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1. Introduction  

The reduction of Cr(VI) to Cr(III) in the environment is beneficial to ecosystems since Cr(VI) 
is highly toxic and mobile in aquatic systems, whereas Cr(III) is less mobile, readily forms 
insoluble precipitates and is about 1000 times less toxic than Cr(VI) (Mertz, 1974; NAS, 
1974). Similar reactions have been used lately in reducing uranium-6 (U(VI)) to the less 
mobile tetravalent form U(IV) for possible application in areas around nuclear waste 
repositories (Chabalala & Chirwa, 2010).  
Biological Cr(VI) reduction is limited by its toxicity to the organisms that reduce it. In 
certain groups of bacteria, the Cr(VI) reduction capability may be transferred across species. 
Such a possibility was demonstrated in a study by Bopp & Ehrlich (1988) where Cr(VI) 
reduction genes were transferred on plasmids across different serotypes of Pseudomonas 
fluorescens. In 1992-1993, Wang and Shen (1993) evaluated Cr(VI) reduction activity in a 
transformed Escherichia species formerly known as B1. E. coli B1 is metabolically diverse and 
was demonstrated to function well in a multi-pollutant environment. For example, B1, later 
designated ATCC 33456, was able to grow on metabolites formed during degradation of 
aromatic compounds and reduce Cr(VI) to Cr(III) in the process (Chirwa & Wang, 2000). 
Successful simultaneous removal of Cr(VI) together with organic co-pollutants 
demonstrated the feasibility of treating pollutants in real-life where Cr(VI) is discharged 
together with a variety of toxic organic copollutants.  
In later years, various isolates of Cr(VI) reducing bacteria have been isolated from different 
sites around the world showing that the Cr(VI) reducing capability of microorganisms is 
ubiquitous in nature (Ganguli & Tripathi, 2002; Zakaria et al., 2007, Molokwane et al., 2008). 
Several organisms have shown adaptability to Cr(VI) exposure by either acquiring 
resistance to Cr(VI) toxicity or by participating in the detoxification of the environment for 
their own survival through the conversion of Cr(VI) to the less toxic Cr(III). This chapter 
evaluates the prospects of application of the biological remediation against Cr(VI) pollution 
and recent improvements on the fundamental process.  

2. Background 

Chromium has been used extensively in industrial processes such as leather tanning, 
electroplating, negative and film making, paints and pigments processing, and wood 
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preservation (Beszedits, 1988). Additionally, chromium has been used as a metallurgical 
additive in alloys (such as stainless steel) and metal ceramics. Chromium plating has been 
widely used to give steel a polished silvery mirror coating. The radiant metal is now used in 
metallurgy to impart corrosion resistance. Its ornamental uses include the production of 
emerald green (glass) and synthetic rubies. Due to its heat resistant properties, chromium is 
included in brick moulds and nuclear reactor vessels (Dakiky et al, 2002). 
Through the above and many other industrial uses, a large amount of chromium 
(approximately 4,500 kg/d) is discharged into the environment making it the most 
voluminous metallic pollutant on earth. Almost all chromium inputs to the natural systems 
originate from human activities. Only 0.001% is attributed to natural geologic processes 
(Merian, 1984).  
Chromium from the anthropogenic sources is discharged into the environment mainly as 

hexavalent chromium [Cr(VI)]. Cr(VI)  unlike Cr(III)  is a severe contaminant with high 
solubility and mobility in aquatic systems. Cr(VI) is a known carcinogen classified by the 
U.S.EPA as a Group A human carcinogen based on its chronic and subchronic effects 
(Federal Register, 2004). It is for this reason that most remediation efforts target the removal 
of Cr(VI) primarily. 
Chromium is conventionally treated by transforming Cr(VI) to Cr(III) at low pH through the 
following reduction-oxidation (redox) reaction:  

 Cr2O72- + 14H+ + 6e-    2Cr3+ +7H2O + 1.33 (E0) (1)  

(Garrel & Christ, 1965), followed by precipitation as chromium hydroxide (Cr(OH)3(s)) at a 
higher pH. Because of the difference in electric potential between the two states, substantial 
amounts of energy are needed to overcome the activation energy for the reduction process 
to occur. It is therefore assumed that spontaneous reduction of Cr(VI) to Cr(III) never occurs 
in natural aquatic systems at ambient pH and temperature. 
The redox reaction of Cr(VI) to Cr(III) requires the presence of another redox couple to 
donate the three necessary electrons. Sets of common Cr(VI) reducing couples in natural 
waters include H2O/O2, Mn(II)/Mn(IV), NO2-/NO3-, Fe(II)/Fe(III), S2-/SO42-, and CH4/CO2. 
Compounds such as pyrite (FeS2) and iron sulphide (FeS) can serve as reducing agents for 
Cr(VI). Iron sulphide (FeS) is ubiquitous in reducing environments such as saturated soils, 
sediments, and sludge zones of secondary clarifiers in sewage treatment plants. Cr(VI) 
reduction by iron sulphides leaves a complex precipitate in solution: 

