et al. 2005). The biological activity (e.g. antioxidant and anti-

coagulant) of sulphated polysaccharides is not only related to molecular weight and 

sulphated ester content (role in the charge of the molecule), as previously determined, but 

also to glucuronic acid and fucose content, together with the position of the sulphate groups 

on the sugar resides (Berteau and Mulloy 2003; Li et al. 2005; Zhao et al. 2008). A large 
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molecular weight is required to achieve anti-coagulant activity, as fucoidan needs a long 

sugar chain in order to be able to bind the thrombin (coagulation protein in the blood 

stream). Some researchers have measured fucoidan’s molecular weight at approximately 100 

kDa. while others have observed a molecular weight of 1600 kDa (Rioux et al. 2007). The 

native fucoidan from Lessonia vadosa with a molecular weight of 320 kDa showed good anti-

coagulant activity compared to a smaller depolymerised fraction with a molecular weight of 

32 kDa, which presented weaker anti-coagulant activity (Li et al. 2008a). Some structural 

features of fucoidan are most likely required for certain specific activities.  

Fucoidan stimulates the immuno system in several ways, and the numerous important 

biological effects of fucoidans are related to their ability to modify cell surface properties 

(Usov et al. 2001). Oral intake of the fucoidans present in dietary brown seaweed might take 

the protective effects through direct inhibition of viral replication and stimulation of the 

immune system (innate and adaptive) functions (Hayashi et al. 2008). Fucoidan has been 

found to restore the immune functions of immune-suppressed mice, act as an 

immunomodulator directly on macrophage, T lymphocyte, B cell, natural killer cells (NK 

cell; Wang et al. 1994), promote the recovery of immunologic function in irradiated rats (Wu 

et al. 2003), induce the production of interleukin (IL-1) and interferon-γ (IFN-γ) in vitro, and 

promote the primary antibody response in sheep red blood cells in vivo (Yang et al. 1995). 

The mechanism of anti-viral activities of fucoidan is to inhibit viral sorption so as to inhibit 

viral-induced syncytium formation (Mandal et al. 2007). Sulphate is necessary for the anti-

viral activity and sulphate located at C-4 of (1-3)-linked fucopyranosyl units appears to be 

very important for the anti-herpetic activity of fucoidan (Mandal et al. 2007). Some anti-viral 

properties of sulphated fucans have also been characterised, for example inhibition of 

infection of human immunodeficiency virus (HIV), Herpes Simplex Virus (HSV) (Iqbal et al. 

2000; Mandal et al. 2007; Witvrouw and DeClercq 1997), poliovirus III, adenovirus III, 

ECH06 virus, coxsackie B3 virus, coxsackie A16 (Li et al. 1995), cytomegalovirus and bovine 

viral diarrhea virus (Iqbal et al. 2000).  

Fucoidan is known to have anti-tumour effects but its mode of action is not fully 

understood. A study done by Alekseyenko et al. 2007 demonstrated that when 10 mg/kg of 

fucoidan was administered in mice with transplanted Lewis lung adenocarcinoma, it 

produced moderate anti-tumour and anti-metastatic effects (Li et al. 2008b). These 

polyanionic polysaccharides have anti-angiogenesis, antiproliferation for tumour cells, they 

inhibit tumour growth and reduce tumour size (Ellouali et al. 1993; Li et al. 2008a), inhibit 

tumour cell adhesion to various substrata (Liu et al. 2005), and have direct anti-cancer effects 

on human HS-Sultan cells through caspase and ERK pathways (Aisa et al. 2005).  

Besides directly inhibiting the growth of tumour cells, fucoidans can also restrain the 

development and diffusion of tumour cells through enhancing the body’s immuno-

modulatory activities, because fucoidan mediates tumour destruction through type 1 T-

helper (Th1) cell and NK cell responses (Maruyama et al. 2007). In addition, at a dose of 

25 mg/kg, fucoidan potentiated the toxic effect of cyclophosphamide used to treat various 

types of cancer and some auto-immune disorders (Alekseyenko et al. 2007). 
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Many studies suggest that fucoidan has potential for use as an anti-inflammatory agent. A 

study showed that fucoidan treatment led to less severe symptoms in the early stages of 

Staphylococcus aureus-triggered arthritis in mice, but delayed phagocyte recruitment and 

decreased clearance of the bacterium (Verdrengh et al. 2000). Additionally, injection of 

fucoidan into sensitized mice before hapten challenge can reduce contact hypersensitivity 

reactions (Nasu et al. 1997). Furthermore, recruitment of leukocytes into cerebrospinal fluid 

in a meningitis model is reduced by fucoidan (Granert et al. 1999) as is IL-1 (interleukin-1) 

production in a similar model (Ostergaard et al. 2000).  

Fucoidan can act as a ligand for either L- or P- selectins, both of which interact with the 

sulphated oligosaccharides and this interaction has physiological consequences that could 

be therapeutically beneficial (Omata et al. 1997). Selectins are a group of lectins (sugar-

binding proteins) that interact with oligosaccharides clustered on cell surfaces during the 

margination and rolling of leukocytes prior to firm adhesion, extravasation and migration to 

sites of infection (Lasky 1995). 

In addition, fucoidan is an excellent natural antioxidant and presents significant antioxidant 

activity in experiments in vitro. In recent years, sulphated polysaccharides from the marine 

algae Porphyra haitanesis (Zhang et al. 2003), Ulva pertusa (Qi et al. 2005b; Qi et al. 2005a), 

Fucus vesiculosus (Ruperez et al. 2002), Laminaria japonica (Xue et al. 2004) and Ecklonia 

kurome (Hu et al. 2001) have been demonstrated to possess antioxidant activity. There are 

few reports however detailing the relationship between structure and antioxidant activity of 

sulphated polysaccharides from marine algae. Fucan showed low antioxidant activity 

relative to fucoidan (Rocha de Souza et al. 2007) and as mentioned previously, the ratio of 

sulphate content/fucose and the molecular weight were effective indicators to antioxidant 

activity of the samples (Wang et al. 2008). Fucoidan may have potential for preventing free 

radical mediated diseases such as Alzheimer’s and the aging process. Previously, fucoidan 

was extracted from L. japonica, a commercially important algae species in China. Three 

sulphated polysaccharide fractions were successfully isolated through anion-exchange 

column chromatography and had their antioxidant activities investigated employing 

various established in vitro systems, including superoxide and hydroxyl radical scavenging 

activity, chelating ability, and reducing power (Wang et al. 2008). All fractions were more 

effective than the unprocessed fucoidan. Two galactose-rich fractions had the most potent 

scavenging activity against superoxide (generated in the PMS-NADH system) and hydroxyl 

radicals with EC50 values of 1.7 μg mL-1 and 1.42 mg mL-1, respectively. One of these 

fractions also showed the strongest ferrous ion chelating ability at 0.76 mg mL-1 (Wang et al. 

