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1. Introduction 

Nanotechnology mediated delivery of therapeutic agents is one of the rapidly emerging 
fields today that has gained significant commercial and academic attention. It is a promising 

approach to alleviate the drawbacks of conventional therapy and major limitations 
associated with drug development like poor water solubility, low bioavailability, drug 

toxicity etc. Nano-scale drug-delivery systems can be devised to tune and regulate release 
pharmacokinetics, pharmacodynamics, solubility, immunocompatibility, cellular uptake, 

biodistribution and to minimize toxic side effects, thus enhancing therapeutic index of 

traditional pharmaceuticals (Emerich & Thanos, 2007). They can be used to deliver both 
small-molecule drugs and various classes of biomacromolecules  such as peptides, proteins, 

plasmid DNA and synthetic oligodeoxynucleotides. Nanoparticle mediated drug delivery, 
thus has the potential to contribute significantly in the drug development process which has 

relied on conventional formulation strategies that are often inadequate. An underlying 
concept in drug development process is to establish a link between in vitro potency, 

physicochemical properties and absorption, distribution, metabolism, excretion and toxicity 
characteristics of a drug candidate which is often cited as a major contributing factor in the 

failure of drug development. While the nanoparticle mediated sustained release of drugs 
offers an obvious therapeutic advantage, the targeted delivery of drugs in the body is 

required to prevent the release of therapeutics at non-specific sites and unwanted side-
effects. The conjugation of targeting moieties with drug-loaded nanoparticles can be used 

for receptor-mediated and targeted delivery. Such targeted nanoparticles have the 
characteristics of a perfect drug delivery system that tends to maximize the therapeutic 

activity while minimizing the toxic side effects of drugs. 

2. Nanotechnology mediated drug delivery systems 

Drug delivery systems are defined as supramolecular assemblies incorporating agents 
intended to treat a disease. They are intended to overcome the shortcomings of the 
conventional drugs, such as unfavorable pharmacokinetics, poor solubility, instability, high 
toxicity, drug resistance and low cellular uptake. Since the discovery of liposomes (Bangham & 

www.intechopen.com



 
Drug Discovery and Development – Present and Future 428 

Horne, 1964), there has been extensive research towards the development of new drug 
delivery systems. Liposomes and emulsions dominated the drug delivery field for some 
period. With the renewed interest in nanotechnology, new nano-sized formulations and 
nanomaterials have been developed. These new materials include polymeric nanoparticles, 
solid lipid nanoparticles, liposomes, nanoemulsions, cyclodextrins and dendrimers. 
Polymeric nanoparticles: Nanoparticles are solid, colloidal particles consisting of 

macromolecular substances varying in size from 10 to 1000 nanometers. A drug can be 

dissolved, entrapped, adsorbed, attached or encapsulated into a nanoparticle. Depending on 

the method of preparation, nanospheres or nanocapsules can be developed with different 

properties and different release characteristics for the encapsulated therapeutic agent. For 

nearly three decades, polymeric nanoparticles have been studied extensively because of 

their unique and valuable physicochemical and biological properties. Indeed, nanoparticles 

can protect the drug from degradation (physical stability during storage and in biological 

fluids), enhance its transport and distribution (possibility of drug targeting by modification 

of surface charge with inserted ligands, such as antibodies, surfactants, polymers and 

others) and prolong its release; hence, the plasma half-life of the drug entrapped can be 

improved (Allemann et al., 1993). As some nanoparticle characteristics such as particle size 

and surface charge can be modulated by modifying some process parameters, they can be 

used in various applications involving different routes of administration. Although 

polymers are the most widely used materials nanoparticles consist of a variety of materials, 

including polymers, proteins and lipids. The polymers used include natural and synthetic 

materials and the main characteristics required are biodegradability and biocompatibility. In 

general, synthetic polymers (polyesters and their copolymers polyacrylates and 

polycaprolactones) offer greater advantages than natural ones (albumin, gelatin, alginate, 

collagen and chitosan) because they can be tailored to have a wider range of properties. The 

advantage of using polymeric nanoparticles as colloidal carriers for advanced drug delivery 

is mainly their small size, which allows nanoparticles to penetrate even small capillaries and 

be taken up within cells, allowing efficient drug accumulation at targeted sites in the body. 

Also, the biodegradable polymers used for their preparation allow for sustained drug 

release at the targeted site over a period of days or even weeks after administration 

(Vinogradov et al., 2002). Biodegradable polymer nanoparticles have been extensively 

investigated as therapeutic carriers (Moghimi et al., 2001). Polymeric nanoparticles have 

been formulated to encapsulate either hydrophilic or hydrophobic small drug molecules, as 

well as macromolecules such as proteins and nucleic acids (Perez et al., 2001). The release of 

encapsulated drugs occurs at a controlled rate in a time or environment dependent manner. 

More importantly, the rate of drug release can be controlled by modification of the polymer 

side chain, development of novel polymers or synthesis of copolymers (Wang et al., 2008). 

In general, these biodegradable polymer systems can provide drug levels at an optimum 

range over a longer period of time than other drug delivery methods, thus increasing the 

efficacy of the drug and maximizing patient compliance, while enhancing the ability to use 

highly toxic, poorly soluble or relatively unstable drugs. Poly(d,l-lactic acid), poly(d,l-

glycolic acid), poly(ε-caprolactone) and their copolymers at various molar ratios diblocked 

or multiblocked with polyethylene glycol (PEG) are the most commonly used biodegradable 

polymers (Wang et al., 2008). For instance, poly lactide-co-glycolide (PLGA) encapsulated 

antibiotics have been investigated for the treatment of tuberculosis using murine models 

(Pandey & Khuller, 2006). Nanoparticles being compact are well suited to traverse cellular 
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membranes to mediate drug or gene delivery. It is also expected that due to small size and 

high surface/volume ratio, nanoparticles will be less susceptible to reticuloendothelial 

system clearance and will have better penetration into tissues and cells, when used in vivo 

(Nimesh et al., 2006). Thus, PLGA has generated tremendous interest due to its excellent 

biocompatibility, biodegradability, and mechanical strength. 

Solid Lipid Nanoparticles: Solid lipid nanoparticles (SLNs) are nanocrystalline structures 
made of fatty acids that are solid or semisolid at room temperature (Jenning et al., 2002). A 
wide variety of high melting-point lipids and methods can be used to prepare and stabilize 
the SLNs (Muller et al., 2000). Besides, their surface characteristics can be altered by coating 
with hydrophilic molecules which tends to improve plasma stability, biodistribution and 
subsequent bioavailability of drugs entrapped (Uner & Yener, 2007). Sustained drug release 
and site specificity for drug delivery can be achieved by altering the properties of SLNs, 
such as their lipid composition, size, and surface charge. SLNs offer several advantages such 
as relative ease of production, sterilization, and scale-up, without the use of organic 
solvents, low-cost excipients, and biocompatibility. As compared to nanoemulsions which 
are liquid-lipid encapsulations of the drug, SLNs containing the lipid in the solid state 
impart greater drug stability and better control over drug-release kinetics (Mallipeddi & 
Rohan, 2010). 
Liposomes: Liposomes are lipid vesicles consisting of phospholipid bilayers. They are 
spherical vesicles that contain a bilayered membrane structure composed of natural or 
synthetic amphiphilic lipid molecules (Zhang & Granick, 2006; Torchilin, 2005). Their 
biocompatible and biodegradable composition, as well as their unique ability to encapsulate 
both hydrophilic and hydrophobic therapeutic agents, makes liposomes excellent 
therapeutic carriers. They have an aqueous core which can be used to encapsulate 
hydrophilic drugs while hydrophobic and amphiphilic drugs can be solubilized within the 
phospholipid bilayers. Liposomes are of three types, i.e. small unilamellar vesicles, large 
unilamellar vesicles, and multilamellar vesicles. Liposomes in their native form are taken up 
by the reticuloendothelial system and are quickly cleared from the circulation. This property 
has been exploited for the macrophage delivery of antiretrovirals. Since liposomes are 
typically constructed from naturally occurring phospholipids, they tend to pose a lower risk 
of eliciting unwanted toxic or antigenic reactions when used as drug carriers. Liposomes can 
also be coated with biocompatible moieties such as PEG to prolong their circulation half-life 
(Torchilin, 2005). The polymer coating of the liposomes can also be engineered to carry a 
functional group, which can be used for targeting ligand conjugation. Liposomes have been 
used widely as pharmaceutical carriers in the past decade, with 11 formulations approved 
for clinical use and many more in clinical development. Some of the commonly used 
therapeutics include liposomal amphotericin, liposomal doxorubicin and liposomal 
daunorubicin (Wang et al., 2008). 
Dendrimers: Dendrimers are a versatile class of regularly-branched macromolecules with 

unique structural and topologic features that are 2.5 – 10 nm in size (Svenson & Tomalia, 

2005). They consist of repeatedly branched polymeric macromolecules with numerous arms 

extending from a center, resulting in a nearly-perfect three-dimensional geometric pattern. 