 Cr(VI)(aq) + 3Fe(II)(aq)     Cr(III) (aq) + 3Fe(III) (aq) (2) 

 xCr(III) + (1-x)Fe(III) + 3H2O    (CrxFe1-x)(OH)3(s) + 3H+ (3)  

where x may vary from 0 to 1 (Eary & Rai, 1988). The precipitate (CrxFe1-x)(OH)3(s) is 
innocuous and unaesthetic, and therefore must be removed from treated water before 
discharging into the environment. In practice, the removal of byproducts of Cr(VI) reduction 
such as the Fe-OH complexes may be very difficult and expensive. The final process may 
require a system operated at low pH ranges (<2.0) for the removal of Fe-OH compounds 
followed by operation at a much higher pH range (8-9.5) for the removal of the Cr(III) 
precipitate (CrOH3(s)) (Eary & Rai, 1988). 
Chemical treatment can be performed ex situ or in situ. However, chemical agents to be 

applied in situ must be selected carefully to avoid 'unintended' contamination of the 
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treatment area. The primary problem associated with chemical treatment is the nonspecific 

nature of the chemical reagents. Oxidizing/reducing agents added to the matrix to treat one 

metal could transform other metals in the system into mobile and more toxic forms (NAS, 

1974). Additionally, the long-term stability of reaction products is of concern since changes 

in soil and water chemistry might create conditions favoring the remobilization of 

previously reduced toxic species. 

3. Biological Cr(VI) reduction and removal 

Microbial Cr(VI) reduction was first reported in the late 1970s when Romanenko and 
Koren’Kov (1977) observed Cr(VI) reduction capability in Pseudomonas species grown under 
anaerobic conditions. Since then, several researchers have isolated new microorganisms that 
catalyse Cr(VI) reduction to Cr(V) or Cr(III) under varying conditions (Shen & Wang, 1993; 
Chirwa & Wang, 1997a; Ackerley et al., 2004; Zakaria et al., 2007). Other researchers have 
also observed Cr(VI) reduction in consortium cultures isolated from the environment 
(Chirwa and Wang, 2000; Chen and Gu, 2005). Cr(VI) reduction is shown to be cometabolic 
(not participating in energy conservation) in certain species of bacteria, but is predominantly 
dissimilatory/respiratory under anaerobic conditions (Ishibashi et al., 1990). In the latter 
process, Cr(VI) serves as a terminal electron acceptor in the membrane electron-transport 
respiratory pathway, a process resulting in energy conservation for growth and cell 
maintenance (Horitsu et al., 1987). 
Most micro-organisms are sensitive to Cr(VI), but some microbial species are resistant and 

can tolerate high levels of chromate. In bacteria, Cr(VI) resistance is mostly plasmid borne 

whereas Cr(VI) reductase genes have been found both on plasmids and on the main 

chromosome. Different resistance strategies have been identified, including: 

 extraction of chromate via the transmebrane sulphate shuttle (Brown et al., 2006; Hu et 

al., 2005);  

 counteracting chromate-induced oxidative stress by activating enzymes involved in 

ROS scavenging (catalase, superoxide dismutase) (Ackerley et al., 2004);  

 specialised repair of DNA damage by SOS response enzymes (RecA, RecG, RuvAB) (Hu 

et al., 2005);  

 regulation of iron uptake, which may serve to sequester iron in order to prevent the 

generation of highly reactive hydroxyl radicals via the Fenton reaction (Brown et al., 

2006); and  

 extracellular reduction of Cr(VI) to Cr(III) which is then removed easily by reacting 

with functional groups of bacterial cell surfaces (Ngwenya & Chirwa, 2011). 

In a few cases, Cr(VI) resistance has been associated with the regulation of uptake 

mechanisms such as the sulphate uptake shuttle system. Because of its structural similarity 

to sulphate (SO42-), CrO42- in some species crosses the cell membrane via the sulphate 

transport system (Cervantes et al., 2001). After crossing the membrane, CrO42- is reduced to 

Cr3+ which interferes with DNA replication resulting in increased rate of transcription errors 

in the cell's DNA. Additionally, Cr3+ may alter the structure and activity of enzymes by 

reacting with their carboxyl and thiol groups (Cervantes et al., 2001). 

