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1. Introduction 

1.1 Challenges of conventional drug delivery 

Traditional drug delivery systems include oral drug administration, injection, infusion, and 
topical administration, where the drug is applied to body surfaces such as the skin or 
mucous membranes. Many of the conventional drug delivery systems distribute the 
pharmaceutical compound proportionally to the regional blood flow through the systemic 
blood circulation. Consequently, the drug is delivered indiscriminately throughout the 
whole body to diseased and healthy tissues. As a result, patients suffer from side effects due 
to the non-specific delivery of the drug. Systemic delivery of a drug with body-wide 
distribution also results in a limited availability of the therapeutic agent at the site of 
interest, lowering the ability of the drug to produce a beneficial effect. To compensate for the 
low availability of the drug at the affected site, the drug has to be administered in large 
quantities, resulting in increased drug toxicity as well as high therapy costs. Another 
drawback of systemic drug delivery is the short circulation half-life of many drugs, which 
leads to the administration of high drug concentrations or high dosing frequencies (Branco 
& Schneider, 2009).  
Pain and discomfort caused by frequent drug applications are another challenge of 
conventional drug delivery, especially for children and the elderly. First steps have been 
made in the development of micro needle injection and needle-free injection to reduce the 
pain and inconvenience of injections (Brunner, 2004; Stoeber & Liepmann, 2002). As 
beneficial as mechanical improvements in drug delivery will be for the patient’s comfort and 
compliance, they will not reduce the number of administrations or the amount of required 
therapeutic. They also will not affect drug toxicity or effectiveness. To maximize the 
therapeutic effect of a drug, the appropriate concentration of the drug has to be available at 
the right location and time, while sparing healthy tissues. Therefore, new tools are needed 
that enable the delivery of drugs directly to the diseased area, and/or release the therapeutic 
agent in a controlled way.  
In this chapter, vehicles for the targeted delivery of drugs will be discussed, with special 
focus on the potential use of human mesenchymal stem cells (hMSCs) for targeted therapies. 
Besides the development of targeted drug delivery tools, efforts in the medical field attempt 
to increase the efficiency of conventional applications. An example is topical drug delivery, 
which has profited from the introduction of new topical applications including transdermal 
patches (Brunner, 2004), use of microneedles (Henry et al., 1998), electroporation techniques 
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(Escobar-Chavez et al., 2009), and the development of pulmonary delivery methods 
(Brunner, 2004). Additional methods to improve conventional drugs include sustained and 
controlled release technologies and enhanced absorption technology to provide more 
efficient drug absorption and increased bioavailability, as well as reduce pain from 
administration and improve ease of use (Brunner, 2004). These topics will not be further 
addressed in this chapter.  

1.2 Advantages of targeted drug delivery 

The ultimate goal of drug delivery is the efficient and timely transport of a drug to a diseased 
tissue, within the therapeutic and outside the toxic range, while sparing any healthy tissue. To 
progress towards this end, controlled drug delivery systems are being developed that can 1) 
control the rate of drug release, 2) control the location of drug release (spatial/targeted 
delivery), 3) or achieve both, temporal and spatial control of drug delivery (Hilt, 2010). 
Controlled delivery systems require the ability to localize and target drug action, extend drug 
action at a predetermined rate, and provide a physiologically/therapeutically based drug 
release system, which controls the rate of drug release based on the physiological/therapeutic 
needs of the body (Ding et al., 2006).  
Targeted drug delivery seeks to concentrate the medication in the tissues of interest while 

reducing the relative concentration of the medication in the remaining tissues. As a result, a 

high local drug concentration and low systemic exposure is achieved which helps to 

improve the drug’s effectiveness while lowering its damaging effects on healthy tissue. 

Especially in cancer therapy requiring highly toxic drugs, there is a great need for vehicles 

that transport drugs in a safe manner, very specifically to the diseased sites.  

Targeted drug delivery can rely on passive or active mechanisms. Passive targeting is 

mediated by the enhanced permeability and retention (EPR) effect, which is based on the 

longevity of the pharmaceutical carrier in the blood and its accumulation in pathological 

sites with compromised vasculature (Haley & Frenkel, 2008; Ruoslahti et al., 2010). Delivery 

tools relying on passive targeting mechanisms have limited target specificity, as passive 

targeting depends on the EPR effect, and thus on the degree of vascularization and 

angiogenesis of the targeted site. In cancer therapy, passive targeting makes extravasation of 

nanocarriers dependent on tumor type and tumor location. Active targeting, in contrast, is 

based on the attachment of specific ligands to the surface of pharmaceutical carriers to 

recognize and bind pathological target cells. The targeting ligands can be monoclonal 

antibodies, antibody fragments or non-antibody ligands, some of which will be discussed in 

the review. Despite the discrimination of active and passive mechanisms, it is important to 

keep in mind that active targeting cannot be separated from the passive because it occurs 

only after passive accumulation in the targeted site (Bae, 2009; Danhier et al., 2010).  

In summary, targeted drug delivery systems have several advantages over common 
systemic drug delivery methods (see Figure 1). The ability to convey the therapeutically 
active molecule only to the site of action, without affecting other organs and tissues, 
increases the therapeutic index, and allows for a lower required drug dose or dose 
frequency. This in turn increases the safety profile of the drug, and reduces side effects and 
risks, as less healthy tissue is targeted (Ruggiero et al., 2010). Equally important is the 
impact on the patient’s comfort, which will improve as a result of lower drug dose and side 
effects. Finally, the economic benefits of decreased drug use should be appreciated. The next 
section provides an overview of recent progress in the development of active and passive 
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systems for the targeted delivery of drugs, with a brief description of intracellular targeting 
strategies.  
 

                                Targeted Drug Delivery 

                                                              
                       
 High local drug dose                          Low systemic drug exposure 
                                                                
                                  
Lowered required dose                         Reduced drug side effects 
Lowered dose frequency                       
                                   
 
Improved drug safety profile                      Increased quality of life  
       Lower healthcare costs                                for patient

Fig. 1. Advantages of targeted delivery tools over conventional drug delivery methods 

2. Recent progress in the development of targeted drug delivery tools 

2.1 Nanoparticles 

Among other targeted drug delivery systems, nanoparticles have recently drawn strong 

interest in the medical community because of their utility as carriers. Nanoparticles come in 

a variety of sizes and shapes, like spheres, tubes, shells, and branched structures, and 

include among others, liposomes, quantum dots, nanospheres, nanocapsules, nanotubes, 

dentrimers, micelles, and fullerenes. One important aspect of nanoparticles is their limited 

size of up to 100nm (although the upper limit can vary in the literature), which enables them 

to pass through fenestrations of compromised leaky endothelium. As leaky epithelium is 

characteristic for tumors and their environment, nanoparticles can accumulate at tumor sites 

mediated by the EPR effect, and therefore can be used as a carrier for cancer therapeutics to 

the tumor (Danhier et al., 2010; Haley & Frenkel, 2008; Lowery et al., 2011). Besides being 

used in a passive drug delivery process, nanoparticles can be coupled to ligands which 

interact with their receptors at the target cell site and used in an active targeting process 

(Haley & Frenkel, 2008). Therapeutics can be encapsulated, entrapped, or attached to the 

nanoparticle surface and delivered to the tumor by the nanoparticles.  

The small size of nanoparticles also has a drawback. It results in the fast clearance of 
nanoparticles by the mononuclear phagocyte system (MPS), also called reticulo-endothelial 
system (RES), which is predominantly distributed in liver, lung, spleen, and bone marrow. 
Unless there is desired drug delivery to those organs, nanoparticles have to be surface 
modified with molecules like polyethylene glycol (PEG) to escape the MPS (Haley & 
Frenkel, 2008). PEG creates a steric barrier and prevents the interaction of nanoparticles with 
opsonins and phagocytic cells (Ishihara et al., 2009). Yang et al. (Yang et al., 2007) showed 
that the PEGylated liposomal formulation of paclitaxel significantly reduced the uptake by 
the MPS, while accumulation of liposomes at the tumor site, as well as biological half-life, 
were increased. Several drugs using nanoparticle carriers are already in preclinical and 
clinical use (Adiseshaiah et al., 2009; Bawa, 2008; Haley & Frenkel, 2008; Kim et al., 2010; 
Lowery et al., 2011; Ochekpe et al., 2009; Tuscano et al., 2010; Zhang et al., 2008), like 
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PEGylated doxorubicin (Doxil), and PEGylated daunorubicine (DaunoXome). Table 1 lists 
examples of approved nanoparticle-based therapeutics in clinical use.  
 

Brand Name Description Nanostructure Approved Indications 

Abelcet Amphotericin B 

lipid complex 

injection 

Liposomes  Invasive fungal infections in patients 

refractory or intolerant to amphotericin B 

Abraxane Albumin-bound 

nanoparticle 

formulation of 

Paclitaxel (Taxol) 

Protein 
nanoparticles 

 Breast cancer after failure of combination  

chemotherapy for metastatic disease or 

relapse within 6 months of adjuvant 

chemotherapy 

Adagen Pegademase 

bovine 

Polymeric 
nanoparticles 

 Adenosine deaminase deficiency in 

patients with severe combined 

immunodeficiency disease who failed or 

are not suitable candidates for bone 

marrow transplantation 

AmBisome Liposomal 

amphotericin B  

Liposomes  Systemic or disseminated infections due to 

Candida, Aspergillus, or Cryptococcus in 

patients who are refractory to or intolerant 

of conventional amphotericin B therapy, or 

have renal impairment 

 Visceral leishmaniasis 

Amphotec Amphotericin B 

lipid complex 

Lipid colloidal 
dispersion 

 Invasive aspergillosis in patients refractory, 

or intolerant to amphotericin B 

Copaxone Glatiramer acetate 

injection 

Polymeric 
nanoparticles 

 Relapsing-remitting multiple sclerosis, 

including patients who have experienced a 

first clinical episode and have MRI features 

consistent with multiple sclerosis 

DaunoXome Daunorubicin 

citrate liposome 

injection 

Liposomes  Advanced AIDS-related Kaposi's sarcoma 

Depocyt Cytarabine 

liposome injection 

Liposomes  Intrathecal treatment of lymphomatous 

meningitis 

Diprivan Propofol liposomes Liposomes  Induction and maintenance of anesthesia 

Doxil / 
Caelyx 
 

Doxorubicin HCl 

liposome injection 

Liposomes  Progressed or refractory ovarian cancer 

 AIDS-related Kaposi's sarcoma in patients 

with intolerance to, or failure of prior 

systemic chemotherapy 

 Myeloma in combination with bortezomib 

in patients who have not previously 

received bortezomib and have received at 

least one prior therapy 

Elestrin Estradiol gel 

incorporating 

calcium phosphate 

nanoparticles 

Calcium 
phosphate 
nanoparticles 

 Moderate-to-severe vasomotor symptoms 

(hot flashes) associated with menopause 
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Brand Name Description Nanostructure Approved Indications 

Epaxal* 
(Switzerland, 
Canada) 

Hepatitis A 
vaccine adjuvanted 
with 
immunopotentiati
ng reconstituted 
influenza 
virosomes 

Liposomes  Active immunization against hepatitis A  

Estrasorb Estradiol micellar 
nanoparticles 

Liposomes  Vasomotor symptoms in menopausal 

women 

Feridex Ferumoxides 
injectable solution 

Iron oxide 
Nanoparticles 

 Contrast agent for magnetic resonance 

imaging of liver lesions 

Macugen Pegylated anti-
VEGF aptamer 

Polymeric 
nanoparticles 

 Neovascular age-related macular 

degeneration 

Myocet*  
(Europe, 
Canada) 

Nonpegylated 
liposomal 
doxorubicin 

Liposomes  Metastatic breast cancer in combination 

with cyclophosphamide 

Oncaspar Pegaspargase Polymeric 
nanoparticles 

 First-line treatment of patients with acute 

lymphoblastic leukemia as a component of 

a multiagent chemotherapy regimen 

Neulasta Pegfilgrastim 
(PEG-rmetHuG-
CSF) 

Polymeric 
nanoparticles 

 Decrease incidence of infection manifested 
by febrile neutropenia in patients with non-
myeloid malignancies receiving 
myelosuppressive anti-cancer drugs 
associated with a clinically significant 
incidence of febrile neutropenia 

Pegasys Peginterferon alfa-
2a 

Polymeric 
nanoparticles 

 Chronic hepatitis C in patients coinfected 
with hepatitis C and HIV 

PEGIntron Peginterferon alfa-
2b 

Polymeric 
nanoparticles 

 Chronic hepatitis C infection with 
compensated liver disease 

Resovist Carboxydextran 
superparamagnetic 
iron oxide 
formulation 

Iron oxide 
nanoparticles 

 Contrast agent for magnetic resonance 
imaging of liver lesions 

Somavert Pegvisomant Polymeric 
nanoparticles 

 Acromegaly in patients with inadequate 
response to surgery and/or radiation 
therapy and/or other medical therapies, or 
for whom these therapies are not 
appropriate 

Triglide Nanocrystalline 
fenofibrate 

Nanocrystals  Primary hypercholesterolemia, mixed 
dyslipidemia, and hypertriglyceridemia, 
for use in conjuction with diet 

Verigene Gold nanoparticles Gold 
nanoparticles 

 In vitro diagnostics: genetic test for 
warfarin sensitivity 

* Not U.S. Food and Drug Administration (FDA) approved 

Table 1. Examples of approved nanoparticle-based therapeutics in clinical use 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

494 

2.2 Ligand-targeted therapeutics 

Ligand-targeted therapeutics are based on the selective delivery of drugs to target cells by 
associating drugs with molecules that bind to antigens or receptors uniquely expressed or 
over-expressed on the target cell relative to normal cells (Allen, 2002). Such targeting ligands 
can be monoclonal antibodies, antibody fragments, and non-antibody ligands (Danhier et 
al., 2010). The drug of interest is directly conjugated to these targeting ligands, or loaded 
onto high capacity drug carriers, which are directly conjugated to targeting proteins or 
derivatized for interactions with specific adapters that are conjugated to the targeting 
protein (Backer et al., 2002). Ligand-targeted delivery systems rely on active targeting 
mechanisms, which help to improve target specificity, as the target ligands can act as 
“homing devices”,  improving the selective delivery of drug to specific tissue and cells 
(Danhier et al., 2010).  
Non-antibody targeting ligands include small molecules (folic acid, galactose), peptides 

(Arginine-Glycine-Aspartic acid (RGD), Vascular Endothelial Growth Factor (VEGF) 

peptide), aptamers (pegaptanib), and proteins, like transferrin and luteinizing hormone 

releasing hormone (Allen, 2002; Yu et al., 2010). Despite the advantage that non-antibody 

ligands are often readily available and inexpensive to manufacture, many of them bind 

relatively non-selectively to target and non-target tissue (Allen, 2002). For this reason, 

antibody ligands with higher cell selectivity, e.g. Anti-Human Epidermal Growth Factor 

Receptor 2 (HER2/neu/ERBB2), Anti-Vascular Endothelial Growth Factor Receptor 

(VEGFR), Anti-CD20, and Anti-CD33, have gained research attention (Allen, 2002; Park et 

al., 1997, 2002). However, the fact that antibody-targeted therapies rely on the expression of 

specific antigens is at the same time a drawback, as antigen expression is likely to change 

between patients, type of disease and time (Loebinger & Janes, 2010).  

