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1. Introduction  

1.1 Clinical characteristics of Parkinson’s disease    
Parkinson’s disease (PD) is an old-age neurodegenerative disease with a small but 

significant genetic risk. The prevalence of PD is of 0.3% in the whole population, affecting 

more than 1% of the humans over 60 years of age (de Lau & Breteler, 2006).  Parkinson´s 

disease is characterized by the progressive loss of dopamine due to degeneration of 

dopaminergic neurons in the substancia nigra, striatum body and brain cortex. In addition, α-

synuclein-positive Lewy bodies in brainstem and neocortex are consistently found at 

autopsy (Forno, 1996; Jellinger & Mizuno, 2003). Therefore, in patients with PD, movements, 

sleep, autonomic functions and cognition become progressively impaired. 

Complex factors contribute to the appearance of PD but with a constant mitochondrial 

involvement and a decreased capacity to produce energy (ATP) in the affected brain areas 

(Shapira, 1998;  Shapira, 2008). Mitochondrial dysfunction in the human frontal cortex is to 

be considered a factor contributing to impaired cognition in PD.  

2. Environmental aspects and experimental models  

Both environmental chemicals and genetic susceptibility are thought to contribute to the 

etiology of sporadic PD (Nagatsu, 2002). Despite of familial PD was correlated with a series of 

genes mutations, the etiology of idiopathic PD, which accounts for more than 90% of PD, is 

still not fully understood. It is well documented that there is an epidemiological link between 

PD and individuals who lives and works in rural areas and who has been exposed to various 

herbicides and insecticides (Gorell et al. 1998; Ayala et al., 2007; Gomez et al., 2007). 

Although the etiopathogenesis of PD is still elusive, post mortem studies support the 
involvement of oxidative stress in neurons with an increased production of superoxide 
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radical (O2-) and hydrogen peroxide (H2O2) and of mitochondrial dysfunction, especially of 
complex I of mitochondrial respiratory chain (Shapira et al., 1989;  Shapira et al., 1990a, 
1990b;  Gomez et al., 2007;  Navarro  & Boveris, 2009;  Navarro et al., 2009).   
The early hints about the central role of mitochondria in the pathogenesis of PD resulted 

from the observation that human exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), a contaminant in synthetic opiates, triggered an acute and permanent parkinsonism 

with death of dopamine neurons (Langston et al., 1983). It was found that the MPTP active 

metabolite is the 1-methyl-4-phenilpyridinium ion (MPP+). This compound is accumulated 

in mitochondria and produces their toxicity by inhibiting mitochondrial complex I, the 

proton pumping NADH:ubiquinone oxidoreductase. 

As was mentioned above, epidemiological research indicates that exposure to pesticides and 

welding elevates the risk of PD (Chade et al., 2006; Dhillon et al., 2008). Most of pesticides 

are inhibitors of mitochondrial complex I, which is the first and the most vulnerable 

complex in the series of membrane H+ pumps of the mitochondrial respiratory chain 

(Wallace et al., 1997). The pesticide rotenone ((2R,6aS,12aS)-1,2,6,6a,12,12a-hexahydro-2-

isopropenyl-8,9-dimethoxychromeno [3,4-b]furo(2,3-h)chromen-6-one) is a powerful 

inhibitor of mitochondrial complex I: in isolated beef heart and liver mitochondria, rotenone 

median inhibitory concentration (IC50) is 0.05 nmol/mg protein with a Ki of 4 nM (Degli, 

1998). When neuron cultures are exposed to rotenone, the cells increase the O2- production 

rate leading them to death (Ahmadi et al., 2003; Moon et al., 2005). Furthermore, 

dopaminergic neuronal cells exposed to rotenone reproduce many of the features of PD 

including α-synuclein inclusions bodies in rats (Betarber et al., 2000; Sherer et al., 2003).  

The above mentioned inhibitors of complex I, rotenone and MPTP, are typically used in the 

experimental model of PD in laboratory animals. 