Among the resistance mechanisms listed above, the extracellular reduction of Cr(VI) may be 

utilised in environmental engineering. Although the process is facilitated by bacteria for  
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their own survival, this process can be used to lower the concentration of Cr(VI) in a 
contaminated environment. 

4. Biological treatment option 

Cr(VI) reduction by microorganisms often results in consumption of large amounts of 
proton as reducing equivalents which results in the elevation of the background pH. The 
increased pH facilitates the precipitation of the reduced chromium as chromium hydroxide, 
Cr(OH)3(s) as shown in Equations 4 & 5 below:  
 
 

 CrO42- + 8H+ + 6e-                 Cr3+ + 4H2O                         Cr(OH)3(s) + 3H+ + H2O (4) 

 3CH3COO- + 4HCrO4- + 4CrO42- + 33H+    8Cr3+ + 6HCO3- + 20H2O (5) 

Equation 4 illustrates the general biological Cr(VI) reduction reaction in Cr(VI) reducing 
bacteria (CRB) reconstructed from redox half reactions whereas Equation 5 illustrates a 
typical reaction under anaerobic conditions using acetic acid as a carbon source and electron 
donor. Other fatty acid byproducts of hydrolysis can also serve as electron donors for Cr(VI) 
reduction (Chirwa & Wang, 2000). The obvious advantage of the above process is that it 
eliminates the need for addition of chemicals in the precipitation stage of the process. 
Several carbon sources and reactor configurations have been evaluated. The performance of 
microbial cultures in treating Cr(VI) is limited mainly by the toxicity effects and the Cr(VI) 
reduction capacity of the cells (Shen & Wang, 1994). The latter has been demonstrated in 
several species of bacteria (Shen et al., 1996; Chirwa & Wang, 2000). The problem of limited 
Cr(VI) capacity in cells is circumvented by using either continuous-flow or biofilm 
processes, both of which facilitate continuous replenishment of killed or inactivated cells in 
the system (Nkhalambayausi-Chirwa & Wang, 2005). 

5. Cr(VI) reducing microorganisms 

The advent of molecular biology has made possible the identification and characterisation of 
several Cr(VI) reducing species from the environment. Previously, researchers could only 
identify microbial species that can be cultured using standard broth and agar media. We 
soon realise that several species of bacteria are not able to grow on standard culturing and 
growth media and others depend on complex interrelationships with other organisms in a 
microbial community. Recently, genetic sequencing of 16S rDNA genes and metagenomic 
techniques have been used to supplement the conventional methods of species identification 
and characterisation (Jukes & Cantor, 1969). This allows identification of both culturable and 
unculturable organisms in environmental samples. It also helps uncover species that have 
not been identified before. Examples of identified Cr(VI) reducing bacteria and their growth 
conditions are shown in Table 1. 
Table 1 illustrates the whole range of species and growth conditions for Cr(VI) reducing 
organisms. Most of the bacterial species shown in Table 1 were isolated from chromium (VI) 
contaminated environments (i.e. sediments, wastewater treatment plants, soil etc). Although 
earlier isolates grew mostly on aliphatic carbon sources, later studies have shown diversity 
in the preferred carbon sources and electron donors. For example, some consortium cultures  

Bacteria

3e- 
Neutral pH
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Name of Species Isolation Conditions/C-Sources References 

Achromobacter sp. 
Str.Ch1  

Anaerobic / Luria Broth; glucose-lactate Zhu et al., 2008 

Agrobacterium 
radiobacter EPS-916 

Aerobic-Anaerobic / glucose-mineral salts 
medium 

Llovera et al., 1993 

Bacillus megaterium 
TKW3 

Aerobic / nutrient broth-minimal salt 
medium-glucose, maltose, and mannitol 

Cheung & Gu, 
2006 

Bacillus sp. Aerobic/ Vogel-Bonner (VB) broth-citric 
acid; D-glucose  

Chirwa & Wang, 
1997a;  

Bacillus sp. ES 29 Aerobic / Luria-Bertani (LB) medium  Camargo et al., 
2003 

Bacillus subtilis Aerobic / Minimal medium - trisodium 
citrate and dehydrate glucose 

Garbisu et al., 
1998 

Bacillus drentesis, 
Bacillus thuringiensis 

Aerobic/Luria Betani Broth Molokwane & 
Chirwa, 2009 

Deinococcus 
radiodurans R1 

Anaerobic / Basal Medium, Lactate, 
Acetate, Pyruvate, Succinate 

Frederickson et 
al., 2000 

Enterobacter cloacae
HO1 strain 

Anaerobic / KSC medium-Sodium acetate Wang et al., 1989 

Escherichia coli ATCC 
33456 

Aerobic-Anaerobic / Nutrient broth 
medium; glucose, acetate, propionate, 
glycerol and glycine  