Small size, narrow molecular weight distribution, and relative ease of incorporation of 

targeting ligands make them attractive candidates for drug delivery. Dendrimers have 

minimal polydispersity and high functionality. Similar to polymers, they are obtained by 

attaching several monomeric units, but unlike the conventional polymers, they have a 

highly branched three-dimensional architecture. Dendrimers are characterized by the 
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presence of three different topologic sites, i.e., a polyfunctional core, interior layers, and 

multivalent   surface (du Toit et al., 2010). The polyfunctional core, surrounded by extensive 

branching has the ability to encapsulate several chemical moieties. The core may be 

surrounded by several layers of highly branched repeating units such as polyethers, 

porphyrins, polyamidoamines, polyphenyls, and polyamino acids. The properties of the 

dendrimers are predominantly based on the multivalent surface, which has several 

functional groups that interact with the external environment. The precise physicochemical 

properties of dendrimers can be controlled during synthesis by controlling the core groups, 

the extent of branching, and the nature and/or number of functional groups on the surface 

(Svenson & Tomalia, 2005). They are synthesized from either synthetic or natural building 

blocks such as amino acids, sugars and nucleotides. Their characteristics as carriers of 

therapeutics include nanoscale spherical architecture, narrow polydispersity, 

multifunctional surface chemistry and large surface area. Many dendrimer families have 

been reported (Bosman et al., 1999) and amongst them, polyamidoamine (PAMAM) and 

poly(propylenemine) (PPI) families have been most widely used for biomedical 

applications. The specific molecular structure of dendrimers enables them to carry various 

drugs through their multivalent surfaces by covalent conjugation or electrostatic adsorption. 

Alternatively, dendrimers can be loaded with drugs, by using the cavities in their cores 

through hydrophobic interaction, hydrogen bonding or chemical linkage. Their surface can 

be engineered to provide precise spacing of surface molecules and to conjugate targeting 

molecules. Other remarkable properties of dendrimers include the availability of terminal 

surface groups which can be customized for bioconjugation of drugs, signaling groups or 

targeting moieties. They possess unique surfaces that may be designed with functional 

groups to augment or resist trans-cellular, epithelial or vascular biopermeability. Their 

surface groups can be modified to optimize biodistribution receptor mediated targeting, 

therapy dosage or controlled release of drug from the interior space (Tomalia et al., 2007) 

3. Nanotechnology and cancer 

3.1 Limitations of the current chemotherapeutic agents 

Cancer is one of the leading causes of morbidity and mortality globally (World Health 

Organization, 2009). The conventional treatments for cancer include the use of 

chemotherapeutic drugs, radiotherapy and interventional surgery. Breast cancer is the most 

common type of malignancy diagnosed in women and almost one third of all cancers 

diagnosed in women are breast cancer (Jemal et al., 2008). The main objectives of the 

treatment strategies are to prolong the survival and improve the quality of life. Despite 

availability of few new drugs (Newman & Singletary,2007; Guarneri & Conte, 2004), breast 

cancer treatment is still unsatisfactory. Amongst active drugs, Taxanes (paclitaxel and 

docetaxel) (Miele et al., 2009) have proved to be fundamental in the treatment of advanced 

and early-stage breast cancer. Paclitaxel has demonstrated significant antitumor activity in 

clinical trials against a broad range of cancers (Singla et al., 2002). These drugs, however, do 

have a few limitations. The main limitation is their highly hydrophobic nature. Owing to 

this, lipid-based solvents (mixture of Cremophor and ethanol) or surfactants like 

polysorbate 80 (Tween® 80) are used as a vehicle for taxanes. Cremophor EL® (CrEL) is a 

non-ionic surfactant polyoxyethylated castor oil (Rowinsky et al., 1990). Polyoxyethylated 

castor oil is toxic itself as it can leach plasticizers from standard intravenous tubing releasing 
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di (2-ethylhexyl) phthalate (DEHP). It stimulates the release of histamine with consequent 

well-described hypersensitivity reactions, including anaphylaxis in patients (Rowinsky & 

Donehower, 1995). Besides, intravenous administration of the current Cremophor EL-based 

formulation in a non-aqueous vehicle may lead to some serious side effects in some patients 

such as hypersensitivity, neurotoxicity, nephrotoxicity & hyperlipidemia (Gelderblom et al., 

2001). Polysorbate 80 is also associated with hypersensitivity reactions, although less 

frequently than CrEL. Polysorbate 80 may cause irreversible sensory and motor 

neuropathies and may alter the membrane fluidity (Vaishampayan et al., 2001). More 

importantly, CrEL and polysorbate 80 may limit tumor penetration as polar micelles of 

CrEL–paclitaxel in the plasma compartment entraps the drug and can lead to non-linear 

pharmacokinetics due to decreased drug clearance as well as volume of distribution. Most 

of other current chemotherapeutic agents in the market are low molecular weight agents 

with high pharmacokinetic volume of distribution both of which may contribute to their 

cytotoxicity. Because of their low molecular weight, they are readily excreted from the body, 

hence requiring a higher concentration that may be toxic. The most important fact is that 

most of these drugs lack specificity and cause significant damage to normal tissues, 

eventually leading to serious unwanted side effects such as bone marrow suppression, 

alopecia, and the sloughing of the gut epithelial cells (Lou & Prestwich, 2002). The use of 

nanocarriers can help alleviate these problems and allow for the preparation of low water 

soluble cancer medications. The nanoscale dimension of these carriers enables the drug to 

accumulate in the tumor mass by passively crossing fenestrations in the diseased 

vasculature and avoiding the perfusion of normal tissues. These nanoparticles have the 

potential to cross the inter-endothelial junctions and diffuse within the extravascular 

compartment, addressing all the possible therapies in a more specific manner. In addition, 

such carriers can be optimized and modified to target the tumor cells particularly. This 

helps to deliver the drug specifically to neoplastic tissues, sparing the normal ones, thereby 

reducing systemic toxicity. The modifications include chemical binding of specific moieties 

or ligands on these nanocarriers. Tumor-specific high affinity ligand like folate (Farokhzad 

et al., 2006) enhance the interaction of nanoparticles with tumor cells, greatly improving 

biodistribution and bioavailability of the concerned drug. Perhaps the most important and 

vast utilization of nanotechnology mediated drug delivery has been in cancer chemotherapy 

and presently, approximately 150 drugs in development for cancer treatment are based on 

nanotechnology (Jain, 2010). 

3.2 Nanodrug delivery systems for anti-cancer agents 

A large number of researchers have used different approaches and techniques for 

formulating nanoparticles for anti-cancer agents. Some of these studies along with their 

prominent findings are mentioned here. Paclitaxel has been the focus of many drug delivery 

approaches to alleviate the side effects of its conventional formulation. Several approaches 

have been employed till date, and one of the most successful of them is Albumin-bound 

paclitaxel (ABI-007, Abraxane®; Abraxis BioScience and AstraZeneca). Albumin has a 

number of biological characteristics that make it an attractive drug vehicle in oncology. It is 

a natural carrier of endogenous hydrophobic molecules such as vitamins, hormones and 

other water-insoluble plasma substances (Hawkins et al., 2008). Moreover, albumin seems to 

help endothelial transcytosis of protein-bound and unbound plasma constituents through  
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binding to a cell-surface (John et al., 2003; Minshall et al., 2003). Besides, osteonectin, also 

known as secreted protein acid rich in cysteine (SPARC) has been shown to bind albumin 

because of a sequence homology with gp60. SPARC, as caveolin-1, is often present in some 

neoplasms (breast, lung, and prostate cancer), leading to the accumulation of albumin in 
some tumors and thus facilitating intra-tumor accumulation of albumin-bound drugs 

(Hawkins et al., 2008). Albumin-bound paclitaxel ABI-007 is a nanovector application for 
breast cancer. It represents one of the strategies developed to overcome the solvent-related 

problems of paclitaxel and it has been recently approved by the US Food and Drug (FDA) 
Administration for pre-treated metastatic breast cancer patients. ABI-007 is a novel, 

albumin-bound, 130-nm particle formulation of paclitaxel, free from any kind of solvent 
(Miele et al., 2009). It is used as a colloidal suspension derived from the lyophilized 

formulation of paclitaxel and human serum albumin diluted in saline. Albumin tends to 
stabilize the drug particle and prevents any risk of capillary obstruction and does not 

require any specific infusion systems or steroid/antihistamine premedication before the 
infusion (Desai et al., 2006). Preclinical studies, conducted in athymic mice with human 

breast cancer demonstrated that ABI-007 has a higher penetration into tumor cells with an 
increased anti-tumor activity, compared with an equal dose of standard paclitaxel (Desai et 

al., 2006). A phase I clinical trial on patients with solid tumors and breast cancer showed a 
maximum tolerated dose of ABI-007 about 70% higher than that of CrEL paclitaxel 

formulation. ABI-007 was administered intravenously with no premedication, in shorter 
infusion periods and with a standard infusion device. The toxicities observed were sensory 

neuropathy, stomatitis, and ocular toxicity. None of the patients experienced 
hypersensitivity reactions. Moreover, the pharmacokinetic parameters showed a linear 

trend (Ibrahim et al., 2002). A consequent phase II trial confirmed that ABI-007 has 
significant antitumor activity in patients with metastatic breast cancer, with a good overall 

response rate and less side effects (Ibrahim, 2005). A micellar nanoparticle formulation of 
paclitaxel (NK105) was also developed to reduce its toxicity and increase the antitumor 

activity of paclitaxel (Hamaguchi et al., 2005). Paclitaxel was incorporated into the inner core 
of the micelle system by physical entrapment through hydrophobic interactions between the 

drug and the block copolymers for paclitaxel. When compared to free paclitaxel, NK105 
increased plasma AUC by approximately 90-fold together with a 25-fold higher tumor AUC. 

NK105 showed potent antitumor activity against a human colorectal cancer cell line HT-29 
xenograft compared with paclitaxel owing to its enhanced accumulation in the tumor and 

its sustained release from micellar nanoparticles. Neurotoxicity was significantly decreased 
with NK105 as evidenced by both histopathological and physiological assessments. 