2008). Additionally, fucoidan (homofucan) from F. vesiculosus and fucans (heterofucans) 

from Padina gymnospora had an inhibitory effect on the formation of hydroxyl radical and 

superoxide radical (Rocha de Souza, et al. 2007). Healing of dermal wounds with 

macromolecular agents such as natural polymers is a growing area of research interest in 

pharmaceutical biotechnology. Fucoidan has been shown to modulate the effects of a variety 

of growth factors through mechanisms thought to be similar to the action of heparin. 

Fucoidan-chitosan films can promote re-epithelization and contraction of the wound area. 

Moreover, fucoidan-chitosan films may be suitable for use in hydrogel formulations for the 

treatment of dermal burns (Sezer, et al. 2007). 
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4.6. Mannitol 

Mannitol is an important sugar alcohol which is present in many species of brown algae, 

especially in Laminaria and Ecklonia. The mannitol content is subject to wide seasonal 

fluctuations and varies with environment. Mannitol is the sugar alcohol corresponding to 

mannose. It usually constitutes less than 10 % of the dry weight in both Ascophyllum nodosum 

and L. hyperborea stipe. In autumn fronds of L. hyperborea, however, the content may be as 

high as 25 % of the dry weight . 

Applications of mannitol are extremely diverse. It is used in pharmaceuticals, in making 

chewing gum, in the paint and varnish industry, in leather and paper manufacture, in the 

plastics industry and in the production of explosives. The US, the UK, France and Japan are 

the main centres of production. Mannitol can be used in a variety of foods, candies and 

chocolate-flavoured compound coatings because it can replace sucrose to make sugar-free 

compound coatings. Sugar-free chocolates are especially popular for people with diabetes, a 

growing problem in modern society. It is used as a flavour enhancer because of its sweet 

and pleasantly cool taste. Mannitol can be used to maintain the proper moisture level in 

foods so as to increase shelf-life and stability, because it is non-hygroscopic and chemically 

inert. Mannitol is the preferred excipient for chewable tablets due to its favourable feel in 

the mouth. It is non-carcinogenic and can be used in pediatric and geriatric food products, 

as it will not contribute to tooth decay (Nabors 2004). 

4.7. Laminarin 

Laminaran is a glucan, built up from (13)- and (16)-β-glucose residues. It is a linear 

polysaccharide, with a β(13):β(16) ratio around 3:1. Laminarin is found in the fronds of 

Laminaria/Saccharina and, to a lesser extent, in Ascophyllum and Fucus species and 

Undaria. The content varies seasonally and with habitat and can reach up to 32 % of the dry 

weight. Laminaran does not gel nor form any viscous solution and its main potential 

appears to lie in medical and pharmaceutical uses. 

Commercial applications of the extract have so far been limited, although some progress has 

been made in France as an anti-viral in agricultural applications (Goemar 2010) or as dietary 

fiber (Deville et al. 2004). Especially the use of laminarin as substratum for prebiotic bacteria 

seems to have a good commercial application (Deville et al. 2004). Laminarin does not gel or 

form any viscous solution, and its main potential appears to lie in medical and 

pharmaceutical uses. It has been shown to be a safe surgical dusting powder, and may have 

value as a tumour-inhibiting agent and, in the form of a sulphate ester, as an anti-coagulant 

(Miao et al. 1999). The presence of anti-coagulant activity in brown algae was first reported 

in 1941, when Laminaria showed anti-coagulant properties with its active compound being 

located in the holdfasts (Shanmugam and Mody 2000). There are about 60 brown algal 

species identified to have blood anti-coagulant properties. Laminarin only shows anti-

coagulant activity after structural modifications such as sulphation, reduction or oxidation. 

The anti-coagulant activity is improved chemically by increasing the degree of sulphation 

(Shanmugam and Mody 2000). 
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Preparations containing 13:16-β-D-glucans, laminarin, and fucoidan are manufactured 

by the health industry and marketed for their beneficial properties on the immune system. 

The producers of these tablets cite numerous papers discussing the biological activity of 

these glucans.  

Laminarin provides protection against infection by bacterial pathogens, and protection 

against severe irradiation, it boosts the immune system by increasing the B cells and helper 

T cells, reduces cholesterol levels in serum and lowers systolic blood pressure, among other 

effects (Table 4c; Hoffman et al. 1995) lower the levels of total cholesterol, free cholesterol, 

triglyceride and phospholipid in the liver (Miao et al. 1999; Renn et al. 1994a; 1994b). The 

hypocholesterolemic and hypolipidemic responses are noted to be due to reduced 

cholesterol absorption in the gut (Kiriyama et al. 1969; Lamela et al. 1989; Panlasigui et al. 

2003). This is often coupled with an increase in the faecal cholesterol content and a 

hypoglycaemic response (Dumelod et al. 1999; Ito and Tsuchida 1972; Nishide et al. 1993). A 

high level of low density lipid (LDL) cholesterol can lead to plaque forming and clog 

arteries and lead to cardiovascular diseases and heart attacks or strokes, a major cause of 

disease in the US. Laminarin as a potential cancer therapeutic is under intensive 

investigation (Miao et al. 1999). 

4.8. Ulvan 

The name ulvan is derived from the original terms ulvin and ulvacin introduced by Kylin in 

reference to different fractions of Ulva lactuca water-soluble sulphated polysaccharides. It is 

now being used to refer to polysaccharides from members of the Ulvales, mainly, Ulva sp. 

Ulvans are highly charged sulphated polyelectrolytes, composed mainly of rhamnose, 

uronic acid and xylose as the main monomer sugars, and containing a common constituting 

disaccharide; the aldobiuronic acid, [4)-D-glucuronic acid-(14)- L-rhamnose3-sulfate-

(1]. Iduronic acid is also a constituent sugar. The average molecular weight of ulvans 

ranges from 189 to 8,200 kDa (Lahaye 1998). The cell-wall polysaccharides of ulvales 

represent 38 % to 54 % of the dry algal matter (Lahaye, 1998). Two major kinds have been 

identified: water soluble ulvan and insoluble cellulose-like material.  