3. Genetic aspects  

Although most PD cases are sporadic, the discovery of genes linked to familial form of 

disease due to mutations in the SNCA (α-synuclein), PARK2, DJ-1, PINK1, and LRRK2 

genes has provided important clues about the disease progress (Henchcliffe & Beal., 2008; 

Zheng et al., 2010). In the sporadic disease, α-synuclein and degenerating mitochondria are 

the major components of Lewy bodies, the hall mark cytoplasmic inclusions found in PD 

brains. Biochemical complex I deficiency is found in PD patients not only in substancia nigra 

but also in platelets (Henchcliffe & Beal, 2008). 

Recently, Zheng and coworkers (2010) reported that decreases in expression of 10 gene sets 

are associated with PD, even in probable subclinical disease and in tissues, outside 

substancia nigra. These 10 gene sets encode proteins responsible for interconnected cellular 

processes: nuclear-encoded mitochondrial electron transfer, mitochondrial biogenesis, 

glucose oxidation, and glucose sensing (Zheng et al., 2010). The authors showed that 

bioenergetics genes responsive to the master regulation of PGC-1α, including genes for 

nuclear-encoded electron transfer carriers are under expressed in patients with PD and in 

incipient Lewy body diseases. Furthermore, co-activation by PGC-1α up-regulates nuclear 

subunits of mitochondrial respiratory chain complexes I, II, III, IV, and V and blocks 

dopamine neuron loss in cellular models of PD-linked α-synocleinopathy and rotenone 

toxicity. Moreover, genetic ablation of PGC-1α in mice markedly enhanced MPTP-induced 

dopamine neuron loss in the substancia nigra (St-Pierre et al., 2006).  
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4. Pathophysiological aspects  

Physiological, clinical and genetic studies support the relationship between PD and energy 

metabolism in neurons, including mitochondrial electron transport carriers and cytosolic 

glucose utilization. In vivo and ex vivo experimental results have shown that PD is primarily 

associated to two interdependent situations of brain mitochondria: (a) mitochondrial 

dysfunction; and (b) mitochondrial oxidative damage. In addition, defective oxidative 

phosphorylation was reported in muscle, and increased level of 8-hydroxydeoxyguanosine 

was found in PD patients plasma (Henchcliffe & Beal, 2008). 

4.1 Mitochondrial complex I and physiological production of superoxide, nitric oxide 
and peroxynitrite     
Mitochondrial complex I (NADH-UQ reductase) catalyzes electron transfer from NADH to 

ubiquinone and it is the main molecular pathway to link the tricarboxylic acid cycle, the 

coenzyme NADH and the mitochondrial respiratory chain. Complex I is a supra-molecular 

protein complex composed of about 40 polypeptide subunits and contains FMN and iron-

sulphur centers (Walker, 1992; Walker et al., 1992). Two complex I-linked UQ-pools have 

been detected (Raha & Robinson, 2000). Non-covalent hydrophobic bonds are essential in 

keeping together the whole structure of complex I; low concentrations of detergents, natural 

and synthetic steroids (Boveris & Stoppani, 1970) and hydrophobic pesticides, such as 

rotenone and pyridaben (Gomez et al., 2007), are effective in disrupting intra-complex I 

polypeptide hydrophobic bonds and in inhibiting complex I electron transfer activity.  

Complex I produces significant amounts of O2- in physiological conditions (0.80-0.90 nmol 

O2-/min.mg protein) through the auto-oxidation reaction of flavin-semiquinone (FMNH•) 

with molecular oxygen. It is understood that the ubisemiquinone (UQH•) auto-oxidation 

contribution, in complex I, is negligible (Boveris & Cadenas, 2000; Turrens & Boveris, 1980). 

Superoxide anion production yields an O2- steady state concentration of 0.1-0.2 nM in the 

mitochondrial matrix (Boveris & Cadenas, 2000; Boveris et al., 2006; Valdez et al., 2006). The 

O2- production rate by complex I is increased by inhibition of electron transfer with rotenone 

(Boveris & Chance, 1973) or by complex I dysfunction (Hensley et al., 2000; Navarro et al., 

2009; Navarro et al., 2011). 