Although these current vehicles employed hold promise to replace the Cremophor EL-based 
vehicle for paclitaxel delivery, their role to overcome multi-drug resitance (MDR) of tumor 

cells to paclitaxel still remains unsolved. Therefore, another challenge is to develop a new 
delivery system that consists of aqueous-based vehicles and possesses ability to overcome 

the MDR of tumor cells for paclitaxel delivery. Poly(ethylene glycol)-block-poly(propylene 
glycol)-block-poly(ethylene glycol) (PEO-block-PPO-block-PEO) micelles have been 

commonly used for solubilization of hydrophobic drugs (Kabanov et al., 2002). It is found 

that Pluronics could interact with MDR cancer cells resulting in drastic sensitization of these 
tumors with respect to doxorubicin and other anticancer agents (Minko et al., 2005). In 

addition, inclusion of paclitaxel in liposomal formulations (LEP-ETU) has proved to be a 
good approach to improve the drug’s antitumor efficacy (Zhang et al., 2005). Endostatin, a  
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20 kDa internal fragment of the carboxy terminus of collagen XVIII, has the potential to 
inhibit the growth of a variety of human tumors by inhibiting neovascularization (Zhuo et 
al., 2010). However, most available endostatins are either unstable or expensive, which  
limits their clinical application. Endostar, a novel recombinant human endostatin, has been 
expressed and purified in E.coli. It has been approved by the Chinese State Food and Drug 
Administration for the treatment of non-small cell lung cancer in 2005 and has a broad 
spectrum of activity against solid tumors. Endostar has been shown to inhibit endothelial 
cell proliferation, migration, and vessel formation (Zhuo et al., 2010). Nanoparticles 
containing endostar were formulated from modified (PEG-PLGA) and they could maintain 
adequate concentrations of endostar in plasma and tumor, thereby improving its antitumor 
effect. Compared with endostar, endostar-loaded PEG-PLGA nanoparticles had a longer 
elimination half-life and lower peak concentration, caused slower growth of tumor cell 
xenografts, and prolonged tumor doubling time. The nanoparticles changed the 
pharmacokinetic characteristics of endostar in mice and rabbits, thereby enhancing 
anticancer activity. Endostar-loaded PEG-PLGA nanoparticles were observed to have a 
better anticancer effect than conventional endostar (Sanyuan et al., 2010). CPX-1 is another 
novel liposome-encapsulated formulation of irinotecan and floxuridine designed to prolong 
in vitro optimized synergistic molar ratios of both drugs following infusion. Phase I studies 
in patients with advanced solid tumors showed that CPX-1 was well tolerated, and had 
significant antitumor activity (Batist et al., 2009). MCC-465 is an immunoliposome-
encapsulated doxorubicin which is tagged with polyethylene glycol (PEG) and the F(ab) 
fragment of human mAb GAH (goat anti-human), which positively reacts to >90% of 
cancerous stomach tissues but negatively to all normal tissues. In preclinical studies, MCC-
465 showed superior cytotoxic activity against several human stomach cancer cells 
compared with doxorubicin or doxorubicin- incorporated PEG liposomes. A phase I clinical 
trial showed that MCC-465 was well tolerated (Matsumura et al., 2004). Polymeric micelles 
can be utilized to increase the accumulation of drugs in tumor tissues utilizing the enhanced 
permeability and retention (EPR) effect and to incorporate various kinds of drugs into the 
inner core by chemical conjugation or physical entrapment with relatively high stability. 
There are several anticancer drug-incorporated micelle carrier systems under clinical 
evaluation, these include a CDDP (cisplatin)-incorporated micelle, NC-6004, and Paclitaxel 
incorporated micelle, NK105 for stomach cancer. Phase I studies of polymer doxorubicin 
(PK1) showed signs of activity coupled with five-fold decreased anthracycline toxicity in 
chemotherapy-refractory patients. Phase II studies were conducted using a similar material 
in patients with breast cancer, non-small cell lung cancer and colorectal cancer (Seymour et 
al., 2009). The results showed an increased efficacy with limited side effects, supporting the 
concept that polymer-bound drugs can improve anticancer activity. The anti-tumor activity 
of SP1049C, a novel P-glycoprotein targeting micellar formulation of doxorubicin consisting 
of doxorubicin and two non-ionic block copolymers, has been evaluated in patients with 
advanced adenocarcinomas of the esophagus and gastroesophageal junction and showed 
good tolerability (Valle et al., 2010). These results thus demonstrate superior antitumor 
activity of SP1049C compared with doxorubicin in a standard formulation. Phase III clinical 
trials are now in progress (Jain, 2010). In a study, 5-fluorouracil (5-FU) loaded and 
polyethylene glycol-poly(Ǆ-benzyl-L-glutamate (PEG-PBLG) nanoparticles (5-FU/PEG-
PBLG) were formulated. These nanoparticles exhibited favorable pharmacokinetic 
characteristics, including sustained drug release, prolonged drug half-life, and increased 
tissue retention. In vivo, 5-FU/PEG-PBLG nanoparticles had good anti-tumor activity 
against colon cancer xenografts and oral squamous cell carcinoma xenografts. The results 
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imply that PEG-PBLG nanoparticle delivery system for 5-FU may be able to effectively 
reduce adverse side effects of 5-FU therapy and improve the therapeutic index of 5-FU (Su 
et al., 2008). 
Dendrimers have been extensively used for delivering anti-cancer drugs. Polyamindoamine 
(PAMAM) dendrimers have been used to formulate doxorubicin conjugates which led to 
significantly increased nuclear accumulation of doxorubicin from the PAMAM-hyd-DOX 
conjugates and thus exhibited higher cytotoxicity to tumor (Kwon, 2003). Polyester-based 
dendrimer–PEO–doxorubicin conjugate was observed to substantially inhibit the 
progression of DOX-insensitive C-26 tumor subcutaneously implanted in BALB/c mice. 
This dendrimer–PEO–doxorubicin conjugate also showed the ability to eliminate the tumors 
at certain doses and was found to be equally effective to a liposomal formulation of 
doxorubicin (Martin, 1998). PAMAM dendrimers have also been conjugated to cisplatin to 
form a fairly water soluble nanoformulation with the ability to release cisplatin slowly in 
vitro. This formulation showed superior activity over conventional cisplatin when injected 
intraperitoneally into mice bearing B16F10 tumor cells. Also, when administered 
intravenously to treat a subcutaneous B16F10 melanoma, the dendrimer-cisplatin displayed 
additional antitumor activity whereas cisplatin was inactive (Nishiyama & Kataoka, 2006). 
In another study, dendrimer-based stealth nanoparticles were designed to encapsulate 
anastrozole, which is a drug used to treat breast cancer after surgery and for metastases in 
both pre and post-menopausal women. It was demonstrated that stealth nanoparticles 
composed of a PAMAM dendrimers core and a poly-ethylene glycol (PEG) layer could 
encapsulate anastrozole, hence causing improved water solubility of anastrozole. A 
sustained release of anastrozole was achieved, implicating an increased therapeutic index 
(Sarkar, 2008). 

3.3 Tumor-specific targeting with nanocarriers 

Tumors have unique features, which make them distinct from normal tissues. These include 

leaky tumor blood vessels and defective lymphatic drainage, that promote the delivery and 

retention of particles, a phenomenon recognized as the enhanced permeability and retention 

(EPR) effect. Nanoformulation can more easily enter and accumulate within tumor cells. 

This implicates that higher doses of the drug can be delivered, increasing its anticancer 

effects while decreasing the side effects associated with systematic chemotherapy. However, 

there are many variable factors, such as clearance of nanoparticles in the circulation by 

kidneys and uptake by reticuloendothelial cells, that affect the amount of anticancer 

nanoparticles retained in the tumor. One way to overcome some of these variables is 

targeted drug delivery. Targeted delivery of therapeutic agents to cancer has important 

implications for detection, diagnosis and therapy of cancer. Biomarkers that differentiate 

cancerous tissue from normal tissues can be used as targets for this purpose. 

3.4 Ligands employed for tumor-specific targeting 

Folate is nonimmunogenic and folate nanoparticles are rapidly internalized by receptor-

bearing cancer cells (Sudimack & Lee, 2000) in a manner that bypasses cancer cell multi-

drug-efflux pumps (Goren et al.. 2000). The folate receptor is expressed on human ovarian, 

endometrial, colorectal and lung cancers but is largely absent from normal tissues 

(Sudimack & Lee 2000). Folate receptor, a cell membrane associated 

glycosylphosphatidylinositol anchored glycoprotein involved in human growth and 
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development, cell division and DNA synthesis, has been explored to target therapeutics in 

cancer cells due to its over expression on malignant cancer cells. Binding of folic acid to 

folate receptor (FR-ǂ and FR-ǃ) initiates receptor-mediated endocytosis and internalization 

of folic acid. Most human tissues lack the folate receptor, except the placenta, choroids 

plexus, lungs, and kidneys; however, cellular activation and proliferation leads to over 

expression of high-affinity folate receptors in many cancers. Thus, folate-mediated targeting 

has been used to deliver protein toxins, low-molecular weight chemotherapeutic agents, 

liposomes containing chemotherapeutic drugs and immunotherapeutic agents to cancer 

cells (Xiang, 2008). Many studies have been carried out to prove the enhancement of 

anticancer activity via folate mediated targeting. Folate-conjugated nanoparticles have been 

used on human cervical carcinoma cells and found no cellular uptake of folate-conjugated 

nanoparticles in A549 cells which lacks folate receptor (Zhang, 2010). It was demonstrated 

that uptake of folic acid conjugated doxorubicin by HeLa cells showed greater cytotoxicity 

compared to non-folate-mediated nanoparticles (Zhang, 2010). Another characterized ligand 

to be exploited for targeting tumor cells is transferrin which plays an essential role in iron 

homeostasis and cell growth. Inherent characteristic of some cancer cells is over expression 

of transferrin receptor. However, high expression of transferrin receptor is seen in 

hypothalamus and medulla oblongata compared to other parts of brain and many in vivo 

studies showed that transferrin increases brain delivery of nanoparticles (Hänninen et al., 