The mechanism of gel formation is unique among polysaccharide hydrogels. It is very 

complex and not yet fully understood. The viscosity of ulvan solutions as isolated 

polysaccharides has been compared to that of arabic gum. Whether ulvans present other 

functional properties of this gum remains to be established. The gelling properties of ulvans 

are affected by boric acid, divalent cations and pH. They are thermoreversible without 

thermal hysteresis. The gelling properties can be of interest for applications where gel 

formation needs to be precisely controlled (by pH or temperature), like the release of 

trapped molecules or particles under specific conditions (Percival and McDowell 1990; 

Lahaye et al. 1998). As already mentioned, highly absorbent, biodegradable hydrocolloid 

wound dressings limit wound secretions and minimise bacterial contamination. 

Polysaccharide fibres trapped in a wound are readily biodegraded. In the context of BSE 

(mad cow disease) and other prion contamination diseases, macromolecular materials from 
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algal biomasses such as ulvans can constitute an effective and low-cost alternative to meat-

derived products, because their rheological and gelling properties make them suitable as a 

substitute for gelatin and related compounds (Choi et al. 1999). 

Ulvans are a source of sugars for the synthesis of fine chemicals. In particular, they are a 

potential source of iduronic acid, the only occurrence to date of this rare uronic acid in 

plants (Lahaye and Ray 1996). Iduronic acid is used in the synthesis of heparin fragment 

analogues with anti-thrombotic activities, and obtaining it requires a lengthy synthetic 

procedure that could be more cost-effectively replaced by a natural source (Lahaye 1998). 

Oligosaccharides from Ulva could be used as reference compounds for analyzing 

biologically active domains of glycosaminoglycans (GAG) like heparin. The use of oligo-

ulvans as anti-coagulant agents could be expected since other, rarer, sulphated 

polysaccharides, like dermatan sulphate or fucan in brown algae, have shown this anti-

thrombinic activity. Regular oligomers from ulvans may provide better-tolerated anti-

thrombinic drugs (Paradossi et al. 2002). 

Rhamnose, a major component of ulvans, is a rare sugar, used as a precursor for the 

synthesis of aroma compounds. Combinatorial libraries in glycopeptide mimetics are 

another example of the use of L-rhamnose in the pharmaceutical industry. The production 

of rhamnose from Monostroma, a Japanese species of Codiales, has been patented. Rare 

sulphated sugars such as rhamnose 3-sulphate and xylose 2-sulphate are also of interest 

(Lahaye and Robic 2007). 

Other potential applications of ulvan oligomers and polymers are related to their biological 

properties. Recent studies have demonstrated that ulvans and their oligosaccharides were 

able to modify the adhesion and proliferation of normal and tumoural human colonic cells 

as well as the expression of transforming growth factors (TGF) and surface glycosyl markers 

related to cellular differentiation (Lahaye and Robic 2007) . Earlier work demonstrated 

strain-specific anti-influenza activities of ulvan from U. lactuca and the use of rhamnan, 

rhamnose and oligomers from desulphated Monostroma ulvans has been patented for the 

treatment of gastric ulcers (Fujiwara-Arasaki et al. 1984; Nagaoka et al. 2003).  

Oligomers from seaweed species such as Laminaria sp. or Fucus serratus have also been 

studied as plant elicitors. These are natural compounds which stimulate the natural 

defences of plants. Several products derived from brown algae are already marketed 

worldwide. The success is because of their size and availability rather than their chemical 

composition. Ulva cell walls bind heavy metals and ulvans are the main contributors with 

2.8 to 3.77 meq g-1 polysaccharide. The ion-exchange property of ulvans explains why they 

have been chosen as bioindicators for monitoring heavy metal pollution in coastal waters 

(Nagaoka et al. 1999). 

4.9. Porphyran and Xylans 

In red algae, the fibrillar network is made of low crystalline cellulose, mannan or xylan and 

represents only about 10% of the cell wall weight. It can also contain minor amounts of 
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sulphated glucans, mannoglycans and complex galactans. Most of our current knowledge of 

red algal cell wall polysaccharides is on the gelling and thickening water soluble galactans, 

agars and carrageenans, used in various applications. Unlike most red seaweed generally 

studied, Palmaria palmata does not produce matrix galactans, but instead (10/4)- and (10/3)-

linked b-D-xylan together with a minor amount of fibrillar cellulose and b-(10/4)-Dxylan. 

Xylans can be 35 % of the dry weight of Palmaria (Lahaye et al. 2003). Xylans have not yet 

been of economic interest and only few applications are known. Species of Porphyra contain 

a sulphated polysaccharide called porphyran; a complex galactan. Porphyran is dietary fiber 

of good quality, and chemically resembles agar. A powder consisting of 20 % nori mixed 

with a basic diet given orally to rats prevented 1,2-dimethylhydrazine-induced intestinal 

carcinogenesis. Porphyran showed appreciable anti-tumour activity against Meth-A 

fibrosarcoma. In addition, it can significantly lower the artificially enhanced level of 

hypertension and blood-cholesterol in rats (Noda 1993). 

4.10. Digestibility of polysaccharides 

The majority of edible seaweed fibres are soluble anionic polysaccharides which are little-

degraded or not fermented by the human colonic micro flora (Lahaye and Kaeffer 1997). The 

amount of dietary fibres in marine algae not digested by the human digestive tract is higher 

than that of other food materials (Murata and Nakazoe 2001). Most of the total algal fibres 

disappeared after 24 h (range 60 % - 76 %) in in vitro fermentation of e.g. L. digitata and 

U. pinnatifida using human faecal flora. However, unlike the reference substrate (sugar beet 

fibres), the algal fibres were not completely metabolized to short chain fatty acids (SCFA; 

range 47 % - 62 %). Among the purified algal fibres, disappearance of laminarins was 

approximately 90 % and metabolism to SCFA was approximately 85 %, in close agreement 

with the fermentation pattern of reference fibres. Sulphated fucans were not degraded. 

Sodium alginates (Na-alginates) exhibited a fermentation pattern quite similar to that of the 

whole algal fibres, with a more pronounced discrepancy between disappearance and 

production of SCFA: disappearance was approximately 83 % but metabolism was only 

approximately 57 %. Laminarin seemed to be a modulator of the intestinal metabolism by its 

effects on mucus composition, intestinal pH and short chain fatty acid production, 

especially butyrate. The characteristic fermentation pattern of the total fibres from the 

brown algae investigated was attributed to the peculiar fermentation of alginates (Michel et 

al. 1996; Deville et al. 2007). 

Phycolloids are more or less degraded following adaptation of the human micro flora, but 

none of the seaweed polysaccharides have been shown to be metabolized, although some 

may be partly absorbed. Nothing is known about the fate of other algal polysaccharides in 

the human digestive tract, except that they cannot be digested by human endogenous 

enzymes. Results of fermentation in vitro with human faecal bacteria, indicate that brown 

seaweed fibres exhibit an original fermentation pathway (Mabeau and Fleurence 1993). 

