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1. Introduction 

Electromyography (EMG) detects electrically or neurogically activated muscle cells on the 

basis of waveform characteristics from a recorded signal. EMG is useful for evaluating 

and recording movement abnormalities. The EMG signals can also detect neuromuscular 

activation level and recruitment order in addition to analyze the biomechanics of human 

or animal movement (De Luca, 1984; Furey, 1963). The EMG signals are generated based 

on superimposed motor action potentials during active movement. The myoelectric 

signals are the instantaneous algebraic summation of all electrical discharges produced by 

a contraction of the muscle fibers. Muscle fatigue is quantified using surface EMG signals 

based on the power spectrum which is the Fourier transform of EMG time series 

(Knowlton et al., 1951; Mannion & Dolan, 1994; Mannion et al., 1997c). Normal electrical 

source is a muscle membrane potential of approximately -90 mV, and measured EMG 

potentials range between less than 50 μV and up to 20 to 30 mV, depending on the muscle 

under observation (Herzog et al., 1987; Nigg et al., 1988). Typical repetition rate of muscle 

motor unit firing is approximately 7–20 Hz, depending on the size of the muscle, previous 

axonal damage, and other factors (Hoffmann, 1968; Rack & Ross, 1975). Therefore, the 

EMG range can be utilized in many clinical and biomechanical applications as a 

diagnostics tool for identifying neuromuscular diseases, assessing low back pain (LBP), 

kinesiology, and disorders of motor control. EMG signals are also used as a control signal 

for prosthetic devices such as prosthetic hands, arms, and lower limbs. It is unknown how 

the median frequency (MF) of an individual depends on posture, extent of physical 

activity prior to measurements, and other attributing factors. Such factors may influence 

the shift of the MF in the fatigue measurement, which is not a consistent indicator for 

injuries to low back muscles. Subjects with LBP have less endurance and thus smaller MF 

during sustained muscle contractions (Mannion et al., 1997a; Roy et al., 1997). The MF of 

the EMG signal is used to characterize physiological aspects of skeletal muscles. The 

signal from surface EMG is the instantaneous algebraic summation of action potentials 

from muscle fibers, and its power spectrum can be estimated from a fast Fourier transform 

of the signal.  

Fourier transform is a linear analysis of a signal and gives the power spectrum P(f) (Hobbie, 
1997). A linear system is described mathematically by equations with oscillatory or 
exponentially growing solutions. In contrast, EMG time series have an irregular pattern so 
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that the signal must be interpreted as “noise.” The noise is due to the interaction between a 
particular muscle and all other biomechanical “units” of the body. In many cases, the power 

spectrum follows an algebraic dependence P(f) ~ 1/f. The case =0 corresponds to “white 

noise” while =2 characterizes diffusive Brownian motion. Therefore, the MF of the EMG 
power spectrum is sensitive to physiological manifestations of muscular dysfunction as an 
alternative assessment tool to identify muscle fatigue (Mannion et al., 1997b; Roy et al., 1997). 
However, there is a lack of research that compares this tool with other nonlinear 
measurements based on pain level or dysfunction. 
During a fatiguing contraction, a compression of the power spectrum of the EMG signal to 
lower frequencies is typically observed (Lindstrom et al., 1974). This phenomenon is 
measured during a contraction as a decrease in the MF of the EMG signal. Individuals with 
better endurance than others exhibit a less precipitous decay rate of the MF (Mannion et al., 
1997b). Thus, it would be necessary to compare the results between Shannon entropy levels 
of the EMG and MF of the spectral quantities following intervention to enhance outcome 
measurements.  
Other results indicated that subjects with LBP show less fatigue than healthy subjects 
(Humphrey et al., 2005; Mannion et al., 2001). Thus, despite considerable efforts by many 
researchers, a link between MF and musculoskeletal pain/dysfunction remains elusive. 
Moreover, the surface EMG is not a scientifically acceptable tool for the diagnosis of 
pain/dysfunction, and further studies are recommended to assess the specificity and 
sensitivity of surface EMG (Pullman et al., 2000). Therefore, a clinical diagnosis and 
evaluation of LBP is still elusive, and the efficacy of therapeutic intervention and assessment 
for LBP cannot be tested reliably. 
The power spectrum analysis provides an objective and noninvasive assessment of muscle 
function since EMG changes are associated with fatigue (De Luca, 1984; Mannion et al., 
1997a). However, contradictory results have been reported in studies using EMG as an 
outcome measure. The power spectrum has a limited dynamic range, and the change of the 
MF does not reflect such long-time correlations. New methods must be designed to capture 
biologically important characteristics from noisy time series. Researchers using nonlinear 
time series analysis have developed several mathematical tools to reveal the presence of 
power-law time correlations.  
Investigations of physiologic time series have led to the understanding that some degree of 
noise is necessary for the proper functioning of biological systems (Belair et al., 1995b; Glass, 
2001; Strogatz, 2001). These systems must respond to external stimuli that may vary both in 
strength and time scale by many orders of magnitude. The “degree of irregularity” of time 
series can be quantified by computing the (information) entropy of the signal. The time-
dependent entropy from the surface EMG signal and the entropy of the signal is lower for 
subjects with LBP than for healthy subjects. Furthermore, the entropy increases rapidly for 
short times [t < 10 ms], reaches a plateau value for intermediate times [10ms < t < 500 ms], 
and then increases diffusely for long times [approximately 500 ms] (Belair et al., 1995a). This 
behavior suggests that the plateau value is relevant for the physiology of skeletal muscles 
(Chialvo, 2002; Goldberger et al., 2002a). In this chapter, some of these methods to surface 
EMG time series are discussed, and the potential use of these methods as a diagnostic tool 
for LBP are explored.  
Therefore, the purpose of this chapter is to explore the potential use of nonlinear time series 
analysis as a tool for the clinical diagnosis of LBP or neuromuscular dysfunction, especially 
low back muscle fatigue. Of particular interest is a comparison between methods based on 
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the power spectrum and nonlinear time series analysis of EMG signals. In order to compare 
quantities derived from the EMG signals, it is important to compare the different types of 
analyses including nonlinear time series between subjects with and without musculoskeletal 
dysfunction/pain. Specifically, it is important to record and analyze the EMG signals for a 
group of subjects with LBP and a control group of healthy subjects using spectral analysis 
and methods from nonlinear time series analysis. Secondly, the reliability of the results 
based on power spectrum analysis and nonlinear time series analysis of EMG signals for 
subjects with and without LBP needs to be investigated. Thirdly, it is necessary to determine 
the sensitivity of the analyses and the distribution of the values of the entropy for a group of 
subjects with and without LBP.  