To enable the delivery of highly potent cytotoxic agents to antigen-expressing cells, 

antibody-drug conjugates (ADCs) were designed, which take advantage of the site 

specificity of antibodies. The key components of an ADC are 1) the cytotoxic agent, 2) a 

monoclonal antibody targeting a tumor-enriched or tumor specific antigen, and 3) a linker 

that covalently binds these components together (Alley et al., 2010; Chari, 2008; Krop et al., 

2010). Unfortunately, the clinical success of ADCs so far has been very limited. Only 

gemtuzumab ozogamicin (Pfizer), an anti-CD33 monoclonal antibody linked to 

calicheamicin, had been approved by the FDA in the year 2000 for the treatment of patients 

with acute myeloid leukemia, but the product was voluntarily withdrawn from the US 

market in 2010 after results from a clinical trial raised concerns about the product’s safety 

and clinical benefit (Beck et al., 2010, 2011). Several ADC therapies are in clinical testing, 

including trastuzumab-DM1 (T-DM1) for breast cancer, brentuximab vedotin (SGN-35) for 

Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL), and inotuzumab 

ozogamicin (CMC-544) for non-Hodgkin lymphoma (NHL) (Alley et al., 2010). T-DM1 is an 

antibody-drug conjugate which uses the HER2-binding antibody trastuzumab to deliver the 

potent antimicrotubule agent DM1 to HER2-expressing cells (Krop et al., 2010). A first 

clinical study with HER2-directed ADC in patients with HER2-positive metastatic breast 

cancer showed a clinical benefit rate (objective response plus stable disease at 6 months) of 

73% among 15 patients treated at the maximum tolerated-dose. The confirmed response rate 

among patients with measurable disease in this group was 44%. Based on those results, 

Burries et al. (Burris et al., 2011) evaluated T-DM1 treatment in patients with HER2-positive 

metastatic breast cancer who experienced progression on HER2-directed therapy in a single-
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arm phase II study (study ID: TDM4258g). Among 112 treated patients, an objective 

response rate (ORR) of 26% was observed by independent assessment, which is comparable 

to the ORR of other HER2 therapies (Burris et al., 2011). The fact that response rates were 

higher among patients with confirmed HER2-positive tumors and among patients whose 

tumor HER2 expression levels were above the median, emphasizes the need for patient 

prescreening for HER2 target expression levels to obtain optimal results.  
Another ADC in advanced clinical development is SGN-35 (Seattle Genetics and 
Millennium Pharmaceuticals), comprised of an anti-CD30 monoclonal antibody linked to 
monomethyl auristatin E. CD30, is a defining marker of HL, but also expressed on other 
cancers, including ALCL. HL and ALCL patients were treated intravenously with SGN-35 
every 3 weeks for up to 16 cycles. With an objective response rate of 75% in HL and 86% in 
ALCL, SGN-35 represents the most active ADC reported. In February 2011, a biologics 
license application was submitted to the FDA (Beck et al., 2011; Deutsch et al., 2011). Many 
other ADCs are in early clinical trials and future results will reveal their benefit for clinical 
use. 

2.3 Cell penetrating peptides 

The transport of a therapeutic from the site of administration to the site of interest is not the 
only phase in drug delivery that can be controlled. After arrival of the drug at the site of a 
diseased tissue, it might also be necessary to control the transport of the drug across the 
plasma membrane of the targeted cells. Vehicles that facilitate and control intracellular 
transport are being developed and include physical delivery strategies, like electroporation, 
and biochemical delivery strategies, like cell-penetrating peptides (CPPs). CPPs are also 
named protein transduction domains and comprise short and usually basic amino acids-rich 
peptides originating from proteins able to cross biological barriers (Chou et al., 2011; Hassan & 
Elshafeey, 2010; Vives et al., 2008). They are able to act as vectors for the delivery of chemically 
conjugated biomolecules like peptides or oligonucleotides, and allow for viral-free 
transduction which eliminates the risk of virus vector induced complications. Besides the 
protein transduction domains (penetratin and TAT (48-60)), there are chimeric CPPs (MPG, 
transportan), synthetic CPPs (oligoarginine), and peptidic vectors designed from structure–
activity studies on already known CPPs (Pip2b, stearylated-Tp10). The mechanisms of 
internalization of CPPs are still controversial, and might be diverse, depending on CPP, cell 
type and cell cargo (Hassan & Elshafeey, 2010; Sawant & Torchilin, 2011).  
The most frequently used CPP is the TAT peptide (TATp), derived from the transcription 
activator protein encoded by human immunodeficiency virus type 1 (Torchilin, 2008). TATp 
can be covalently linked to many drug classes, including large protein molecules, and was 
used to transduce attached cargoes into cells of all organ types (Sawant & Torchilin, 2011). 
Responsible for the transduction ability of the TAT protein is the positive charge in the 
transduction domain which extends from residue 47 to 57. As for other CPPs, different 
mechanisms have also been proposed for the endocytic uptake of TATp, including classical 
clathrin-mediated endocytosis and clathrin-independent lipid raft-mediated caveolae 
endocytosis (Torchilin, 2008).  
Still, there are some challenges that must be overcome, like sequestration and entrapment of 
internalized material within endocytic vesicles, before CPPs can become a valuable clinical 
tool. Tools to enhance endosomal escape of CPP-attached cargos are developed and include 
the use of pH sensitive proteins, fusogenic lipids, membrane disruptive peptides, polymers, 
and lysomotropic agents. Another drawback is the lack of selectivity of certain CPPs, which 
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raises concerns about drug-induced toxicity in normal tissues (Chou et al., 2011; Sawant & 
Torchilin, 2011). The problem might be solved by combining target specific drug carriers 
with CPPs, to assure both delivery of the drug to the target cell and delivery of the drug 
from the outside of the cell into the cytoplasm of the target cell. 

2.4 Cells as delivery vehicles 

The ability of hematopoietic and non-hematopoietic cells to migrate to sites of injury, 

inflammation, and infection makes them attractive for investigation as a potential drug 

delivery vehicle. Cells can be loaded with drugs or modified to produce them, and then be 

used to carry the drug to the site of interest. The cell modifications can be done in many 

ways, including genetic cell engineering, and culture-induced modifications. 

Genetically-modified cells used in clinical trials are mainly autologous hematopoietic cells 

which are isolated from the patient, modified and reintroduced into the patient. Among 

hematopoietic cells, lymphocytes are the most commonly genetically modified cell 

population used in clinical trials, with lymphocytes expressing T-cell receptor (TCR) or 

Interleukin-12 (IL-12) for the treatment of advanced melanoma, and lymphocytes expressing 

Anti-P53 TCR, Anti-carcinoembryonic antigen (CEA), Anti-melanoma antigen family 

(MAGE)-A3/12 TCR, Anti-HER2, and Anti-NY ESO-1 (a cancer/testis antigen) TCR for the 

treatment of other metastatic cancers (see clinicaltrials.gov). The disadvantage of 

hematopoietic cells as delivery vehicle, and in transfusion medicine in general, is their 

immunogenicity. To avoid immune reactions of the patient’s immune system against the 

introduced cells, and attacks of the transplanted material against the recipient's body, 

autologous cells or AB0- and human leukocyte antigen (HLA)-matched cells must be used. 

An alternative to the use of hematopoietic cells are non-hematopoietic mesenchymal stem 

cells (MSCs), which are known for their low immunogenicity. The ability to use MSCs in an 

allogeneic setting eliminates the time consuming step of collecting stem cells from the 

patient and allows for the use of frozen, off-the-shelf cell products. The delay between 

diagnosis and availability of cells would be eliminated. In the following sections, MSCs in 

general and their use as potential drug delivery vehicles are discussed. 

3. Mesenchymal Stem Cell biology 

The therapeutic potential of MSCs is linked to a broad spectrum of MSC biological activities 
such as anti-inflammatory, immunomodulative and tissue reparative activities via paracrine 
mechanisms. Besides those activities, MSCs have the unique ability to home to sites of 
inflammation/injury and tumors, which makes them useful for the delivery of therapeutics 
to these sites. Cells are an ideal vehicle for targeted drug delivery, since they can be loaded 
with therapeutic agents and have the ability to migrate to sites of disease. This section 
describes current understanding of MSCs, their characteristics and biological activities, and 
current experience with MSCs in clinical trials that supports their use for targeted drug 
delivery. 

3.1 Background on MSCs 

The ability to generate an embryo from a single fertilized oocyte or to regenerate tissues 
upon injury or natural physiological turnover is a direct result of stem cells. As the embryo 
first develops, an undifferentiated mass of totipotent embryonic stem cells (ESCs) will form 
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a multicellular organism. As development proceeds, totipotent ESCs disappear as more 
restricted somatic stem cells (SSCs) give rise to the tissues and organs. Although cell 
diversification is mostly completed at or shortly after birth, organs must have a mechanism 
to replenish cells as they die as a result of natural homeostasis or injury. Therefore, after 
birth life-long reservoirs of SSCs are present in the body. Major characteristics of stem cells 
that distinguish them from all other cells include (1) self-renewal, or the ability to generate 
at least one daughter cell with characteristics similar to the initiating cell; (2) multi-lineage 
differentiation potential of a single cell; and (3) in vivo functional reconstruction of a given 
tissue. Adult SSCs fulfill these criteria, however the degree of self-renewal and 
differentiation potential are restricted in comparison to ESCs. There are several types of 
SSCs in the body including MSCs.  
MSCs were described as precursors of fibroblasts, which were isolated from bone marrow 
by Friedenstein in 1970 (Friedenstein et al., 1970). Upon culture at low density either as 
whole bone marrow or after cell separation over a density gradient, the cultured cells form 
characteristic colonies derived from a single precursor, referred to as colony forming unit 
fibroblasts or CFU-F. After ectopic transplantation under the kidney capsule, these cells 
gave rise to a broad spectrum of differentiated connective tissues including bone, cartilage, 
adipose and myelosupportive stroma (Owen, 1988; Prockop, 1997). Based on these 
observations it was proposed that these mesenchymal origin tissues are derived from a 
common precursor cell residing in bone marrow, termed the mesenchymal stem cell. These 
observations also led to the development and wide use of the colony forming unit-
fibroblasts (CFU-F) assay used to estimate MSC frequency among bone marrow nucleated 
cells. Using this technique, MSCs have been identified as a rare population of cells in bone 
marrow, representing ~0.001-0.01% of the nucleated cells (Pittenger & Martin, 2004). 
Estimation of MSC frequency in bone marrow using CFU-F shows that MSC number 
declines with age (Caplan, 2007), which correlates with poor mesenchymal tissue healing. 
This poor capacity for healing is evident, for example, in broken bones in elderly 
individuals. 
Adult, tissue specific stem cells are found in specialized niches in their corresponding 
tissues of origin. For example, hematopoietic stem cells (HSCs) can be found in bone 
marrow and epidermal stem cells are located in mammalian hair follicles. In contrast, cell 
types originated from MSCs are present through the entire body, and it has been shown that 
MSCs can be isolated from virtually all organs. There are three hypotheses regarding the 
location of MSCs in the body. In the first, MSCs are located in only one specific organ or 
tissue, from which they can migrate to other sites via the blood circulation to replenish the 
cell population. However, the number of MSCs circulating in blood is extremely low or 
undetectable. The difficulty establishing MSC culture from peripheral blood votes against 
this possibility. The second possibility is that MSCs are present in different tissues: MSCs 
have been successfully isolated from various tissues in addition to bone marrow. These 
tissues include adipose, periosteum, tendon, muscle, synovial membrane, skin and many 
others. When cultured in vitro, MSCs derived from different tissues show very similar 
characteristics and functionality, suggesting that different tissue-intrinsic stem cells might 
behave as MSCs when characterized in vitro. And the third possibility is that the MSC niche 
in vivo is the perivascular zone of blood vessels, and pericytes have all characteristics of 
MSCs. In this scenario, MSCs can actively participate in tissue repair after the release from 
blood vessels upon the damage in any tissue. Several experimental data support this 
hypothesis (da Silva Meirelles et al., 2008). 
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3.2 MSC immune privilege 

One of the most significant advantages of MSCs is that they can be used allogeneically. In 

vivo studies have demonstrated that tissues of mesodermal origin including bone, cartilage, 

and connective tissues, derived from MSCs, can be successfully transplanted without 

matching with a low incidence of acute rejection (Bacsich & Wyburn, 1947; Girdler, 1997). 

Thus, the mesodermal origin of MSCs suggests they are not recognized as foreign by the 

recipient immune system. Data accumulated in vitro and in vivo support the concept of 

MSCs as universally tolerated stem cells, rationalizing the transplantation of allogeneic 

MSCs without donor-recipient HLA matching. The universality is based on the low 

immunogenicity profile of MSCs. In vitro characterization has shown that MSCs 

constitutively express low levels of HLA class I molecules and do not express HLA class II 

molecules on the cell surface and co-stimulatory molecules like CD40, 80 and 86, which are 

essential for initiation of the immune response (Klyushnenkova et al., 2005; Tse et al., 2003). 

The absence of co-stimulatory molecules may lead to tolerance induction instead of rejection 

of allogeneic MSCs. The absence of host immune response against allogeneic MSCs has been 

demonstrated in vitro (Bartholomew et al., 2002; Di Nicola et al., 2002; Tse et al., 2003) and in 

vivo in animals (Atoui et al., 2008; Chen et al., 2009) and humans (Kebriaei et al., 2009; Le 

Blanc et al., 2004; Prasad et al., 2011; Sundin et al., 2007). 

3.3 MSC biological activities  
3.3.1 Regulation of hematopoiesis (stromal support) 

The critical role of bone marrow stroma for homing and long-term maintenance of 
hematopoiesis in mammalian bone was demonstrated early on by Friedenstein (Friedenstein 
et al., 1974). MSCs secrete a variety of cytokines, chemokines, and growth factors supporting 
hematopoietic cell expansion and maturation (Caplan, 2007; Deans & Moseley, 2000). Stromal 
Derived Factor-1 (SDF-1), which is produced by bone marrow stromal cells and mediates HSC 
homing and engraftment to the bone marrow, is one example of such chemokines. MSCs also 
play a critical role in megakaryocyte development: MSCs express thrombopoetin (TPO), IL-6, 
IL-11, Leukemia inhibitory factor (LIF) and Stem Cell Factor (SCF), which are critical 
regulators of megakaryopoiesis (Cheng et al., 2000). In addition to the regulation of 
megakaryopoiesis, MSCs also support cells of myeloid and lymphoid lineages. The ability of 
MSCs to support hematopoiesis was used in patients with hematopoietic cell graft failures. Co-
administration of MSCs together with hematopoietic stem cells enhanced engraftment and 
accelerated neutrophil, platelet, and lymphoid cell recovery (Ball et al., 2007; Fouillard et al., 
2003, 2007; Koc et al., 2000; Lazarus et al., 2005; Le Blanc et al., 2007). However, administration 
of MSCs together with hematopoietic cells resulted in high chimerism for hematopoietic cells 
in both blood and bone marrow, and microchimerism for MSCs – the majority of MSCs 
remained of host origin (Bacher et al., 2010; Bartsch et al., 2009). The low number of engrafted 
donor MSCs in bone marrow suggests that the support of hematopoietic cell engraftment and 
recovery is unlikely to be due to a stromal support function of donor MSCs. This MSC effect 
can be mediated rather by the MSC’s ability to modulate immune response, and thus, to 
prevent the hematopoietic graft rejection.  

3.3.2 Tissue protection and repair 

Accumulated data in animal models indicate that MSCs have the potential to protect and 

repair tissues in the body by several different mechanisms. First, mesenchymal tissue repair 
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can occur via MSC differentiation into cells of mesenchymal tissues. Since MSCs can be 

differentiated into distinctive mesenchymal phenotypes, they have been used for 

mesenchymal tissue regeneration by implanting MSCs in vivo into different tissue sites in 

tissue specific scaffolds. For example, MSCs can be delivered to bone or cartilage repair sites 

in calcium phosphate porous ceramics or hyaluronan and polymeric scaffolds for bone and 

cartilage repair, respectively (Bruder et al., 1998; Kon et al., 2000; Murphy et al., 2003; 

Solchaga et al., 2005). This approach resulted in well integrated, newly differentiated tissues 

(Kadiyala et al., 1997; Kon et al., 2000; Murphy et al., 2003), and showed that MSC-based 

tissue engineering is feasible for clinical use. MSCs have also been shown potential to trans-

differentiate into mature cells of non-mesenchymal origin. Reported data indicate that MSCs 

can be transdifferentiated into hepatocytes (Ong et al., 2006; Sato et al.; 2005), islet beta cells 

(Moriscot et al., 2005; Sun et al., 2007), endothelial cells (Oswald et al., 2004) and neural 

(Phinney & Isakova, 2005) or kidney tissues (Yokoo et al., 2005). These data show plasticity 

of MSCs and point to the possible use of MSCs for regenerative medicine of non-

mesenchymal tissues. In addition to the differentiation mechanism, the paracrine 

mechanism plays an important role in MSC-mediated tissue protection and repair. A set of 

MSC-derived factors with proangiogenic/proarteriogenic activities is shown by Kinnaird et 

al. (Kinnaird et al., 2004). Under hypoxic conditions MSCs promote proliferation and 

migration of endothelial and smooth muscle cells via secretion of VEGF and basic Fibroblast 

Growth Factor (bFGF), augmenting collateral remodeling that is critical for recovery from 

tissue ischemia. The effects of MSC-secreted biological active molecules can be direct, 

indirect, or both: direct by triggering intracellular signaling, or indirect by triggering 

another cell in the vicinity to secrete other biologically active factors. This indirect effect has 

been termed a “trophic” effect (Caplan & Dennis, 2006). In a variety of animal models, 

including myocardial infarction and stroke, MSC-mediated trophic effects are the primary 

mechanism involved in tissue repair (Caplan & Dennis, 2006). 