Carrageenan is a good source of soluble fibre (Burtin 2003). Rats excrete carrageenan 

quantitatively in the faeces, if it is administered in the diet at levels of 2 % - 20 % and it 

therefore has no direct nutritive value (Hawkins and Yaphe 1965). Weight gain was 



 

Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology 508 

significantly reduced, especially at higher levels. Furthermore, food efficiency showed 

interference with utilization of other nutrients in the diet. Only 10 % - 15 % appeared 

digestible from faecal examination (Hawkins and Yaphe 1965). An experimental feeding 

with L  digitata seaweed extract in pig resulted in a higher production of butyric acid in the 

caecum and colon compared to the control group (Reilly et al. 2008). Butyrate is a beneficial 

metabolite for intestinal bacteria, because it is quickly metabolised by colonoyctes and 

accounts for about 70 % of total energy consumption of the colon (Reilly et al. 2008). 

Therefore, it is desirable to promote butyrate production in the colon by laminarin 

fermentation.  

The particular chemical structure of ulvan (and of Ulva) is responsible for the resistance of 

this polysaccharide to colonic bacterial fermentation. Consumption of dietary fibres from 

Ulva sp. could be expected to act mainly as bullring agents with little effect on nutrient 

metabolism due to colonic bacterial fermentation products (short-chain fatty acids; Bobin-

Dubigeon et al. 1997). All soluble fibre fractions of P palmata consisted of linear beta-

1,4/beta1,3 mixed linked xylans containing similar amounts of 1,4 linkages (70.5 % - 80.2 %). 

The insoluble fibres contained essentially 1,4 linked xylans with some 1,3 linked xylose and 

a small amount of 1,4-linked glucose (cellulose). Soluble fibres were fermented within 6 

hours by human faecal bacteria into short chain fatty acids (Lahaye et al. 1993). 

4.11. Commercial products, patents and applications 

Due to their plethora of bioactive molecules, marine macroalgae have great potential for 

further development as products in the nutraceutical, functional food, and pharmaceutical 

markets. Patent activity in this area has increased and several novel products based on 

macroalgae have entered the market in recent years. In respect of carbohydrates for 

example, the Kabushiki Kaisha Yakult Honsha company, Japan has patented a 

polysaccharide derivative (which contains fucoidan and rhamnan or rhamnan sulphate 

polysaccharides), extracted from the marine brown macroalgae, such as, Cladosiphon 

okamuranus, Chordaricles nemacystus, Hydrilla sp., Fucus sp., and a green alga Monostroma 

nitidum. The purpose of this compound is as a therapeutic agent for the prevention and 

treatment of gastric ulcers (specifically inhibiting the adhesion of Helicobacter pylori and 

administered as tablets, granules, powders or capsules (Nagaoka et al., 2003). Furthermore, 

Takara Shuzo Company, Kyoto, Japan has developed a medicinal composition exemplified 

by viscous polysaccharides isolated from red algae (specifically: Gelidium amansil, G. 

japonicum, G. pacificum, G. subcostatum, Pteocladia tennis and Hypneaceae species consisting of 

at least one 3,6- anhydrogalactopyranose. This compound is proposed for the treatment or 

prevention of diabetes, rheumatism, cancer and contains various inhibitory factors (Enoki et 

al., 2003). Sulphated fucans from Fuscus vesiculosis and Ascophyllum nodosum have been 

patented as anticoagulant substances (Smit, et al., 2004). In practical gastroenterology, 

mixtures of alginic acid and alginates with antacids are used to prevent gastro-esophageal 

reflux and to cure epigastric burning (Klinkenberg- Knol et al., 1995; Zeitoun et al., 1998). 

Indeed, in several countries such as the US, Germany, Japan, Belgium and Canada the use of 

alginic acid and its derivatives for the treatment of gastritis and gastroduodenal ulcers, as 
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well as the use of alginates as atiulcer remedies, is protected by patents (Bogentoff et al, 

1981; Borgo et al., 1984; Reckitt et al., 1987; Sheth et al., 1967). The medical application of 

pure fucoidan fraction has also been patented by the French research institute IFREMER-

CNRS (PATENT WO/32099, however the extract of brown seaweeds (containing fucoidan 

fractions) can still be applied in cosmetology as fibroblast proliferation activators in the 

context of treatments aimed at aesthetics, for example of antiwrinkle treatments or of 

prevention of skin ageing without patent infringement. 

 

Company  Compound Activity / disorder Development  

Various  Heparin and derivatives  Anti-coagulants  Since 1940’s  

Astellas  Auranofin (Ridaura)  Anti-rheumatic  1983  

GSK  Zanamivir (Relenza)  Anti-influenza  1992  

Johnson & Johnson  Topiramate (Topamax)  Anti-epileptic  1987  

Bayer  Acarbose (Glucobay)  Type II diabetes  1990  

 (Pseudo-oligosaccharide)  (a-glucosidase, a-  

  amylase inhibitor)   

Ortho-McNeil Janssen Elmiron (Pentosan  Cystitis (for CJD)  1996  

Pharmaceutical  polysulfate)    

Alfa Wassermann  Sulodexide (Vessel™)  cardiovascular  Marketed since 

  indications  1980’s  

Hunter Fleming 

(now Newron)  

HF0420 – low MWt  

oligosaccharide  

neuroprotective  Phase I  

Progen (Australia)  PI-88  Anti-angiogenic/anti- Phase III  

 (Phosphomannopentaose  metastatic.   

 sulphate, Heparan sulfate  (hepatocellular   

 mimetics)  carcinoma)   

PG500 series  Anti-angiogenic/anti- Preclinical  

 (Heparan sulfate  metastatic.   

 mimetics)    

Endotis Pharma  EP42675 (org)  Anticoagulant  Phase I  

 EP224283 (org)  Neutralizable   

  antithrombotic  Preclinical  

EP37  venous and arterial  Preclinical  

  thromboses   

EP8000 programme  Anti-angiogenesis, anti- Preclinical  

  tumour growth   

  /metastasis   

Biotec Pharmacpn  SBG (Soluble beta glucan  Immune stimulation  GRAS  

(Norway)  – beta-1,3/1,6 glucan)  Anti-cancer  nutraceutical  

Table 5. Examples of carbohydrate-based drugs in use or development 

The macroalgae polysaccharides described in this chapter show that these can be an 

interesting natural source of potential functional ingredients. As the content of proteins, 
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carbohydrates, lipids and fiber can be influenced by the growing parameters (water, 

temperature, salinity, light and nutrients), macroalgae can be considered bioreactors that 

may be able to provide different polysaccharides at different quantities (Rui et. Al., 1990). 