2009). Uptake of transferrin into cells is mediated by transferrin receptors which are cell 

membrane associated glycoproteins. Binding of transferrin to transferrin receptor initiates 

receptor mediated endocytosis and internalization of transferrin. Whereas in presence of 

inhibitors, transferrin mediated nanoparticles interact with the cells in a specific manner and 

enter the cells via the caveolae pathway (Chang et al., 2009). Many studies have been carried 

out to prove the enhancement of anticancer activity via transferrin mediated targeting. The 

anticancer activity of transferrin conjugated solid lipid nanoparticles of curcumin on MCF-7 

breast cancer cells has also been studied and results showed that the cell uptake and 

cytotoxicity increased considerably with transferrin conjugated solid lipid nanoparticles 

compared to curcumin solution. Transferrin conjugated nanoparticles enhance the 

antitumor activity via active target mechanism and also contributes to the photo stability 

and sustain release of drug (Mulik, 2010). 
Another attractive molecular target is vasoactive intestinal peptide receptors (VIP-R). In 
vitro studies using human breast cancer tissues and cells have shown the presence of high 
densities of VIP receptors, with high affinity and specificity for VIP. It is well known that 
angiogenesis is vital for tumor growth (Naumov et al., 2006).Studies in breast cancer 
patients have showed that angiogenesis positively correlates with the degree of metastasis, 
tumor recurrence and shorter survival rates, thus demonstrating the value of angiogenesis 
as a prognostic cancer marker (Weidner et al., 1992; Weidner et al., 1992). There is an up 
regulation of angiogenic cytokines and growth factors, most notably the vascular 
endothelial cell growth factor (VEGF) and angiopoietin (Ang) families, as well as integrins 
(Desgrosellier & Cheresh, 2010). It is hence not surprising that these molecules are often 
targeted in both experimental and clinical cancer settings. Development of anti-angiogenesis 
therapy is based on either drugs that prevent the formation of new blood vessels supplying 
to the tumor (e.g. TNP-470, endostatin, angiostatin), or drugs that damage existing blood 
vessels (e.g. combretastatin) (Folkman, 2003). Specifically targeting tumor vasculature 
significantly lowers the side effects associated with the drug. It has been shown that  
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polymer-conjugated angiogenesis inhibitor TNP-470 (caplostatin) accumulates selectively in 
the tumor vessels by the EPR effect and inhibits hyperpermeability of tumor blood vessels 
(Satchi-Fainero et al., 2005; Satchi-Fainero et al., 2004). Nanoparticle-conjugated 
chemotherapeutic agents such as doxorubicin (Chaudhuri et al., 2010) and angiogenic small 
molecule inhibitors (Harfouche et al., 2009) can preferentially home into tumors by the EPR 
effect, resulting in selective vascular shutdown and inhibition of tumor growth. It should be 
noted that EPR alone is not always sufficient in targeting the tumor sites and hence is often 
used in conjunction with active targeting. This combination ensures that nanoparticles are 
retained in the tumor tissues following their extravasation from leaky vessels. Active 
targeting of tumor tissues is achieved by chemically arraying ligands on the surface of 
nanoparticles that can recognize and selectively bind to receptors specifically expressed on 
tumor cells and vessels. The high surface area to volume ratio of the nanoparticles leads to 
high local density of ligands for targeting. Nanoparticle mediated active targeting of the 
tumor vasculature in anti-angiogenic therapy has been achieved by targeting the VEGF 
receptors (VEGFRs), aνb3 integrins, and other angiogenic factors. Integrin avb3 has been the 
most widely used targeting moiety on nanovectors due to its pleitropic up regulation in a 
variety of tumors (Anderson et al., 2000; Park et al., 2004), some of which have been 
successfully translated into several clinical trials (Desgrosellier & Cheresh, 2010). Tumor-
homing peptides have been used to target abraxane, a clinically approved paclitaxel-
albumin nanoparticle to tumors in mice. The targeting was accomplished with two peptides, 
CREKA, and LyP-1 (CGQKRTRGC). LyP-1-abraxane produced a statistically highly 
significant inhibition of tumor growth compared to untargeted abraxane. CREKA (cysteine-
arginine-glutamic acid-lysine-alanine) is a pentapeptide that binds to clotted plasma 
proteins and homes to tumors because interstitial tissue of tumors (Dvorak et al., 1985) and 
the vessels wall contain clotted plasma proteins, while the vessels in normal tissues do not. 
LyP-1 is a cyclic 9-amino-acid peptide (Cys-Gly-Gln-Lys-Arg-Thr-Arg-Gly-Cys) that 
provided the first demonstration that lymphatic vessels in tumors can differ molecularly 
from normal lymphatics (Laakkonen et al., 2002). A protein known as p32 or gC1qR receptor 
(Ghebrehiwet et al., 1992) is the target molecule for the LyP-1 peptide and, in addition to 
overexpression in tumors, it also exhibits aberrant cell surface expression in tumor 
lymphatics, tumor cells, and, a subset of myeloid cells which contributes to the tumor 
specificity of LyP-1 homing (Fogal et al., 2008). The results showed that synthetic particles 
coated with LyP-1 extravasate and spread into tumor tissue. 
Various other polymeric nanoparticles have been used for targeted delivery of cancer 
therapeutics. PLGA copolymers have been extensively used in the field of cancer research, 
owing to their biodegradability and bio-compatibility, resulting in their FDA approval. In a 
study targeting the MAPK signaling pathway, the use of PLGA copolymer for chemically 
conjugating PD98059, a selective MAPK inhibitor has been reported (Basu et al., 2009). The 
resulting nanoparticles selectively resulted in melanoma regression in a mouse model. In a 
novel strategy, temporal targeting of tumor cells and the tumor vasculature was achieved 
using a nanoscale delivery system that comprised of a core PLGA nanoparticle encapsulated 
within a (PEG)-linked lipid envelop (Sengupta et al., 2005). PEGylation of a molecule 
renders the latter non-toxic and non-immunogenic, and is an FDA approved method 
(Veronese & Pasut, 2005). PLGA nanoparticles have also been utilized for delivering natural 
products like curcumin, thought to have anti-cancer effects. Curcumin-loaded PLGA 
nanoparticles were reported to successfully suppress tumor necrosis factor (TNF)-regulated 
expression of VEGF, culminating in reduced tumor metastasis (Anand et al., 2010). In a 
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study, chitosan nanoparticles have shown significant inhibition of tumor growth and 
induction of tumor necrosis in a mouse hepatocellular carcinoma xenograft model (Xu et al., 
2009). The anti-tumor activity of these nanoparticles was found to be related with their anti-
angiogenic activity, which was linked to significant reduction in the levels of VEGFR-2 
expression and subsequent blockage of VEGF-induced endothelial cell activation. In a study, 
doxorubicin-loaded solid lipid nanoparticles on MCF-7/ADR cells (doxorubicin-resistant 
breast cancer cell line) showed that doxorubicin-loaded solid lipid nanoparticles efficiently 
enhanced apoptotic cell death through the higher accumulation of doxorubicin in MCF-
7/ADR cells in comparison with free doxorubicin (Kang et al., 2010). Doxorubicin, when 
conjugated with polymeric dextrans of various molecular weights, its cytotoxicity was 
significantly higher than free doxorubicin when studied on human carcinoma KB-3-1 cells 
and its multidrug-resistant subclone KB-V-1 cells (Lam et al., 2000). Similarly, it has been 
demonstrated that paclitaxel nanocrystal formulation using D-ǂ-tocopheryl polyethylene 
glycol 1000 succinate have significant advantages over Taxol in achieving better therapeutic 
effect in Taxol-resistant cancer cells both in vitro and in vivo (Liu, 2010). 

4. Nanodelivery of therapeutics to central nervous system (CNS) 

The blood-brain barrier (BBB) is one of the stringent and efficient barriers present in human 

body. BBB allows only a restricted exchange of compounds between the plasma and CNS, 
which include hydrophilic molecules, small proteins, and charged molecules. This barrier 

consists of a layer of endothelial cells connected by tight junctions, which circumferentially 
surround the entire cell margin at the brain capillaries (Butte et al., 1990). The luminal 

blood–brain barrier (BBB) is comprised of tight junction bound endothelia that serve to 
retard brain entry of most high molecular weight and/or hydrophilic therapeutics. Principal 

mechanisms involved in limited uptake of drugs by BBB include: a) absence of paracellular 
openings, b) lack of pinocytocis and c) significant protein mediated efflux. The deficiency in 

pinocytic vesicles and the high metabolic capacity of cerebral endothelial cells (Reese & 
Karnovsky, 1967) also contribute to limiting the exchange of anticancer agents between the 

plasma and the CNS. Furthermore, the cerebral endothelium has a high level of ATP-
binding cassette (ABC) transporters such as P-glycoprotein involved in drug efflux 

mechanisms (Golden & Pollack, 2003). Thus the BBB prevents the uptake of all large-
molecule and more than98% of pharmaceutical small-molecule drugs (Pardridge, 2001). 

