
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



1 

Preparation and Characterization of Polymeric 
Microparticles Used for Controlled Release  

of Ametryn Herbicide  

Fabiana A. Lobo1, Carina L. de Aguirre2, Patrícia M.S. Souza2,  
Renato Grillo2,3, Nathalie F.S. de Melo2,3,  

André H. Rosa2 and Leonardo F. Fraceto2  
1UFOP - Universidade Federal de Ouro Preto 

2UNESP – State University of São Paulo,  
3Department of Environmental Engineering, Campus Sorocaba, SP, 

Brazil 

1. Introduction  

There is increasing pressure to improve agricultural productivity, due to rapid population 
growth, increased consumption and global demand for high quality products. As a result, 
agricultural chemicals have become essential for the control of weeds, pests and diseases in 
a wide range of crops. Ametryn (2-ethylamino-4-isopropylamino-6-methylthio-s-2,4,6-
triazine) is a selective herbicide belonging to the s-triazine family, whose activity is the 
result of inhibition of photosynthesis by blocking of electron transport. The ametryn 
molecule (Figure 1) contains a symmetrical hexameric aromatic ring in its chemical 
structure, consisting of three carbon atoms and three nitrogen atoms in alternate positions. 
The herbicide is classified as a methylthiotriazine, due to the presence of the SCH3 group 
(Tennant et al., 2001).  

 
Fig. 1. Structural formula of ametryn. 

Ametryn is used for the control of graminaceous and broad-leaved weeds in plantations of 
annual crops (Tennant et al., 2001). Once in the soil the herbicide may be taken up by plants, 
absorbed by the soil and plant residues, biodegraded, or undergo chemical transformations 
that increase its volatilization and photocatalytic decomposition. Studies have shown that 
prolonged human exposure to triazine herbicides can lead to serious health problems 
including contact dermatitis, intoxication, hormonal dysfunction and cancers (Friedmann et 
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al., 2002). It is therefore desirable to develop techniques whereby the physico-chemical 
properties of these chemicals can be altered and their usage made safer. The goal is to enable 
the use of soil management strategies that can produce foods at the current high levels of 
demand, without significant human or environmental risk. 

Micro- and nanostructured polymeric materials can be used as transport systems for active 
chemicals. Advantages of these materials include good physical, chemical and biological 
stability, simple and reproducible preparation procedures, and applicability to a wide range 
of chemicals. In use, the active principle is released slowly and continuously, enabling the 
use of smaller quantities with greater efficiency, which reduces the risk of adverse 
environmental impacts (Sinha et al., 2004; Sopena et al., 2009).  

Controlled release systems have been extensively used in the food and pharmaceutical 
industries for active substances including nutrients, drugs and aromas (El Bahri & Taverdet, 
2007; Grillo et al., 2008; Mello et al., 2008; Moraes et al., 2010), and there has been a recent 
increase in their application in medicine (Natarajan et al., 2011; Parajo et al., 2010; Vicente et 
al., 2010). 

Amongst the new controlled-release system technologies under development, the use of 
polymeric micro- and nanoparticles is of special interest in agribusiness. Several studies 
have investigated controlled-release systems for bioactive compounds in agricultural 
applications (Ahmadi & Ahmadi, 2007; Bin Hussein et al., 2010; El Bahri & Taverdet, 2005, 
2007; Grillo et al., 2010; Hirech et al., 2003; Li et al., 2010; Lobo et al., 2011; Silva et al., 2010; 
Singh et al., 2008, 2010). Materials that have been used include silica, bentonite and sepiolite 
clays, and polymeric substances such as alginate, lignin and synthetic polymers. The latter 
include the poly(hydroxyalkanoates) (PHAs) (Salehizadeh & Loosdrecht, 2004), of which 
poly(3-hydroxybutyrate) (PHB) and its hydroxyvalerate copolymer (PHBV) have been most 
widely used (Amass & Tighe, 1998). The advantages of using polymers such as PHB and 
PHBV are that they are fully biodegradable, inexpensive and easily prepared by bacterial 
fermentation (Pouton & Akhtarb 1996; Reis et al., 2008). These polymers are isotactic and 
highly crystalline (55-80 %), so that their degradation rates are relatively slow compared to 
those of lactate (PLA) and glycolate (PGA) copolymers (Sudesh et al., 2000).  