Both, nitric oxide (NO) and peroxynitrite (ONOO-) have been proposed as direct inhibitors 

of complex I. Mitochondrial NO production is carried out by the mitochondrial nitric oxide 

synthase (mtNOS), an isoenzyme of the NOS family located in mitochondrial inner 

membrane (Tatoyan & Giulivi, 1998; Giulivi et al., 1998). Nitric oxide is produced at a rate of 

1.0-1.4 nmol NO/min.mg protein and kept at a steady state level of 200-350 nM in the 

mitochondrial matrix (Boveris et al., 2006; Valdez et al., 2006). Peroxynitrite is generated in 

the mitochondrial matrix through the diffusion controlled reaction (k = 1.9 × 1010 M-1 s-1) 

between two free radicals: O2- and NO. This reaction contributes with 0.38 µM ONOO-/sec 

in the mitochondrial matrix or 0.92 nmol/min. mg protein (Valdez et al., 2000). In this 

approximation the contribution of cytosolic NO has not been considered. Peroxynitrite is 

normally reduced by the mitochondrial reductants NADH, UQH2 and GSH and kept at 

intramitochondrial steady state level of 2-5 nM (Valdez et al., 2000). When the steady state 

concentration of ONOO-  is enhanced up to 25-40 nM, tyrosine nitration, protein oxidation 

and damage to iron sulfur centers might takes place, leading to a sustained complex I 

inhibition and increased generation of O2- by complex I. 
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4.2 Brain mitochondrial dysfunction: Complex I syndrome 
Several studies have shown a mitochondrial dysfunction and a reduced activity of 

mitochondrial complex I in substantia nigra (Schapira et al., 1990a;  Schapira et al., 1990b; 

Schapira, 2008b) and in frontal cortex (Navarro et al., 2009; Navarro & Boveris, 2009) in PD 

patients.  

Gomez et al. (2007) and Navarro et al. (2009) have shown that the in vitro treatment of rat 

brain mitochondria with rotenone (1-10 µM) inhibits complex I activity without changes in 

complexes II, III and IV activities. In addition, coupled mitochondria isolated from rat brain 

incubated with rotenone showed a dose-dependent decrease in respiratory control with 

malate and glutamate as substrates, without modifications in the O2 consumption when 

succinate was used as substrate (Gomez et al., 2007; Navarro et al., 2009).  

Rats treated with rotenone (2 mg/kg weight, i.p. and daily, during 30 to 60 days) showed a 

selective nigrostriatal dopaminergic degeneration similar to the one observed in PD. 

Respiration rates were assessed in 1 mm3 brain cortex cubes, a thickness that allows O2 

diffusion to the center of the cube avoiding anaerobic areas. Control samples had a 

respiratory rate of about 0.45 µmol O2/min. g striatum (Table 1). Rotenone treated rats 

during 30 and 60 days decreased 17% and 35%, respectively, the striatal O2 uptake. 

 

Experimental condition 
 

O2 consumption 
(ng-at O/min.g striatum) 

Control 896 ± 8 
30 days rotenone  744 ± 8* 
60 days rotenone  582 ± 5*# 

Table 1. Striatal O2 consumption in rotenone-treated rats during 30 and 60 days. 

Respiratory rates were determined in 1 mm3 rat striatum cubes in air-saturated Krebs 

suspending medium at 30ºC. The values are means ± SEM: n = 3 per group (15 rats each 

group in pools of 5 rats). *p<0.05, rotenone treated rats vs. control rats; #p<0.05, 60 days-

rotenone treated rats vs. 30 days-rotenone treated rats. 

The same phenomenon was observed in isolated striatal mitochondria. Mitochondrial state 3 

respiration decreased by about 13% and 30% after 30 and 60 days of rotenone treatment, 

with malate-glutamate as complex I substrate. Due to the fact that no changes were 

observed in state 4 respiration, the respiratory control also declined (Table 2). When 

succinate was used as complex II substrate, a slight impairment in state 3 respiration (20%) 

was observed after 60 days of rotenone administration. 