Only small (<5000Da), lipid-soluble, electrically neutral molecules and weak bases are able 
to diffuse passively across the BBB (Abraham et al., 1994).  Therefore, significant research is 

dedicated to develop methods and technologies to circumvent the BBB for brain drug 
delivery (Smith, 2003).Previous technologies for brain delivery of drugs (i.e. BBB 

circumvention) includes drug or BBB manipulation. Manipulation of the BBB chiefly 
consists of temporary disruption of tight junctions to allow paracellular movement of the 

molecule from plasma to brain. This methodology has indeed proven to be efficacious (Kroll 
et al., 1998; Remsen et al., 2000), yet there are concerns regarding significant toxicity of free 

CNS drug (Remsen et al., 1995; Fortin et al., 2000). These physiological characteristics of the 
BBB hence offer a substantial hinderance for delivery of drugs to the CNS. Theoretically, 

there are two strategies to overcome this: either the barrier integrity can be altered or drug 
characteristics can be altered. However, interventional methods do have their drawbacks. 
Such non-specific opening of the barrier by either mechanism allows the entry of toxins and 
unwanted molecules, potentially resulting in significant damage (Greig, 1989). The primary  
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disadvantage is the requirement of extremely invasive neurosurgery, thus limiting their 
potential. Besides, diffusion of the drug from the injection site may occur. Owing to such 
risks associated with altering of the BBB physiology, modifying the drugs or their mode of 
delivery is a much better option. Nanoparticle mediated drug delivery may be superior to 
both of these techniques, since no manipulation of the barrier or the drug is necessary. 
Furthermore, native carriers and receptors expressed at the BBB can be used for targeted 
delivery. Such native carriers as lipoproteins can deliver hydrophilic and large compounds 
across the barrier. Nanoparticles may cross the BBB either by passive diffusion or receptor-
mediated endocytosis. One significant benefit of tumor therapy with nanoparticles as a drug 
carrier is the prolong of mean residence time in the body. Whereas this benefit may increase 
the exposure of the tumor to the chemotherapeutic agent, it also prolongs the exposure of 
the remainder of the body to the drug potentially increasing toxicity. Using high-affinity 
ligands for these transporters along with nanoparticles can lead to site-directed delivery of 
drugs. Increased uptake of polysaccharide nanoparticles cross-linked with phosphate 
(anionic) and quaternary ammonium (cationic) ligands, with a surrounding lipid bilayer has 
been demonstrated (Fenart et al., 1999). It was observed that lipid bilayer containing 
dipalmitoyl phosphatidyl choline and cholesterol coating on the charged nanoparticles leads 
to a 3–4 fold increase in brain uptake. In addition, the nanoparticles  remained intact as they 
crossed the BBB, without altering BBB integrity at the same time. Another drug, 
amitriptyline, when adsorbed onto polybutylcyano-acrylate nanoparticles, using 
polysorbate-80 as a surfactant, led to a 10-fold increase in its levels in brain (Schroder et al., 
1998). This was attributed to an increased of the plasma concentration of the drug resulting 
in a larger gradient at the BBB and thus greater concentrations of the drug entering the brain 
by passive diffusion (Alyautidin et al., 1995). Cellular endocytosis has been suggested to be 
the transport mechanism of polybutyl-cyanoacrylate nanoparticles coated with polysorbate-
80 across the BBB, when the nanoparticles were not coated with surfactants, the particles 
remained in the blood vessels (Kreuter et al., 1995).It is postulated that apolipoprotein-E 
(apo-E) adsorbs onto nanoparticles coated with polysorbates thereby causing endocytosis at 
the BBB (Kreuter, 2001). A number of studies have been done to improve the brain drug 
distribution of anesthetic agents such as dalagrin, kytorphin, and the neuromuscular 
blocking agent tubocurarine. These anesthetics show therapeutic effects only when given 
directly to the brain, as they do not cross the BBB appreciably from the plasma. 
Tubocurarine (a myoparalytic, quaternary ammonium compound) when adsorbed onto 
polybutylcyanoacrylate particles coated with polysorbate-80 was efficiently transported at 
BBB. Otherwise, Tubocurarine, when given intravenously, is a found in negligible 
concentrations in the cerebrospinal fluid and does not affect spontaneous and evoked 
bioelectric activity of the brain. On the other hand, with peripherally administered 
nanoparticles, seizure electroencephalograph patterns were observed (Alyautdin et al., 
1998). In addition, most of the chemotherapeutic drugs used for brain tumours are polar 
molecules and do not readily penetrate the BBB. This is further complicated by the need to 
maximize time and exposure concentration of the chemotherapeutic agent to the cancer 
cells. However, when these two factors are maximized to provide therapeutic efficacy, 
plasma concentrations are high, resulting in significant systemic toxicity. Nanoparticles as 
chemotherapeutic carriers have been studied as a solution to these issues (Lockman, 2002). 
In the case of brain tumors, however, the proliferation and invasion of tumoral cells 
generally cause a local disruption of the BBB (Gururangan & Friedman, 2002). Cancer cells 
produce various mediators such as arachidonic acid, leukotrienes, prostaglandin E and  
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thromboxane B2, thus increasing the permeability of the capillary endothelium (Wahl et al., 
1993). Moreover, the tumor secretes proangiogenic factors including a basic fibroblast 
growth factor and a vascular endothelial growth factor inducing the formation of new blood 
vessels in the tumor (Folkman, 1995). These capillaries, characterized by frequent 
fenestrations, also improve the permeability of the blood–tumor interface and consequently 
the penetration of drugs. But the disruption of the BBB does not occur in the healthy tissue 
surrounding the main tumor and thus the desired anticancer agents cannot reach the 
adjacent tumors located in the normal tissue. The choroid plexus forms a second barrier 
separating the blood from the cerebrospinal fluid (CSF) (Wolburg et al., 2001). The blood–
CSF barrier is functionally and morphologically different from the BBB. The choroid 
epithelial cells form tight junctions and are responsible for the barrier function. These cells 
show a low resistance in comparison with the endothelial cells of the BBB (Saito & Wright, 
1983). The capillary endothelium in the choroid plexus is fenestrated, allowing the diffusion 
of small molecules (Pappas & Tennyson, 1962). Despite its permeability the blood–CSF 
barrier does not significantly increase the penetration of drugs into the brain, its surface 
being 1000-fold smaller than the surface area of the BBB (Pardridge, 1997). Active targeting 
of the BBB represents a promising non-invasive strategy for improving drug delivery to 
brain tumors. It consists in using the various influx transport systems expressed within the 
cerebral endothelial, including carrier-mediated transport, receptor-mediated endocytosis 
and adsorptive-mediated endocytosis. These transport systems are usually overexpressed 
on tumors. More than 20 transporters have been identified, all highly expressed on the 
cerebral capillaries of the BBB. Amogst them, GLUT1 transporter is of significant 
importance. It promotes the transport of D-glucose from the blood to the brain and mediates 
the passage of substances exhibiting similar structures, including 2-deoxyglucose, galactose, 
mannose, and glucose analogs through the BBB (Pardridge,1995). Its capacity to transport 
glucose through the BBB is considerably higher than other nutrient transporters (Tsuji, 
2005). Besides, the GLUT1 transporter is differentially regulated in human brain tumors, for 
example it is overexpressed in cerebral hemangioblastoma but under expressed in 
glioblastoma multiforme (Tsukamoto et al., 1996). Usually the predominant glucose 
transporter in high-grade gliomas is the GLUT3 isoform, which is also expressed on neurons 
in the healthy brain (Boado et al., 1994). Thus, considering their affinity for the GLUT1 
transporter, mannose derivatives were incorporated on the surface of liposomes. Mannose-
liposomes prepared from p-aminophenyl, a mannoside were able to cross the BBB via the 
glucose transporter, to finally reach the mouse brain (Umezawa & Eto, 1988). The choline 
transporter consists of an anionic-binding area which interacts with positively charged 
quaternary ammonium groups or simple cations (Lockman, 2002). It plays a major role in 
the brain uptake of choline, acting as a precursor for the neurotransmitter acetylcholine and 
as an essential component of membrane phospholipids (phosphatidylcholine) (Allen & 
Smith, 2001). Moreover, the choline transporter also interacts with other quaternary 
ammoniums such as carnitine (Cornford et al., 1978) and thiamine (Kang et al., 1990). No 
saturation of this carrier was observed under physiological concentration, allowing the 
transport of other components without affecting the choline delivery to the brain (Allen & 
Smith, 2001). Besides, the concentration of choline containing components is increased in 
brain tumors (Tedeschi et al., 1997), suggesting a high choline transport activity in cerebral 
cancerous cells. The nanoparticles coated with choline were able to cross an in vitro model 
of the BBB. Their passage through the endothelial cell monolayer was three or four fold 
higher than that of uncoated nanoparticles, without any modification of paracellular 
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permeability (Fenart et al., 1999). In another instance, nanoparticles were coated with 
thiamine. Endogenous serum/blood ligands such as insulin and tranferrin have gained 
much attention (Pardridge, 2002). Folic acid also represents a promising site-specific ligand 
for brain targeting. The main advantage of these endogenous ligands is their high affinity 
for both brain and tumoral cells. Moreover, they are biocompatible and non-immunogenic 
(Vyas & Sihorkar, 2000). Transferrin is a monomeric glycoprotein that can transport one or 
two iron atoms (Daniels et al., 2006). Transferrin receptor is overexpressed on the brain 
capillary endothelium (Jefferies et al., 1984) and at the surface of proliferating cells such as 
brain tumor cells (Hall, 1991). In contrast, a low level of transferrin receptor is observed on 
normal tissues. However, transferrin receptor can be saturated under physiologic conditions 
due to a high endogenous plasma concentration of transferrin. The useful properties of 
transferrin have been exploited for the delivery of various drugs to the brain. Transferrin 
has been used as an endogenous cellular transport system for the delivery of diphteria toxin 
(CRM 107) to malignant brain tumors (Laske et al., 1999). Diphtheria toxin conjugated with 
transferrin produced tumor responses without any systemic toxicity in patients with 
cerebral tumors refractory to conventional therapy. In another study, beta-endorphin 
peptides were successfully delivered to the brain after conjugation with cationized albumin 
(Pardridge et al., 1990). Ligands such as peptidomimetic monoclonal antibodies (MAbs) 
have been developed, which can bind to the endothelium (Pardridge, 1999). The MAb 
known as OX26 recognizes an extracellular domain on the transferrin receptor, distinct from 
the transferrin binding site and thus does not interfere with endogenous transferrin binding. 
Other studies have shown targeting of OX26 on the brain capillary endothelial cells and its 
ability to reach the cerebral parenchyma (Pardridge et al., 1991). This antibody has also been 
used as a neurodiagnostic agent for the early detection of brain cancers (Kurihara & 
Pardridge, 1999). Transferrin has been coupled to pegylated liposomes and a significant 
increase of the brain uptake for transferrin-PEG-liposomes in comparison with PEG-
liposomes was observed (Hatakeyama et al., 2004). Doxorubicin, an antineoplastic agent, 
was encapsulated in liposomes coupled to transferrin (Eavarone et al., 2000). In vitro studies 
revealed a four-fold increase of pegylated transferrin-liposome uptake by glioma cells in 
comparison with non-targeted liposomes. Transferrin-liposomes used for the delivery of 
antimetabolic drug 5-fluorouracil (5-FU) to the brain were also investigated (Soni et al., 
2005). In vivo experiments revealed that their accumulation was higher than that of non-
modified liposomes. The cytotoxicity against cancer cells of doxorubicin packaged within 
this targeted micellar system was significantly improved (Lai et al., 2005). Folates such as 
folic acid and 50-methyltetrahydrofolic acid (MTFA) are also transported across the cell 
membranes (Zhao et al., 1997). The folate receptor is expressed in a limited number of 
normal tissues such as the thyroid, kidney, choroid plexus (Ross et al., 1994) and the BBB 
(Wu et al., 1999) It has been identified as a tumor marker due to its overexpression in a large 
number of tumors such as ovarian carcinomas and brain tumors (Weitman et al., 1992). In 
addition, immediately after binding with its ligand, the folate receptor is internalized in an 
early endosome and after a conformational change at acidic pH, the folate molecule is 
released (Lee et al., 1996). The folate receptor expressed at the BBB has been postulated to 
mediate the transport of MTFA and folic acid through the BBB (Wu & Pardridge, 1999). 
Folate-conjugated nanocarriers have been used to selectively target the cells expressing the 
folate receptor. Enhanced uptake of doxorubicin-loaded folic acid liposomes into C6 glioma 
has been demonstrated. The amount of doxorubicin internalized into these tumoral cells 
was sufficient to limit cell growth (Saul et al., 2003). Furthermore, this preferential binding 