3.3.3 MSC-mediated immunomodulation 

An important function of MSCs is their role as potent immunomodulators. It was first 

observed by Osiris scientists, as well as others, that MSCs can inhibit T-cell proliferation 

both in vitro and in vivo (Bartholomew et al., 2002; Di Nicola et al., 2002). Subsequently, 

further studies have demonstrated that MSCs are able to regulate the immune system 

through cells of both the innate (macrophages, dendritic and natural killer cells) and 

adaptive (T- and B-cells) immune systems (Newman et al., 2009). A simplified schematic 

representation of MSC effects on different subsets of immune cells reflecting our current 

knowledge is captured in Figure 2. The ability of MSCs to inhibit immune response and 

down regulate secretion of inflammatory cytokines suggests that MSCs have the potential to 

treat inflammatory immune-mediated diseases such as graft versus host disease (GvHD), 

organ rejection, and autoimmune diseases. However, MSCs are not constitutively 

immunosuppressive. In a non-inflammatory environment, MSCs express low levels of COX-

2 (cyclooxygenase 2), Prostaglandin E2 (PGE2), Transforming growth factor ┚ (TGF-┚), 

Indoleamine 2,3-dioxygenase (IDO), and other factors that can inhibit immune response, 

however, pro-inflammatory cytokines such as Interferon ┛ (IFN-┛) and Tumor Necrosis 

Factor-┙ (TNF-┙) dramatically up-regulate the secretion of anti-inflammatory factors by 

MSCs (Aggarwal & Pittenger, 2005; English et al., 2007; Krampera et al., 2006; Meisel et al., 
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2004; Ryan et al., 2007). These in vitro data support a hypothesis of dynamic MSC response 

to inflammatory stimuli released from activated immune cells. In vivo animal data further 

demonstrate that MSCs require an ongoing immune response to exert their 

immunosuppressive functions (Renner et al., 2009). The dynamic response to cells and 

factors present in the microenvironment is an important feature and benefit of MSCs. Such 

regulated immunosuppressive activity of MSCs will help to avoid treatment-related 

complications that are common for traditional immunosuppressive drugs, particularly high 

rate of infections and multiple organ toxicities. 

The MSCs’ ability to regulate hematopoiesis, protect and repair tissues, and regulate 
immune reactions equips the cells with a great therapeutic potential. The therapeutic effects 
are well documented in animal models and are investigated in ongoing clinical trials 
(Parekkadan & Milwid, 2010). Whether those biological activities still play a role after MSCs 
modification for the transport of therapeutic drugs has to be determined. Especially for the 
treatment of inflammatory diseases it could be beneficial to combine the 
immunomodulatory effect of the MSCs with the therapeutic effect of MSC-delivered drug. 
Also, tissue repair activities would be beneficial in combination with therapeutic drugs, 
when injured tissue is targeted.  

3.4 MSC biodistribution and migration ability 
3.4.1 MSC biodistribution 

Understanding the biodistribution of MSCs in the body in its healthy, or baseline state is 

important for the development of MSCs as targeted drugs. For this reason, MSC 
biodistribution after infusion was studied in healthy animals (Allers et al., 2004). Allers et al. 

infused human bone marrow-derived technetium-99m (99mTc)-labeled MSCs intravenously 
into unconditioned mice. Fifteen minutes after infusion, radioactivity was detected in lungs 

and heart, suggesting blood vessel circulation of the infused labeled cells. Three hours later, 
MSCs were scattered in the body, but still accumulated in the lungs and also in the liver. 

The MSCs became temporarily entrapped in the lungs, probably as a consequence of 
significant differences in the diameter of MSC and inner lung capillary lumen. Whole-body 

scanning 24 hours after infusion revealed no or scarce radioactivity in the body, except for 
lungs, liver, and spleen. A similar pattern of short-term distribution of MSCs was observed 

in rats after syngeneic transplantation of indium-111-oxine–labeled rat MSCs (Gao et al., 
2001). After intraarterial (IA) and intravenous (IV) infusion, radioactivity associated with 

MSCs was first detected in the lungs and secondarily in the liver and other organs. Forty-
eight hours later, the radioactivity was observed primarily in the liver with considerable 

amounts detected in the lungs and kidneys (Gao et al., 2001). The long-term fate of 
systemically infused autologous and allogeneic MSCs was studied in non-human primates 

(Devine et al., 2003). Following lethal total body irradiation, which causes major damage to 
the bone marrow, baboons received green fluorescent protein (GFP)-labeled baboon MSCs 

by IV infusion. Tissue collection after 9 to 21 months after infusions showed that allogeneic 
and autologous MSCs appeared to distribute in a similar manner. The highest 

concentrations of engrafted cells per microgram of deoxyribonucleic acid (DNA) were found 
in gastrointestinal tissues including colon, duodenum, jejunum, and ileum. Kidney, lung, 

liver, thymus, and skin also harbored high amounts of DNA equivalents. Estimated levels of 

engraftment ranged from 0.1% to 2.7%. The data show that MSCs not only migrate to certain 
tissues, but can also engraft in low numbers at those sites. 
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Fig. 2. MSC effects on different types of immune cells. MSCs have both immunostimulative 
and suppressive activity, which is driven by type of immune cells and presence of cellular 
and molecular signals in local tissue microenvironment. Abbreviations: B = B-cells; CD = 
cluster of differentiation, molecules expressed on cell surface; DC1 and DC2 = dendritic cells 
types 1 and 2; IFN-┛ = interferon gamma; Ig = immunoglobulin; IL-4, 10, 12, 17 and 22 = 
interleukin 4, 10, 12, 17, and 22; MHC1 = major histocompatibility complex class I; MSC = 
mesenchymal stem cell; NK = natural killer cells; Th1, 2, and 17 = T helper cells 1, 2, and 17; 
TNF-┙ = tumor necrosis factor alpha; Treg = regulatory T-cells. Red arrows - 
decrease/inhibition. Green arrows - increase/stimulation. Black stealth arrows - stimulation 
of immune cells; black lines with blunt ends- suppression of immune cells 

3.4.2 Migration of MSCs towards injured tissue 

MSCs reside in various tissues including bone marrow, adipose tissues, amniotic 
membrane, and the umbilical cord (Motaln et al., 2010). In case of tissue damage, MSCs can 
be mobilized by signals such as cytokines and chemokines released from the damaged tissue 
and migrate to the sites of injury to participate in wound repair and tissue regeneration 
(Ramirez et al., 2006). Animal studies demonstrated that MSCs migrate to injured sites in the 
body, including the heart (Assis et al., 2010; Detante et al., 2009; Kraitchman et al., 2005; Wu 
et al., 2003), kidney (Herrera et al., 2007; Morigi et al., 2004), skin (Li et al., 2006), and bone 
(Horwitz et al., 1999; Mackenzie & Flake, 2001; Mosca et al., 2000). In rats bearing Lewis 
cardiac allografts, Wu et al. (Wu et al., 2003) found that IV injected ┚-galactosidase (lacZ) 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

502 

labeled MSCs can migrate into lesions of chronic rejection in the cardiac grafts and home to 
the bone marrow. In a myocardial infarction model in rats, Assis et al. (Assis et al., 2010) 
showed that systemically delivered 99mTc -labeled hexamethylpropyleneamine oxime (99mTc-
HMPAO) and 4',6-diamidino-2-phenylindole (DAPI)-labeled MSCs migrate to the infarcted 
area. One hour after MSC injection, the radioactivity in infarcted hearts was 23-fold higher 
than in control hearts, and a week later DAPI-labeled MSCs were still detected in the 
infarcted areas of the heart (Assis et al., 2010). In a similar study, 99mTc-hMSCs were injected 
into the saphenous vein of rats one week after cerebral ischemia (Detante et al., 2009). After 
initial entrapment of the cells in the lungs, they were able to migrate towards the ischemic 
brain lesion. Finally, the MSCs were sequestered in the spleen and eliminated 
predominantly by the kidneys. MSC migration was also studied in mice with induced renal 
injury. After IV injection of MSCs into syngeneic female mice one day after induction of 
kidney injuries, MSCs were detected in the context of the well-differentiated tubular 
epithelial lining. MSCs strongly protected renal function as reflected by significantly lower 
blood urea nitrogen values (Morigi et al., 2004). In a canine model, MSCs were also shown to 
migrate to the bone marrow after myeloablation of dogs via total body irradiation (Mosca et 
al., 2000). After MSC transfusion, 58% of the bone marrow samples analyzed were transgene 
positive. Engrafted MSCs were viable at least 6 months after infusion. The animal studies 
clearly show the MSCs’ ability to migrate to sites of injury to participate in tissue repair 
processes and demonstrate their potential as vehicles for gene delivery.  
The migration ability of MSCs was also studied in human patients with osteogenesis 
imperfecta (Horwitz et al., 2002). Osteogenesis imperfecta is a genetic disorder of 
mesenchymal cells in which generalized osteopenia leads to bony deformities, excessive 
fragility with fracturing, and short stature mostly due to a mutation in one of the two genes 
encoding type I collagen. Intravenous infusions of allogeneic, gene-marked, marrow-
derived MSCs in patients with osteogenesis imperfecta resulted in the migration of the cells 
to the bone, skin, and marrow stroma, and their engraftment in one or more of these sites 
(Horwitz et al., 2002).  

3.4.3 MSC migration to cancer tissue  

MSCs do not only show tropism to sites of injury, but also to sites of tumorigenesis. In both 
cases, inflammatory mediators are involved in recruitment of MSCs. Factors involved include 
cytokines and growth factors like Epidermal Growth factor (EGF), Hepatocyte Growth Factor 
(HGF), Insulin like Growth Factor 1(IGF-1), IL-1-┚, IL-8, Platelet Derived Growth Factor 
(PDGF), SDF-1, TGF-┚, TNF-┙, and VEGF (Birnbaum et al., 2007; Forte et al., 2006; Ji et al., 
2004; Klopp et al., 2007; Motaln et al., 2010; Nakamizo et al., 2005; Ponte et al., 2007; Ries et al., 
2007; Xu et al., 2010). Many of the same inflammatory mediators secreted by wounds are also 
found in tumor microenvironment and thought to be involved in attracting MSCs to these sites 
(Spaeth et al., 2008). Dvorak actually described the tumor as an unhealed wound that produces 
a continuous source of inflammatory mediators (Dvorak, 1986). Inflammation is a component 
present during all steps of tumor development and in all types of tumors (Sansone & 
Bromberg, 2011; Spaeth et al., 2008; von Hertzen et al., 2011; Wallace et al., 2010).  
The migration of MSCs to tumors is well documented (Loebinger et al., 2009a, 2009b; 
Nakamizo et al., 2005; Studeny et al., 2002, 2004; Xin et al., 2007). Loebinger et al. studied 
MSC migration in metastatic xenograft cancer models (Loebinger et al., 2009a, 2009b). 
Metastatic lung tumors were produced by the delivery of MDA-MB-231 cells into the lateral 
tail vein of mice, and visualized as focal regions of increased signal with magnetic resonance 
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imaging (MRI). Thirty-five days after setup of the animal model, human MSCs double-
labeled with DiI and iron nanoparticles were injected into the lateral tail vein of the animals. 
MRI one hour after injection showed a decrease in signal intensity caused by the iron oxide 
in MSCs in areas of metastatic deposits detected in pre-MSC delivery images (Loebinger et 
al., 2009b). The in vivo experiments confirmed results from in vitro transwell migration 
studies, which had demonstrated tumor homing of iron nanoparticle–labeled and unlabeled 
MSCs. The migration potential of MSCs towards tumors could also be shown for murine 
osteosarcoma (Xu et al., 2009), murine fibrosarcoma (Xiang et al., 2009), and murine glioma 
models (Nakamizo et al., 2005). 
The number of MSCs that reaches a site of injury or tumorigenesis after systemic 
administration may not always be sufficient to have a therapeutic effect. In those cases, 
ways have to be found to enhance MSC migration. As radiation increases the expression of 
inflammatory mediators, it was argued that it might also enhance the recruitment of MSCs. 
Klopp et al. addressed the question by irradiation of murine breast carcinomas and showed 
that migration of MSCs to the tumor environment can indeed be enhanced by irradiation. 
Twenty-four hours after unilateral irradiation of 4T1 breast carcinomas, MSCs expressing 
firefly luciferase were injected intravenously into the animals. Forty-eight hours post 
irradiation, levels of MSC engraftment were 34% higher in tumors receiving 2 Gy (p = 0.004) 
than in the contralateral unirradiated limb. Immuohistochemistry also revealed higher 
levels of MSCs in the parenchyma of radiated tumors. Irradiated 4T1 cells resulted in 
increased expression of the cytokines, TGF-┚1, VEGF, and PDGF-BB, known to be involved 
in MSC migration (Klopp et al., 2007). Similar results were obtained in murine colon cancer 
xenograft models (Zielske et al., 2009). Thus, low dose irradiation might be a potential 
clinical tool to increase the tropism for and engraftment of MSCs in the tumor 
microenvironment. Another option to increase the in vivo migratory and adhesion capacity 
of MSCs is the activation of MSCs with proinflammatory cytokines like TNF-┙ prior to 
treatment (Dwyer et al., 2007; Spaeth et al., 2008). 

3.5 Safety of human MSCs in clinical trials 

The clinical use of MSCs started in the 1990’s (Horwitz et al., 1999; Koc et al., 2000; Lazarus 

et al., 1995). There were no adverse events linked to MSCs, and some clinical benefits were 

observed after MSC infusions. Today more than 100 clinical trials are registered at 

clinicaltrials.gov. These clinical trials are using bone marrow, adipose or placenta-derived 

MSCs and are covering a wide spectrum of diseases (see Table 2). More than half of the 

registered trials utilize autologous MSCs. The routes of delivery include both systemic and 

local administration.  

Osiris Therapeutics has experience with numerous clinical trials utilizing expanded human 

allogeneic MSCs (Prochymal® (remestemcel-L)), which allow for immediate treatment of 

patients with no delay due to cell processing that occurs with the use of autologous MSCs. 

Human MSCs have been used by Osiris for the treatment of immunologic, gastrointestinal, 

cardiac, and orthopedic indications. Prochymal® is being evaluated in Phase III clinical trials 

for several indications, such as acute GvHD and Crohn's disease. ChondrogenTM, an 

injectable formulation of MSCs, is under investigation for the treatment of arthritis in the 

knee. Altogether, more than 1,300 patients have been treated in Osiris clinical trials. With 

much of the data from double-blinded, placebo-controlled studies, the results provide 

strong support for the positive safety profile of MSCs. 
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MSC Type MSC Source Therapeutic Areas 

 Autologous 

 Allogeneic 

 Bone Marrow 

 Adipose 

 Placental-derived 

 Inflammatory and immune-mediated  

 Cardiovascular 

 Orthopedic 

 Gastrointestinal/Liver/Pancreatic 

 Neurological 

 Pulmonary 

 Nephrological 

 Dermatological 

 Hematological 

 Metabolic  

 Genetic  

Table 2. MSCs in clinical trials 

Valuable safety information has been obtained from these studies because of the diverse 
patient population, including adult and pediatric patients, and the wide range of dosing 
regimens studied in Osiris clinical trials. No infusional toxicities were observed in both 
adult and pediatric populations. Overall review of safety data, including adverse events, has 
detected no trends or signals in the events experienced by patients attributed to 
administration of MSCs (Hare et al., 2009; Kebriaei et al., 2009; Lazarus et al., 2005; Prasad et 
al., 2011). Consistent with Osiris’ data, the safe use of MSCs has also been reported by other 
investigators (e.g. Chen et al., 2004; Ciccocioppo et al., 2011; Duijvestein et al., 2010; Le Blanc 
et al., 2008; Lucchini et al., 2010; Williams et al., 2011). The safety of MSCs, together with the 
ability to use unmatched allogeneic MSCs and the potential of MSCs to home to the sites of 
inflammation or injury,  makes these cells a promising candidate for drug delivery vehicles. 

4. MSCs - A drug delivery tool 

The unique ability of MSCs to migrate to sites of inflammation, modulate immune and 
inhibit inflammatory responses, and prevent and repair tissue damage, make MSCs an 
attractive cell therapy for the treatment of diseases with inflammatory components 
(Newman et al., 2009). It is those features, as well as MSCs’ low immunogenicity profile 
allowing for allogeneic, off-the-shelf use, that makes MSCs promising as a cell therapy.  
Table 3 summarizes the important features of MSCs for use in drug delivery. 
 