The respiratory deficiency was further examined by assaying the activity of mitochondrial 

respiratory complexes. Table 3 shows that complex I activity decreased after 30 and 60 days of 

rotenone administration by 17% and 57%, respectively; complex IV activity declined 23% after 

60 days of treatment; and complex II activity was not modified showing, once more, the highest 

and selective susceptibility of complex I to the oxidative, nitrosative and/or nitrative damage 

associated with rotenone treatment. The pattern observed for the decline of complex I activity in 

striatal mitochondria was also observed in the reduction of biochemical mtNOS (27% and 62%, 

in 30 and 60 days rotenone-treated rats) (Table 3) and functional mtNOS activities (29% and 

71%), in accordance to the reported physical and functional interaction between complex I and 

mtNOS (Franco et al, 2006; Valdez & Boveris, 2007; Navarro et al., 2010).  
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Oxygen consumption 

(ng-at O/min. mg protein) 

Experimental conditions Control Rotenone 

  30 days 60 days 

Substrate: malate-glutamate    
State 4 42 ± 3 40 ± 3 38 ± 3 
State 3 166 ± 9 144 ± 8* 116 ± 7*# 
Respiratory control  3.9 ± 0.3 3.6 ± 0.3* 3.1 ± 0.4* 

Substrate: succinate     
State 4 60 ± 4 58 ± 4 52 ± 4 
State 3 240 ± 14 220 ± 11 192 ± 9*# 
Respiratory control  4.0 ± 0.3 3.7 ± 0.3 3.7 ± 0.3 

Table 2. Striatum mitochondrial O2 uptake of rotenone-treated rats during 30 and 60 days. 

The values are means ± SEM: n = 3 per group (15 rats each in pools of 5 rats). *p<0.05, 
rotenone treated rats vs. control rats; # p<0.05, 60 days-rotenone treated rats vs. 30 days-
rotenone treated rats. 

 

 

Fig. 1. Linear correlations between mitochondrial complex I activity and malate-glutamate 

supported state 3 respiration (•) (r2 = 0.97) and between mitochondrial complex I activity 

and mtNOS biochemical () (r2 = 0.98) and functional activities (∆) (r2 = 0.98).  

Linear correlations (Fig. 1) were obtained between mitochondrial complex I activity and 
either malate-glutamate supported state 3 O2 uptake (r2 = 0.97) or mtNOS biochemical (r2 = 
0.98) and functional activities (r2 = 0.98), indicating that the pattern observed for the decline 
of complex I activity is associated to the reduction of mtNOS activity and to the impairment 
of striatum mitochondrial respiration.  
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Experimental 
condition 

Complex I 
(nmol. min-1 . mg 

protein-1) 

Complex II 
(nmol. min-1 . 
mg protein-1) 

Complex IV 
(min-1. mg 
protein-1) 

mtNOS 
(nmol. min-1 . 
mg protein-1) 

Control 170 ± 11 119 ± 9 75 ± 8 0.48 ± 0.04 
30 days rotenone 141 ± 10* 117 ± 9 61 ± 5 0.35 ± 0.04* 
60 days rotenone 73 ± 6*# 115 ± 9 58 ±  5* 0.18 ± 0.03*# 

Table 3. Striatum mitochondrial enzymatic activities of rotenone-treated rats during 30 

and 60 days. The values are means ± SEM: n = 3 per group (15 rats each in pools of 5 rats). 
*p<0.05, rotenone treated rats vs. control rats; #p<0.05, 60 days-rotenone treated rats vs. 30 
days-rotenone treated rats. 

The experimental quantitative evidence shows a range of 35% to 73% of a decline of 
complex I activity in brain mitochondria in aging and in neurodegenerative diseases. A 
value of about 50% is considered a limit of a tolerable functional impairment in terms of 
energy production that is compatible with the physiological function. For instance, complex 
I is inactivated by 36% in aged rat whole brain mitochondria (Navarro & Boveris, 2007), by 
73% in aged rat hippocampal mitochondria (Navarro et al., 2008), by 57% in rat striatal 
mitochondria in experimental parkinsonism (Table 3 and Fig. 1), and by 43% in cortex 
mitochondria of human PD patients (Navarro et al., 2010). The data included in Tables 1 and 
2 and in Fig. 1 allow to making some quantitative considerations respect to the basal 
respiration of striatal tissue under no neurological stimulus (in physiological conditions the 
striatal route is constantly activated). Taking into account the striatal O2 consumption in 
control rats of 896 ng-at O/min. g tissue, a mitochondrial content of 12 mg protein/g 
striatum, and the mitochondrial respirations (in ng-at O/min. mg protein) in state 3 of 166 
(malate-glutamate) and of 240 (succinate) and in state 4 of 42 and 60 (respectively), the 
fraction of mitochondria in state 3 and in state 4 can be calculated (Boveris & Boveris, 2007):  