2. Clinical assessment of LBP 

A clinical assessment of LBP is important as a diagnostic tool since we cannot distinguish 
subjects with genuine pain from those who fraudulently claim to suffer from pain (Chaffin, 
1969). The potential cost to society from malingerers could be quite high. Additionally, the 
effectiveness of various rehabilitation interventions is difficult to assess without a clinical 
diagnosis of LBP. The interpretation of surface EMG data is not as reliable as that from 
needle EMG, for example. A clinical diagnosis based on surface EMG is desirable since it is 
widely accepted by the general population. 
A clinical diagnosis of LBP using EMG should be based on properties of the signal that 
change drastically in the presence of pain/dysfunction. If this is the case, the observed 
quantities from subjects with LBP are expected to be different than those from subjects 
without LBP. Because a shift in the MF of the spectrum is explained by the change in the 
velocity of the action potential, it reflects a quantitative change of the signal during a 
fatiguing exercise. On the other hand, a change in the entropy of the signal reflects a 
qualitative change in the physiologic system.  
Subjects with LBP often have reduced muscle strength and endurance, which compromises 
the functional capacity of the spine and increases the likelihood of re-injury (Cholewicki & 
VanVliet, 2002; Wilder et al., 1996). In most cases, a compression of the power spectrum of 
the EMG signal to lower frequencies is observed during a fatiguing contraction. This 
compression is the result of slower muscle fiber action potential propagation and an 
alteration in shape due to changes in the excitability of the muscle cell membrane 
(Lindstrom et al., 1974; Panjabi, 1992). These phenomena are referred to as “myoelectric 
manifestations of fatigue” and are typically seen during a prolonged muscle contraction. 
Individuals with better endurance are expected to exhibit a smaller shift of the MF (Mannion 
et al., 1997b; Mannion et al., 2001). It has been reported that subjects with LBP exhibit a larger 
shift of the MF than subjects without LBP (Mayer et al., 1989; Roy et al., 1989). 

2.1 Noise in biological systems  

The characterization of the power spectrum with a single frequency indicates that the time 
dependence of the signal is approximated by a simple oscillatory behavior. In contrast, the 
EMG signal looks irregular to the naked eye, and thus cannot be approximated by a periodic 
behavior. Seemingly irregular time series have been observed in many biological systems 
such as the electrocardiography signal of the human heartbeat, the electroencephalogram 
signal in instances of epilepsy and human gait, and others (Costa et al., 2003; Costa, 2002; 
Goldberger et al., 2002a). 
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It has recently been suggested that physiological time series contain “hidden information” 
(Goldberger et al., 2002a). A biomechanical model of the human body emerges in which 
individual “units” interact in a nonlinear fashion such that feedback loops operate over long 
temporal and spatial ranges. This self-regulation leads to reduced variability which is 
important for maintaining physiological control of biological systems. For example, the 
prediction of homeostasis reveals that the output of a wide variety of systems, such as the 
normal human heartbeat, fluctuates in a complex manner even under resting conditions. 
It is generally believed that the irregularity of the signal allows biological systems to 
respond to external disturbances that vary over a wide range of time scales. The velocity of 
the action potential determines the short-time behavior of the surface EMG signal. In 
contrast, the physiologic origin of its long-time behavior is unknown. It is not even clear 
whether observed fluctuations (“noise”) in the signal are external or are intrinsic to the 
physiologic system. Intrinsic noise can be explained by the combined action of inhibitory 
and excitatory “units” or components of the system (Koppell, 2000). The presence of 
external fluctuations can have important consequences for complex systems. It has been 
shown, for example, that a system of oscillators can become synchronized, which may then 
explain the combined action of the entire system (Costa et al., 2003). 
It is not known which model of skeletal muscles explains the presence of intrinsic noise in 
the EMG signal. This is a common situation encountered in many studies of complex 
systems. Nonlinear time series analysis has developed numerous tools to distinguish 
nonlinear or chaotic behaviors within the system from external noise. For chaotic systems, 
the number of dynamic degrees of freedom can be determined from the signal that is 
(roughly) equal to the number of inhibitory and excitatory units in the system.  
In nonlinear time series analysis, the characteristic behavior of a system is extracted from a 
mathematical analysis of the signal. The behavior of the signal is quantified using concepts 
and ideas borrowed primarily from statistical physics and signal processing. In particular, 
the information entropy has been proposed as a measure of the irregularity of the signal 
(Costa et al., 2003; Costa, 2002; Goldberger et al., 2002b; Pincus, 2001). A periodic signal and a 
complete irregular signal (or “white noise”) have zero entropy. A random (or stochastic) 
signal with long-time correlations is characterized by a finite entropy, S>0. For a large 
variety of physiologic systems, it has been shown that dysfunction is associated with a 
decrease in the entropy of the time series. This suggests that physiological dysfunction leads 
to either complete order or excessive disorder.  