Shen & Wang, 
1993 

Enterobacter sp Aerobic/Luria Betani Broth Molokwane & 
Chirwa, 2009 

Lysinibacilus 
sphaericus 

Aerobic/Luria Betani Broth Molokwane & 
Chirwa, 2009 

Ochrobactrum sp. Aerobic / glucose Zhiguo et al., 2009 

Pantoea agglomerans 
SP1  

Anaerobic / acetate 
 

Francis et al., 2000 

Pseudomonas 
fluorescens 

Aerobic-Anaerobic / Glucose-Acetate- 
Pyruvate-Lactate-Succinate 

Bopp et al., 1983 

Pseudomonas 
fluorescens LB300 

Aerobic / Vogel-Bonner broth Bopp & Ehrlich, 
1988 

Pseudomonas putida 
MK1 

Anaerobic / Luria-Bertani -citric acid- Tris-
acetic acid 

Park et al., 2000 

Providencia sp. Aerobic-Anaerobic / Luria broth (tryptone-
yeast extract) 

Thacker et al., 
2006 

Shewanella alga 
(BrYMT) ATCC 55627 

Aerobic-Anaerobic / M9 broth- Glucose Guha et al., 2001 

Shewanella putrefaciens 
MR-1 

Anaerobic / lactate- fumarate Myers et al., 2000 

Table 1. Identified Cr(VI) reducing bacteria. 
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were shown to grow in the absence of organic carbon sources – utilising only bicarbonate 
(HCO3-) as the carbon source (Molokwane & Chirwa, 2009). The table also illustrates that 
Cr(VI) reducing microorganisms are ubiquitous in nature. They thrive on a range of carbon 
sources and are found in almost all possible environments. This in itself shows the feasibility 
of the biological treatment process as it could be adapted to a wide range of effluent and 
environmental conditions. 

6. Proposed Cr(VI) reduction mechanisms 

As stated earlier, Cr(VI) reduction may be cometabolic (not participating in energy 
conservation) in certain species of bacteria, but could be predominantly dissimilatory/ 
respiratory under anaerobic conditions in certain species. In the latter process, Cr(VI) serves 
as a terminal electron acceptor in the membrane electron-transport respiratory pathway, a 
process resulting in energy conservation for growth and cell maintenance (Horitsu et al., 
1987; Ishibashi et al., 1990). In the dissimilatory/respiratory process, electrons are donated 
from the electron donor to Cr(VI) via NADH (Chirwa & Wang, 1997a). 

6.1 Cr(VI) reduction by cytoplasmic enzymes 

Although it is proven that specialised Cr(VI) reducing enzymes (reductases) exist inside the 
Cr(VI) reducing bacterial cells, several components of the cell's protoplasm also reduce 
Cr(VI). Components such as NADH (NADPH in some species), flavoproteins, and other 
hemeproteins readily reduce Cr(VI) to Cr(III) (Ackerley et al., 2004). It is therefore expected 
that the cytoplasm fraction of disrupted cells from most organisms will reduce Cr(VI). Such 
a reduction process is not metabolically linked but will directly affect the cell since most of 
the intracellular proteins catalyse a one-electron reduction from Cr(VI) to Cr(V) which also 
generates harmful reactive-oxygen species (ROS) that cause damage to DNA. 