From the descriptions above it is clear that macroalgae polysaccharides possess a multitude 

of bioactivities that might have antioxidant, antibacterial, antiviral, anticarcinogenic, 

anticoagulant and other bioactive properties for use as functional foods, pharmaceuticals 

and cosmeceuticals. The use of carbohydrate-based drugs is in its infancy, although there 

are several well-known examples (Table 5). Heparin is the key example of a major 

medicinally used carbohydrate based molecule. Low molecular weight heparins (eg. 

Certoparin, Dalteparin) and various derivatives (Fondaparinux – fully synthetic) have been 

developed to improve efficacy and half-life, and some are now being trialed for non-

thrombotic/vascular applications (eg. Certoparin for inflammatory aspects of Alzheimers 

disease). It is only comparatively recently that the anti-inflammatory properties of heparin 

have been discovered. The presence of abundant 3-O-sulfated glucosamines in Heparan 

sulfates from human follicular fluid has suggested that some biological activities could be 

mimicked by other sulfated polysaccharides or derivatives (de Agostini et al., 2008). Low 

molecular weight fucoidan (LMWF) has been used to demonstrate this (Colliec et al., 1991, 

Millet et al., 1999 and Durand et al., 2008). 

The drugs listed in Table 5 have overcome some of the perceived limitations of sugar-based 

molecules in terms of delivery, synthesis and immunogenicity. Although many still require 

intravenous delivery, several are available orally (e.g. Pentosan polysulfate), and further 

research is targeting to the improvement of oral availability by reducing compounds to their 

smallest active components, or by combining with other molecules (e.g. sulodexide). 

Improved synthesis has meant that some compounds can be synthesised (e.g. 

Fondaparinux), and small active components can be selected or modified to improve 

efficacy. No major problems have been reported with immunogenicity either in animal trials 

or as approved drugs. Sulphated polysaccharides may also be good anticoagulants through 

non-antithrombin mediated mechanisms, such as inhibition of thrombin mediated by 

heparin cofactor II (HC2). Like heparin, sulphated polysaccharides modulate cell growth-

related activities, with inhibitory or promoting effects, depending on their carbohydrate 

backbones, degrees of sulphation, and distribution of sulphate groups. These activities can 

be usefully modulated through modification of sulphation patterns (Casu et al., 2002; Naggi 

et al., 2005). Several biological activities of sulphated polysaccharides are also molecular 

weight-dependent and the average length of their chains should be carefully controlled in 

order to maximize the desired activity. In some systems, opposite activities can be achieved 

with chains of different lengths of the same sulphated polysaccharide. Typically, relatively 

small oligosaccharides of heparin and heparinoids bind to growth factors and act as 

inhibitors of angiogenesis. On the other hand, the corresponding highermolecular weight 

species induce growth factors activation through oligomerization and binding with their 

receptors, thus promoting cell growth signalling (Casu and Lindahl, 2002; Goodner et al., 

2008). Also inhibiton of heparanase and heparanase-related biological activities such as 

angiogenesis and metastasis by heparin species (Naggi et al., 2005) and sulfated 
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hyaluronates (Naggi et al., 2005) are dependent on molecular weights and sulfation patterns. 

Similarly, sulphated polysaccharides are expected to be exploitable as drugs either in their 

natural form or with depolymerization and/or chemical derivatisation. Macroalgal suphated 

polysaccharides need to be fully characterised and the biological activities associated with 

specific structures determined so that their development can progress. 

5. Brown algae – Growth, cultivation and productivity 

Due to the relatively high carbohydrate content in percentage of the dryweight (Table 1) 

brown macroalgae in particular species of the Laminariaceae have come under the spotlight 

for mass-cultivation. Specifically  in respect of carbohydrate production for fermentation 

purposes for ethanol and or biodegradable plastics production or other medical and food 

applications. Brown macroalgae exploitation in Europe is currently restricted to manual and 

mechanised harvesting of natural stocks, although several EU projects explore mass 

cultivation in European waters. The majority of Asian seaweed resources are cultivated. The 

most common system in Europe to obtain seaweed biomass is by harvesting natural stocks 

in coastal areas with rocky shores and a tidal system. The natural population of seaweed is a 

significant resource. Depending on water temperature, some groups will dominate, like 

brown seaweeds in cold waters and reds in warmer waters. In Europe the main harvesting 

countries are Norway and France. Between 120,000 and 130,000 tonnes of Laminaria are 

harvested annually in Norway. The standing stock is estimated to be 10 million tonnes (Vae 

and Ask, 2011). France harvests about 30,000 – 50,000 tonnes annually, mainly Laminaria 

species for hydrocolloid production. The green alga Ulva, is commonly encountered in 

estuaries and inshore coastal areas. When mass proliferation occurs they are known as 

‘green tides.’ They tend to develop at more and more locations along European coasts, due 

to eutrophication, and are used to a small extent as fertilisers but not yet used for industrial 

applications. Nevertheless they may form an interesting source and feedstock for 

carbohydrates (Kraan & Guiry, 2006). 

In Europe, knowledge of seaweed cultivation is scattered across several R&D groups and a 

few industrial groups. The amount of cultivated seaweed is very low, mainly very small 

companies with local facilities for cultivating high value species. Existing industries having 

large scale cultivation are located in Asian countries (China, Philippines, Korea, Indonesia, 

and Japan) and in Chile. The main obstacle in European countries will be labour cost. 

Development of mechanized seaweed cultivation will be required in Europe to achieve cost 

objectives. In Ireland also the aquaculture sector is gradually building know-how and basic 

infrastructure for Laminaria cultivation. Technologies to cultivate Laminaria are well known. 