Tissue O2 consumption (ng-at O/min x g tissue) =  
mg protein/g tissue x [(a x state 3 O2 uptake) + (1 – a) x (state 4 O2 uptake)] 

The state 4 and state 3 mitochondrial O2 consumption were calculated considering the 
detected O2 uptake rates (Table 2) and the substrate supply in physiological conditions:        
[(3 x rate with malate-glutamate) + (rate with succinate)]/4.  Therefore, striatal mitochondria 
are in the tissue about 20% in state 3 and about 80% in state 4. Under conditions of increased 
ATP demand, striatum mitochondria will be able to increase ATP synthesis up to 5 times by 
switching mitochondria from the resting state 4 to the active state 3.  At variance, in 
experimental parkinsonism, after 60 days of rotenone treatment, mitochondria are 8% in 
state 3 and 92% in state 4, showing that in parkinsonism, striatal mitochondria are severely 
limited in their capacity to respond to ATP demands. 
Moreover, similar mitochondrial complex I dysfunctions were reported in skeletal muscle 

and platelets of PD patients (Mann et al., 1992). This condition of complex I impairment is 

likely to be of pathogenic importance because intoxication of experimental animals with 

inhibitors of complex I (rotenone, MPTP, MPP+) (Bougria et al., 1995; Gomez et al., 2007) 

reproduces the clinical symptoms of PD in human subjects. 

4.3 Brain mitochondrial oxidative damage 
The mtNOS and complex I functional association in brain has been linked to the 

development of neurodegenerative diseases (Navarro et al., 2010). As it has been early 
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proposed (Hensley et al., 2000), changes in complex I proteins are certainly an explanation 

for the increase in O2- and H2O2 production rates. Rat treated with rotenone during 30 and 

60 days increased the O2- production rates by about 13% and 37%, respectively (Table 4). 

This enhancement is in agreement with an increased generation of phospholipids oxidation 

and protein oxidation products in striatal mitochondria (Fig. 2 A and B). 
 

 

Fig. 2. A. Protein carbonyls and phospholipid oxidation products in striatal mitochondria of 
rotenone-treated rats. The values are means ± SEM: n=3 per group (15 rats each in pools of 5 
rats). *p < 0.05, rotenone treated rats vs. control rats; #p<0.05,  60 days-rotenone treated rats 
vs. 30 days-rotenone treated rats. B. Linear correlations between O2- production rate and 

either phospholipid oxidation (•) (r2 = 0.98) or protein oxidation (o) (r2 = 0.99) products. 

Navarro and co-workers (2009) have shown a marked impairments of tissue and malate-
glutamate supported state 3 mitochondrial respiration and of complex I activity, associated 
with an oxidative damage, in frozen samples of frontal cortex (area 8) in PD patients in 
comparison to age-matched healthy controls (Navarro et al., 2009). Thus, human cortex 
mitochondrial dysfunction in PD is now added to the classical recognition of mitochondrial 
dysfunction in substantia nigra, which was early considered as specifically sensitive brain 
area in PD (Schapira et al., 1990a).  
 

Experimental condition 
 

O2
- production 

(nmol/min. mg protein) 

Control 2.16 ± 0.02 
30 days rotenone 2.44 ± 0.02* 
60 days rotenone 2.95 ± 0.02*# 

Table 4. Striatum mitochondrial superoxide anion production of rotenone-treated rats 

during 30 and 60 days. The values are means ± SEM: n = 3 per group (15 rats each in pools 
of 5 rats). *p<0.05, rotenone treated rats vs. control rats; #p<0.05, 60 days-rotenone treated 
rats vs. 30 days-rotenone treated rats. 