6.2 Cr(VI) reduction by soluble reductase 

Of special interest are the Cr(VI) reducing enzymes that are produced deliberately by the 
cell and exported into the media to reduce Cr(VI). Since protein excretion is an energy 
intensive process, most of these enzymes are produced constitutively, i.e., they are produced 
only when Cr(VI) is detected in solution and are therefore highly regulated (Chueng & Gu, 
2007). The evidence of extracellular Cr(VI) reduction has been presented by a few 
researchers using a mass balance of Cr(VI) and its reduced species in media and cells (Shen 
& Wang, 1993; Chirwa and Wang, 1997b). 
In a cellular mass balance evaluation by Chirwa & Wang (1997b), Cr(III) uptake by pelleted 
cells after centrifugation of a sample of Pseudomonas fluorescens LB300 was determined to be 
only 5% of the initial added Cr as Cr(VI). Cr(III) accumulation in the pelleted cells was 
determined by measuring the difference in Cr(III) level in solution before and after washing 
the cells three times in 1.0 N HCl. Results showed that less than 5.0% of Cr(III) was retained 
in the pelleted cells after 24 hours (0.36 ± 0.04 mg Cr(III)/L in pelleted cells; 8.55 ± 0.22 mg 
Cr(III)/L in supernatant; 8.62 ± 0.34 mg Cr(III)/L in culture medium). Similar results were 
obtained earlier by Shen & Wang (1993) with batch cultures of Escherichia coli ATCC 33456 in 
which only about 2.0% of Cr(III) transformed from Cr(VI) remained in the cell pellets.  
Extracellular Cr(VI) reduction is beneficial to the organism in that the cell does not require 
transport mechanisms to carry the chromate and dichromate into the cell and to export the 
Cr3+ into the medium. Both Cr6+ and Cr3+ react easily with DNA, the presence of which can 
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result in DNA damage and increased rates of mutations. Extracellular reduction of Cr(VI), 
thus, protects the cell from the DNA damaging effects of Cr(VI). It may be due to this reason 
that certain species of bacteria have adapted the extracellular Cr(VI) reduction process for 
survival in Cr(VI) contaminated environments. 
From an engineering perspective, using cells that reduce Cr(VI) externally is specifically 
beneficial since the cells can be separated easily from an expired medium and reused in the 
reactor system. If Cr(VI) is reduced internally, the resulting Cr(III) will tend to accumulate 
inside the cell, thus it will be difficult to recover reduced Cr or regenerate the cells. 

6.3 Membrane pathway 
Microorganisms are known to have evolved biochemical pathways for degrading or 
transforming toxic compounds from their immediate environment either simply for survival 
or to derive energy by using the toxic compounds as electron donors or electron sinks. The 
biotransformation pathways commonly take advantage of the advanced and well conserved 
membrane electron transport respiratory apparatus within the organisms (Dickerson, 1980). 
For example, the redox reactions involving some of the metallic pollutants are coupled to 
the electron transport through electron carriers in the cytoplasmic membrane and the flux of 
protons through the ATP-synthase. The proton flux and production of ATP through the 
ATP-synthase generates the required energy equivalents for use in cellular metabolism 
(Lloyd, 2003). 
In other studies, two pathways of Cr(VI) reduction are suggested for gram-negative bacteria 
(Figure 1). The first mechanism suggests Cr(VI) reduction mediated by a soluble reductase 
with NADH serving as the electron donor either by necessity (Horitsu et al., 1987) or for 
maximum activity (Ishibash et al., 1990). The NADH-dehydrogenase pathway is expected to 
predominate under aerobic conditions. In the second mechanism, Cr(VI) acts as an electron 
acceptor in a process mediated by a membrane-bound Cr(VI) reductase activity (Horitsu et 
al., 1987). 
 

 

 
NADH-DH  =   NADH-dehydrogenase cyt c = cytochrome c 

U =   Ubquinone  cyt aa3 = cytochrome oxidase 

cyt b = cytochrome b  

Fig. 1. The conceptual electron transport pathway through the inner cell membrane. 

Although the overall reduction of Cr(VI) to Cr(III) (CrO42-  Cr3+) is thermodynamically 
favorable, this reaction is limited by reaction kinetics under physiological conditions 
(Garrels & Christ, 1965). The kinetics of Cr(VI) reduction can be improved by coupling 
Cr(VI) reduction to other energy yielding reactions such as oxidation of organic compounds. 
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Metabolically linked Cr(VI) reduction associated with the oxidation of NADH was 
demonstrated in anaerobic cultures of E. coli ATCC 33456 under Cr(VI) concentrations 
below the toxic inhibition threshold (Chirwa & Wang 2000; Nkhalambayausi-Chirwa & 
Wang, 2001). Under such conditions, Cr(VI) may be used as the principle electron sink and 
energy is conserved for cell growth and maintenance.  
Observations of Cr(VI) reduction under aerobic conditions suggest a cometabolic process 
where transport of electrons to Cr(VI) does not yield conserved energy for metabolism. In 
such systems, Cr(VI) is reduced at the expense of metabolic activity in the cells. This was 
demonstrated using a cumulative mass balance analysis for a continuous-flow biofilm 
system where cell growth was disrupted during high Cr(VI) loading, but the metabolic 
activity resumed after Cr(VI) loading was lowered below the toxicity threshold of 10  
mg/L (Figure 2). The observed optimum Cr(VI) reduction efficiency just before system  
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Fig. 2. Cumulative mass balance showing delayed Cr(VI) reduction in a coculture of 
Pseudomonas putida DMP-1 and Escherichia coli ATCC 33456 under high loading conditions 
(Phase III-V). (After Nkhalambayausi-Chirwa and Wang, 2001).  
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overloading suggested that electrons may be diverted from other biological activities 

towards Cr(VI) reductase until all Cr(VI) was reduced. If Cr(VI) is still not completely 

reduced after the cells have sacrificed the maximum number of reducing equivalents to 

Cr(VI) reduction, then biological activity is completely compromised and the cells may  

die. 