For instance, the FAO publish a guide to Laminaria culture which is very detailed (Chen, 

2005). The main producers of Laminaria are located in China, Korea and Japan, where 

preservation of natural stocks is not always sustainably managed. The main reason for an 

increased harvest is increased productivity due to selection of the best performing strains, 

improved crop-care, less variability, fertilizing techniques and faster harvesting. This 

strategy will also be required to achieve the low material cost with a high carbohydrate 

content needed for biofuel applications. 
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Brown seaweeds from the Laminariaceae or Fucaceae families have a generative cycle 

including microstages, i.e. zoospores and gametophytes, before fertilization results into new 

sporophytes. Gametophytes are independently living organisms which can be grown and 

propagated vegetatively. The interesting thing is that the gametophytes can be grown in 

biofermentors in a controlled way like microalgae or bacteria. This procedure is used for 

example for production of fucoxanthin from Undaria pinnatifida cultivated under 

microscopic gametophyte form. Because cloning of these gametophyte structures is possible, 

genetically uniform strains can be obtained quickly. These clones can be used also for 

breeding purposes towards varieties of the seaweed in their mature stage. Selection and 

breeding is an essential step to reach a uniform crop and to optimize yield of the targeted 

compounds. Little is known about the composition of these microstages, but based on their 

survival rate in non favorable (a)biotic conditions interesting levels of bioactive 

polysaccharides may be obtained. Cultivation is the most efficient solution to guarantee 

consistent contents in bioactive compounds, whereas seaweeds harvested from wild 

resources undergo uncontrolled composition variations due to changes in growing 

environment. If highly valuables molecules such as fucoidans are aimed as products, 

seaweed aquaculture is therefore a very interesting option. The current cultivation methods 

are still based on Asian techniques although currently programs are initiated in the EU to 

develop open sea based seaweed cultivation technology. Although seaweeds are known for 

their richness in bioactive substances like polysaccharides, proteins, lipids, vitamins and 

polyphenols and have been shown to have a wide range of potential cosmetic, 

pharmaceutical and medical applications, their economic potential is still insufficiently 

developed.  

5.1. Eutrophication and suitable carbohydrate feed stocks 

Inputs of  biodegradable organic matter and inputs deriving from fertilizer run-off together 

with run off or dilution from finfish and shellfish rearing in near-shore waters and land 

based activities have many effects on the quality of coastal inshore waters and are a primary 

cause of eutrophication due to increased availability of nutrients (EPA, 2003). In estuaries 

and shallow coastal bays, this can lead to the proliferation of vast green algal mats, known 

as ‘green tides’(Fletcher 1996). Kelp farms (inshore and near-shore) are able to act as bio-

filters and are able to remove nitrates and phosphates from the surrounding eutrophic 

inshore waters. This allows for increased production of farmed seaweed as demonstrated by 

Chopin et al.,2001, 2008b Eutrophe waters are high in ammonia and phosphorous which can 

be stripped from the water by seaweed at rates varying from 60% up to 90% of the nutrient 

input. Macroalgae are able to take up nitrogen from seawater with rates to allow for a 

biomass increase of ca. 10% day-1. It is well documented that in tank systems the green alga 

Ulva is able to remove 90% of the nitrogenous compounds and the red alga Gracilaria up to 

95% of dissolved ammonium from fish effluent (Neori et al., 2000). By cultivating and 

harvesting macroalgae as biofilters integrated with other shellfish or fish production 

systems, nutrient polution from these aquaculture systems could be alleviated through a 

process called IMTA (Integrated Multitrophic Aquaculture) while increasing production 



 
Algal Polysaccharides, Novel Applications and Outlook 513 

and carrying capacity (Chopin et al.,2001, 2008; Troell et al., 2009). Production of macroalgae 

in near-shore sea cultivation can be harvested for the bioethanol market to produce a value 

added marketable product acting as both an economic incentive and environmental 

incentive.  

5.2. Effect of enrichment on carbohydrates  

High ammonia and nitrate concentrations will alter the proximate composition in the 

macroalgae and cause a shift with higher protein and generally lower carbohydrate levels 

such as starch or dietary fiber as demonstrated by Rosenberg and Ramus, (1982); Pinchetti et 

al., (1998). How exactly it effects the carbohydrate composition is not known but might be 

an interesting way to manipulate carbohydrate content and composition in algae. In the red 

carrageenophyte Kappaphycus alvarezii the effect of ammonium addition in an otherwise 

nitrogen starved environment had a profound impact on the carrageenan content and 

showed increased gel strength of the carrageenan with an increase of ammonia ( Rui et. al., 

1990). 

6. From a hydrocarbon society to carbohydrate society 

Global demand for bio-fuels continues unabated. Rising concerns over environmental 

pollution and global warming, has encouraged the movement to alternate fuels, the world 

ethanol market is projected to reach 100 billion litres this year. Bioethanol is currently 

produced from carbohydrates from and-based crops such as corn and sugar cane. A 

continued use of these crops drives the food versus fuel debate. An alternate feed-stock 

which is abundant and carbohydrate-rich is necessary. The production of such crop needs to 

be sustainable and reduce competition with production of food, feed and industrial crops on 

agricultural inputs (pesticides, fertiliser, land, water). Macroalgae, in specific brown 

seaweeds could meet these challenges, being an abundant and carbon neutral renewable 

resource with potential to reduce green-house gas (GHG) emissions and the man-made 

impact on climate change.  

Macroalgae are fast growing marine plants that can grow to considerable size (up to tens of 

meters in length in the case of Pacific kelp species), although Atlantic species would be 

smaller at ~ 3 m length (Lüning 1990). Growth rates of marine macroalgae far exceed those 

of terrestrial biomass. The large brown algae of kelp forests found on rocky shores inhabit 

an environment of vigorous water movement and turbulent diffusion. This allows very high 

levels of nutrient uptake, photosynthesis and growth. Highest productivity of kelp forests is 

found along the North American Pacific coast, which out-performs that of the most 

productive terrestrial systems (Velimirov et al. 1977). Laminaria-dominated communities of 

the European coasts have an annual productivity of approximately 2 kg carbon per m2, 

which is still higher than, for example, temperate tree plantations or grasslands with a 

productivity of generally less than 1 kg carbon per m2 (Thomas 2002). Production figures 

have been reported in the range of 3.3 – 11.3 kg dry weight m-2 yr-1 for non-cultured and up 

to 13.1 kg dry weight m-2 over 7 month for cultured brown algae compared with 6.1 – 9.5 kg 
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fresh weight m-2  yr-1 for sugar cane, a most productive land plant. In addition marine 

biomass does not require fertilisation as currents and water exchange provide a continuous 

flow of a base level of nitrates and phosphates and large scale cultures may be useful in 

alleviating increased nitrogen levels in inshore waters. Due to the absence of lignin and a 

low content of cellulose, brown macroalgae carbohydrates may be easily convertible in 

biological processes compared to land plants.  

Seaweeds are already farmed on a massive scale in Asia and substantial quantities are also 

harvested from natural populations. Recent research has shown the potential for large scale 

culture of macroalgae in Atlantic waters (Germany; Buck and Buchholz 2004: Canada; 

Chopin et al. 2008: France; Kaas 2006: Ireland; Kraan et al. 2000: Isle of Man, UK; Kain et al. 

1990, Spain; Peteiro et. al., 2006). The challenges now lie in further developing cost-effective 

methodologies to grow, harvest transport and process large quantities of macroalgae.  