2.2 Entropy of electromyography  

In a mathematical description, the signal at (discrete) “time” n, xn, is treated as a random, or 
stochastic, variable (Kantz, 2003; Sprott, 2003). It is assumed that the signal is “stationary,” 

i.e., the quantity i=1t xn-1+i does not depend on the initial time n. The mean-square 

displacement is then defined by (t)=[i=1t xn-1+i ]2, where the average is taken with respect 

to the n. If the signal at time n is uncorrelated with the signal at a different time m, xnxm=0, 

the mean-square displacement increases diffusively, (t) ~ t. This case is generally referred 

to as “white noise.” In the presence of long-time correlations, xnxm~1/|n-m| for some 

exponent >0, fractional Brownian walk follows (t) ~ t2H (Mandelbrot, 1983). Here, the 

Hurst exponent is H=2+1 with 0<H<0.5 for sub-diffusive and 0.5<H<1 for super-diffusive 
"behavior". The presence of long-time correlations implies that the signal has no 
characteristic time scales and looks the same on all time scales. In a certain mathematical 

limit, the mean-square displacement and the entropy are related to each other S~ln .  
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The entropy reflects properties of the signal on many different time scales and, therefore, 
does not have a simple relationship with the velocity of the action potential. It follows that 
properties of the surface EMG signal obtained via nonlinear time series analysis are 
complementary to the analysis of the power spectrum. Entropy has many 
interdisciplinary applications as in aging psychology or macromolecular engineering 
(Allen et al., 1998; Allen et al., 2004). Regarding time series applications, biological time 
series are complex data that need to be distilled to useful information such as assessing an 
illness. Nonlinear analysis using fractal geometry and random walks theory proved to be 
useful in the analysis of a variety of time series such as correlations between global 
temperatures and solar activity (Scafetta & West, 2003), earthquake statistics (Scafetta & 
West, 2004), human heartbeat (Ivanov et al., 1999), and shapes of red cells under flow 
stress (Korol & Rasia, 2003). Recently, nonlinear time series generated by the back 
muscles‘ electrical activity was investigated between subjects with and without LBP 
motivated by the need to develop an evaluation tool for LBP (Lee et al., 2010; Sung et al., 
2005; Sung et al., 2007a; Sung et al., 2010). 
Using random walk concepts, Collins and De Luca have studied the erratic motion of the 
center of pressure of a standing human body (Collins & De Luca, 1994; Collins & De Luca, 
1995). They found a crossover from superdiffusive random walks for short times to 
subdiffusive random walks for longer times. In our entropic analysis of EMG time series 
from back muscles, we observed a crossover from subdiffusive, Hurst exponent H ≤ 0.5, to 
self-organization, Hurst exponent H ≈ 0. The Renyi entropy associated with diffusive 
processes grows linearly with the logarithm of time, and the rate of growth is 
independent of the Renyi parameter (Kaufman, 1985; Kaufman, 2007). The entropy is the 
rigorous measure of lack of information. The information, or Shannon, entropy for a 
particular experimental condition with a set of M possible outcomes is (Gage, 1992; S. 
Shannon, 1997): 

 
inf

1

ln( )
M

ormation j j
j

S p p


   (1) 

where pj is the relative frequency of outcome #j. It is uniquely determined from the 
Khinchin axioms: (I) it depends on the probabilities p only; (II) the lowest entropy (S = 0) 
corresponds to one of the p's being 1 and the rest being zero (i.e., total information); (III) the 
largest value for the entropy is lnM and is achieved when all p's are equal to each other (i.e., 
the absence of any information); and (IV) S is additive over partitions of the outcomes. If the 
last axiom is relaxed to consider only statistically independent partitions, Renyi found that 
the information entropy is replaced by a one-variable function (Cybulski et al., 2004): 
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
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For ǃ = 1, the Renyi entropy equals the Shannon entropy. The Renyi entropy is related to the 
Tsallis entropy which is central to the current massive research effort in nonextensive 
statistical mechanics (Vinga & Almeida, 2004). 

In the continuum limit: ( , )jp x t x  , where x is the random variable, e.g. displacement for  
random walker, and ρ is the probability distribution function. The actual experiment was 
conducted for measuring the electrical signal from back muscles (Sung et al., 2005). Consider 
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a time series xt. Following Scafetta and Grigolini (Scafetta & Grigolini, 2002), the signal xn 
was interpreted as a jump at time n. It was generated at all walks of time length t: 

1

,
0

t

m t j m
j

X x





 . For a given time t, the ensemble of all the walks of time length t was 

considered and distinguished from one another by the initial time m. The range of X was 
divided in M equal bins, and the probability of finding a walker at that location was 
estimated by using the fraction of all X that fall in the bin. The results were obtained for M = 
500 bins. The entropies were computed using Eqs. (1) and (2). The numerical time series 
were analyzed searching for a logarithmic dependence of the entropy.  
Figure 1 indicates the EMG time series from the right thoracic muscle of the healthy 
individual and the entropy associated with walks generated from the healthy right thoracic 
muscle EMG time series as a function of the logarithm of time. At short times, t < 0.01 s, the 
slope is 0.26, 0.32, 0.34 for the Renyi parameter ǃ = 0, 1, 5 respectively. Since the fit was done 
on only ten data points, there is a large uncertainty for those values. Similar slope values 
were extracted from the EMG data from all the muscles (both sides of the thoracic and 
lumbar erector spinae) for both individuals (HEALTHY and LBP subjects). At longer times, 
for 0.01 s < t < 1 s, the entropies exhibit a plateau. The plateau occurs at an entropy value 
well below the maximum possible entropy value lnM. Hence, it is not an artifact of the way 
we estimate the entropy; but it is an intrinsic property of the time series. 
 