6.4 Genetic regulation 

The pioneering work on microbial Cr(VI) reduction was conducted by Romanenko & 

Koren’Kov (1977) using an unidentified species of Pseudomonas fluorescens from Cr(VI) 

contaminated sediments. Further work revealed that Cr(VI) reduction can either be plasmid 

borne as was the case with several Pseudomonas species (Bopp and Ehrlich, 1988; Bopp et 

al., 1983) or located on the chromosomal DNA as is the case with several Bacilli and 

Enterobacteriaceae (Lu & Krumholz, 2007). Earlier studies also showed that elements 

carried on the plasmid DNA are transposable across species. This was demonstrated by the 

creation of Escherichia coli ATCC 33456 by transferring the plasmid carrying the Cr(VI) 

reducing genes from Pseudomonas fluorescens LB300 (Shen & Wang, 1993). 

So far, only one protein, ChrR, has been demonstrated to receive electrons directly from 

NADH to achieve Cr(VI) reduction. The protein was purified using classical biochemical 

techniques from Pseudomonas putida (Park et al., 2000) and the resulting homogeneous 

enzyme successfully catalysed the reduction of chromate. N-terminal and internal amino 

acid sequence determination of the enzyme allowed the design of appropriate primers to 

clone the chrR gene into Escherichia coli (Park et al., 2002). BLAST searching of protein 

databases with the derived ChrR amino acid sequence revealed a conserved family of 

proteins whose members are present in a wide range of organisms. Over 40 of these 

homologs, including the predicted product of a previously uncharacterized open reading 

frame (yieF) from Escherichia coli, showed 30% amino acid identity with ChrR. The ChrR and 

YieF homologs were shown to contain the characteristic signature of the NADH_dh2 family 

of proteins, which consists of bacterial and eukaryotic NAD(P)H oxidoreductases (Lu & 
Krumholz, 2007). 

The regulation of Cr(VI) reduction in an operon structure was observed in Bacillus cereus SJ1 

and Bacillus thuringiensis strain 97-27 in which the Cr(VI) reduction genes were 

demonstrated to be upward regulated by the promoter chrI which in turn regulated the 

Cr(VI) resistance gene chrA1 and arsenic resistance genes arsR and arsB (He et al., 2010) 

(Figure 3).  

From the observations by He et al. (2010) the chrA1 gene encoding ChrA protein showed the 

highest amino acid identity (97%) with a homologous protein annotated as chromate 

transporter in Bacillus thuringiensis serovar konkukian str. 97-27. Interestingly, the chrA1 

gene is located downstream of the potential transcriptional regulator gene chrI. The region 

of chrA1 and chrI also contains several putative coding sequences (CDSs) encoding 

homologs of Tn7-like transposition proteins and a resolvase that is potentially involved in 

horizontal gene transfer events (Figure 3). ChrI is assumed to control a 26 kb region with a 

relatively low GC content in B. thuringiensis 97-27 (32.8%) which is lower than the average 

GC content of 35.4% in a corresponding ChrI regulated region in B. cereus SJ1.  

In both Bacilli, the Chr Operon is interlaced with the arsenic resistance genes including the 

regulatory genes for the arsenic resistance operon repressor ArsR, arsenic resistance protein  
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ArsB, arsenate reductase ArsC, arsenic chaperon ArsD and arsenic pump ATPase ArsA (He 
et al., 2010).  
 

 

Fig. 3. Comparison of genetic determinants of chromate resistance and chromate reduction 
between (a) Bacillus cereus SJ1 and (b) Bacillus thuringiensis serovar konkukian str. 97-27. 
(After He et al., 2010). 