The objective of this work was to develop a novel release system for ametryn, employing 
microparticles prepared using two different polymers, PHB and PHBV (either individually 
or as mixtures). It was envisaged that the encapsulation of the herbicide in these 
microparticles would improve its chemical stability and enable the use of smaller quantities 
of the chemical, hence reducing the risk of environmental contamination. 

2. Experimental 

2.1 Materials 

Polyvinyl alcohol (PVA), poly(3-hydroxybutyrate) (PHB, MW = 312,000 g mol-1), poly(3-
hydroxybutyrate-co-hydroxyvalerate) (PHBV, MW = 238,000 g mol-1) and ametryn 
(Pestanal®) were purchased from Sigma Chem. Co. The solvents employed in the 
chromatographic analyses were acetonitrile, HPLC grade methanol (JT Baker) and Milli-Q 
water. The solutions were filtered using 0.22 µm nylon membranes (Millipore, Belford, 
USA).  
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2.2 Methodology 

2.2.1 Determination of ametryn 

The HPLC analyses were performed using a Varian ProStar instrument fitted with a PS 210 
pump, a UV-VIS detector (PS 325), a Metatherm oven and an automatic injector (PS 410). 
The chromatograms were acquired and processed using Galaxy Workstation software. The 
eluent used was acetonitrile/water (70:30, v/v), at a flow rate of 1.4 mL min–1, and 
separation was achieved using a Phenomenex Gemini C18 reversed phase column (5 μm, 110 
Å, 150 mm x 4.60 mm i.d.). Ametryn was detected at a wavelength of 260 nm. The injection 
volume was 100 μL, and all samples were previously filtered through 0.22 µm nylon 
membranes. 

2.2.2 Preparation of the polymeric microparticles containing ametryn  

Microparticles were prepared with the PHB and PHBV polymers, used either individually 
or as a mixture, by formation of oil in water emulsions using the emulsification-solvent 
evaporation technique (Coimbra et al., 2008; Conti et al., 1995; Lionzo et al., 2007; Lobo et al., 
2011). 200 mg of polymer (PHB, PHBV or a mixture of the two polymers, as described in 
Table 1) and 10 mg of herbicide were dissolved in 10 mL of chloroform to form the organic 
phase. The aqueous phase (200 mL) was prepared using 0.5 % (w/v) polyvinyl alcohol, at 50 
oC. The organic phase was transferred to the aqueous phase (at 50 oC) with magnetic stirring 
(1000 rpm for 15 min). The chloroform was then evaporated from the emulsion. The 
suspension of microparticles formed was stored in an amber flask (to avoid any 
photodegradation of the herbicide). The final concentration of ametryn was 50 mg L-1. 

 

Formulation 
PHBV 

(mg)                 % 
PHB 

(mg)          % 

A 200 100 0 0 

B 150 75 50 25 

C 100 50 100 50 

D 50 25 150 75 

E 0 0 200 100 

Table 1. Proportions of polymers used to prepare the different formulations.  

2.2.3 Measurements of encapsulation efficiency 

Portions (10 mg) of the different microparticles containing herbicide were dissolved in 50 
mL of acetonitrile, and the association rate of the herbicide with the microparticles was 
determined by the technique described previously, which involves ultrafiltration/ 
centrifugation and analysis using HPLC (Kilic et al., 2005; Schaffazick et al., 2003). The 
samples were centrifuged in regenerated cellulose ultrafiltration filters that had a molecular 
size-exclusion pore size of 30 KDa (Microcon, Millipore), and the filtrate was analyzed using 
HPLC. The ametryn concentration was obtained from an analytical curve. The association 
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rate of ametryn was calculated from the difference between the concentration measured in 
the filtrate and the total concentration (100 %) in the microparticle suspension. The total 
concentration was measured after diluting the suspension with acetonitrile, which dissolved 
the polymer and ensured complete release of the herbicide. The measurements were 
performed in triplicate for each formulation. The encapsulation efficiency (EE, %) was 
expressed as the ratio: 

   S

TOTAL

W
EE %  x 100%

W
  (1) 

Where, Ws is the quantity of ametryn in the microparticles and Wtotal is the amount of 
ametryn used in the formulation.  