www.intechopen.com



Nanotechnology Based Targeted Drug Delivery: 
Current Status and Future Prospects for Drug Development 441 

of folic acid-PEG-liposomes was observed through in vitro and in vivo experiments for 
cancer cells expressing high levels of FR such as murine lung carcinoma, human epidermal 
carcinoma and lymphoma (Shmeeda et al., 2006). Folate-coupled copolymeric micelles have 
been widely used for the tumor-specific drug delivery (Nishiyama & Kataoka, 2006). 
Doxorubicin-loaded folic acid-PEG-PLGA micelles showed a significant accumulation of 
drugs in the tumor tissue in mice (Yoo & Park, 2004). Paclitaxel-loaded PCL/MPEG micelles 
decorated with folic acid exhibited a higher cytotoxic effect on cancer cells such as MCF-7 
and HeLa cells (Park et al., 2005). Folate targeting was also developed from PEG poly 
(cyanoacrylate) nanoparticles (Stella et al., 2003). In addition to BBB functional permeation 
limiting characteristics, brain microvasculature endothelia also presents an electrostatic 
barrier at physiologic pH. The negative electrostatic charge is created by surface expression 
and adhesion of the glycocalyx residues: proteoglycans, sulfated mucopolysaccharides, and 
sulfated and sialic acid-containing glycoproteins and glycolipids (Poduslo & Curran, 1996). 
This anionic nature of the edndothelium repels anionic molecules (Vorbrodt et al., 1990) and 
cationic molecules have been shown to occupy anionic areas at the BBB endothelium (Nagy 
et al., 1983) and increase BBB permeability via presumed tight junction disruption (Hardebo 
& Kahrstrom, 1985). Transport of cationized albumins and cationized immunoglobulins to 
the cerebral parenchyma was hence significantly improved in comparison with native 
proteins (Pardridge et al., 1990). Similar electrostatic interactions between nanoparticles and 
BBB endothelia have been demonstrated. Cationized NPs have an increased brain 
distribution compared to anionic and neutral NPs, owing to this interaction (Fenart et al.., 
1999). Such cationic NPs have been shown to have immediate toxic effects at brain 
microvasculature endothelium (Lockman et al., 2004). Anionic sites are located on the 
luminal surface of brain capillaries due to the sialic acid residues of glycoproteins (Vorbrodt, 
1989). The active targeting of drugs has been used for cationized albumin (Pardridge et al., 
1987; Kumagai et al., 1987) and evaluated in isolated brain capillaries and in rat brain. In 
comparison with native protein, it was noted that there was an enhanced uptake of 
positively charged albumin by the brain capillaries. In vivo studies in rats on cationized 
albumin transport through the BBB were also carried out (Triguero et al., 1990). About 15% 
of the cationized protein detected in the whole brain was located in the post-capillary 
extracellular space. Cationization was shown to improve the accumulation of the protein in 
brain tissues (Pardridge et al., 1990). Cationized heterologous proteins have more 
immunogenic properties than homologous proteins (Muckerheide et al., 1987). In another 
study, it was demonstrated that the beta-endorphin, a non-transportable chimeric peptide, 
when covalently coupled to cationized albumin was able to reach the cerebral parenchyma 
(Pardridge et al., 1990). Cationized bovin serum albumin (CBSA) has been conjugated to 
pegylated liposomes and these liposomes were specifically taken up when in contact with 
isolated brain capillary endothelial cells (BCEC) and a monolayer of porcine BCEC (Thole et 
al., 2002). These results showed the ability of CBSA nanoparticles to pass through the BBB to 
reach the cerebral parenchyma. The coating of nanoparticles using hydrophilic surfactants 
has proved promising for the delivery of drugs to the brain. However, their targeted effect 
depends on the chemical structure, physicochemical and biochemical parameters of the 
surfactant. Only a few polysorbates have been reported to interact with the brain 
endothelium (Kreuter et al., 1997). Another approach uses the adsorption of plasma proteins 
such as apolipoproteins (apo) on the surface of coated nanoparticles after intravenous 
administration. Because apoE is involved in the transport of low-density lipoprotein to the 
brain nanocarriers coated with polysorbate mimic LDL after apoE adsorption. This protein 
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is expressed at a high level in brain tumors such as astrocytomas and glioblastomas 
(Murakami et al., 1988). The effects of nanoparticles made of PBCA coated with polysorbates 
such as polysorbate 80 have been widely investigated (Kreuter et al., 1995). Polysorbate 80-
coated PBCA nanoparticles were taken up into human and bovine endothelial cells rapidly 
and in an amount 20-fold higher than with conventional nanocarriers (Ramge et al., 2000). 
The pharmacokinetic behavior of doxorubicin packaged within coated PBCA nanoparticles 
was significantly enhanced after intravenous injection in healthy rats. This formulation 
allowed a considerable accumulation of the drug in the brain (Gulyaev et al., 1999). The 
therapeutic potential of doxorubicin-loaded PBCA nanoparticles coated with polysorbate 80 
was evaluated for the treatment of glioblastoma intracranially implanted in rats (Steiniger et 
al., 2004; Gelperina et al., 2002). Antitumor efficiency, based on the increase of the median 
survival time as compared to doxorubicin, was improved with coated nanoparticles in 
comparison with uncoated nanocarriers. Coating in a hydrophilic surfactant have been 
applied to more biocompatible nanocarriers such as lipid colloidal systems for drug delivery 
to the brain. The SLN surface was coated in various hydrophilic surfactants (Goppert & 
Muller, 2005) and polysorbate-coated in SLN showed a specific adsorption of plasma 
proteins such as apoE. Polysorbate 80-coated atovaquone-loaded SLN were used for the 
treatment of toxoplasmic encephalitis (Scholer et al., 2001). The role of polysorbate 80 in the 
brain targeting of PLA nanoparticles was also investigated (Sun et al., 2004). In another study, 
dipalmitoylated apoE-derived peptides, characterized by a high lipid affinity, were anchored 
on liposomes (Sauer et al., 2006) and taken up within BCEC.  Doxorubicin is a polar molecule 
that does not normally cross the BBB. When doxorubicin adsorbed on polybutylcyanoacrylate 
nanoparticles with polysorbate-80 as a surfactant was given intravenously, therapeutic 
concentrations of doxorubicin could be achieved (Gulyaev et al., 1999). Besides, nanoparticles 
containing doxorubicin administered intravenously to rats led to a significant cure of 
glioblastomas. Another lipophilic anticancer drug camphotericin when adsorbed on solid lipid 
nanoparticles led to an increased bioavailability of the drug in brain (Yang et al., 1999). 
Nanoparticle mediated brain drug delivery has also been used successfully for dalargin 
(Kreuter et al., 1995), the hydrophilic antitrypanosomal drug diminazene diaceturate (Olbrich 
et al., 2004) and paclitaxel (Feng et al., 2004; Koziara et al., 2004). 