A large body of research on fermentation of seaweeds into methane exists starting in the 

early 1980s and is extensively reviewed in Kelly and Dworjanyn (2008).  

The only commercially available biofuels today are first generation biofuels, mainly bioethanol 

and biodiesel, produced from e.g. sugar cane and corn, and rapeseed, respectively. However, 

continued use of these crops will drive the food versus fuels debate even more as demand for 

ethanol increases. Not only does the large-scale production of corn and sugar cane damage the 

environment by the use of pesticides, it uses two other valuable resources: arable land and 

enormous quantities of water. For instance, the production of corn in the USA uses over 3 

trillion litres of water a year in 2007 (Chiu et al. 2009).  

Increased demand and the competition with food production has called for the development 

of second generation biofuels, based on utilization of lignocellulosic biomass, such as wood 

and agricultural waste. Second generation biofuels do not compete with food as a feedstock, 

but they compete for land and fresh water resources. Therefore the challenge is to find a 

feedstock which is abundant and carbohydrate-rich. This crop must be sustainable, use no 

agricultural inputs (pesticides, fertiliser, land, water), and must not be part of the human or 

animal food chain. Such a feedstock and an alternative to terrestrial biomass are marine 

macroalgae or seaweeds. Macroalgae and aquatic biomass are emerging as one of the most 

promising potential sources for biofuels production.  

6.1. Suitable species and production 

Several species of macroalgae accumulate high levels of carbohydrates, which are suitable as 

substrate for microbial conversion processes, e.g. for production of bioethanol, biobutanol as 

biofuels or other desirable chemicals with an attractive high product value. Green algae 

species such as the Ulva sp Linnaeus with high levels of the polysaccharide Ulvan (Lahaye 

and Ray 1996; Lahaye 1998) have been used in ethanol and methane production production 

(Morand et al. 1991, Adams et al. 2009). Brown macroalgae in particular kelp contain 50-60% 

carbohydrates of the dryweight and cultivation techniques have been firmly established for 

the last 50 years. Moreover, kelp is cultivated in large quantities up to 15.5 million wet 

tonnes in the Far East (FAO 2010).  
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Five Atlantic kelp species are suitable for cultivation and have a high carbohydrate level, 

i.e., Saccorhiza polyschides (Lightfoot) Batters; Alaria esculenta (L.) Greville; Laminaria 

hyperborea (Gunnerus) Foslie; Laminaria digitata (Hudson) J.V. Lamouroux; and Saccharina 

latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders (Werner and  Kraan 

2004). They differ in various aspects, such as morphology, ecophysiology and longevity. 

Laminaria digitata and Laminaria hyperborea are the only species that form extended 

monospecific kelp beds.  

The biomass productivity of macroalgae ranges converted to carbon is about 1 to 3.4 kg 

carbon m-2 year-1 (Gao and McKinley 1994; Mann 1982; Mohammed and Fredriksen 2004). 

Seaweed communities of the North Atlantic coasts have an annual productivity of approxi-

mately 2 kg C per m2, which is far higher than, for example, temperate tree plantations or 

grasslands with a productivity of generally less than 1 kg C m-2, year-1 (Mann 1982; 

Chapman 1987; Thomas 2002; Lüning and Pang 2003;  Mohammed and Fredrikson 2004), 

and 2.8 times higher than for sugar cane (Gao and McKinley 1994). Macroalgae can be 

cultivated in the open sea (Zhang et al. 2008; Bartsch et al. 2008; Kelly and Dworjanyn 2008). 

Ocean farming of seaweed does not depend on fresh water and does not occupy land areas 

(Yarish and Pereira 2008). Sustainable utilization of algal biomass - a largely unexplored 

feed stock resource can be a complement to terrestrial biomass for the future global energy 

and carbon security and thereby also strengthen the maritime economies. 

Ocean farming of seaweed has the potential to produce in the order of 40 ton dry weight 

biomass per hectare per annum. An area of 2500 km2, the size of Luxembourg, would be 

able to provide 10 million ton dry biomass, representing 5.6-5.8 million ton carbohydrates. 

With current 90% enzymatic conversion into ethanol (Wargacki et al., 2012) this would yield 

close to 2 billion litres of bioethanol. This is about 2-3 % of the world's global bioethanol pro-

duction (F.O. Licht 2009); however, it would cover about 50% of the EU’s ethanol demand 

(Annon 2008b). The use of algal biomass has the potential to not only replace fossil 

resources, and thereby mitigate climate change, but also aid in the recycling potential of 

nitrates and phosphates in near and inshore waters.  

6.2. Processing and fermentation of macroalgal biomass 

The water content in macroalgae is higher than in terrestrial biomass (80-85 %), making sea-

weeds more suited for microbial conversion than for direct combustion or thermo-chemical 

conversion processes, which is an alternative for land-based biomass (Horn et al. 2000a; 

Ross et al. 2007). Seaweed carbohydrates may be used as substrates for microbial production 

of a wide range of fuels and chemicals. Ethanol production from hexose sugars such as 

glucose, sucrose, laminarin etc. derived from e.g. corn stover or sugar cane, is a well-known 

process. However, hexose-based polysaccharides constitute only about 30-40% of the carbo-

hydrates in kelp. The remaining fraction is composed of C-5 sugars that until now have not 

been applied as substrates for industrial microbial production processes. However, recent 

breakthroughs have been made in C5 sugar fermentation technology allowing up to 90% of 

the available carbohydrates to be fermented (Wargacki, et al., 2012).  
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6.3. Pre-treatment of the seaweed biomass and hydrolysis of the polysaccharides 

of brown seaweed biomass 

Fresh harvested brown seaweed contains about 15-20 % carbohydrates of the total wet 

weight, which equals about 200 g carbohydrates per kg wet weight, which is an appropriate 

substrate concentration for microbial conversion processes (Horn et al. 2000a). Lack of lignin 

in seaweeds implies that the harsh pre-treatment applied for release of fermentable sugars 

from lignocellulosic biomass is not required. Laminaran and mannitol can easily be 

extracted by water (Horn et al. 2000b). Alginates (consisting of polymer blocks of Uronic 

and guluronic acid) is present in the macroalgae biomass at 30-40% (Honya et al. 1993; 

McHugh 2003). Sodium alginate can be removed from the initial extraction solution by 

adding a calcium salt. This causes calcium alginate to form with a fibrous texture; it does 

not dissolve in water and can be separated from it. The separated calcium alginate is 

suspended in water and acid is added to convert it into alginic acid. This fibrous alginic 

acid is easily separated, placed in a planetary type mixer with alcohol, and sodium 

carbonate is gradually added to the paste until all the alginic acid is converted to sodium 

alginate. The paste of sodium alginate is sometimes extruded into pellets that are then 

dried and milled (McHugh 2003) . Due to the high viscosity, dilution with large amounts 

of water is required. The process is operating at alginate concentrations in the order of ~2 

%. Such a dilution cannot be applied to processes aimed at use of alginate as fermentation 

substrate. Preferably, no water should be added, as it will increase the downstream 

processing costs (McHugh 2003).  