7. Cr(VI) removal from solution - biosorptive processes 

In previous studies, it was demonstrated that some species of bacteria possess adsorptive 
properties that facilitate removal of metal species from aquatic solutions. These adsorptive 
properties are dependent on the distribution of reactive functional groups on the cell wall 
surfaces of bacteria, such as; carboxyl, amine, hydroxyl, phosphate and sulfhydryl groups 
(Parmar et al., 2000). Available information is mostly based on studies conducted under 
aerobic conditions. There is limited information on microbial adsorptive behaviour under 
oxygen stressed conditions and toxic environments.  
The only available information is on the adsorptive ability of sulphate reducing bacteria for 
toxic metals including radionuclides (Bruhn et al., 2009). However, as yet, there is lack of 
knowledge on the nature of the surface reactive groups on SRB cell surfaces that account for 
its high metal adsorption ability.  
In a recent study, Ngwenya & Chirwa (2011) investigated the chemical nature of the cell 
surfaces of a sulphate reducing bacteria consortium and its interaction with mono- and 
divalent cations under anaerobic conditions. The study utilized a surface complexation 
modelling approach to predict the trends of the adsorption of the cationic species.  
In the above study, the distribution of functional groups and adsorption reactions on SRB 
cell surfaces were characterised using a combination of Gram potentiometric titrations, 
FTIR, and surface complexation modelling. Four types of binding sites were identified: site 1 
corresponding to carboxylic acid functional groups (pKa = 4-5); the near-neutral site 2 
corresponding to phosphates (pKa =6-7), and sites 3 and 4 corresponding to basic sites and 
phenolic sites (pKa = 8-12). The most abundant proton binding sites belonged to site 4 
(hydroxyl/amine group) and accounted for about 40% of the total concentration of binding 
sites for the consortium. The effect of ionic strength was also evident from the metal ion 
adsorption studies. A decrease in metal adsorption was observed at higher ionic strengths. 
These results promise feasibility of application for recovery of adsorbed metallic species for 
reuse and regeneration of the cells. 
Since the bacteria cell walls show an adsorptive capacity for cationic species, reduction of the 
oxyanionic chromate (CrO42-) to Cr(III), which exists in solution at lower pH as Cr3+, could be 
necessary for effective removal Cr(VI) from solution. In spite of the effectiveness of biosorption 
in removing Cr(VI), past studies have strongly supported precipitation as the primary removal 
mechanism of reduced chromium (Shen & Wang, 1993; Chirwa & Wang, 1997b).  

Tn7-like transposition proteins genes 

Arsenic resistance genes 

Chromate resistance genes 

Other genes 

Resolvase genes
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8. Biofilm systems  

Microorganisms in nature and in reactor systems rarely grow as separate cells. The 
microorganisms form complex communities either in the form of agglomerations called 
flocs or as biofilm on the surfaces of inanimate objects and other organisms. The 
performance of a microbial culture is not only a function of its capability to degrade or 
transform a pollutant but also the configuration of the community in which it resides. There 
are complex interrelationships that occur within the microstructure that affect the 
availability of substrates, symbiotic existence through toxicity shielding of more sustainable 
species, and transfer of metabolites to organisms that could otherwise not grow on the only 
available primary substrate in the bulk liquid. 
Nkhalambayausi-Chirwa and Wang in 2001 took advantage of the complex structure of the 
micriobial biofilm to improve the performance of Escherichia coli ATCC 33456 in reducing 
Cr(VI). The microorganisms in the biofilm could benefit from the spatial and physiological 
heterogeneity within the biofilm community (Stoodley et al., 1999). In this case, phenol 
degrading species and Cr(VI) reducing species were grown together in a biofilm reactor 
such that E. coli utilised the anaerobic conditions in deeper layers of the biofilm for growth 
and Cr(VI) reduction whereas P. putida degraded the primary carbon source (phenol) into 
organic acid metabolites (Nkhalambayausi-Chirwa & Wang, 2001). In so doing, P. putida 
detoxified the environment for E. coli and provided secondary carbon and energy sources 
for E. coli. 
The operational model of the biofilm system is shown in Figure 4 with the dissolved species 
represented as CB, PB, and UB in the bulk liquid and C(t,x), (P(t,x)), and U(t,x) in the biofilm 
zone, where C = Cr(VI) concentration (mg/L), P = phenol concentration (mg/L), and U = 
metabolites concentration (mg/L). The generic representation of dissolved species 
concentration in the biofilm is given by, y(t,x). The particulate matter in the reactor consisted 
of P. putida (XP), E. coli (XE), and inert biomass (XI). The subscript B in the biomass terms 
indicates unattached biomass in the bulk liquid. 
 

 

Fig. 4. Conceptual mixed-culture biofilm model for (a) control volume space, and (b) biofilm 
environment. 
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In the above model, the primary carbon source (phenol), Cr(VI), and O2 diffuse into the 

biofilm where they are taken up by living organisms. A stagnant liquid layer of thickness Lw 

inherently resists the transport of the dissolved species into the biofilm resulting in 

generation of a concentration gradient towards the liquid/biofilm interface. Since phenol is 

toxic to the E. coli species used in the study, P. putida out-competed E. coli in the outer layers 

of the biofilm. And since P. putida is obligately anaerobic, it was out-competed by E. coli as 

O2 became scarce deeper in the biofilm. 