 Characteristics supporting the use of MSCs as a vehicle for drug delivery 

 Selective MSCs homing to sites of inflammation and cancer 

 Low immunogenicity profile of MSCs which allows for allogeneic use of MSCs 

 Allogeneic use of MSCs enables development of “off-the-shelf” drugs 

 Established biodistribution and toxicology profile 

 Positive safety profile of MSCs in clinical trials to date 

 Easy availability of MSCs from adult bone marrow donors and other sources 

 Potential for GMP-compliant, large-scale manufacturing processes 

 Cryopreservation for long-term storage of MSC products 

Table 3. Features of MSCs for use as a drug delivery system 
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4.1 MSCs as vehicle for therapeutic drugs 
4.1.1 MSCs as vehicle for cancer therapeutics 
Recent data providing evidence that MSCs migrate to sites of tumorigenesis in some 
instances suggest another therapeutic area for MSCs: the use of MSCs as a vehicle for the 
targeted delivery of cytotoxic agents to tumor tissue (Hall et al., 2007; Hu et al., 2010). Cells, 
like MSCs, which are able to target cancer cells, and are, at the same time, non-immunogenic 
and non-toxic to the host are the ideal vehicle for tumor-selective drug delivery. Several 
preclinical studies support the rationale for genetically modified MSC to deliver 
therapeutics to tumor sites. Successful animal models include sarcoma, melanoma, 
carcinoma, and several cancer metastasis models. Table 4 gives an overview of preclinical 
studies focusing on the delivery of genetically modified MSCs for cancer therapy. 
 

 

Genes Delivered By MSCs Treated Tumor Reference 

Cytosine deaminase in combination with 5-
FC  

Colon cancer 
Melanoma 

(Kucerova et al., 2007) 
(Kucerova et al., 2008) 

CD : UPRT  Human prostate 
tumor 

(Cavarretta et al., 2010) 

CRAd 
 
 

Ovarian carcinoma  
Intracranial glioma 
Tumor metastasis 

(Komarova et al., 2006) 
(Sonabend et al., 2008) 
(Stoff-Khalili et al., 2007) 

CX3CL1 (Fractalkine) Tumor metastasis (Xin et al., 2007) 

EGFRvIII Glioma (Balyasnikova et al., 

2010) 

Interferon-┙ Tumor metastasis (Ren et al., 2008a) 

Interferon-┚ 
 
 

Glioma 
Tumor metastasis 
Tumor metastasis 

(Nakamizo et al., 2005) 

(Ren et al., 2008b) 

(Studeny et al., 2004) 

Interleukin-2 
 

Glioma 
Melanoma 

(Nakamura et al., 2004) 

(Stagg et al., 2004) 

Interleukin-12 
 
 

Tumor metastasis 
Ewing sarcoma 
tumors 
Melanoma 

(Chen et al., 2008) 

(Duan et al., 2009) 

(Elzaouk et al., 2006) 

iNOS Fibrosarcoma (Xiang et al., 2009) 

NK4 (adenovirus) Tumor metastasis (Kanehira et al., 2007) 

(Delta)24-RGD (adenovirus) Glioma  (Yong et al., 2009) 

TRAIL 
 
 

Tumor metastasis 
Glioma 
Carcinoma 

(Loebinger et al., 2009a) 

(Sasportas et al., 2009) 

(Mohr et al., 2008) 

Abbreviations: CD: UPRT = cytosine deaminase: uracil phosphoribosyltransferase; CRADs = 
conditionally replicating adenoviruses; EGFRvIII = mutant epidermal growth factor receptor; 5FC = 5-
fluorocytosine; iNOS = inducible nitric oxide synthase; TRAIL = tumor necrosis factor related 
apoptosis-inducing ligand 

Table 4. Preclinical studies of genetically engineered MSCs for the delivery of anti-cancer 
agents to tumors.  
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Among others, recent efforts focused on the delivery of anti-proliferative and pro-apoptotic 
therapeutics, like Interferon-┚ (IFN-┚) (Chawla-Sarkar et al., 2001; Johns et al., 1992). The 
therapeutic efficacy of IFN-┚ had been limited by its toxicity associated with systemic 
administration (Menon et al., 2009). To be able to minimize toxicity and increase the local 
concentration of IFN-┚, MSCs were selected as delivery vehicle. Murine MSCs were 
engineered to release IFN-┚ and injected via tail vein into immunocompetent mice with 
prostate cancer lung metastasis (Ren et al., 2008b). Following IFN-┚-expressing MSC 
therapy, the mice showed a reduction of tumor volume in the lung, increased tumor cell 
apoptosis, decreased tumor cell proliferation and blood vessel counts, and an increase in the 
natural killer cell activity. The systemic level of IFN-┚ was not significantly elevated by the 
targeted cell therapy (Ren et al., 2008b).  
MSCs expressing IFN-┚ were also used for targeted delivery of interferon to metastatic 
breast carcinoma and melanoma models (Studeny et al., 2004). To establish pulmonary 
metastases, mice were injected MDA-MB-231 tumor cells in the lateral tail vein. Eight days 
after tumor cell injection, mice started treatment with recombinant IFN-┚, IFN-┚-MSCs, or 
MSC-Gal by intravenous injection (Studeny et al., 2004). Whole lung weight was used as a 
surrogate endpoint of MDA-MB-231 tumor burden in the lung. Tumor mice treated 
intravenously with MSC-IFN-┚ cells had significantly smaller lungs then untreated control 
mice injected with tumor cells only (mean lung weight 0.408 g versus 0.977 g; p = 0.021). By 
contrast, there was no statistically significant difference in the mean lung weight of mice 
treated with recombinant IFN-┚ or MSC-Gal cells and control mice injected with tumor cells 
only. Intravenous administration of human IFN-┚-MSCs also prolonged the survival of 
animals with established metastases of MDA-MB-231 breast carcinoma (median survival 60 
days versus 37 days in control mice, p < 0.001) and A375SM melanoma tumor in the lung 
(median survival 73.5 days versus 30 days in control mice, p < 0.001) (Studeny et al., 2004).  
Another therapeutic with encouraging preclinical results in MSC-targeted cancer therapy is 
the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a transmembrane 
protein, which induces apoptosis in various tumor cell types (Hao et al., 2001; Kagawa et al., 
2001). Loebinger and coauthors (Loebinger et al., 2009a) showed that directly delivered 
TRAIL-expressing MSCs were able to significantly reduce tumor growth (p < 0.001) in 
subcutaneous xenograft experiments. In a pulmonary metastasis model, systemically 
delivered TRAIL-expressing MSCs localized to lung metastasis, and the controlled local 
delivery of TRAIL completely cleared lung metastases in 38% of mice compared to none of 
the controls (p < 0.05) (Loebinger et al., 2009a). Anti-tumorigenic effects of MSC-delivered 
recombinant TRAIL were also reported from human glioma models (Sasportas et al., 2009). 
The ability of MSCs to target primary tumors and their metastases suggests an important 
therapeutic role for MSCs as drug delivery vehicles in the future. 

4.1.2 MSCs as vehicle for prodrug gene therapy 

A very promising approach to reduce cancer drug toxicity is prodrug gene therapy, based 
on the delivery of genes encoding enzymes that convert nontoxic prodrugs into toxic 
antimetabolites (Menon et al., 2009). One of the chemotherapeutic agents of interest for 
prodrug gene therapy is the prodrug 5-Fluorocytosine. This prodrug is converted to the 
potent chemotherapeutic substrate 5-fluorouracil by the bacterial and/or yeast cytosine 
deaminase enzyme. 5-Fluorouracil has been used successfully for colorectal and pancreatic 
cancer therapy for about 40 years. Despite the fact that it is a potent chemotherapeutic agent, 
its high toxicity results in severe side effects in treated patients. The development of a 
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prodrug, which is only converted into the toxic chemotherapeutic agent at the site of 
tumorigenesis, is an important step to achieve lower toxicity of 5-fluorouracil. Kucerova et 
al. combined MSC-driven targeted delivery of the prodrug converting enzyme cytosine 
deaminase: uracil phosphoribosyltransferase with the systemic administration of the 
prodrug 5-fluorocytosine (Kucerova et al., 2007, 2008). The administration of MSCs 
expressing the prodrug converting enzyme (CDy-AT-MSCs) in combination with systemic 
delivery of 5-Fluorocytosine, inhibited subcutaneous human colon cancer growth in 
immunocompromised mice. By day 18, significant inhibition of tumor growth of up to 69% 
was observed in all animals injected with CDy-AT-MSC. The animals did not show any 
signs of toxic side effects of the therapeutic regimen.  
Also in a murine melanoma model, systemic administration of CDy-AT-MSC resulted in cell 
homing into subcutaneous melanoma and mediated tumor growth inhibition (Kucerova et 
al., 2008). A similar study on pancreatic cancer was recently conducted by Cararetta et al. 
(Cavarretta et al., 2010). After induction of PC3 tumors in mice, the animals received 
systemic administration of CDy-AT-MSCs and were daily treated with 5-Fluorocytosine. On 
day 24, average tumor volume had decreased in all treated animals compared to control 
animals. In a second group with repeated CDy-AT-MSC injections, complete regression of 
the tumor was observed at day 36 in three out of six mice. The studies confirm that MSC 
have the potential to travel to site of tumorigenesis and to effectively deliver prodrug 
converting enzymes. Targeted delivery of prodrug-converting enzymes in combination with 
the systemic delivery of the according prodrug might substantially reduce side effects of 
otherwise highly toxic therapeutics. 

4.1.3 MSCs as vehicle for biological pacemaker genes 
In addition to the development of MSCs as delivery vehicles for cancer therapeutics, much 
research in MSC delivery tools focuses on the delivery of biological pacemakers for the 
treatment of heart diseases. Electronic pacemakers, the standard of care for heart block and 
other electrophysiological abnormalities, still have shortcomings, like limitations on exercise 
tolerance and cardiac rate-response to emotion; limited battery life, interference with neural 
stimulators, metal detectors, and MRI equipment; effects on electrophysiological or 
contractile function; and sizing challenges for growing pediatric patients (Rosen et al., 2004, 
2008). Biological pacemakers that would create a stable physiological rhythm, not require 
electronic equipment and adapt to changes in activity and emotion, would be an attractive 
alternative. MSCs might serve as a platform for the delivery of pacemaker genes. First proof 
of concept was collected in a canine study by Potapova et al. (Potapova et al., 2004). Human 
MSCs were engineered to express the biological pacemaker gene mHCN2 and administered 
into the left ventricular wall of adult dogs. The animals were subjected to a pericardiectomy 
and within ten days, vagal stimulation was performed to induce atrioventricular block and 
to analyze whether escape pacemaker function occurred. Five of six animals receiving 
hMSCs expressing the biological pacemaker and the enhanced green fluorescent protein 
(EGFP) reporter gene developed rhythms originating from the left ventricle and pace-
mapped to the injection site. Only two out of four control animals, which had received 
MSCs expressing EGFP alone, developed right ventricular escape rhythms. Dogs who had 
received the biological pacemaker gene developed idioventricular rhythms with rates 
approximating on average 61 beats per minute (bpm), while the rates of control animals 
only reached 45 bpm (p < 0.05; (Potapova et al., 2004)). Nests of adult human MSCs were 
found at the site of injection, as well as evidence for gap junctional coupling between adult 
MSCs and myocytes.  
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In another study from the same group (Plotnikov et al., 2007), mHCN2 expressing MSCs 
were administered into the left ventricular wall of adult dogs in complete heart block and 
with backup electronic pacemakers to operate in “tandem” mode. After stabilization around 
day 10 to 12, the biological pacemaker functioned stably and with little time-dependent 
variation in dogs that had received at least 700,000 hMSCs. The pacemaker function was 
stable until the end of the study at day 42. Following Plotnikov et al., no cellular or humoral 
rejection, loss of function, or apoptosis was observed during this time (Plotnikov et al., 
2007). A later analysis by Rosen et al. (Rosen et al., 2008) assessed the observation of loss of 
function and histological evidence of rejection in some of the xenotransplants. The studies 
show that, despite great progress in the development of MSCs as vehicles for biological 
pacemakers, some questions remain unanswered. Further studies are needed to investigate 
how reliable and durable pacemaker function can be obtained without rejection and how the 
cells can be maintained in the target area. 

4.1.4 Clinical progress with MSCs delivering therapeutics 

While many preclinical studies have shown proof of concept for the use of MSCs as targeted 

delivery vehicle, clinical studies are focused on unmodified human MSCs. Additional 

modification of the cells may help to increase levels of therapeutics generated by the cells, or 

induce the production of therapeutics which are not present in naïve cells. MSCs can be 

modified using genetic and non-genetic techniques, including the pre-differentiation of 

MSCs in growth factor containing media. In a first clinical study, adipose-derived insulin-

producing MSCs (h-AD-MSC) were used for the treatment of type 1 diabetes mellitus (DM), 

an autoimmune disorder with disturbed glucose/insulin metabolism, which has no medical 

treatment other than life-long insulin therapy (Trivedi et al., 2008). To obtain MSCs that 

produce insulin, the adipose-tissue derived MSCs were cultured in differentiation medium. 

The DM patients received intraportal administration of h-AD-MSC together with 

xenogeneic-free, cultured bone marrow-derived hematopoietic stem cell transplantation. 

Five insulinopenic DM patients at the age of 14 to 28 years received a mean dose of 3 million 

h-AD-MSC. The patients showed 30% to 50% decreased insulin requirements with 4- to 26-

fold increased serum c-peptide levels, at a mean follow-up of 2.9 months. No adverse side 

effects related to the stem cell infusion or the administration of induction therapy were 

reported. The study provided initial evidence of potential treatment of insulinopenic 

diabetics using insulin-producing h-AD-MSC in conjunction with hematopoietic stem cell 

transplants. It is a first step in the use of modified MSCs in clinical settings, and additional 

larger studies will be important to assess the durability of the response. 

Another clinical study with autologous cultured mesenchymal bone marrow stromal cells 

secreting neurotrophic factors (MSC-NTF, NurOwn™) is planned by the Hadassah Medical 

Organization in Jerusalem, Israel, in collaboration with Brainstorm Cell Therapeutics Ltd. 

The study will evaluate the safety and therapeutic effects of MSC-NTFs injections as a 

treatment for patients with amyotrophic lateral sclerosis (ALS). ALS, also called Lou 

Gehrig's disease, is a progressive neurodegenerative disease that affects nerve cells in the 

brain and the spinal cord, characterized by progressive degeneration of motor neurons. 

Animal studies have shown that glial-derived neurotrophic factor (GDNF) can protect 

motor neurons from degeneration in vitro (Henderson et al., 1994; Suzuki et al., 2007). For 

this clinical study, adult bone marrow cells capable of releasing neurotrophic factors, 

including GDNF, will be generated and transplanted into ALS patients. In early ALS 
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subjects, MSC-NTF cells will be transplanted intramuscularly, while cells will be 

administered intrathecally in progressive ALS patients. The hypothesis is that the 

administration of MSCs expressing GDNF might protect motor neurons from further 

neurodegeneration. Results are not available yet, as the study is in its early stages. 

4.2 MSCs as vehicle for nanoparticles 

Nanoparticles can be used not only as a carrier for drugs, but also as a diagnostic and 
therapeutic tool. As nanoparticles reach their target site by passive targeting via the EPR 
effect, their target specificity is limited. Target specificity, however, could be improved by 
using MSCs as a vehicle to deliver nanoparticles specifically to sites of inflammation and 
tumorigenesis. At the site of interest, the nanoparticles could serve different purposes, 
dependent on the nanoparticle material and therapeutic aim.  
An essential requirement for the development of nanoparticle-carrying MSCs as a diagnostic 
or therapeutic tool is the successful uptake of nanoparticles by the cells and low toxicity of 
the nanoparticles within the cell. Studies have shown that, among other factors, nanoparticle 
size, shape and surface charge play an important role in the uptake of nanoparticles in cells 
(Chithrani & Chan, 2007; Chithrani et al., 2006; Jo et al., 2010; Patra et al., 2010). Chithrani et 
al. investigated the intracellular uptake of different sized and shaped colloidal gold 
nanoparticles in HeLa cells and other mammalian cell lines (Chithrani & Chan, 2007; 
Chithrani et al., 2006). Gold nanoparticles were used as a model nanoparticle system, as 
their size and shape can be easily controlled during synthesis, and quantification of the 
nanoparticles is possible in biological samples. Among spherical nanoparticles with 
diameters between 14 nm and 100 nm, the maximum uptake by a cell occurred at a 
nanoparticle size of 50 nm. Similar findings were made by other research groups (Malugin 
& Ghandehari, 2010). The uptake of rod-shaped gold nanoparticles was lower, and the 
fraction of exocytosed rod-shaped nanoparticles higher, than that of their spherical 
counterpart. In general, exocytosis occurred at a higher rate and higher percentage in 
smaller compared to larger nanoparticles. Thus, both, uptake and removal of nanoparticles 
were highly dependent upon the size of the nanoparticles, but the trends were different 
(Chithrani & Chan, 2007). Besides nanoparticle size and form, the type of ligand coating the 
cells also influenced the cellular uptake. The number of transferrin-coated gold 
nanoparticles that entered the cells was about three times less than that of the citrate-
stabilized gold nanoparticles (Chithrani et al., 2006). The uptake of gold nanoparticles was 
also investigated in MSCs (Koshevoy et al., 2010; Yamada et al., 2009). In-depth knowledge 
of nanoparticle properties crucial for cellular uptake will help to accelerate the development 
of nanoparticle candidates for targeted cell therapies. 