 

Fig. 1. Entropy vs. lnt. Top curve ǃ = 0, middle curve ǃ = 1, bottom curve ǃ = 5. a. Subject 
without LBP for the right thoracic erector spinae muscle; b. Random number generator.  

The entropy plateau corresponds to the Hurst exponent H ≈ 0. The power spectrum P(f) ~f-ǂ 
with an exponent ǂ = 2H +1 ≈ 1 follows P(f) ~ 1/f. Self-organization is generally associated 

www.intechopen.com



 
Nonlinear Analysis of Surface Electromyography 

 

139 

with 1/f noise, and this is the reason why the entropy plateau can be interpreted as a 
manifestation of self-organization (Buldyrev et al., 2006). Qualitatively similar dependences 
were observed in the analysis of the erratic motion of the center of pressure of the human 
body (Collins & De Luca, 1994; Collins & De Luca, 1995). Though the details are not 
identical (e.g crossover time and slopes are different), we suspect that this type of crossover 
from large Hurst exponent random walks at short times to small Hurst exponent random 
walks at long times characterizes organized complex systems. In Figure 1b, the qualitatively 
different dependence of entropy on time exhibited by time series was generated with a 
commercial random number generator. The slopes of S versus lnt for the random number 
generator data are 0.38, 0.45, 0.44 for ǃ = 0, 1, 5 respectively. These values are quite close to 
the Brownian diffusion value H = ½. There is no plateau in the random number time series. 
This comparison between the EMG data on one hand and random data on the other hand 
supports the idea that the system responsible for the back muscle signal is complex as 
opposed to noisy. The time evolution of entropy for EMG data also differs qualitatively 
from the time dependence of the entropy of chaotically advected tracers: the latter does not 
exhibit a crossover in time to self-organization, but it does exhibit a substantial dependence 
of the logarithmic amplitude on the Renyi parameter. 
The entropy dependence on time constitutes a potential tool for differentiating between 
subjects with and without LBP. We show in Figure 2 below, side by side, graphs of the 
relative entropy S/ln(M) versus lnt from four erector spinae (right and left thoracic and 
right and left lumbar) muscles of a healthy male and a LBP male of the same age. In each 
case, we computed the entropy using M = 500 bins. 
 

 
              a                b 

Fig. 2. Relative Entropy on lumbar right muscle vs. lnt. Top ǃ = 0, middle ǃ = 1, bottom ǃ = 5; 
a. Subject without LBP; b. Subject with LBP. 

The plateau entropy is consistently higher for the healthy individual than for the LBP 

individual. A previous pilot study in our lab also demonstrated similar results involving ten 
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healthy and ten LBP individuals, who were matched by gender, but not by age (Sung et al., 

2007b). The question of whether the plateau entropy constitutes a useful diagnostic tool for 

LBP needs further investigation with large groups of individuals matched by age, gender, 

body mass index, etc. It is worth emphasizing that Costa et al. and Chialvo argued based on 

heart time series that pathology is associated with less variability (lower entropy) as 

indicated in our study (Chialvo, 2002; Costa et al., 2002). 

To better understand the entropy time evolution, we show in Figure 3 the histograms used to 

determine the entropy for the left thoracic muscle of LBP subjects. In Figure 3a, we see the 

widening of the probability distribution with time corresponding to the entropy increase at 

short times t < 10 ms. In Figure 3b, the probability distribution is practically stationary 

corresponding to the entropy plateau at longer times 10 ms < t < 500 ms. In Figure 3c, we show 

the probability distribution at t = 1000 ms, attempting to understand the increase in entropy 

apparent for t > 500 ms. We observe the occurrence of two peaks which may correspond to 

some sort of phase transition. In order to check this hypothesis, we computed the histogram 

using 66,000 data points rather than the 6,000 points window used in all other computations. 

 

 

 

Fig. 3. Probability distributions at short time, intermediate time, and long time for the 
thoracic left muscle in subjects with LBP at: (a) t = 0, 1, 5ms; (b) t = 10, 100, 500ms;  
(c) t =1000ms. 

We reduced the original time series to 6,000 entries by averaging over 10 consecutive entries 

of the original time series. We labeled the resulting time series as xn, where the index n 

(‘time’) runs from 1 to 6,000. Nonlinear time series analysis assumes that the signal is 

stationary. To test this assumption, we calculated the mean and variance of 100 data points. 

The results for the subjects with and without LBP are shown in Figures 4A and 4B, 

respectively. Clearly, the EMG signal is stationary in both cases. Note that the average of the 

mean () is nonzero, which reflects an offset in the calibration. For the numerical analysis 

below, we correct the offset by replacing xn with xn - . For nonlinear systems, signals at 

different times are correlated as shown in a phase portrait where the signal xn+1 at time n+1 

is plotted vs the signal xn at time n. 