2.2.4 Scanning electron microscopy (SEM) 

A scanning electron microscope (Model JSM-6700F, JEOL, Japan) was used to investigate the 
size distribution and surface morphology of the microparticles. Suspensions of 
microparticles containing the herbicide were filtered and the particles were then washed 
with 150 mL of distilled water. The solid residues were dried overnight over Na2SO4 in a 
desiccator. The samples were then attached to metallic supports (stubs) with double-sided 
tape, and metalized by deposition of a gold layer at a current of 25 mA for 150 s. Images 
(electron micrographs) of the samples were then generated using the microscope. Particle 
sizes were measured using the ImageJ 1.42 program, and the size distributions of the 
different microparticles were obtained using OriginPro 7.0. At least 1000 individual particles 
of each sample were used for these measurements. 

2.2.5 Release of ametryn from the microparticles  

The release profiles of ametryn, either free or associated with the microparticles, were 
investigated using a two-compartment experimental system. A cellulose membrane 
(Spectrapore, with a molecular exclusion pore size of 1000 Da) separated the donor 
compartment, containing 4 mL of solution (or suspension) of the herbicide, from the 
acceptor compartment, which contained 50 mL of deionized water maintained under gentle 
agitation at ambient temperature (Paavola et al., 1995). The pore size of the membrane only 
allowed passage of the free herbicide, while the herbicide associated with the microparticles 
was retained in the donor compartment until the equilibrium was shifted so as to release the 
ametryn present within the particles. The size of the microparticles prevented their passage 
through the pores of the membrane. These experiments were conducted under dilution sink 
conditions, whereby the volume of the dissolution medium was sufficiently large that the 
herbicide concentration never exceeded 10 % of the value of its saturation concentration 
(Aulton et al., 2002). 

Samples were retrieved from the acceptor compartment as a function of time, and analyzed 
by HPLC at a detector wavelength of 260 nm. During the first hour, samples were collected 
every 15 min, during the second hour every 30 min, and subsequently at hourly intervals 
until the peak area stabilized. The peak area values were then converted into the percentage 
of herbicide released as a function of time (De Araújo et al., 2004).      
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2.2.5.1 Mathematical modeling of ametryn release 

Mathematical modeling is increasingly used to investigate the release profiles of bioactive 
compounds in polymeric systems, since it can provide important information concerning 
the release mechanism. Analysis of the mechanism of release of ametryn from the 
microparticles employed the zero order, first order, Higuchi and Korsmeyer-Peppas models 
(Colombo et al., 1995, 2005; Costa & Lobo, 2001; Ferrero et al., 2000; Hariharam et al., 1994; 
Ritger & Peppas, 1987a, 1987b). 

3. Results and discussion 

The encapsulation efficiency values obtained for the different microparticles are listed in 
Table 2. Formulation A (100 % PHBV) showed the highest encapsulation efficiency (76.5 %). 
The efficiency decreased as the proportion of PHBV decreased, and formulation E (100 % 
PHB) provided the lowest encapsulation efficiency (26.2 %). The values obtained for 
formulations A and B were fairly high, relative to values that have been reported in the 
literature for other active principles (Bazzo et al., 2009; Grillo et al., 2010; Lobo et al., 2011; 
Sendil et al., 1999). Grillo and colleagues (2010) showed that the encapsulation efficiency of 
the herbicide atrazine in PHBV microparticles was in excess of 30 %. Lobo et al. (2011), using 
an experimental design optimization procedure, obtained an encapsulation efficiency of 24 
% for atrazine in PHBV microparticles.  

 

Formulation PHBV (%) PHB (%) EE (%) 

A 100 0 76.5 

B 75 25 54.7 

C 50 50 40.5 

D 25 75 29.3 

E 0 100 26.2 

Table 2. Encapsulation efficiencies (EE, %) of the different microparticles.  

The relationship between the percentage of PHBV and the encapsulation efficiency is 
illustrated in Figure 2. There was a polynomial relationship between the encapsulation 
efficiency and the PHBV concentration, which was positive for PHBV and negative for PHB. 
This can probably be explained by the structural differences between the microparticles, due 
to the different polymer ratios used in their preparation (Table 1).  