Mitochondrial complex I is particularly sensitive in terms of inhibition and inactivation to 
oxidants, oxygen free radicals and reactive nitrogen species. The mitochondrial dysfunction 
is currently described as “complex I syndrome”, that includes decreased tissue O2 uptake, 
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decreased malate/glutamate-supported mitochondrial respiration, reduced complex I 
(NADH-dehydrogenase) activity, increased phospholipid and protein oxidation products, 
increased protein nitration products, and increased O2- and H2O2 production rates (Boveris 
et al., 2010). Interestingly, high doses of vitamin E are able to restore to normal the age-
dependent complex I syndrome in hippocampus and brain cortex (Navarro et al., 2010).This 
“complex I syndrome” has been observed in PD and in other neurodegenerative diseases 
(Schapira et al., 1990a;  Schapira et al., 1990b;  Cooper et al., 1992;  Schapira, 2008;  Carreras 
et al., 2004;  Navarro & Boveris, 2007;  Navarro et al., 2009), as well as in aging (Boveris& 
Navarro, 2008) and in ischemia-reperfusion (Gonzalez-Flecha et al., 1993; Valdez et al., 
2011).  
The molecular mechanisms responsible for complex I syndrome are likely accounted for a 
series of processes and reactions that lead synergistically to complex I inactivation. The 
involved processes and reactions are, in the first place, the lipid peroxidation process and 

the reactions of the reactive free radical intermediates (mainly ROO•) with complex I. In the 
second place, the reactions of the aldehydes produced in the lipid peroxidation process (4-
HO-nonenal and malonaldehyde) with amino groups of the polypeptide chain of the 
complex I proteins. In the third place, nitration of complex I proteins following to the 
increased formation of ONOO-, the chemical species produced by the intramitochondrial 
reaction of NO and O2-at the vicinity of NADH-dehydrogenase active center (Turrens & 
Boveris, 1980). The three mentioned processes provide synergistically pathways leading to 
complex I inactivation. Interestingly, complex I inactivation is accompanied by increased 
auto-oxidation and O2- production rate and subsequently an enlarged generation of H2O2 
(Hensley et al., 2000; Navarro et al., 2011). It is understood that the reactions that inactivate 

complex I, mediated by free radicals (ROO•), aldehydes and ONOO-, change the native non-
covalent intermolecular forces bonding and synergistically promote covalent cross linking 
with protein inactivation (Liu et al., 2003).  

5. Conclusions  

Parkinson’s disease is characterized by persistent, coordinated, nuclear-encoded cellular 
energy defects to which nigral dopamine neurons are intrinsically more susceptible than 
others cells. Complex I dysfunction in PD may be a biochemically detectable “tip of the 
iceberg” of a deeper molecular defect comprising the entire nuclear-encoded electron 
transfer chain. Under expression of PGC-1α-controlled genes involved in cellular energetic 
might represent a common link for these diverse manifestations of defects in mitochondrial 
biogenesis, and abnormal glucose utilization. One of the basic postulates of the 
mitochondrial theory of aging and neurodegenerative diseases is that there is a significant 
reduction in the capacity for ATP production in the brain and other organs of old mammals. 
The concept of a decrease in the effectiveness of the mitochondrial process of energy 
transduction (or oxidative phosphorylation) is expressed as an under function of “the 
mitochondrial redox-energy axis” (Yap et al., 2010). Although mitochondrial complexes, 
complex I (Valdez et al., 2004; Boveris & Navarro, 2008; Navarro et al., 2009), complex IV 
(Valdez et al., 2004; Boveris & Navarro, 2008), and complex V (Lam et al., 2009), are 
considered the main targets in neurodegeneration and aging, there are also cytosolic 
enzymes whose activities are simultaneously decreased, such as succinyl-CoA-transferase 
(Lam et al. 2009) and as 6-phosphofructo-2-kinase (Herrero-Mendez et al., 2009). The 
cytosolic-mitochondrial interaction is certainly affected and there is recognition of a 
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depressed glucose metabolism as the earliest and consistent abnormality in 
neurodegenerative diseases (Yap et al., 2009).  
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