For the subject without LBP (Figure 5A), the phase portrait has a circular shape. This 

portrait shows that the signals at consecutive times n and n+1 are statistically independent 

of each other. On the other hand, the phase portrait for the subject with LBP has the shape of 

an ellipse with the long axis directed along the diagonal (Figure 5B). The elliptical shape 

along the diagonal indicates the presence of correlations. Physicists have developed several  
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Fig. 4. Mean (solid line) and standard deviation (dashed line) for (A) subjects without and 
(B) subjects with LBP. 

 

  
             (A)                (B) 

Fig. 5. Phase portrait of (A) subjects without and (B) subjects with LBP. 

methods to quantify the complexity of time series. One method explores the connection with 
random walks, or Brownian motion (Denny & Gaines, 2000). To this end, we interpret the 
signal xn as a jump at time n. It follows that the sum X(t)=xn+xn+1+…+xn+t is the 

displacement between times n and n+t. The average is zero X(t)=0. The mean-square 
displacement is obtained by taking the square and then calculating the average with respect to 

the initial time n, (t) = X2(t). For deterministic motion, (t) ~ t2, while (t) ~ t is for diffusion. 

In the general case, we write (t) ~ t2h so that 0< h < 0.5 and 0.5 < h< 1 correspond to sub-

www.intechopen.com



 
EMG Methods for Evaluating Muscle and Nerve Function 

 

142 

diffusive (negative correlations) and super-diffusive (positive correlations) behavior, 

respectively. In Figures 6A and 6B, we show the dependence of (t) vs t in double-logarithmic 
plots. 
A straight line corresponds to power-law behavior, and the Hurst exponent H (Mandelbrot, 
1977) is determined by the slope. For the subject without LBP, we find H=0.5, corresponding 
to diffusive behavior. For the subject with LBP, we have H=0.2, which indicates the presence 
of long-time correlations in the EMG signal, in agreement with the results from the phase 
portrait. The mean-square follows (fractional) Brownian motion only for short-times. For 

long-times, (t) appears to plateau. The determination of the Hurst Exponent is affected by 
large statistical fluctuations. In order to get a more reliable estimate of the Hurst exponent, 
an analysis of the entropy of the time series was undertaken. 
 

     
                                  (A)                                                                       (B) 

Fig. 6. Log-log plot Δvs. t for (A) subjects without and (B) subjects with LBP. 

One can characterize the complexity of time series by using the information (Shannon) 

entropy S=-pjlogpj, where pj is the probability for outcome number ‘j’ of a given 
experiment (Allen et al., 2004; Bezerianos et al., 1995; Bezerianos et al., 2003; Costa et al., 
2003). The above equation is the standard formulation of uncertainty as it has the following 
features: (i) the lowest entropy (S = 0) corresponds to one of the outcomes being certain [i.e. 
probability one] and the others never occurring [i.e. probability zero]; (ii) the largest value 
for the entropy, S=ln(M), is achieved when all outcomes are equally likely [all probabilities 
are equal to each other, pj = 1/M]; and (iii) S is additive over partitions of the outcomes. The 
results reported here were obtained for M = 1000 bins. The variation of S with t is expected 
to be logarithmic: S(t)~Hlnt, where H is the Hurst exponent introduced before. The entropic 
analysis of the time series from the subject without LBP and from the subject with LBP 
shows significant differences in how fast the entropy saturates.  
In addition, there is a difference between the slopes of entropy and time function for 
subjects without and with LBP (Figure 7). The slopes represent estimates for the Hurst 
exponent H. In agreement with the variance of displacement analysis presented, there was a 
difference of the Hurst exponent between the subjects without LBP (H=0.5; Figure 6, A) and 
subject with LBP (H=0.4; Figure 6, B) were indicated. Note that the value of the exponent H 
for the LBP subject refers to short-times, while the behavior for long-times is characterized 
by the value 0.2 quoted before. The difference in the entropy vs time dependence exhibited  
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                                   (A)                                                                         (B) 

Fig. 7. Shannon entropy versus ln(t) for (A) subjects without and (B) subjects with LBP. 

by the healthy and LBP subjects goes beyond the issue of the value of the Hurst exponent. The 
entropy associated with the LBP subject saturates at very short-times; two orders of magnitude 
shorter than for the healthy subject. Furthermore, the long time entropy of LBP is lower than 
for the healthy subject, a result consistent with non-linear analysis of other medical time series 
(Bezerianos et al., 1995). It is generally observed that injuries result in a decrease in the 
complexity of biological systems.  
In conculsion, nonlinear analysis of time series based on entropy can differentiate between 
complex biological sources and random sources of the data. While the EMG signal from an 
erector spinae muscle exhibits an entropy time dependence with a crossover from 
subdiffusive regime at short times to a self-organization regime (plateau) at longer time 
scales, time series generated with random number generators do not exhibit the plateau. The 
Renyi entropy time evolution also differentiates between this complex biological system and 
deterministic processes (e.g. tracers advection in polymer flows). The presence of the 
plateau points to the existence of anti-correlations of EMG signals separated in time by at 
least 0.01 s. Therefore, it is a manifestation of a complex self-organizing system in which 
individual units interact in a nonlinear fashion such that feedback loops operate over long 
temporal ranges (Goldberger et al., 2002a).  