The morphological characteristics of the microparticles, as well as the influence of the 
encapsulation of ametryn, were analyzed using the SEM procedure. Electron micrographs of 
the microparticles containing ametryn are illustrated in Figure 3. All types of microparticle 
were spherical, although the surface structures were different. Most of the PHB 
microparticles possessed smooth surfaces with few pores, while most of the PHBV 
microparticles were rough-surfaced with many cavities and pores, some of which were 
quite large, as can be clearly seen for formulation A (Figure 3, a1 and a2). Grillo et al. (2010) 
also found that PHBV microparticles, prepared using the same methodology as that 
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described here, were rough-surfaced with pores, while PHB microparticles had smooth 
surfaces and fewer pores. 
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Fig. 2. Encapsulation efficiency according to PHBV content of the microparticles. 

A higher encapsulation efficiency of ametryn was therefore related to a greater number of 
pores in the microparticles, probably due to greater contact (and/or affinity) of the herbicide 
with the microparticles during the formulation preparation procedure. Ametryn is likely to 
have greater affinity for the PHBV polymer, since both of these molecules possess alkyl 
branches, with interaction being further enhanced by the porosity of the PHBV 
microparticles. 

The size distribution profiles (Figure 4) differed between microparticle formulations (it was 
not possible to measure the size distribution of the formulation D microparticles due to 
focusing problems). The average size of the microparticles (Table 3) increased as the PHBV 
concentration decreased and the PHB concentration increased, and was greatest for the PHB 
microparticles (formulation E). These size differences could be related to the incorporation 
of the herbicide as well as to associations between the molecules (as discussed above). At 
higher encapsulation rates, the amount of ametryn present within the microparticle 
increased, and the potential for reactions and interactions with the polymer therefore also 
increased. Ametryn is likely to have a higher affinity for PHBV, and as a result of this 
affinity (and/or reaction) the polymer contracts due to the formation of linkages between 
the polymer chains. As the proportion of PHBV decreases, the affinity of ametryn for the 
polymer mixture also diminishes (due to the lower affinity of ametryn for PHB), so that 
there is less shrinkage. 
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   a 1)                                                     a 2) 

             
b)    c) 

           
d)    e) 

 
 

Fig. 3. SEM images of the polymeric microparticles: a) Formulation A; b) Formulation B;  
c) Formulation C; d) Formulation D; e) Formulation E. 
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Fig. 4. Size distributions of the polymeric microparticles: a) Formulation A; b) Formulation 
B; c) Formulation C; d) Formulation E. 

 

Formulation PHBV (%) PHB (%) Average size (µm) 

A 100 0 24.14 ± 1.606 
B 75 25 31.45 ± 2.797 
C 50 50 33.5 ± 3.22 
D 25 75 * 
E 0 100 110.2 ± 3.881 

* Not determined. 

Table 3. Average sizes (± SD) of the different microparticles. 

The release profiles of free ametryn (as the reference) and ametryn encapsulated in the 
microparticles are illustrated in Figure 5, as a function of time (up to approximately 360 
min). In these experiments the herbicide could traverse the pores of the membrane, while 
the microparticles were retained, so that it was possible to measure the influence of the 
association of ametryn with the polymeric matrix of the microparticles on its release rate. 
The release kinetics of free ametryn was faster than that of the encapsulated herbicide, with 
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almost total release after 360 min. Association with the microparticles resulted in retarded 
release, with around 70 % (formulations A and B), 30 % (formulation C), 20 % (formulation 
D) and 40 % (formulation E) being released after 360 min.  

The release of other bioactive compounds from systems composed of microstructured 
polymers has been described in the literature, but usually for only one type of polymer 
(Grillo et al., 2010; Maqueda et al., 2009; Sendil et al., 1999; Singh et al., 2010; Wang et al., 
2007). However, interpretation of release profiles relies to a large extent on knowledge of the 
composition and structural characteristics of the microparticles concerned, and in this 
respect studies that use more than one type of microparticle are advantageous. In the 
present work, the release of ametryn increased in line with the content of PHBV for 
formulations A-D, indicating that increased porosity aided the exit of ametryn molecules 
due to increased contact with the solvent. However formulation E was an exception to the 
rule, since it was composed of PHB alone and showed the fastest release of ametryn. There 
are two possible explanations for this observation. Firstly, the encapsulation efficiency of 
this formulation was lower than those achieved using the other formulations, which could 
have resulted in higher concentrations of ametryn crystals in the solution, and consequently 
higher release rates. Secondly, it is possible that lengthy refrigerated storage of this sample 
could have resulted in solubilization of the herbicide, due to increased contact time with the 
solvent. 
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Fig. 5. Results of the release experiments, comparing the kinetic profiles of free ametryn and 
ametryn associated with the different microparticles (PHB, PHBV and PHBV+PHB), at 
ambient temperature (n = 3). 