5. Nanotechnology and pulmonary drug-delivery systems 

Pulmonary delivery of chemotherapeutic entities is one of the highly desired aspects of drug 
delivery and the application of polymeric nanoparticles to the pulmonary routes is widely 
recognized now. The lungs offer a non-invasive route for the delivery of various dugs as 
they demonstrate relatively high permeability to hydrophilic macromolecules and express 
relatively low peptidase/protease activity (Wall, 1995). The lungs are an attractive target for 
drug delivery as they provide high systemic bioavailability, avoid first-pass metabolism, 
enhance the onset of therapeutic action and provide huge surface area (Yang et al., 2008, 
Patton & Byron, 2007). It  should be  noted  that  if  the lungs are to be considered for the 
systemic delivery, a high percentage  of  the  dose  must be delivered  to  the  lungs and the 
site  of  deposition should be  as peripheral as possible (Colthorpe et al.., 1992). An approach 
to improve the pulmonary delivery of drugs would be to produce much smaller drug 
particles, as they offer high penetration and deposition of the aerosol (Burch et al., 1986). 
Nanocarrier systems in pulmonary drug delivery have the potential to achieve relatively 
uniform distribution of drug dose among the alveoli. They can also help to achieve  
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enhanced solubility of the drug than its own aqueous solubility while maintaining the 
sustained-release of drug which consequently reduces the dosing frequency, with improved 

patient compliance (Bailey & Berkland, 2009). Due to their biocompatibility, surface 
modification capability and sustained-release properties, polymeric nanoparticles are 

intensively studied using various important drugs. The pulmonary drugs include anti-
asthmatic drugs (Stark et al., 2007), antituberculosis drugs (Pandey et al., 2003; Zahoor et al., 

2005), pulmonary hypertension drugs (Kimura, 2009), and anticancer drugs (Azarmi et al., 
2006). However, there are some obstacles to the successful delivery of drugs to the lungs. 

These include degradation by the proteases in the lung, which tends to reduce their overall 
bioavailability, the limitations posed by barrier between capillary blood and alveolar air that 

eventually hinders direct exposure of the drugs to lungs. To overcome these limitations, the 
design (size, shape, and aerodynamic properties) of the dosage forms (nanocarriers) is a 

rational option. Nanoparticle dispersions consisting of small particles of 10–400 nm 
diameter show great promise as carriers in pulmonary drug delivery systems. Drugs can be 

trapped in the core of a micelle and transported at concentrations even greater than their 
intrinsic water solubility. In addition, a hydrophilic shell can form around the micelle, 

effectively protecting the contents and it may prevent recognition by the reticuloendothelial 
system and prevent early elimination from the bloodstream (Smola et al., 2008). Such 

polymeric micelles are able to evade the mononuclear phagocytic system due to their bulky 
hydrophilic outer shell and lead to a sustained release of the drug (Marsh et al., 2003). In this 

direction, beclomethasone dipropionate loaded polymeric micelles were designed which 
were directly administrable to the lung in nanoparticle sizes in inhalation dosage form 

intended to be an effective means of treating asthma and chronic pulmonary obstructive 
disease. Among the various drug delivery approaches for lungs, liposomes are one of the 

most extensively investigated systems for controlled delivery of drug to the lung (Zeng et 
al., 1995). Liposomes seem particularly appropriate for delivery of therapeutic agent to lung, 

as these vesicles can be prepared from compounds endogenous to the lungs such as the 
components of lung surfactant and these properties make liposomes attractive candidates as 

drug delivery vehicles (Justo & Moraes, 2003). The first pharmaceutical liposomal products 
in market include the synthetic lung surfactant Alveofact® for pulmonary instillation for the 

treatment of respiratory distress syndrome (Muller et al., 2000). Typically, liposomal 
formulations have been delivered to the lung in the liquid state, and nebulizers have been 

used extensively for the aerosol delivery of liposomes in the liquid state (Schreier et al., 
1993). Liposomal drug formulations for aerosol delivery have their own potential 

advantages, including aqueous compatibility, sustained pulmonary release to maintain 

therapeutic drug levels and facilitated intra-cellular delivery particularly to alveolar 
macrophages (Schreier et al. 1993). Perhaps more importantly, liposomes may prevent local 

irritation and reduce toxicity both locally and systematically (Gonzalez-Rothi & Schreier 
1995). Increased potency with reduced toxicity is characteristic of many drug-liposomal 

formulations (Cullis et al. 1989). Liposomal aerosols have proven to be non-toxic in acute 
human and animal studies (Waldrep et al., 1997). These results suggest that drug-liposome 

aerosols are more effective for delivery, deposition and retention of water-insoluble, 
hydrophobic, lipophilic compounds in contrast to water soluble compounds (Taylor & Farr, 

1993). In another study, non-phospholipid vesicles loaded with beclomethasone 
dipropionate were fabricated with non-ionic surfactant, polysorbate 20 (Terzano et al., 2005). 

Levonorgestrel encapsulated liposomes were instilled intratracheally in rats and were  
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compared with the plain drug suspension. The results clearly demonstrated the superiority 
of pulmonary drug delivery with regards to maintenance of effective therapeutic 
concentration of the levonorgestrel in the plasma over a longer period and also to reduce 
frequency of dosing and systemic side effects associated with oral administration of 
levonorgestrel (Shahiwala & Misra, 2004). Much interest has also been focused on cationic 
liposomes for pulmonary delivery which have additional advantages like evasion from 
complement inactivation after in vivo administration (Densmore, 2006). Moreover, 
liposomes conjugated with cell-penetrating peptides are recognized as potential nanocarrier 
systems for intracellular delivery of macromolecules to the lung. Liposomes modified with 
cell-penetrating peptides, antennapedia, the HIV-1 transcriptional activator, and 
octaarginine have been reported to enhance the cellular uptake of liposomes to airway cells 
(Cryan et al., 2006). Liposomes of EYPC-cholesterol (CHOL) incorporating dexamethasone 
palmitate (DEXP) were studied (Benameur et al., 1995), the DEXP incorporated into the 
liposomes kept its biological activity. It has been shown that a 30 minutes after the 
instillation the pulmonary concentration of glucocorticoids was twice higher when the drug 
is encapsulated into liposomes compared to the solubilized drug (Suntres & Shek, 1998). 
Particles composed of biocompatible and bio-degradable polymers have also been studied 
for the targeting of drugs by pulmonary route (Zeng et al. 1995; Li et al., 2001). Synthetic 
polymers are much more frequently used than natural polymers. Solid lipid nanoparticles 
(SLN) combine the advantages of the biocompatibility of lipids and the possibility of 
industrial scale up of nanoparticles. The advantages of drug release from SLNs in the lung 
are controlled drug release profile, a faster in vivo degradation compared to particles made 
from PLA or PLGA. In addition, SLNs proved to possess a higher tolerability in the lungs 
compared to particles made from some polymeric materials ( Muller et al., 2000) Besides, 
toxicological profile of SLNs when using physiological lipids, is expected to be better than 
that of polymer-based systems, because physiological lipids have little or no 
cytotoxicicity.(Muller et al., 1997) It is feasible that aqueous suspensions and perhaps dry 
powder formulations of SLN can be used for pulmonary inhalation aerosol administration 
of drugs using nebulizers and dry powder inhalers (Muller et al., 2000). Several studies have 
been published on the pulmonary applications of SLNs as local delivery carriers for small 
molecules (Pandey & Khuller, 2005) or as systemic delivery carriers for macromolecules (Liu 
et al., 2008). Drugs like prednisolone, diazepam and camptotecin have been incorporated 
into SLN for pulmonary applications (Muller et al. 2000). Pandey and Khuller studied the 
chemotherapeutic potential of SLNs incorporating rifampicin, isoniazid and pyrazinamide 
against experimental tuberculosis and observed the slow and sustained-release of drugs 
from the SLNs in vitro and in vivo (Pandey & Khuller, 2005). Novel nebulizer-compatible 
SLNs containing insulin have been examined for pulmonary delivery (Liu, 2008). In this 
case, SLNs were successful as a pulmonary carrier system for insulin. Deposition and 
clearance of SLNs after inhalation of aerosolized insoluble particles showed that after 
deposition, inhaled material began to translocate to regional lymph nodes (Videira et al., 
2006) indicating that inhalation can be an effective route to deliver drug-containing lipid 
particles to the lymphatic systems and lipid particles can be used as potential drug carriers 
for lung cancer therapy (Videira, 2006). Dendrimers have also been assessed for pulmonary 
delivery. In a study, low molecular weight heparin (LMWH)–dendrimer complex was 
formulated using various PAMAM dendrimers, then evaluated for safety and the efficacy in 
preventing deep vein thrombosis, concluding that cationic dendrimers can be used as 
pulmonary delivery carriers for a relatively large molecular weight anionic drug (Bai, 2007). 
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Later, pegylated dendrimers (mPEG–dendrimer) were formulated to increase the 
pulmonary absorption and circulation time of the drug, with significant positive results 
showing increased half-life and absorption of the drug. These results also implicated that 
LMWH loaded in the mPEG–dendrimer could potentially be used as noninvasive delivery 
system for the treatment of thromboembolic disorder (Bai, 2009). Nanoparticles based on 
lecithin have also shown promising deposition profile for hydro-fluoroalkanes (HFAs) 
(Dickinson et al. 2001). Liposomes functionalized with lecithins have shown to improve 
their binding to human alveolar cells (Abu-Dahab et al., 2001). Pulmospheres™ have been 
successfully formulated using phospholipids to be dispersed into HFAs and have been 
demonstrated to release uniform amounts of drugs when aerosolized (Dellamary et al. 
2000). Anticancer drug 9-nitrocamptothecin (9NC) has been encapsulated into DLPC-
liposomes, which prevented the loss of drug by albumin and the amount of effective 9NC 
contained in the liposomes was 10–50 times lower than that used by other routes of 
administration (Knight et al. 2000). The greater therapeutic effectiveness is a result of rapid 
absorption in the respiratory tract and more specifically, in the pulmonary tissues and 
penetration into the organ and tumor sites. One of the highly desired objectives of 
pulmonary drug delivery is the targeted, specific delivery to the alveolar macrophages. 
Targeting drugs to alveolar macrophages has the distinct advantage of delivering high 
concentrations of drug to a cell that plays a central role in the progression of disease 
(tuberculosis) and in immune responses. Microspheres have been shown to target alveolar 
macrophages without eliciting a pulmonary inflammatory response in vitro (Ng et al. 1998), 
and were non-toxic. Lectins are non-immunological glycoproteins that have the capacity to 
recognize and bind to glycoproteins exposed at the epithelial cell surface. Mucoadhesive 
nanoparticles, coated with mucoadhesive polymers such as poly(acrylic acid) or chitosan 
demonstrated a slower elimination rate, indicating that chitosan-nanospheres adhere to the 
mucus in the trachea and in the lung tissues as a result of the mucoadhesive properties of 
chitosan (Takeuchi et al., 2001). Perhaps the most important application of drug delivery for 
pulmonary disease has been the chemotherapeutics of tuberculosis. Tuberculosis treatment 
is lengthy and often leads to poor patient compliance. Poly-lactide-co-glycolide (PLGA), 
alginate and solid lipid nanoparticles nanoparticles have been successfully used to achieve a 
significant sustained release in vivo. Not only were the drugs available in the plasma and 
tissues of experimental animals for a longer time, less frequent dosing with nanoparticle 
loaded drugs was equally effective as free drugs. These drug loaded nanoparticles were 
even effective at much lower concentrations than free drugs and were completely non-toxic 
(Ahmad & Khuller, 2008; Ahmad et al., 2006; Sharma et al., 2004; Ahmad et al., 2007). 