2.3 Reliability of surface electromyography analysis 

The reliability of surface EMG could be different between nonlinear analysis of time series 
and power spectrum analysis. Our previous study results indicated that the measurement of 
back muscle fatigability, especially the erector spinae muscle, indicated that the entropy 
analysis was a more reliable measure than the power spectral analysis (Sung et al., 2008b).  
It is well known that the observed EMG signal depends on anatomical factors, such as 
muscle geometry, subcutaneous fat, gender, and other confounding factors (Lindstrom et al., 
1974; Mannion et al., 1997c; Pullman et al., 2000; Roy et al., 1997; Solomonow et al., 1990). As a 
result, observed quantities from EMG signals show considerable variations even among a 
group of healthy subjects. A clinical diagnosis of musculoskeletal dysfunction using surface 
EMG is based on the assumption that dysfunction changes the values of the observed 
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quantities. This underlying assumption is difficult to prove, however, because the EMG 
signal prior to an injury is generally not available.  
One reliable indicator is MF, which is defined by dividing the area under the spectrum into 
two equal parts. However, use of the MF has led to contradictory results in muscle fatiguing 
experiments. It still remains to be seen whether a shift in the MF differentiates the various 
stages of non-acute LBP. The fatigability of back muscles might predispose individuals to 
LBP. A number of investigators have attempted to classify LBP via changes in the EMG 
signal during prolonged contraction of the paraspinal muscles (Lariviere et al., 2002a; 
Lariviere et al., 2002b; Mayer et al., 1989; Peach & McGill, 1998; Roy et al., 1997; Roy et al., 
1990). The MF of the back muscles is typically of the order of 100 Hz and is determined by 
the propagation of the action potential across the electrodes. That is, the MF reflects the 
behavior of the EMG signal on short-time scales. 
Several studies have suggested that surface EMG power spectrum analysis could be used to 
evaluate patients undergoing rehabilitation in a non-invasive fashion (De Luca, 1984; 
Mannion et al., 1998; Merletti et al., 1999). The connection between fatigue and EMG spectral 
parameters is the basis for the use of EMG as an objective and noninvasive method of 
assessment of back muscle endurance (De Luca, 1984; Mannion et al., 1997a). The original 
study linking LBP with fatigue was presented by De Luca (De Luca, 1984) who found that 
subjects with LBP have less endurance, and thus smaller MF slopes, during sustained 
muscle contractions (Merletti et al., 1999; Roy et al., 1989). However, contradictory results 
have subsequently been reported and have shown that MF slope is not better than chance in 
predicting LBP (Humphrey et al., 2005; Lee et al., 2010; Mannion et al., 2001). Thus, a 
connection between spectral quantities and musculoskeletal pain/dysfunction remains 
elusive despite considerable efforts.  
In recent studies, we applied methods from nonlinear analysis of time series and found that 
the time-dependent entropy calculated from the EMG signal shows a distinct plateau-like 
behavior for intermediate times (Kaufman, 2007; Sung et al., 2005; Sung et al., 2007b). The 
signal from EMG is the instantaneous algebraic summations of action potentials from 
muscle fibers, and its power spectrum is obtained from a fast Fourier transform of the 
signal. Recently, several studies in entropy measurements based on nonlinear time series 
analysis were published without reporting reliability and validity concerns (Goldberger et 
al., 2002b; Kaufman, 2007; Sung et al., 2007b). Therefore, it would be valuable to confirm the 
reliability of measurements for characterizing neuromuscular alterations by investigating 
differences between the power spectrum analysis and nonlinear time series analysis of 
entropy measures.  
It has been found that the degree of randomness is a characteristic property of time series. 
Entropy is generally used to quantify the complexity. In particular, entropy is used to 
characterize non-periodic, random phenomena and indicates the rate of information 
production as it relates to dynamic systems (Richman & Moorman, 2000). Several research 
groups have compared entropy values for subjects with and without illness/dysfunction 
(Chialvo, 2002; Costa, 2002; Goldberger et al., 2002a; Stanley et al., 1992; West, 1990). This 
concept has been used to differentiate healthy subjects from those with heart disease using 
electrocardiogram time series as well; it is generally found that disease is associated with a 
lowering of the entropy. In several papers, we applied these ideas to EMG time series for the 
low back muscles. We found that subjects with LBP have lower entropies than healthy 
subjects, which is in agreement with the general finding. The traditional approach of EMG is 
based within the framework of linear systems for which a given input leads to a well-
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defined periodicity. This connection led to the notion of homeostasis, namely that the 
normal function of physiologic systems operates in a steady state and that fluctuations are 
suppressed. However, contradictory results have subsequently been reported without clear 
understanding of the reliability of entropy measures (Humphrey et al., 2005; Sung et al., 
2008b).  
Our previous studies indicated that the plateau entropy value was consistently higher for 
the healthy individual than for the LBP individual. However, the question of whether the 
plateau entropy constitutes a reliable assessment tool for LBP needs further investigation 
with large groups of individuals matched by age, gender, body mass index, etc. It is 
important to understand that Costa et al. and Chialvo argued that pathology/dysfunction is 