Analysis of release curves can provide important information concerning the mechanisms 
involved in the release of compounds from microparticles (Polakovic et al., 1999). Possible 
mechanisms include desorption from the surface of the polymeric matrix, diffusion through 
the pores or wall of the matrix, disintegration of the microparticle with subsequent release 
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of the active principle, and dissolution and erosion of the matrix or the polymeric wall 
(Polakovic et al., 1999; Schaffazick et al., 2003).  

A number of mathematical models have been extensively used to analyze the characteristics 
of the release of substances from polymeric systems (Costa & Lobo 2001). Here, the results 
of the release experiments (Figure 5) were analyzed using the zero order, first order, 
Higuchi and Korsmeyer-Peppas models (Table 4).  For the formulations investigated, the 
Korsmeyer-Peppas model provided the best explanation of the ametryn release mechanism, 
according to the correlation coefficient obtained. The curves obtained for each formulation 
using this model are illustrated in Figure 6.  

 

 Zero order First order Higuchi Korsmeyer-Peppas 

Formulation A     

    n = 0,82641 
Release constant (k) 4.59184 min-1 0.00667 min-1 4.49925 min-1/2 0.00628min-n 

Correlation 
coefficient (r) 

0.92307 0.98452 0.97721 0.99364 
 

Formulation B     

    n = 0.79373 
Release constant (k) 0.20767 min-1 0.00624 min-1 4.35701 min-1/2 0.0072min-n 

Correlation 
coefficient (r) 

0.89455 0.96782 0.98115 0.9879 

Formulation C     

    n = 0.62532 
Release constant (k) 0.07283 min-1 0.00581 min-1 1.52624 min-1/2 0.0162 min-n 

Correlation 
coefficient (r) 

0.86545 0.97701 0.9893 0.9929 

Formulation D     

    n = 0.5671 
Release constant (k) 0.048 min-1 0.00495 min-1 1.00913 min-1/2 0.0194min-n 

Correlation 
coefficient (r) 

0.90337 0.96059 0.97587 0.98839 

Formulation E     

    n = 0.42726 
Release constant (k) 0.0983 min-1 0.00441 min-1 2.17047 min-1/2 0.0429min-n 

Correlation 
coefficient (r) 

0.79093 0.92828 0.99035 0.9927 

Table 4. Results of the application of four mathematical models to the release curves of 
ametryn associated with different microparticles. 

The Korsmeyer-Peppas model is based on a semi-empirical equation (Korsmeyer & Peppas, 
1991; Korsmeyer et al., 1983) that is widely used when the release mechanism is unknown. 
When the release exponent (n) is equal to 0.43 the mechanism involved is diffusion. When 
the value of the exponent is greater than 0.43 but smaller than 0.85, the release occurs due to 
anomalous transport that does not obey Fick’s Law. Values less than 0.43 are indicative of 
porous systems in which transport occurs by a combination of diffusion through the 
polymeric matrix and diffusion through the pores. The values obtained (Table 4) differed 
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according to formulation, as expected considering the different structural characteristics of 
the microparticles, so that the release mechanisms were not identical. Nonetheless, the 
values obtained for all formulations were in the range 0.43 < n < 0.85, indicating that in all 
cases the release occurred as a result of anomalous transport, involving diffusion and 
relaxation of the polymeric chains. This information concerning the release mechanism is of 
vital importance in order to be able to adjust and optimize the release of the active principle 
according to circumstances. 
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Fig. 6. Results obtained using the Korsmeyer-Peppas model applied to formulations A-E. 

4. Conclusions  

Ametryn herbicide was efficiently encapsulated in microparticles composed of PHB, PHBV 
and mixtures of the two polymers. The highest encapsulation efficiencies were achieved 
when higher proportions of PHBV were used. SEM analysis showed that the microparticles 
were spherical, although with different surface features (either smooth or rough with pores). 
The release profile of ametryn was modified when it was encapsulated, with slower and 
more sustained release compared to the free herbicide. This finding suggests that the use of 
encapsulated ametryn could help to mitigate adverse impacts on ecosystems and human 
health. This is particularly important given the increasingly widespread and intensive use of 
agents such as ametryn in modern agriculture. 
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