Bioethanol production from cellulosic materials can be achieved by running simultaneously 

enzymatic hydrolysis and fermentation. For the wet seaweed biomass it is not as easy due to 

the alginates which are harder to release from the biomass causing enzymatic degradation 

of un-treated biomass and will be rate-limiting step if combined with fermentation. 

Hydrolysis should therefore be a part of the biomass pre-treatment. This hydrolysis can be 

carried out mechanically through grinding and emulsifying equipment, chemically using 

acid or alkali, or enzymatic. Several methods for partial or complete degradation of alginate 

as an integrated part of the mechanical pre-treatment of the biomass are known. Chemical 

hydrolysis should follow existing technologies , e.g. by modification and adaptation of 

methods used for acid and alkali pre-treatment of wood biomass (e.g. Ballesteros 2001; 

Klinke et al. 2001) and by combination of acid- or alkali with steam treatment. Other studies 

with macroalgae demonstrated the need for pre-treatment at 65°C, pH 2 for 1 h prior to 

fermentation (Horn, 2000a; 200b, Percival and McDowell, 1967). This in contrast with 

Adams et al. (2009) who found that these pre-treatments are not required for the 

fermentations with Saccharina latissima conducted, with higher ethanol yields being achieved 

in untreated fermentations than in those with altered pH or temperature pre-reatments. This 

result was seen in fresh and defrosted macroalgae samples using Saccharomyces cerevisiae 

and 1 unit of the enzyme laminarinase per kg of defrosted macroalgae. Nevertheless, the 

easiest and environmental friendliest way of pre-treatment of algal biomass is through a 

combination of mechanical and enzymatic hydrolysis (Doubet and Quatrano 1982).  
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6.4. Ethanol and butanol from brown seaweeds 

Ethanol production from fermentation is the most obvious one as it has a direct application 

in the replacement of fossil fuels. However other products such as butanol and itaconic acid 

can be produced as well which can substitute and/or replace similar products produced 

from fossil resources. There are many microorganisms in the marine environment that can 

degrade and utilize algal carbohydrates as a carbon source for energy. Often these 

microorganisms are associated with the seaweeds being present on the blade surface or in 

tissue as many kelp species produce exo-polysaccharides as mucus layer or shed entire 

skin . This would imply that these organisms possess the necessary enzymes for cleavage 

of the algal polysaccharides. However, compounds such as ethanol and butanol are 

produced by anaerobic fermentation that require the presence of specific metabolic 

pathways generating these compounds as end products, e.g. yeast for ethanol production 

and Clostridia for butanol production. Limited information is available on the efficiency of 

these processes with seaweed carbohydrates (Horn et al. 2000a; 2000b), although several 

brake troughs have recently been made in respect of ethanol production from brown 

seaweeds (Wargacki, et al., 2012).  

6.4.1. Ethanol 

The potential of ethanol production from seaweeds can be calculated and is based on the 

following assumptions: A carbohydrate content of 60 % of dry weight and a 90 % conversion 

ratio to ethanol. Through fermentation one gram of sugar can yield 0.4 g ethanol. This will 

yield 0.22 kg or 0.27 l ethanol from 1 kg dry weight seaweed biomass, corresponding to 

approximately 0.05 l ethanol per kg wet weight.  

Bacteria can be metabolize uronic acids to pyruvate and glyceraldehyde-3-P, which may 

then be fermented to ethanol by the glycolytic pathway (van Maris et al. 2006). In anaerobic 

fermentation processes, as ethanol and butanol production, oxygen is not available for 

removal of excess hydrogen generated. This implies that the conversion reaction from sub-

strate to product must be red-ox balanced. Ethanol-production from hexose sugars is red-ox 

balanced, while production from pentoses or mannitol generates excess hydrogen. In many 

bacteria but not in yeast the enzyme transhydrogenases, solves this problem. Yeasts can 

avoid the problem by receiving a small, controlled supply of oxygen. However, oxygen 

leads to complete oxidation of the substrate to CO2 and water, and reduced ethanol yields. 

Another strategy is introduction of transhydrogenase into strains that lack this, through 

genetic engineering (Fortman et al. 2008; Lee et al. 2008). Prospecting macroalgae (seaweeds) 

as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited 

primarily by the availability of tractable microorganisms that can metabolize alginate 

polysaccharides. Wargacki, et al., (2012) present the discovery of a 36–kilo–base pair DNA 

fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. 

The genomic integration of this ensemble, together with an engineered system for 

extracellular alginate depolymerization, generated a microbial platform that can 

simultaneously degrade,uptake, and metabolize alginate. They further engineered for 



 

Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology 518 

ethanol synthesis, this platform enables bioethanol production directly from macroalgae via 

a consolidated process. 

6.4.2. Butanol  

Butanol is an alternative to ethanol with a higher energy content (butanol 29.2 MJ/l, ethanol 

19.6 MJ/l), compared to gasoline (32 MJ/l). It can be used to supplement both gasoline and 

diesel fuels and can be handled by existing infrastructures (Fortman et al. 2008). Butanol is 

an important industrial chemical and is currently produced via petrochemical processes. In 

the last century butanol was produced through bacterial fermentation of starch rich 

compounds using Clostridia strains (Zverlov et al. 2006), which can use hexose as well as 

pentose sugers. 

7. Outlook 

Macroalgae are an interesting source for a myriad of different bioactive polysaccharides 

ranging from industrial applications to novel food applications. They possess many 

different interesting and often exotic polysaccharides that are currently explored for their 

functional properties in food and biomedicine. However, a far larger application would be 

the use of carbohydrates from cultivated seaweeds for alternative fuel sources. It is the 

exploitation of nature’s energy cycle, photosynthesis and the resulting plant biomass that 

can accelerate this application. Society has to make a transition from a hydrocarbon to a 

carbohydrate economy, with the accrued benefits of carbon neutral biofuel, plastics and 

medecine. Macroalgae are efficient solar energy converters, and can create large amounts of 

biomass in a short-term, however, marine biomass is often an overlooked source, and 

potentially represents a significant source of carbohydrates as a renewable energy source.  
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