associated with less variability (lower entropy), which was consistent with our findings 
(Kaufman, 2007; Sung et al., 2005; Sung et al., 2007b).  
Nonlinear analysis has proved to be useful in the analysis of a variety of physiologic time 
series such as human heartbeats (Ivanov et al., 1999) and the shapes of red blood cells under 
flow stress (Korol & Rasia, 2003). Based on these empirical studies, it has been found that the 
time series from healthy subjects have higher entropy values than the time series from those 
with pathology/dysfunction. There are also several other studies indicating that traditional 
approaches to measuring the complexity of biological signals fail to account for the multiple 
time scales inherent in such time series. Generally, biological time series are complex data 
that need to be distilled to useful application to assess a pathology/dysfunction. However, 
no study has investigated the reliability of entropy measures to assess pathology/ 
dysfunction. In addition, despite much effort, the MF and the MF slope have not shown 
consistent measurements (De Luca, 1984; Mannion et al., 1998; Merletti et al., 1999; Sung, 
2003).  
In previous studies, we explored the use of entropy derived from time series as an 
alternative quantitative measure of EMG signals that can be used in a clinical assessment. 
We compared the values of the entropy between subjects with LBP and healthy subjects and 
found that healthy subjects have significantly higher entropies than subjects with LBP (Sung 
et al., 2007b). However, it is important to examine the between-day variability of entropy, 
the MF, and the MF slope within the same sample group. In our current study, we 
compared the values of MF, MF slope, and entropy for two different measurements; and the 
results indicated the highest correlation for entropy, while the MF slope and MF 
demonstrated relatively weak correlations.  
The results for the right back muscle are illustrated in Figures 8-13 in order to compare 
values with different measures. The consistent responses of the non-dominant side of the 
back could be less affected by hand dominance. The histogram of the entropy (Figure 8) 
demonstrated consistent distributions between pre- and post- measurement entropy values, 
which are plotted in Figure 9. The points representing the 32 subjects were plotted closely 
along the diagonal line, indicating that the two measurements reveal a relatively high 
correlation (R=0.75).   
The mean and the standard deviations of the MF slope values for two measurements were 
analyzed, and the correlations ranged from 0.15-0.18, which does not indicate a significant 
difference between the MF slopes at two different observations. The intra class correlation 
coefficients (ICCs) ranged from 0.26-0.30, and the standard error of means (SEM) varied 
between 0.03 and 0.04, which were not significantly different for the distributions for two 
different times. Figure 10 compared two measurements of the MF slope for the right back 
muscle, and the number of subjects repeatedly demonstrated less similar results between 
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the two measurements. The Pearson correlation coefficients ranged from 0.15-0.18 and 
were not statistically different. This result confirms the values of the MF slope of the right 
back muscle for post-measurement, which was plotted versus the values of pre-
measurement in Figure 10 and shows no obvious difference. The points representing the 
subjects were distributed rather broadly, which was reflected in the low correlation 
coefficient (R=0.18).  
The distribution of MF values from post-measurement  shifted towards larger values. The 
correlations ranged from 0.38-0.47 and were statistically significant. Thus, there was a 
significant correlation between the distributions of the MF values from the measurements at 
two different times. The ICCs ranged from 0.54-0.64, and the SEM ranged from 3.10-3.60. 
The Pearson correlation coefficients ranged from 0.38-0.47 and were statistically significant. 
In Figure 12, two measurements of the MF for the right back muscle are compared, and the 
number of subjects repeatedly demonstrated less similar results between two 
measurements. Figure 12 depicts the histograms of the MF values. The two histograms 
indicated little difference except for two outliers for post-measurement values. Figure 13 
depicts the MF values of the right back muscle, and the linear regression analysis yielded 
R=0.15. The values of MF for the two measurements were more highly correlated than those 
for the MF slope, although the correlation (R=0.38) was much lower than that for the 
entropy (Sung et al., 2005).  
Overall, the ICC values of entropy for between-day measurements were higher, and the SEM 
for entropy was lower than the MF and its slope. Therefore, the results of this study indicated 
that the entropy analysis could provide reliable measurements for muscle fatigability. 
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Fig. 8. Histogram of entropy measurements for the right back muscle. 
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Fig. 9. The entropy values taken at two different measurements for the right erector spinae 
muscle. The correlation coefficient is R=0.75. 
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Fig. 10. Histogram of median frequency slope measurements for the right back muscle. 
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Fig. 11. The median frequency slope taken at two different measurements for the right back 
muscle. The correlation coefficient is R=0.18. 
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Fig. 12. Histogram of median frequency measurements for the right back muscle. 
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Fig. 13. The median frequency for the right back muscle at two different measurements. The 
correlation coefficient is R=0.38. 