6. Nanoparticle mediated antiretroviral therapy 

Acquired immunodeficiency syndrome (AIDS) is one of the biggest global threats today. 
Despite standard therapy, the disease is still far from being under control. The current 
clinical therapy, known as ‘highly active antiretroviral treatment’ (HAART), has made 
significant contribution towards reducing mortality (Richman et al., 2009). HAART, 
however, is not as effective, owing to a few drawbacks. First and foremost, these drugs are 
unable to eliminate human immunodeficiency virus (HIV) from resting CD4+T cells in the 
blood (Chun et al., 2007). Most of the drugs under HAART have various limitations. 
Didanosine has poor stability in the gastric environment and low bioavailability owing to 
hepatic first pass. Zidovudine has a short half-life, variable bioavailability and 
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hematological toxicity. Tenofovir can cause renal toxicity, including acute renal failure, 
Fanconi syndrome and proteinuria (Cihlar & Ray, 2010). Efavirenz has a very low solubility, 
low absorption and limited biodistribution. Etravirine also has low solubility (Sosnik et al., 
2009). The protease inhibitors (saquinavir, indinavir, ritonavir, lopinavir, nelfinavir, 
amprenavir, fosamprenavir, atazanavir, tipranavir and darunavir) too have a poor oral 
bioavailability (Hochman, 2000) and limited penetration into the lymphatic system and CNS 
(Li & Chan, 1999). In addition, other associated problems such as adverse drug effects, poor 
drug regimen compliance and drug interactions are associated with antiretroviral therapy 
(Richman et al., 2009). Nanotechnology based drug delivery has the potential to overcome 
nearly all of the shortcomings mentioned above. Nanoparticles can provide a target specific 
and sustained release of these drugs, thus improving their bioavailabilty and associated side 
effects. In this direction, poly (isohexyl cyanate) nanoparticles of zidovudine have been 
synthesized for targeting the lymphoid tissue in the gastrointestinal tract. Use of this carrier 
system, when compared with aqueous drug solution resulted in higher of the drug levels in 
the Peyer’s patches. In another study, polyhexylcyanoacrylate nanoparticles were employed 
for the delivery of zidovudine (Lobenberg et al., 1998), thus improving its bioavailability. In 
a distinct experiment, PLGA nanoparticles containing multiple antiretroviral drugs, i.e 
ritonavir, lopinavir, and efavirenz were formulated and results showed that drugs could be 
detected in peripheral blood mononuclear cells in vitro for 28 days (Destache et al., 2009). In 
a study with zidovudine-loaded poly(isohexyl cyanate) nanoparticles, zidovudine was 
accumulated in the cells of the reticuloendothelial system (Lobenberg et al., 1998). 
Poly(epsilon-caprolactone) nanoparticles loaded with saquinavir were also successfully 
used for targeting the phagocytic mononuclear  system by modifying the surface of the 
nanoparticles (Shah & Amiji, 2006). Results showed that the intracellular drug 
concentrations were found to be higher with encapsulated saquinavir compared with free 
drug solution. In separate experiments, stavudine, zidovudine and lamivudine have been 
entrapped in polybutylcyanoacrylate (PBCA) and methylmethacrylate-
sulfopropylmethacrylate (MMA-SPM) nanoparticles for brain targeting. The permeability of 
zidovudine and lamivudine was 8–20 fold higher and 10–18 fold higher, respectively, with 
PBCA nanoparticles and MMA-SPM nanoparticles led to a 2-fold increase in the BBB 
permeability of both drugs (Kuo, 2005). In a similar experiment, stavudine, delavirdine, and 
saquinavir were delivered as PBCA and MMA-SPM nanoparticles and their delivery to the 
brain was studied. The results showed that the permeability of all three drugs increased 
about 12–16 fold with PBCA nanoparticles and 3–7-fold with MMA-SPM nanoparticles (Kuo 
& Su, 2006). Dendrimers have also been used to deliver antiretroviral drugs. Tuftsin-
conjugated poly(propyleneimine) dendrimers loadedwith efavirenz was evaluated for 
targeted delivery to macrophages. These dendrimer formulations showed reduced 
cytotoxicity compared with nonconjugated poly(propyleneimine) dendrimers  in vitro and 
enhanced cellular uptake by mononuclear phagocytic cells, with greater anti-HIV activity in 
vitro (Dutta et al., 2008). SLNs have also been used for antiretroviral drugs with success. 
SLNs loaded with stavudine, delavirdine, and saquinavir have been evaluated for their 
ability to cross the BBB in vitro using human brain microvascular endothelial cells. The 
permeability of the drugs was improved 4–11 fold when incorporated into SLNs (Kuo & Su, 
2007). Similarly, SLNs incorporating atazanavir with Pluronic F68 as an emulsifier were 
evaluated. In vitro studies using hCMEC/D3, a human brain microvessel endothelial cell 
line, showed a higher uptake of the drug when delivered in SLN form, as compared with 
free atazanavir (Chattopadhyay et al., 2008). Regarding liposomal formulations, stavudine 

www.intechopen.com



Nanotechnology Based Targeted Drug Delivery: 
Current Status and Future Prospects for Drug Development 447 

loaded into mannosylated and galactosylated liposomes exhibited greater cellular uptake by 
cells of the mononuclear phagocytic system and greater accumulation in organs of the 
reticuloendothelial system as compared with free drug solution or even non-modified 
liposomes (Garg et al., 2006). PLGA nanoparticles containing ritonavir, lopinavir and 
efavirenz led to an increased uptake of the drugs by macrophages (Destache et al., 2009). 
Quite similarly, PHCA nanoparticles containing zidovudine showed a higher drug 
concentration in the organs of the reticuloendothelial system. An interesting finding was the 
higher levels of zidovudine in the brain when the nanoparticles were coated with 
polysorbate 80 (Bender et al., 1994). Further studies evaluated PBCA and MMSPM 
nanoparticles for brain targeting of zidovudine and lamivudine. The permeability of both 
the drugs to BBB was found to be significantly increased (Kuo & Chen, 2006). In a similar 
study, stavudine, delaviridine and saquinavir loaded PBCA and MMSPM nanoparticles 
coated with PS-80 and SLNs showed a higher drug permeability to brain (Kuo & Su, 2007). 
In an important finding, researchers observed a significant enhancement of brain 
localization of zidovudine when it was delivered by transferrin-anchored PEGylated 
albumin nanoparticles (Mishra et al., 2006). In another study, PLGA nanoparticles loaded 
ritonavir, lopinavir and efavirenz showed a sustained release for 28 days and anti-HIV 
inhibition was comparable to that of free drugs. Besides, PPI dendrimer-based 
nanocontainers have been used for targeting of efavirenz macrophages. The haemolytic 
activity and cytotoxicity of PPI dendrimer was found to be very high and there was a 
significant increase in cellular uptake of efavirenz by macrophages (Dutta et al., 2007). 

7. Conclusion 

Nanotechnology provides a wide range of techniques and strategies that can optimize the 

delivery of pharmaceutical agents. Nano-carrier mediated delivery offers sustained release 

of drugs in the body as well as protecting them from premature in-vivo degradation or 

clearance, subsequently increasing the bioavailability and therapeutic potential. By 

shielding the drug in nanoparticles, the otherwise toxic effects of the drug can be reduced. 

Most importantly, site-specific delivery of drugs allows increased local concentrations of the 

drugs and significantly lowers the undesirable systemic toxicity. Nano-carriers have another 

unprecedented potential that they can allow for new patent opportunities in the case of 

dugs with expired patents. Thus, nanotechnology can be applied at all stages of drug 

development, from formulations for optimal delivery to therapeutic applications in clinical 

trials. 
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