4.2.1 Nanoparticle labeled cells as diagnostic tool 

The development of nanoparticle-loaded MSCs in the recent past has concentrated on 

diagnostic applications. The nanoparticles of choice for such cell labeling studies in MSCs 

were superparamagnetic iron oxide (SPIO) particles which can be used to track the 

biodistribution and migration of transplanted cells by MRI and other imaging methods 

(Arbab et al., 2004; Bulte et al., 2005; Chen et al., 2010a; Jo et al., 2010; Kostura et al., 2004; 

Loebinger et al., 2009b; Reddy et al., 2010; Walczak et al., 2005). Tracking labeled MSCs after 

transplantation will enable a better understanding of the dynamics of cell-tissue interactions 

and help improve the design of stem cell therapies by optimizing cell manufacturing and 
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cell delivery protocols (Bulte et al., 2005; Srinivas et al., 2010). The impact of nanoparticle 

uptake on cell viability and cell functionality was analyzed in in vitro studies. Bulte et al. 

injected poly-L-lysine coated ferumoxide (PLL-Feridex) labeled canine MSCs via MR 

fluoroscopy in a canine myocardial infarction model, and followed their biodistribution 

(Bulte et al., 2005). The cells could be serially tracked by MRI for at least eight weeks 

following implantation. Feridex-labeling did not affect cell proliferation, adipogenesis, or 

osteogenesis, but markedly diminished the cells’ ability to undergo chondrogenesis (Bulte et 

al., 2005; Kostura et al., 2004). This could also be shown for human MSCs labeled with SPIO 

nanoparticles coated with carboxydextran (Resovist) by Reddy et al. (Reddy et al., 2010), 

while Schäfer et al. (Schäfer et al., 2010) did not observe such effect. In contrast, human 

MSCs labeled with chitosan-coated superparamagnetic iron oxide did not exhibit any 

significant alterations in the surface marker expression or adipo /osteo /chondrogenic 

differentiation potential when compared to unlabeled control cells (Reddy et al., 2010).  

These studies show that careful selection of the MR contrast agent and modification protocol 
are required to retain full functionality of the cells after modification. Extensive in vitro and 
in vivo analyses of nanoparticle-loaded cells have to be conducted to ensure safety and 
effectiveness of the cell based diagnostic tool. As mammalian cells are well adapted to 
regulation of iron homeostasis, the use of ferumoxides appears clinically safe. So far, the 
iron oxide-based contrast agents Feridex and Resovist have been approved by the FDA. 
Despite technical challenges that still have to be addressed, the studies show that MSCs can 
be successfully loaded with the MR contrast agents and tracked via MRI. Besides MRI, other 
non-optical cell tracking methods are available, like positron emission tomography (PET) 
and single photon emission computed tomography (SPECT). An overview of stem cell 
tracking methods addressing their pros and cons can be found in reviews by Reagan and 
Kaplan (Reagan & Kaplan, 2011) and Srinivas et al. (Srinivas et al., 2010).  
Clinical studies tracking radiolabeled or SPIO labeled cells have been conducted with 
different cell types, including dendritic cells, neural stem cells, hematopoietic stem cells, and 
cadaveric islet cells (Bulte, 2009; Srinivas et al., 2010). With increasing clinical use of MSCs, 
the in vivo tracking of MSCs has become useful because it can help to evaluate and optimize 
MSC therapies. One phase I/II clinical study conducted in Jerusalem, Israel involved the 
administration of autologous Feridex-labeled MSCs in patients with multiple sclerosis and 
amyotrophic lateral sclerosis in an effort to prevent further neurodegeneration (Karussis et 
al., 2010). The Feridex-tag was added to allow cell tracking via MRI and evaluate migration 
of the transplanted cells. Intrathecal and intravenous administration were combined to 
maximize the potential therapeutic benefit by accessing the central nervous system through 
the cerebrospinal fluid and the systemic circulation. Of the 34 patients enrolled, nine 
patients received SMIO labeled (Feridex) MSCs. MRIs of the brain and whole spine 
performed at different time points after MSC injection indicated possible dissemination of 
the MSCs from the lumbar site of inoculation to the occipital horns, meninges, spinal roots, 
and spinal cord parenchyma. The results, however, need to be interpreted with caution, as 
the number of patients in the study is small and it is not ruled out that macrophages 
phagocytized the iron oxide magnetic resonance contrast agent and migrated to the 
inflammatory lesions. 
The ability of MSCs to migrate to sites of tumorigenesis might also allow for the 

development of labeled MSCs as a clinical tool for cancer detection. In support of this idea, 

Loebinger et al. showed that intravenously injected iron-labeled MSCs could be tracked in 
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vivo to multiple lung metastases using MRI (Loebinger et al., 2009b). Human MSCs were 

labeled with starch-coated FluidMAG iron nanoparticles and injected via the lateral tail vein 

into mice with metastatic lung tumors. MRI and immunohistological staining confirmed the 

localization of SPIO-loaded MSCs to lung metastases one hour after injection. Preceding 

experiments with mice carrying subcutaneous MDA-MB-231 tumors showed that as few as 

1,000 Feridex-labeled MSCs could be visualized in tumors using MRI (Loebinger et al., 

2009b). The ability to track MSCs homing to primary tumors and metastases using a 

noninvasive scanning method could be of great benefit for future diagnostic applications. 

4.2.2 Nanoparticle-loaded cells as therapeutic tool 

Besides diagnostic applications, nanoparticle-carrying cells are also interesting for 
therapeutic use. High Z-elements like gold can be utilized for radiotherapy enhancement 
(Butterworth et al., 2010; Chang et al., 2008; Chithrani et al., 2010; Hainfeld et al., 2004, 2008; 
Herold et al., 2000; Kong et al., 2008; Liu et al., 2010; Rahman et al., 2009; Rose et al., 1999), 
photothermal ablation of cancer cells by heating with near-infrared lasers (Atkinson et al., 
2010; Chen et al., 2010b; Cherukuri et al., 2010; Diagaradjane et al., 2008; Gobin et al., 2010; 
Kennedy et al., 2011), and thermal destruction of cancer cells by radiofrequency field-
induced heating (Gannon et al., 2008). Radiotherapy is one of the most commonly used 
methods in cancer therapy. Gold nanoparticles were shown to increase radiotherapy 
efficiency when accumulated in tumors due to their high absorption of X-rays (Hainfeld et 
al., 2008). However, injections of gold did not result in the delivery of gold nanoparticles to 
the tumor sites only. Although some nanoparticles were transported to the tumor via the 
EPR effect, others were detected in the blood, liver, spleen, and muscle, before renal 
clearance (Hainfeld et al., 2006). MSCs have been shown to home to sites of tumorigenesis 
and represent a potential vehicle for the targeted delivery of radiotherapy enhancers to 
tumor sites. Delivering a curative dose of radiation to tumor tissues, while sparing normal 
tissues, would help to reduce side effects of radiotherapy treatment and increase 
radiotherapy efficiency. 
First steps towards the development of cells carrying nanoparticles for radiotherapy 
enhancement have been made. Radiation enhancement was quantified in HELA cells by 
irradiating the cells with 220 kVp X-rays in the absence and presence of different sized 
internalized gold nanoparticles. Radiosensitization was dependent on the number of gold 
nanoparticles internalized in the cells, with gold nanoparticles of 50 nm diameter showing 
the highest radiosensitization enhancement factor (1.43 at 220 kVp) among gold 
nanoparticles ranging from 14 to 74 nm diameter. Radiation sensitization in HELA cells 
carrying 50 nm gold nanoparticles also depended on the energy of the radiation source 
(Chithrani et al., 2010).  
The enhancement of radiation effects by gold nanoparticles was also studied in bovine aortic 

endothelial (BAEC) cells (Rahman et al., 2009). Tumor growth and survival are critically 

linked to the proliferation of endothelial cells comprising the tumor blood vessel network 

(Sieman, 2006). Targeting the blood vessel network of a tumor with radiation aims to impair 

the nutritional support system of the tumor. Rahman et al. exposed BAEC cells carrying 1.9 

nm gold nanoparticles to kilovoltage X-ray radiation therapy and megavoltage electron 

radiation therapy. Dose enhancement in cells irradiated with superficial X-ray reached a 

dose enhancement factor of 24.6 with X-ray beams of 80 kVp and correlated with the 

concentration of internalized gold nanoparticles. Dose enhancement in cells irradiated with 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

512 

electron beams reached a factor of 4.1. The study showed that gold nanoparticles can be 

used to enhance the effect of radiation doses from kilovoltage X-ray radiation therapy and 

megavoltage electron radiation therapy beams. As lower radiation doses destroy the same 

fraction of cells when gold nanoparticles are present as do larger radiation doses without 

radiosensitizers, the use of gold nanoparticles in radiotherapy might help to reduce 

radiation doses in the future (Rahman et al., 2009).  

4.3 Outlook on MSCs as targeted delivery tools 

Safety and ready availability of MSCs, together with their ability to home to sites of injury 

and tumorigenesis, and their low immunogenicity profile, makes them an attractive delivery 

vehicle for diagnostic and therapeutic purposes. Still, there are hurdles to be overcome 

before drug-loaded MSCs will be ready for clinical use. One of the challenges to be mastered 

is the effective loading of the vehicle cell with the therapeutic. MSCs must be loaded with 

drugs or modified to produce high enough concentrations of agent to reach therapeutic 

effectiveness without compromising cell viability and properties necessary for effective drug 

delivery (e.g. homing or migration potential). Several animal models have shown that 

therapeutically effective, modified MSCs can be generated (as discussed in section 4.1), and 

clinical trials will show whether those results can be translated into human use. Another 

necessity is the development of effective drug release mechanisms. Such mechanisms to 

initiate the release of the therapeutic from the MSCs to gain access to or enter the target cell 

remain to be found.  

Furthermore, for access to target sites, biological barriers, like the blood-brain barrier 

(Gabathuler, 2010; Patel et al., 2009), have to be crossed for the cells to be able to reach their 

target, which makes the route of administration another important factor to consider. In one 

study following intravenous injection of MSCs into rats after resuscitation from cardiac 

arrest, MSCs were detected in the brain. The number of detected cells was low, however 

neurologic recovery of the animals appeared to improve (Wang et al., 2008). Future studies 

have to demonstrate whether the number of MSCs crossing the blood-brain barrier is 

sufficient for therapeutically effective drug delivery. Alternatively, other routes of drug 

delivery could be chosen. Intranasally administered MSCs were shown to bypass the blood-

brain barrier by migrating from the nasal mucosa through the cribriform plate along the 

olfactory neural pathway into the brain and cerebrospinal fluid (Danielyan et al., 2009). Also 

local injections of drug-loaded MSCs might be considered to gain access to diseased tissue 

that is difficult to target. In this case, MSCs would be responsible for the “micro-targeting” 

of the drug very specifically within the target area.  

In addition to biological complications, there will also be technical hurdles in the 

development of drug-carrying MSCs. The successful transfer of MSC modification processes 

at the research scale to manufacturing levels could be challenging. Large-scale production of 

drug-loaded MSCs, whether it involves genetic modifications, culture-induced modification 

of cells, or loading of cells with nanoparticles, can be very expensive and time-consuming. 

Results from small-scale experiments cannot always easily be translated into large-scale 

production without significant additional efforts. Overall, MSCs are a very promising drug 

delivery tool. However, this new technology will only support widespread clinical use if 

effective drug loading and successful drug release at the site of interest can be ensured, and 

robust manufacturing processes are developed.  

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

513 

5. References 

Adiseshaiah, P. P., Hall, J. B. & McNeil, S. E. (2009). Nanomaterial standards for efficacy and 

toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2, 99-112 

Aggarwal, S. & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic 

immune cell responses. Blood, 105, 1815-22 

Allen, T. M. (2002). Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer, 2, 

750-63 

Allers, C., Sierralta, W. D., Neubauer, S., Rivera, F., Minguell, J. J. & Conget, P. A. (2004). 

Dynamic of distribution of human bone marrow-derived mesenchymal stem cells 

after transplantation into adult unconditioned mice. Transplantation, 78, 503-8 

Alley, S. C., Okeley, N. M. & Senter, P. D. (2010). Antibody-drug conjugates: targeted drug 

delivery for cancer. Curr Opin Chem Biol, 14, 529-37 

Arbab, A. S., Yocum, G. T., Kalish, H., Jordan, E. K., Anderson, S. A., Khakoo, A. Y., Read, E. 

J. & Frank, J. A. (2004). Efficient magnetic cell labeling with protamine sulfate 

complexed to ferumoxides for cellular MRI. Blood, 104, 1217-23 

Assis, A. C., Carvalho, J. L., Jacoby, B. A., Ferreira, R. L., Castanheira, P., Diniz, S. O., 

Cardoso, V. N., Goes, A. M. & Ferreira, A. J. (2010). Time-dependent migration of 

systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. 

Cell Transplant, 19, 219-30 

Atkinson, R. L., Zhang, M., Diagaradjane, P., Peddibhotla, S., Contreras, A., Hilsenbeck, S. 

G., Woodward, W. A., Krishnan, S., Chang, J. C. & Rosen, J. M. (2010). Thermal 

enhancement with optically activated gold nanoshells sensitizes breast cancer stem 

cells to radiation therapy. Sci Transl Med, 2, 55ra79 

Atoui, R., Asenjo, J. F., Duong, M., Chen, G., Chiu, R. C. & Shum-Tim, D. (2008). Marrow 

stromal cells as universal donor cells for myocardial regenerative therapy: their 

unique immune tolerance. Ann Thorac Surg, 85, 571-9 

Bacher, U., Asenova, S., Badbaran, A., Zander, A. R., Alchalby, H., Fehse, B., Kroger, N., 

Lange, C. & Ayuk, F. (2010). Bone marrow mesenchymal stromal cells remain of 

recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in 

patients with myelofibrosis. Clin Exp Med, 10, 205-8 

Backer, M. V., Aloise, R., Przekop, K., Stoletov, K. & Backer, J. M. (2002). Molecular vehicles 

for targeted drug delivery. Bioconjug Chem, 13, 462-7 

Bacsich, P. & Wyburn, G. M. (1947). The significance of the mucoprotein content on the 

survival of homografts of cartilage and cornea. Proc R Soc Edinb Biol, 62, 321-7 

Bae, Y. H. (2009). Drug targeting and tumor heterogeneity. J Control Release, 133, 2-3 

Ball, L. M., Bernardo, M. E., Roelofs, H., Lankester, A., Cometa, A., Egeler, R. M., Locatelli, F. 

& Fibbe, W. E. (2007). Cotransplantation of ex vivo expanded mesenchymal stem 

cells accelerates lymphocyte recovery and may reduce the risk of graft failure in 

haploidentical hematopoietic stem-cell transplantation. Blood, 110, 2764-7 

Balyasnikova, I. V., Ferguson, S. D., Sengupta, S., Han, Y. & Lesniak, M. S. (2010). 

Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII 

successfully inhibit the growth of human xenograft malignant glioma. PLoS One, 5, 

e9750 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

514 

Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., 

Devine, S., Ucker, D., Deans, R., Moseley, A. & Hoffman, R. (2002). Mesenchymal 

stem cells suppress lymphocyte proliferation in vitro and prolong skin graft 

survival in vivo. Exp Hematol, 30, 42-8 

Bartsch, K., Al-Ali, H., Reinhardt, A., Franke, C., Hudecek, M., Kamprad, M., Tschiedel, S., 

Cross, M., Niederwieser, D. & Gentilini, C. (2009). Mesenchymal stem cells remain 

host-derived independent of the source of the stem-cell graft and conditioning 

regimen used. Transplantation, 87, 217-21 

Bawa, R. (2008). Nanoparticle-based therapeutics in humans: a survey. Nanotechnology Law 

and Business, 135-55 

Beck, A., Haeuw, J. F., Wurch, T., Goetsch, L., Bailly, C. & Corvaia, N. (2010). The next 

generation of antibody-drug conjugates comes of age. Discov Med, 10, 329-39 

Beck, A., Senter, P. D. & Chari, R. J. (2011). World Antibody Drug Conjugate Summit 

Europe: February 21-23, 2011; Frankfurt, Germany. MAbs, 3:4, 1-7 

Birnbaum, T., Roider, J., Schankin, C. J., Padovan, C. S., Schichor, C., Goldbrunner, R. & 

Straube, A. (2007). Malignant gliomas actively recruit bone marrow stromal cells by 

secreting angiogenic cytokines. J Neurooncol, 83, 241-7 

Branco, M. C. & Schneider, J. P. (2009). Self-assembling materials for therapeutic delivery. 

Acta Biomater, 5, 817-31 

Bruder, S. P., Kraus, K. H., Goldberg, V. M. & Kadiyala, S. (1998). The effect of implants 

loaded with autologous mesenchymal stem cells on the healing of canine segmental 

bone defects. J Bone Joint Surg Am, 80, 985-96 

Brunner, C. S. (2004). Challenges and Opportunities in Emerging Drug Delivery 

Technologies. Product Genesis, Cambridge. PG Report Emerging Drug Delivery 

Technologies 0403 

Bulte, J. W., Kostura, L., Mackay, A., Karmarkar, P. V., Izbudak, I., Atalar, E., Fritzges, D., 

Rodriguez, E. R., Young, R. G., Marcelino, M., Pittenger, M. F. & Kraitchman, D. L. 

(2005). Feridex-labeled mesenchymal stem cells: cellular differentiation and MR 

assessment in a canine myocardial infarction model. Acad Radiol, 12 Suppl 1, S2-6 

Bulte, J. W. (2009). In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol, 193, 314-

25 

Burris, H. A., 3rd, Rugo, H. S., Vukelja, S. J., Vogel, C. L., Borson, R. A., Limentani, S., Tan-

Chiu, E., Krop, I. E., Michaelson, R. A., Girish, S., Amler, L., Zheng, M., Chu, Y. W., 

Klencke, B. & O'Shaughnessy, J. A. (2011). Phase II study of the antibody drug 

conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor 

receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin 

Oncol, 29, 398-405 

Butterworth, K. T., Coulter, J. A., Jain, S., Forker, J., McMahon, S. J., Schettino, G., Prise, K. 

M., Currell, F. J. & Hirst, D. G. (2010). Evaluation of cytotoxicity and radiation 

enhancement using 1.9 nm gold particles: potential application for cancer therapy. 

Nanotechnology, 21, 295101 

Caplan, A. I. & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. J Cell 

Biochem, 98, 1076-84 

Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus 

regenerative medicine. J Cell Physiol, 213, 341-7 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

515 

Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z. & Altaner, C. (2010). 

Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting 

enzyme inhibit human prostate tumor growth. Mol Ther, 18, 223-31 

Chang, M. Y., Shiau, A. L., Chen, Y. H., Chang, C. J., Chen, H. H. & Wu, C. L. (2008). 

Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in 

combination with single-dose clinical electron beams on tumor-bearing mice. 

Cancer Sci, 99, 1479-84 

Chari, R. V. (2008). Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc 

Chem Res, 41, 98-107 

Chawla-Sarkar, M., Leaman, D. W. & Borden, E. C. (2001). Preferential induction of 

apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with 

TRAIL/Apo2L induction in melanoma cell lines. Clin Cancer Res, 7, 1821-31 

Chen, C. L., Zhang, H., Ye, Q., Hsieh, W. Y., Hitchens, T. K., Shen, H. H., Liu, L., Wu, Y. J., 

Foley, L. M., Wang, S. J. & Ho, C. (2010a). A New Nano-sized Iron Oxide Particle 

with High Sensitivity for Cellular Magnetic Resonance Imaging. Mol Imaging Biol, 

Epub ahead of print 

Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M. J. & Xia, Y. 

(2010b). Gold nanocages as photothermal transducers for cancer treatment. Small, 6, 

811-7 

Chen, L., Tredget, E. E., Liu, C. & Wu, Y. (2009). Analysis of allogenicity of mesenchymal 

stem cells in engraftment and wound healing in mice. PLoS One, 4, e7119 

Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Qian, J., Shan, S. J., Zhang, J. J., Chunhua, R. Z., 

Liao, L. M., Lin, S. & Sun, J. P. (2004). Effect on left ventricular function of 

intracoronary transplantation of autologous bone marrow mesenchymal stem cell 

in patients with acute myocardial infarction. Am J Cardiol, 94, 92-5 

Chen, X., Lin, X., Zhao, J., Shi, W., Zhang, H., Wang, Y., Kan, B., Du, L., Wang, B., Wei, Y., 

Liu, Y. & Zhao, X. (2008). A tumor-selective biotherapy with prolonged impact on 

established metastases based on cytokine gene-engineered MSCs. Mol Ther, 16, 749-

56 

Cheng, L., Qasba, P., Vanguri, P. & Thiede, M. A. (2000). Human mesenchymal stem cells 

support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic 

progenitor cells. J Cell Physiol, 184, 58-69 

Cherukuri, P., Glazer, E. S. & Curley, S. A. (2010). Targeted hyperthermia using metal 

nanoparticles. Adv Drug Deliv Rev, 62, 339-45 

Chithrani, B. D., Ghazani, A. A. & Chan, W. C. (2006). Determining the size and shape 

dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 6, 662-8 

Chithrani, B. D. & Chan, W. C. (2007). Elucidating the mechanism of cellular uptake and 

removal of protein-coated gold nanoparticles of different sizes and shapes. Nano 

Lett, 7, 1542-50 

Chithrani, D. B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R. G., Hill, R. P. & 

Jaffray, D. A. (2010). Gold nanoparticles as radiation sensitizers in cancer therapy. 

Radiat Res, 173, 719-28 

Chou, L. Y., Ming, K. & Chan, W. C. (2011). Strategies for the intracellular delivery of 

nanoparticles. Chem Soc Rev, 40, 233-45 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

516 

Ciccocioppo, R., Bernardo, M. E., Sgarella, A., Maccario, R., Avanzini, M. A., Ubezio, C., 

Minelli, A., Alvisi, C., Vanoli, A., Calliada, F., Dionigi, P., Perotti, C., Locatelli, F. & 

Corazza, G. R. (2011). Autologous bone marrow-derived mesenchymal stromal 

cells in the treatment of fistulising Crohn's disease. Gut, 60, 788-98 

da Silva Meirelles, L., Caplan, A. I. & Nardi, N. B. (2008). In search of the in vivo identity of 

mesenchymal stem cells. Stem Cells, 26, 2287-99 

Danhier, F., Feron, O. & Preat, V. (2010). To exploit the tumor microenvironment: Passive 

and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control 

Release, 148, 135-46 

Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Buadze, M., Geisler, J., Klopfer, T., 

Burkhardt, U., Proksch, B., Verleysdonk, S., Ayturan, M., Buniatian, G. H., Gleiter, 

C. H. & Frey, W. H., 2nd. (2009). Intranasal delivery of cells to the brain. Eur J Cell 

Biol, 88, 315-24 

Deans, R. J. & Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical 

uses. Exp Hematol, 28, 875-84 

Detante, O., Moisan, A., Dimastromatteo, J., Richard, M. J., Riou, L., Grillon, E., Barbier, E., 

Desruet, M. D., De Fraipont, F., Segebarth, C., Jaillard, A., Hommel, M., Ghezzi, C. 

& Remy, C. (2009). Intravenous administration of 99mTc-HMPAO-labeled human 

mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell 

Transplant, 18, 1369-79 

Deutsch, Y. E., Tadmor, T., Podack, E. R. & Rosenblatt, J. D. (2011). CD30: an important new 

target in hematologic malignancies. Leuk Lymphoma, 52, 1641-54 

Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A. & Hoffman, R. (2003). 

Mesenchymal stem cells distribute to a wide range of tissues following systemic 

infusion into nonhuman primates. Blood, 101, 2999-3001 

Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., 

Grisanti, S. & Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-

lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. 

Blood, 99, 3838-43 

Diagaradjane, P., Shetty, A., Wang, J. C., Elliott, A. M., Schwartz, J., Shentu, S., Park, H. C., 

Deorukhkar, A., Stafford, R. J., Cho, S. H., Tunnell, J. W., Hazle, J. D. & Krishnan, 

S. (2008). Modulation of in vivo tumor radiation response via gold nanoshell-

mediated vascular-focused hyperthermia: characterizing an integrated 

antihypoxic and localized vascular disrupting targeting strategy. Nano Lett, 8, 

1492-500 

Ding, X., Alani, A. & Robinson, J. M. (2006). Extended-release and targeted drug delivery 

systems. In: Remington, The Science and Practice of Pharmacy, 21st edition, ed Troy, D. 

B., 939-64, Lippincot Williams and Wilkins, Philadelphia 

Duan, X., Guan, H., Cao, Y. & Kleinerman, E. S. (2009). Murine bone marrow-derived 

mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing 

sarcoma tumors. Cancer, 115, 13-22 

Duijvestein, M., Vos, A. C., Roelofs, H., Wildenberg, M. E., Wendrich, B. B., Verspaget, H. 

W., Kooy-Winkelaar, E. M., Koning, F., Zwaginga, J. J., Fidder, H. H., Verhaar, A. 

P., Fibbe, W. E., van den Brink, G. R. & Hommes, D. W. (2010). Autologous bone 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

517 

marrow-derived mesenchymal stromal cell treatment for refractory luminal 

Crohn's disease: results of a phase I study. Gut, 59, 1662-9 

Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma 

generation and wound healing. N Engl J Med, 315, 1650-9 

Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., Lowery, A. J., Hennessy, E., Murphy, 

J. M., Barry, F. P., O'Brien, T. & Kerin, M. J. (2007). Monocyte chemotactic protein-1 

secreted by primary breast tumors stimulates migration of mesenchymal stem cells. 

Clin Cancer Res, 13, 5020-7 

Elzaouk, L., Moelling, K. & Pavlovic, J. (2006). Anti-tumor activity of mesenchymal stem 

cells producing IL-12 in a mouse melanoma model. Exp Dermatol, 15, 865-74 

English, K., Barry, F. P., Field-Corbett, C. P. & Mahon, B. P. (2007). IFN-gamma and TNF-

alpha differentially regulate immunomodulation by murine mesenchymal stem 

cells. Immunol Lett, 110, 91-100 

Escobar-Chavez, J. J., Bonilla-Martinez, D., Villegas-Gonzalez, M. A. & Revilla-Vazquez, A. 

L. (2009). Electroporation as an efficient physical enhancer for skin drug delivery. J 

Clin Pharmacol, 49, 1262-83 

Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., Fiaccavento, R., 

Carotenuto, F., De Vito, P., Baldini, P. M., Prat, M. & Di Nardo, P. (2006). 

Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, 

migration, and differentiation. Stem Cells, 24, 23-33 

Fouillard, L., Bensidhoum, M., Bories, D., Bonte, H., Lopez, M., Moseley, A. M., Smith, A., 

Lesage, S., Beaujean, F., Thierry, D., Gourmelon, P., Najman, A. & Gorin, N. C. 

(2003). Engraftment of allogeneic mesenchymal stem cells in the bone marrow of 

a patient with severe idiopathic aplastic anemia improves stroma. Leukemia, 17, 

474-6 

Fouillard, L., Chapel, A., Bories, D., Bouchet, S., Costa, J. M., Rouard, H., Herve, P., 

Gourmelon, P., Thierry, D., Lopez, M. & Gorin, N. C. (2007). Infusion of allogeneic-

related HLA mismatched mesenchymal stem cells for the treatment of incomplete 

engraftment following autologous haematopoietic stem cell transplantation. 

Leukemia, 21, 568-70 

Friedenstein, A. J., Chailakhjan, R. K. & Lalykina, K. S. (1970). The development of fibroblast 

colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell 

Tissue Kinet, 3, 393-403 

Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., 

Luria, E. A. & Ruadkow, I. A. (1974). Precursors for fibroblasts in different 

populations of hematopoietic cells as detected by the in vitro colony assay method. 

Exp Hematol, 2, 83-92 

Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the blood-brain 

barrier to treat brain diseases. Neurobiol Dis, 37, 48-57 

Gannon, C. J., Patra, C. R., Bhattacharya, R., Mukherjee, P. & Curley, S. A. (2008). 

Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal 

destruction of human gastrointestinal cancer cells. J Nanobiotechnology, 6, 2 

Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M. & Caplan, A. I. (2001). The dynamic in vivo 

distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells 

Tissues Organs, 169, 12-20 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

518 

Girdler, N. M. (1997). The role of mandibular condylar cartilage in articular cartilage repair. 

Ann R Coll Surg Engl, 79, 28-37 

Gobin, A. M., Watkins, E. M., Quevedo, E., Colvin, V. L. & West, J. L. (2010). Near-infrared-

resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic 

agent. Small, 6, 745-52 

Hainfeld, J. F., Slatkin, D. N. & Smilowitz, H. M. (2004). The use of gold nanoparticles to 

enhance radiotherapy in mice. Phys Med Biol, 49, N309-15 

Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. (2006). Gold nanoparticles: a 

new X-ray contrast agent. Br J Radiol, 79, 248-53 

Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N. & Smilowitz, H. M. (2008). Radiotherapy 

enhancement with gold nanoparticles. J Pharm Pharmacol, 60, 977-85 

Haley, B. & Frenkel, E. (2008). Nanoparticles for drug delivery in cancer treatment. Urol 

Oncol, 26, 57-64 

Hall, B., Dembinski, J., Sasser, A. K., Studeny, M., Andreeff, M. & Marini, F. (2007). 

Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based 

delivery vehicles. Int J Hematol, 86, 8-16 

Hao, C., Beguinot, F., Condorelli, G., Trencia, A., Van Meir, E. G., Yong, V. W., Parney, I. F., 

Roa, W. H. & Petruk, K. C. (2001). Induction and intracellular regulation of tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in 

human malignant glioma cells. Cancer Res, 61, 1162-70 

Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., 

Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, J. B., Jr., 

Reisman, M. A., Schaer, G. L. & Sherman, W. (2009). A randomized, double-blind, 

placebo-controlled, dose-escalation study of intravenous adult human 

mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll 

Cardiol, 54, 2277-86 

Hassan, A. O. & Elshafeey, A. H. (2010). Nanosized particulate systems for dermal and 

transdermal delivery. J Biomed Nanotechnol, 6, 621-33 

Henderson, C. E., Phillips, H. S., Pollock, R. A., Davies, A. M., Lemeulle, C., Armanini, M., 

Simmons, L., Moffet, B., Vandlen, R. A., Simpson, L. C. & et al. (1994). GDNF: a 

potent survival factor for motoneurons present in peripheral nerve and muscle. 

Science, 266, 1062-4 

Henry, S., McAllister, D. V., Allen, M. G. & Prausnitz, M. R. (1998). Microfabricated 

microneedles: a novel approach to transdermal drug delivery. J Pharm Sci, 87, 

922-5 

Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V. & Chapman, J. D. (2000). Gold 

microspheres: a selective technique for producing biologically effective dose 

enhancement. Int J Radiat Biol, 76, 1357-64 

Herrera, M. B., Bussolati, B., Bruno, S., Morando, L., Mauriello-Romanazzi, G., Sanavio, F., 

Stamenkovic, I., Biancone, L. & Camussi, G. (2007). Exogenous mesenchymal stem 

cells localize to the kidney by means of CD44 following acute tubular injury. Kidney 

Int, 72, 430-41 

Hilt, Z. (2010). Nanotechnology for Responsive and Feedback-Controlled systems for 

Protein and Drug Delivery. 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

519 

 http://mediaserver.aaps.org/meetings/2010PSWC/Slides/Short_Courses/Short_

Course_4/Hilt_(Peppas).pdf 

Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., 

Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E. & Brenner, M. K. (1999). 