Overall, the entropy measurements for back muscles were more reliable than the power 
spectrum measures based on between-day reliability. Although there were no significant 
differences for between-day reliability for both entropy and MF slope, the test-retest 
reliability based on ICC values was higher for the entropy measure. The results of this study 
indicated that the complexity of time series analysis is a more reliable measure for the 
adaptability of biological systems than power spectral analysis.  
A clinical assessment of LBP is important to objectively identify subjects with genuine pain 
and to assess the efficacy of therapeutic interventions. The entropy values from two 
measurements had the highest correlation, and we concluded that entropy is the most 
reliable measure from the low back muscles. The correlation of the MF slope and MF also 
demonstrated weak correlations and were statistically insignificant. Although there is a 
positive correlation between pain level and MF slope in back muscles, it is possible that the 
statistical use of correlation coefficients based on several validation studies was poor for 
reliability studies (Meyer, 1994).  
In conclusion, it is important to compare the difference between nonlinear time series and 
power spectrum analysis regarding the irregularity of signals in biological systems. The 
quantities derived from nonlinear time series analysis of EMG signals will be compared 
with power spectrum analysis between subjects with and without musculoskeletal 
dysfunction/pain.  

2.4 Sensitivity of surface electromyography analysis 

As reported in our previous studies, the complexity of physiologic time series is a sensitive 
measure for muscle fatigability (Lee et al., 2010). However, it is necessary to determine 

www.intechopen.com



 
EMG Methods for Evaluating Muscle and Nerve Function 

 

150 

whether the observed Shannon (information) entropy, as compared with MF, was able to 
differentiate fatigability of the thoracic and lumbar parts of the erector spinae muscle 
following the intervention. Previously, our lab investigated tools for evaluating back muscle 
fatigability after spinal stabilization exercises in participants with chronic LBP (Lee et al., 
2010; Sung et al., 2005; Sung et al., 2008a; Sung et al., 2010). The results of our previous study 
indicated that Shannon entropy might be a valuable tool to measure the differences of 
outcomes following the exercise intervention. The results indicated that the participants’ 
pain levels decreased significantly after 4 weeks of spinal stabilization exercises. The 
entropy of the EMG signals also decreased and significantly interacted with pain level. The 
slope of the MF based on power spectrum analysis also decreased but did not demonstrate 
any interaction with pain level. Therefore, the entropy of the EMG signals might be a useful 
tool for measuring LBP. 
In addition, the results indicated that the entropy clearly differentiated the two groups. 
However, the results of power spectrum analysis based on complexity of the EMG signal 
could be calculated with the entropy of the time series. The results indicated that healthy 
subjects revealed significantly larger entropy values than the subjects with LBP. These 
findings consistently demonstrated a connection between physiologic “health” and 
complexity (Costa et al., 2003; Costa et al., 2005; Li & Huston, 2002). Another important 
finding indicated that the entropy levels of the EMG signals demonstrated significant 
interactions between muscles and groups following treatment for muscle endurance. 
However, the MF did not demonstrate this interaction. The significant interaction effect of 
the entropy between muscles and groups following treatment during the one-minute back 
extension test supports the characteristics of the recorded signals that occurs with fatigue 
(Roy et al., 1989). Exercises for graded activity programs can be used to increase trunk 
muscle endurance and to decrease pain (Jorgensen & Nicolaisen, 1986; Jorgensen & 
Nicolaisen, 1987). Undoubtedly, other muscles participated in the load sharing during the 
testing as well as when subjects performed the intervention exercises. The attachment of the 
lumbar muscles, rather than the thoracic back muscles, results in an effective lever arm for 
lumbar stabilization. Therefore, the lumbar muscle is more effective in creating a stabilizing 
moment over the lumbar vertebral segments during the test (Flicker et al., 1993; MacIntosh & 
Bogduk, 1986).  
Research in biology and medicine has shown that fluctuations in physiological systems 
may play a significant role (Costa, 2002; Goldberger et al., 2002a; Liu et al., 2002). In fractal 
physiology, the apparent random, or chaotic, signal is observed on different (time) scales. 
It is found that the signal looks similar, or self-similar. This means that a single time scale 
(e.g., the period of oscillation) is replaced by a family of time scales. It follows that the 
single state of the system is replaced by multiple non-equilibrium states that are 
correlated with each other. If the signal is completely random with no characteristic time 
scale, it would be modeled by “white noise” and the power spectrum would be flat with 

P(f) ~ f0. In general, the frequency spectrum is fitted to a power law P(f) ~ 1/f, with 0 <  
< 2. In this case, the power spectrum does not define a MF. Other studies reported that for 
physiologic systems, a constant “output” requires other variables to fluctuate so that the 
system can adapt to sudden changes in demand or stimulus (Costa et al., 2005). This 
extent of fluctuations in physiologic signals can be quantified by entropy calculated from 
their time series.  
Nonlinear analysis is used to characterize “hidden” properties of physiologic time series. 
Following this approach, we interpreted the EMG signal in terms of a one-dimensional  
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random walk in discrete time. We found that the mean-square displacement increased 

linearly for short times t < 20 ms and is nearly flat for intermediate times 20 ms < t < 400 ms. 

This plateau behavior has been found for other biological systems and implies the existence 

of correlations in the signal (Costa et al., 2005; Goldberger et al., 2002a). However, these 

correlations cannot be explained within a linear model, and thus support the use of 

nonlinear analysis for EMG time series. This may also explain why the MF fluctuates during 

a sustained contraction, and why the connection between MF slope and LBP has proven 

elusive despite considerable efforts. 

In conclusion, the nonlinear analysis to EMG time series was reviewed for low back 

muscles. The Shannon entropy is a standard measure of complexity and has been applied in 

cognitive science research, aging studies, heart failure research, and other fields (Allen et al., 

2004; Costa et al., 2003; Costa et al., 2005; Goldberger et al., 2002a; Liu et al., 2002). The time-

dependent entropy of the EMG signal exhibits a plateau-like behavior which indicates the 

presence of long-time correlations in the signal. The plateau value of the entropy was lower 

for subjects with LBP than for individuals in the control group. This connection might prove 

to be useful in a clinical assessment of LBP. The existence of long-time correlations in the 

signal explains the large variability in the MF obtained from the power spectrum. The 

entropy clearly differentiated the two groups, whereas the MF exhibited significant overlaps 

between the groups.  

3. Conclusion 

This chapter covered comprehensive articles comparing the difference between nonlinear 

time series and power spectrum analysis regarding the irregularity of signals in biological 

systems. A clinical assessment of pain/dysfunction using EMG should be considered on 

properties of the signal that change drastically in the presence of pain/dysfunction. A shift 

in the MF of the spectrum is explained by the change in the velocity of the action potential, 

and it reflects a quantitative change of the signals. A change in the entropy of the signal also 

reflects a qualitative change in the physiologic system.  

In this chapter, the quantities derived from nonlinear time series analysis of EMG signals 

was compared with power spectrum analysis between subjects with and without 

musculoskeletal dysfunction/pain. The fluctuations in physiologic signals can be 

quantified by entropy calculated from the nonlinear time series. The value of the entropy 

reflects the adaptability of biological systems; healthy systems are thus expected to have 

higher values than unhealthy systems. Finally, the distribution of the values of the 

entropy and power spectrum for a group of subjects with LBP and a group of healthy 

subjects was discussed.  
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