Transplantability and therapeutic effects of bone marrow-derived mesenchymal 

cells in children with osteogenesis imperfecta. Nat Med, 5, 309-13 

Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L. & 

Hofmann, T. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells 

engraft and stimulate growth in children with osteogenesis imperfecta: 

Implications for cell therapy of bone. Proc Natl Acad Sci U S A, 99, 8932-7 

Hu, Y. L., Fu, Y. H., Tabata, Y. & Gao, J. Q. (2010). Mesenchymal stem cells: a promising 

targeted-delivery vehicle in cancer gene therapy. J Control Release, 147, 154-62 

Ishihara, T., Takeda, M., Sakamoto, H., Kimoto, A., Kobayashi, C., Takasaki, N., Yuki, K., 

Tanaka, K., Takenaga, M., Igarashi, R., Maeda, T., Yamakawa, N., Okamoto, Y., 

Otsuka, M., Ishida, T., Kiwada, H., Mizushima, Y. & Mizushima, T. (2009). 

Accelerated blood clearance phenomenon upon repeated injection of PEG-modified 

PLA-nanoparticles. Pharm Res, 26, 2270-9 

Ji, J. F., He, B. P., Dheen, S. T. & Tay, S. S. (2004). Interactions of chemokines and chemokine 

receptors mediate the migration of mesenchymal stem cells to the impaired site in 

the brain after hypoglossal nerve injury. Stem Cells, 22, 415-27 

Jo, J., Aoki, I. & Tabata, Y. (2010). Design of iron oxide nanoparticles with different sizes and 

surface charges for simple and efficient labeling of mesenchymal stem cells. J 

Control Release, 142, 465-73 

Johns, T. G., Mackay, I. R., Callister, K. A., Hertzog, P. J., Devenish, R. J. & Linnane, A. W. 

(1992). Antiproliferative potencies of interferons on melanoma cell lines and 

xenografts: higher efficacy of interferon beta. J Natl Cancer Inst, 84, 1185-90 

Kadiyala, S., Jaiswal, N. & Buder, S. P. (1997). Culture-expanded, bone marrowderived 

mesenchymal stem cells regenerate a critical-sized segmental bone defect. Tissue 

Eng., 3, 173-85 

Kagawa, S., He, C., Gu, J., Koch, P., Rha, S. J., Roth, J. A., Curley, S. A., Stephens, L. C. & 

Fang, B. (2001). Antitumor activity and bystander effects of the tumor necrosis 

factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res, 61, 3330-8 

Kanehira, M., Xin, H., Hoshino, K., Maemondo, M., Mizuguchi, H., Hayakawa, T., 

Matsumoto, K., Nakamura, T., Nukiwa, T. & Saijo, Y. (2007). Targeted delivery of 

NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. 

Cancer Gene Ther, 14, 894-903 

Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J. M., 

Kassis, I., Bulte, J. W., Petrou, P., Ben-Hur, T., Abramsky, O. & Slavin, S. (2010). 

Safety and immunological effects of mesenchymal stem cell transplantation in 

patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol, 67, 

1187-94 

Kebriaei, P., Isola, L., Bahceci, E., Holland, K., Rowley, S., McGuirk, J., Devetten, M., Jansen, 

J., Herzig, R., Schuster, M., Monroy, R. & Uberti, J. (2009). Adult human 

mesenchymal stem cells added to corticosteroid therapy for the treatment of acute 

graft-versus-host disease. Biol Blood Marrow Transplant, 15, 804-11 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

520 

Kennedy, L. C., Bickford, L. R., Lewinski, N. A., Coughlin, A. J., Hu, Y., Day, E. S., West, J. L. 

& Drezek, R. A. (2011). A new era for cancer treatment: gold-nanoparticle-mediated 

thermal therapies. Small, 7, 169-83 

Kim, B. Y., Rutka, J. T. & Chan, W. C. (2010). Nanomedicine. N Engl J Med, 363, 2434-43 

Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S. & Epstein, S. E. (2004). 

Marrow-derived stromal cells express genes encoding a broad spectrum of 

arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through 

paracrine mechanisms. Circ Res, 94, 678-85 

Klopp, A. H., Spaeth, E. L., Dembinski, J. L., Woodward, W. A., Munshi, A., Meyn, R. E., 

Cox, J. D., Andreeff, M. & Marini, F. C. (2007). Tumor irradiation increases the 

recruitment of circulating mesenchymal stem cells into the tumor 

microenvironment. Cancer Res, 67, 11687-95 

Klyushnenkova, E., Mosca, J. D., Zernetkina, V., Majumdar, M. K., Beggs, K. J., Simonetti, D. 

W., Deans, R. J. & McIntosh, K. R. (2005). T cell responses to allogeneic human 

mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci, 

12, 47-57 

Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I. & 

Lazarus, H. M. (2000). Rapid hematopoietic recovery after coinfusion of 

autologous-blood stem cells and culture-expanded marrow mesenchymal stem 

cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin 

Oncol, 18, 307-16 

Komarova, S., Kawakami, Y., Stoff-Khalili, M. A., Curiel, D. T. & Pereboeva, L. (2006). 

Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic 

adenoviruses. Mol Cancer Ther, 5, 755-66 

Kon, E., Muraglia, A., Corsi, A., Bianco, P., Marcacci, M., Martin, I., Boyde, A., Ruspantini, I., 

Chistolini, P., Rocca, M., Giardino, R., Cancedda, R. & Quarto, R. (2000). 

Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic 

accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater 

Res, 49, 328-37 

Kong, T., Zeng, J., Wang, X., Yang, X., Yang, J., McQuarrie, S., McEwan, A., Roa, W., Chen, J. 

& Xing, J. Z. (2008). Enhancement of radiation cytotoxicity in breast-cancer cells by 

localized attachment of gold nanoparticles. Small, 4, 1537-43 

Koshevoy, I. O., Lin, Y. C., Chen, Y. C., Karttunen, A. J., Haukka, M., Chou, P. T., Tunik, S. P. 

& Pakkanen, T. A. (2010). Rational reductive fusion of two heterometallic clusters: 

formation of a highly stable, intensely phosphorescent Au-Ag aggregate and 

application in two-photon imaging in human mesenchymal stem cells. Chem 

Commun (Camb), 46, 1440-2 

Kostura, L., Kraitchman, D. L., Mackay, A. M., Pittenger, M. F. & Bulte, J. W. (2004). Feridex 

labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or 

osteogenesis. NMR Biomed, 17, 513-7 

Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., 

Segars, W. P., Chen, H. H., Fritzges, D., Izbudak, I., Young, R. G., Marcelino, M., 

Pittenger, M. F., Solaiyappan, M., Boston, R. C., Tsui, B. M., Wahl, R. L. & Bulte, J. 

W. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to 

myocardial infarction. Circulation, 112, 1451-61 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

521 

Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., 

Mazzinghi, B., Pizzolo, G., Vinante, F., Romagnani, P., Maggi, E., Romagnani, S. & 

Annunziato, F. (2006). Role for interferon-gamma in the immunomodulatory 

activity of human bone marrow mesenchymal stem cells. Stem Cells, 24, 386-98 

Krop, I. E., Beeram, M., Modi, S., Jones, S. F., Holden, S. N., Yu, W., Girish, S., Tibbitts, J., Yi, 

J. H., Sliwkowski, M. X., Jacobson, F., Lutzker, S. G. & Burris, H. A. (2010). Phase I 

study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 

weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol, 28, 

2698-704 

Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S. & Altaner, C. (2007). Adipose 

tissue-derived human mesenchymal stem cells mediated prodrug cancer gene 

therapy. Cancer Res, 67, 6304-13 

Kucerova, L., Matuskova, M., Pastorakova, A., Tyciakova, S., Jakubikova, J., Bohovic, R., 

Altanerova, V. & Altaner, C. (2008). Cytosine deaminase expressing human 

mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J 

Gene Med, 10, 1071-82 

Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S. & Caplan, A. I. (1995). Ex 

vivo expansion and subsequent infusion of human bone marrow-derived stromal 

progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. 

Bone Marrow Transplant, 16, 557-64 

Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., Shpall, 

E. J., McCarthy, P., Atkinson, K., Cooper, B. W., Gerson, S. L., Laughlin, M. J., 

Loberiza, F. R., Jr., Moseley, A. B. & Bacigalupo, A. (2005). Cotransplantation of 

HLA-identical sibling culture-expanded mesenchymal stem cells and 

hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow 

Transplant, 11, 389-98 

Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M. & 

Ringden, O. (2004). Treatment of severe acute graft-versus-host disease with third 

party haploidentical mesenchymal stem cells. Lancet, 363, 1439-41 

Le Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., 

Ljungman, P., Lonnies, H., Nava, S. & Ringden, O. (2007). Transplantation of 

mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. 

Leukemia, 21, 1733-8 

Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., Lanino, E., Sundberg, B., 

Bernardo, M. E., Remberger, M., Dini, G., Egeler, R. M., Bacigalupo, A., Fibbe, W. & 

Ringden, O. (2008). Mesenchymal stem cells for treatment of steroid-resistant, 

severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579-86 

Li, H., Fu, X., Ouyang, Y., Cai, C., Wang, J. & Sun, T. (2006). Adult bone-marrow-derived 

mesenchymal stem cells contribute to wound healing of skin appendages. Cell 

Tissue Res, 326, 725-36 

Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., 

Kempson, I. M., Hwu, Y., Lai, T. C., Hsiao, M., Yang, C. S., Chen, Y. J. & 

Margaritondo, G. (2010). Enhancement of cell radiation sensitivity by pegylated 

gold nanoparticles. Phys Med Biol, 55, 931-45 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

522 

Loebinger, M. R., Eddaoudi, A., Davies, D. & Janes, S. M. (2009a). Mesenchymal stem cell 

delivery of TRAIL can eliminate metastatic cancer. Cancer Res, 69, 4134-42 

Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F. & 

Janes, S. M. (2009b). Magnetic resonance imaging of mesenchymal stem cells 

homing to pulmonary metastases using biocompatible magnetic nanoparticles. 

Cancer Res, 69, 8862-7 

Loebinger, M. R. & Janes, S. M. (2010). Stem cells as vectors for antitumour therapy. Thorax, 

65, 362-9 

Lowery, A., Onishko, H., Hallahan, D. E. & Han, Z. (2011). Tumor-targeted delivery of 

liposome-encapsulated doxorubicin by use of a peptide that selectively binds to 

irradiated tumors. J Control Release, 150, 117-24 

Lucchini, G., Introna, M., Dander, E., Rovelli, A., Balduzzi, A., Bonanomi, S., Salvade, A., 

Capelli, C., Belotti, D., Gaipa, G., Perseghin, P., Vinci, P., Lanino, E., Chiusolo, P., 

Orofino, M. G., Marktel, S., Golay, J., Rambaldi, A., Biondi, A., D'Amico, G. & Biagi, 

E. (2010). Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy 

for severe resistant graft-versus-host disease in a pediatric population. Biol Blood 

Marrow Transplant, 16, 1293-301 

Mackenzie, T. C. & Flake, A. W. (2001). Human mesenchymal stem cells persist, 

demonstrate site-specific multipotential differentiation, and are present in sites of 

wound healing and tissue regeneration after transplantation into fetal sheep. Blood 

Cells Mol Dis, 27, 601-4 

Malugin, A. & Ghandehari, H. (2010). Cellular uptake and toxicity of gold nanoparticles in 

prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol, 30, 

212-7 

Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W. & Dilloo, D. (2004). Human bone 

marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-

dioxygenase-mediated tryptophan degradation. Blood, 103, 4619-21 

Menon, L. G., Shi, V. S. & Carroll, R. S. (2009). Mesenchymal stromal cells as drug delivery 

system. StemBook, ed Girard, L., Harvard Stem Cell Institute, 

http://www.stembook.org/node/534 

Mohr, A., Lyons, M., Deedigan, L., Harte, T., Shaw, G., Howard, L., Barry, F., O'Brien, T. & 

Zwacka, R. (2008). Mesenchymal stem cells expressing TRAIL lead to tumour 

growth inhibition in an experimental lung cancer model. J Cell Mol Med, 12, 2628-43 

Morigi, M., Imberti, B., Zoja, C., Corna, D., Tomasoni, S., Abbate, M., Rottoli, D., Angioletti, 

S., Benigni, A., Perico, N., Alison, M. & Remuzzi, G. (2004). Mesenchymal stem cells 

are renotropic, helping to repair the kidney and improve function in acute renal 

failure. J Am Soc Nephrol, 15, 1794-804 

Moriscot, C., de Fraipont, F., Richard, M. J., Marchand, M., Savatier, P., Bosco, D., Favrot, M. 

& Benhamou, P. Y. (2005). Human bone marrow mesenchymal stem cells can 

express insulin and key transcription factors of the endocrine pancreas 

developmental pathway upon genetic and/or microenvironmental manipulation in 

vitro. Stem Cells, 23, 594-603 

Mosca, J. D., Hendricks, J. K., Buyaner, D., Davis-Sproul, J., Chuang, L. C., Majumdar, M. K., 

Chopra, R., Barry, F., Murphy, M., Thiede, M. A., Junker, U., Rigg, R. J., Forestell, S. 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

523 

P., Bohnlein, E., Storb, R. & Sandmaier, B. M. (2000). Mesenchymal stem cells as 

vehicles for gene delivery. Clin Orthop Relat Res, S71-90 

Motaln, H., Schichor, C. & Lah, T. T. (2010). Human mesenchymal stem cells and their use in 

cell-based therapies. Cancer, 116, 2519-30 

Murphy, J. M., Fink, D. J., Hunziker, E. B. & Barry, F. P. (2003). Stem cell therapy in a caprine 

model of osteoarthritis. Arthritis Rheum, 48, 3464-74 

Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, 

S., Vecil, G., Dembinski, J., Andreeff, M. & Lang, F. F. (2005). Human bone marrow-

derived mesenchymal stem cells in the treatment of gliomas. Cancer Res, 65, 3307-18 

Nakamura, K., Ito, Y., Kawano, Y., Kurozumi, K., Kobune, M., Tsuda, H., Bizen, A., 

Honmou, O., Niitsu, Y. & Hamada, H. (2004). Antitumor effect of genetically 

engineered mesenchymal stem cells in a rat glioma model. Gene Ther, 11, 1155-64 

Newman, R. E., Yoo, D., LeRoux, M. A. & Danilkovitch-Miagkova, A. (2009). Treatment of 

inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets, 

8, 110-23 

Ochekpe, N. A., Olorunfemi, P. O. & Ngwuluka, N. C. (2009). Nanotechnology and Drug 

Delivery Part 2: Nanostructures for Drug Delivery. Tropical Journal of Pharmaceutical 

Research, 8, 275-87 

Ong, S. Y., Dai, H. & Leong, K. W. (2006). Inducing hepatic differentiation of human 

mesenchymal stem cells in pellet culture. Biomaterials, 27, 4087-97 

Oswald, J., Boxberger, S., Jorgensen, B., Feldmann, S., Ehninger, G., Bornhauser, M. & 

Werner, C. (2004). Mesenchymal stem cells can be differentiated into endothelial 

cells in vitro. Stem Cells, 22, 377-84 

Owen, M. (1988). Marrow stromal stem cells. J Cell Sci Suppl, 10, 63-76 

Parekkadan, B. & Milwid, J. M. (2010). Mesenchymal stem cells as therapeutics. Annu Rev 

Biomed Eng, 12, 87-117 

Park, J. W., Hong, K., Kirpotin, D. B., Meyer, O., Papahadjopoulos, D. & Benz, C. C. (1997). 

Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett, 

118, 153-60 

Park, J. W., Hong, K., Kirpotin, D. B., Colbern, G., Shalaby, R., Baselga, J., Shao, Y., Nielsen, 

U. B., Marks, J. D., Moore, D., Papahadjopoulos, D. & Benz, C. C. (2002). Anti-HER2 

immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer 

Res, 8, 1172-81 

Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S. & Amin, A. F. (2009). Getting into the 

brain: approaches to enhance brain drug delivery. CNS Drugs, 23, 35-58 

Patra, C. R., Bhattacharya, R., Mukhopadhyay, D. & Mukherjee, P. (2010). Fabrication of 

gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev, 

62, 346-61 

Phinney, D. G. & Isakova, I. (2005). Plasticity and therapeutic potential of mesenchymal 

stem cells in the nervous system. Curr Pharm Des, 11, 1255-65 

Pittenger, M. F. & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac 

therapeutics. Circ Res, 95, 9-20 

Plotnikov, A. N., Shlapakova, I., Szabolcs, M. J., Danilo, P., Jr., Lorell, B. H., Potapova, I. A., 

Lu, Z., Rosen, A. B., Mathias, R. T., Brink, P. R., Robinson, R. B., Cohen, I. S. & 

Rosen, M. R. (2007). Xenografted adult human mesenchymal stem cells provide a 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

524 

platform for sustained biological pacemaker function in canine heart. Circulation, 

116, 706-13 

Ponte, A. L., Marais, E., Gallay, N., Langonne, A., Delorme, B., Herault, O., Charbord, P. & 

Domenech, J. (2007). The in vitro migration capacity of human bone marrow 

mesenchymal stem cells: comparison of chemokine and growth factor chemotactic 

activities. Stem Cells, 25, 1737-45 

Potapova, I., Plotnikov, A., Lu, Z., Danilo, P., Jr., Valiunas, V., Qu, J., Doronin, S., 

Zuckerman, J., Shlapakova, I. N., Gao, J., Pan, Z., Herron, A. J., Robinson, R. B., 

Brink, P. R., Rosen, M. R. & Cohen, I. S. (2004). Human mesenchymal stem cells as a 

gene delivery system to create cardiac pacemakers. Circ Res, 94, 952-9 

Prasad, V. K., Lucas, K. G., Kleiner, G. I., Talano, J. A., Jacobsohn, D., Broadwater, G., 

Monroy, R. & Kurtzberg, J. (2011). Efficacy and safety of ex vivo cultured adult 

human mesenchymal stem cells (Prochymal) in pediatric patients with severe 

refractory acute graft-versus-host disease in a compassionate use study. Biol Blood 

Marrow Transplant, 17, 534-41 

Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. 

Science, 276, 71-4 

Rahman, W. N., Bishara, N., Ackerly, T., He, C. F., Jackson, P., Wong, C., Davidson, R. & 

Geso, M. (2009). Enhancement of radiation effects by gold nanoparticles for 

superficial radiation therapy. Nanomedicine, 5, 136-42 

Ramirez, M., Lucia, A., Gomez-Gallego, F., Esteve-Lanao, J., Perez-Martinez, A., Foster, C., 

Andreu, A. L., Martin, M. A., Madero, L., Arenas, J. & Garcia-Castro, J. (2006). 

Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. 

Br J Sports Med, 40, 719-22 

Reagan, M. R. & Kaplan, D. L. (2011). Concise review: mesenchymal stem cell tumor-

homing: detection methods in disease model systems. Stem Cells, 29, 920-7 

Reddy, A. M., Kwak, B. K., Shim, H. J., Ahn, C., Lee, H. S., Suh, Y. J. & Park, E. S. (2010). In 

vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated 

superparamagnetic iron oxide nanoparticles using 3.0T MRI. J Korean Med Sci, 25, 

211-9 

Ren, C., Kumar, S., Chanda, D., Chen, J., Mountz, J. D. & Ponnazhagan, S. (2008a). 

Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a 

mouse melanoma lung metastasis model. Stem Cells, 26, 2332-8 

Ren, C., Kumar, S., Chanda, D., Kallman, L., Chen, J., Mountz, J. D. & Ponnazhagan, S. 

(2008b). Cancer gene therapy using mesenchymal stem cells expressing interferon-

beta in a mouse prostate cancer lung metastasis model. Gene Ther, 15, 1446-53 

Renner, P., Eggenhofer, E., Rosenauer, A., Popp, F. C., Steinmann, J. F., Slowik, P., Geissler, 

E. K., Piso, P., Schlitt, H. J. & Dahlke, M. H. (2009). Mesenchymal stem cells require 

a sufficient, ongoing immune response to exert their immunosuppressive function. 

Transplant Proc, 41, 2607-11 

Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M. & Neth, P. (2007). MMP-2, MT1-MMP, 

and TIMP-2 are essential for the invasive capacity of human mesenchymal stem 

cells: differential regulation by inflammatory cytokines. Blood, 109, 4055-63 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

525 

Rose, J. H., Norman, A., Ingram, M., Aoki, C., Solberg, T. & Mesa, A. (1999). First 

radiotherapy of human metastatic brain tumors delivered by a computerized 

tomography scanner (CTRx). Int J Radiat Oncol Biol Phys, 45, 1127-32 

Rosen, M. R., Brink, P. R., Cohen, I. S. & Robinson, R. B. (2004). Genes, stem cells and 

biological pacemakers. Cardiovasc Res, 64, 12-23 

Rosen, M. R., Brink, P. R., Cohen, I. S. & Robinson, R. B. (2008). The utility of mesenchymal 

stem cells as biological pacemakers. Congest Heart Fail, 14, 153-6 

Ruggiero, C., Pastorino, L. & Herrera, O. L. (2010). Nanotechnology based targeted drug 

delivery. Conf Proc IEEE Eng Med Biol Soc, 2010, 3731-2 

Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. (2010). Targeting of drugs and nanoparticles to 

tumors. J Cell Biol, 188, 759-68 

Ryan, J. M., Barry, F., Murphy, J. M. & Mahon, B. P. (2007). Interferon-gamma does not 

break, but promotes the immunosuppressive capacity of adult human 

mesenchymal stem cells. Clin Exp Immunol, 149, 353-63 

Sansone, P. & Bromberg, J. (2011). Environment, inflammation, and cancer. Curr Opin Genet 

Dev, 21, 80-5 

Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J. A., Mohapatra, 

G., Figueiredo, J. L., Martuza, R. L., Weissleder, R. & Shah, K. (2009). Assessment of 

therapeutic efficacy and fate of engineered human mesenchymal stem cells for 

cancer therapy. Proc Natl Acad Sci U S A, 106, 4822-7 

Sato, Y., Araki, H., Kato, J., Nakamura, K., Kawano, Y., Kobune, M., Sato, T., Miyanishi, K., 

Takayama, T., Takahashi, M., Takimoto, R., Iyama, S., Matsunaga, T., Ohtani, S., 

Matsuura, A., Hamada, H. & Niitsu, Y. (2005). Human mesenchymal stem cells 

xenografted directly to rat liver are differentiated into human hepatocytes without 

fusion. Blood, 106, 756-63 

Sawant, R. & Torchilin, V. (2011). Intracellular delivery of nanoparticles with CPPs. Methods 

Mol Biol, 683, 431-51 

Schäfer, R., Bantleon, R., Kehlbach, R., Siegel, G., Wiskirchen, J., Wolburg, H., Kluba, T., 

Eibofner, F., Northoff, H., Claussen, C. D. & Schlemmer, H. P. (2010). Functional 

investigations on human mesenchymal stem cells exposed to magnetic fields and 

labeled with clinically approved iron nanoparticles. BMC Cell Biol, 11:22 

Sieman, D. W. (2006). Tumor vasculature: a target for anticancer therapies. In: Vascular-

targeted Therapies in Oncology, ed Sieman, D. W., 1-8, John Wiley & Sons, Chichester, 

UK 

Solchaga, L. A., Temenoff, J. S., Gao, J., Mikos, A. G., Caplan, A. I. & Goldberg, V. M. (2005). 

Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. 

Osteoarthritis Cartilage, 13, 297-309 

Sonabend, A. M., Ulasov, I. V., Tyler, M. A., Rivera, A. A., Mathis, J. M. & Lesniak, M. S. 

(2008). Mesenchymal stem cells effectively deliver an oncolytic adenovirus to 

intracranial glioma. Stem Cells, 26, 831-41 

Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. (2008). Inflammation and 

tumor microenvironments: defining the migratory itinerary of mesenchymal stem 

cells. Gene Ther, 15, 730-8 

Srinivas, M., Aarntzen, E. H., Bulte, J. W., Oyen, W. J., Heerschap, A., de Vries, I. J. & Figdor, 

C. G. (2010). Imaging of cellular therapies. Adv Drug Deliv Rev, 62, 1080-93 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

526 

Stagg, J., Lejeune, L., Paquin, A. & Galipeau, J. (2004). Marrow stromal cells for interleukin-2 

delivery in cancer immunotherapy. Hum Gene Ther, 15, 597-608 

Stoeber, B. & Liepmann, D. (2002). Design, fabrication and testing of a MEMS syringe. 

Proceedings of Solid-State Sensor and Actuator Workshop, Transducers Research 

Foundation, Hilton Head Island, SC, USA, 2002 

Stoff-Khalili, M. A., Rivera, A. A., Mathis, J. M., Banerjee, N. S., Moon, A. S., Hess, A., 

Rocconi, R. P., Numnum, T. M., Everts, M., Chow, L. T., Douglas, J. T., Siegal, G. P., 

Zhu, Z. B., Bender, H. G., Dall, P., Stoff, A., Pereboeva, L. & Curiel, D. T. (2007). 

Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung 

metastases of breast carcinoma. Breast Cancer Res Treat, 105, 157-67 

Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J. & Andreeff, M. (2002). 

Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta 

delivery into tumors. Cancer Res, 62, 3603-8 

Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. 

N., Champlin, R. E. & Andreeff, M. (2004). Mesenchymal stem cells: potential 

precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J 

Natl Cancer Inst, 96, 1593-603 

Sun, Y., Chen, L., Hou, X. G., Hou, W. K., Dong, J. J., Sun, L., Tang, K. X., Wang, B., Song, J., 

Li, H. & Wang, K. X. (2007). Differentiation of bone marrow-derived mesenchymal 

stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J 

(Engl), 120, 771-6 

Sundin, M., Ringden, O., Sundberg, B., Nava, S., Gotherstrom, C. & Le Blanc, K. (2007). No 

alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf 

serum antibodies, after transplantation in allogeneic hematopoietic stem cell 

recipients. Haematologica, 92, 1208-15 

Suzuki, M., McHugh, J., Tork, C., Shelley, B., Klein, S. M., Aebischer, P. & Svendsen, C. N. 

(2007). GDNF secreting human neural progenitor cells protect dying motor 

neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS 

One, 2, e689 

Torchilin, V. P. (2008). Tat peptide-mediated intracellular delivery of pharmaceutical 

nanocarriers. Adv Drug Deliv Rev, 60, 548-58 

Trivedi, H. L., Vanikar, A. V., Thakker, U., Firoze, A., Dave, S. D., Patel, C. N., Patel, J. V., 

Bhargava, A. B. & Shankar, V. (2008). Human adipose tissue-derived mesenchymal 

stem cells combined with hematopoietic stem cell transplantation synthesize 

insulin. Transplant Proc, 40, 1135-9 

Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C. & Guinan, E. C. (2003). Suppression 

of allogeneic T-cell proliferation by human marrow stromal cells: implications in 

transplantation. Transplantation, 75, 389-97 

Tuscano, J. M., Martin, S. M., Ma, Y., Zamboni, W. & O'Donnell, R. T. (2010). Efficacy, 

biodistribution, and pharmacokinetics of CD22-targeted pegylated liposomal 

doxorubicin in a B-cell non-Hodgkin's lymphoma xenograft mouse model. Clin 

Cancer Res, 16, 2760-8 

Vives, E., Schmidt, J. & Pelegrin, A. (2008). Cell-penetrating and cell-targeting peptides in 

drug delivery. Biochim Biophys Acta, 1786, 126-38 

www.intechopen.com



 
Mesenchymal Stem Cells as Vehicles for Targeted Therapies 

 

527 

von Hertzen, L. C., Joensuu, H. & Haahtela, T. (2011). Microbial deprivation, inflammation 

and cancer. Cancer Metastasis Rev, 30, 211-23 

Walczak, P., Kedziorek, D. A., Gilad, A. A., Lin, S. & Bulte, J. W. (2005). Instant MR labeling 

of stem cells using magnetoelectroporation. Magn Reson Med, 54, 769-74 

Wallace, A. E., Gibson, D. A., Saunders, P. T. & Jabbour, H. N. (2010). Inflammatory events 

in endometrial adenocarcinoma. J Endocrinol, 206, 141-57 

Wang, T., Tang, W., Sun, S., Xu, T., Wang, H., Guan, J., Huang, Z. & Weil, M. H. (2008). 

Intravenous infusion of bone marrow mesenchymal stem cells improves brain 

function after resuscitation from cardiac arrest. Crit Care Med, 36, S486-91 

Williams, A. R., Trachtenberg, B., Velazquez, D. L., McNiece, I., Altman, P., Rouy, D., 

Mendizabal, A. M., Pattany, P. M., Lopera, G. A., Fishman, J., Zambrano, J. P., 

Heldman, A. W. & Hare, J. M. (2011). Intramyocardial stem cell injection in patients 

with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ 

Res, 108, 792-6 

Wu, G. D., Nolta, J. A., Jin, Y. S., Barr, M. L., Yu, H., Starnes, V. A. & Cramer, D. V. (2003). 

Migration of mesenchymal stem cells to heart allografts during chronic rejection. 

Transplantation, 75, 679-85 

Xiang, J., Tang, J., Song, C., Yang, Z., Hirst, D. G., Zheng, Q. J. & Li, G. (2009). Mesenchymal 

stem cells as a gene therapy carrier for treatment of fibrosarcoma. Cytotherapy, 11, 

516-26 

Xin, H., Kanehira, M., Mizuguchi, H., Hayakawa, T., Kikuchi, T., Nukiwa, T. & Saijo, Y. 

(2007). Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem 

cells. Stem Cells, 25, 1618-26 

Xu, F., Shi, J., Yu, B., Ni, W., Wu, X. & Gu, Z. (2010). Chemokines mediate mesenchymal 

stem cell migration toward gliomas in vitro. Oncol Rep, 23, 1561-7 

Xu, W. T., Bian, Z. Y., Fan, Q. M., Li, G. & Tang, T. T. (2009). Human mesenchymal stem cells 

(hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. 

Cancer Lett, 281, 32-41 

Yamada, S., Fujita, S., Uchimura, E., Miyake, M. & Miyake, J. (2009). Reverse transfection 

using gold nanoparticles. Methods Mol Biol, 544, 609-16 

Yang, T., Cui, F. D., Choi, M. K., Cho, J. W., Chung, S. J., Shim, C. K. & Kim, D. D. (2007). 

Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in 

vivo evaluation. Int J Pharm, 338, 317-26 

Yokoo, T., Ohashi, T., Shen, J. S., Sakurai, K., Miyazaki, Y., Utsunomiya, Y., Takahashi, M., 

Terada, Y., Eto, Y., Kawamura, T., Osumi, N. & Hosoya, T. (2005). Human 

mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to 

contribute to kidney tissues. Proc Natl Acad Sci U S A, 102, 3296-300 

Yong, R. L., Shinojima, N., Fueyo, J., Gumin, J., Vecil, G. G., Marini, F. C., Bogler, O., 

Andreeff, M. & Lang, F. F. (2009). Human bone marrow-derived mesenchymal 

stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to 

human gliomas. Cancer Res, 69, 8932-40 

Yu, B., Tai, H. C., Xue, W., Lee, L. J. & Lee, R. J. (2010). Receptor-targeted nanocarriers for 

therapeutic delivery to cancer. Mol Membr Biol, 27, 286-98 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 

 

528 

Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S. & Farokhzad, O. C. (2008). 

Nanoparticles in medicine: therapeutic applications and developments. Clin 

Pharmacol Ther, 83, 761-9 

Zielske, S. P., Livant, D. L. & Lawrence, T. S. (2009). Radiation increases invasion of gene-

modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys, 75, 843-

53 

www.intechopen.com



Drug Discovery and Development - Present and Future

Edited by Dr. Izet Kapetanović

ISBN 978-953-307-615-7

Hard cover, 528 pages

Publisher InTech

Published online 16, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Drug discovery and development process aims to make available medications that are safe and effective in

improving the length and quality of life and relieving pain and suffering. However, the process is very complex,

time consuming, resource intensive, requiring multi-disciplinary expertise and innovative approaches. There is

a growing urgency to identify and develop more effective, efficient, and expedient ways to bring safe and

effective products to the market. The drug discovery and development process relies on the utilization of

relevant and robust tools, methods, models, and validated biomarkers that are predictive of clinical effects in

terms of diagnosis, prevention, therapy, and prognosis. There is a growing emphasis on translational

research, a bidirectional bench to the bedside approach, in an effort to improve the process efficiency and the

need for further innovations. The authors in the book discuss the current and evolving state of drug discovery

and development.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gabriele Putz Todd, Michelle A LeRoux and Alla Danilkovitch-Miagkova (2011). Mesenchymal Stem Cells as

Vehicles for Targeted Therapies, Drug Discovery and Development - Present and Future, Dr. Izet Kapetanović

(Ed.), ISBN: 978-953-307-615-7, InTech, Available from: http://www.intechopen.com/books/drug-discovery-

and-development-present-and-future/mesenchymal-stem-cells-as-vehicles-for-targeted-therapies



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