The above system only illustrates the complex nature of the interdependent systems in a 

near natural environment. Some of these processes can be engineered but some may be lost 

during the implementation of bioremediation process. During the process of developing the 

above described coculture, many pairs of aromatic compound degrading species and Cr(VI) 

reducing species of bacteria were tested but, in most cases, one of the species could be out 

competed due to susceptibility to toxicity or slow growth. 

9. Diffusion/Reaction model 

The removal of the dissolved species and cell growth is represented by a set of diffusion-

reaction partial differential equations (PDEs) with the conversion reactions occurring mainly 

inside the biofilm. The PDEs represent a mass balance across an infinitesimal biofilm section 

(z) parallel to the substratum surface (Figure 4b) as follows: 
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where: ˆ ˆ ˆ( )wD z  x xj x , mass flux rate of biomass (ML-2T-1), rûf = the vector of removal rates 

of dissolved species in the biofilm (ML-3T-1), ˆfxr = the vector of biomass production rates in 

the biofilm zone (ML-3T-1), and  = is a biofilm porosity constant (Vfvoids/Vftotal). The 

movement of cells across the biofilm is induced by physical displacement due to growth 

whereas dissolved species are transported by diffusion. Thus, the values of the j terms for 

cells are expected to be lower (by orders of magnitude) than the j terms for dissolved species 

in the biofilm. 

The outer and inner boundary conditions for dissolved species û and biomass x̂  are defined 

by: 

  ˆ ˆ ˆ ˆ( ) ( , )L B fs fk t t L  u uj u u ,   z = Lf,   outer boundary (8) 

 ˆ ˆ( ) f fu L  
X

j x ,   z = Lf,   outer boundary (9) 

 ˆ 0uj ,   z = 0,   inner boundary (10) 

 ˆ 0,
X

j    z = 0,   inner boundary (11) 
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where kLû = Dwû/Lw, is the mass transfer rate coefficient (L2T-1), and ûfs = dissolved species 
concentration at the liquid/biofilm interface (ML-3). 
The above equations were simulated successfully using optimised reaction rate parameters 
from batch studies and dynamic parameters from the continuous flow biofilm reactor 
systems (Nkhalambayausi-Chirwa & Wang, 2005) (Figure 5). The dynamic parameters were 
estimated from the data obtained from the operation of the reactor at 24 hours hydraulic 
retention time (HRT) (Phase I-VI). The rest of the phases (VII-XVIII) were simulated using 
the optimised parameters. The results showed a high predictive accuracy as the model 
accurately tracked the trends in effluent concentrations for both the electron donor (phenol) 
and the electron sink (Cr6+). 
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Fig. 5. Simulation of Cr(VI) (M6+) removal in a coculture biofilm system under different 
HRTs: 24 h (Phase I-VI); 11.7 h (Phase VII-X); 6 h (Phase XI-XIV); 17.9 h (Phase XV-XVIII).  

10. In situ barrier systems 

Several types of treatment walls have been tested in the attenuation of the movement of 
metals in groundwater. Trench materials have been investigated including zeolite, 
hydroxyapatite, elemental iron, and limestone (Vidic & Pohland, 1996). Elemental iron has 
been tested for chromium (VI) reduction and other inorganic contaminants (Powell et al., 
1995) and limestone for lead precipitation and adsorption (Evanko & Dzombak, 1997). 
Biological Permeable Reactive Barriers (BPRBs) use microorganisms as reactants rather 
than chemical reactants to removal pollutants. Specific application of BPRBs removal of 
Cr(VI) in groundwater has not been attempted. This has been both due to the 
unavailability of microorganisms capable of growing under the nutrient deficient 
groundwater conditions and lack of information on the fate of the reduced chromium 
species in the barrier. 
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Recently, the group at University of Pretoria has evaluated the Cr(VI) reduction 
performance of several anaerobic species of bacteria in microcosm systems simulating 
groundwater conditions (Molokwane & Chirwa, 2009). The microorganisms were isolated 
locally to avoid the dilemma of using imported bacteria which is difficult to get and in most 
instances not allowed by law. 

10.1 In situ barrier concept 

Permeable reactive barriers are an emerging alternative to traditional pump-and-treat 

systems for groundwater remediation. Such barriers are typically constructed from highly 

impermeable emplacements of materials such as grouts, slurries, or sheet pilings to form a 

subsurface “wall.” Permeable reactive barriers are created by intercepting a plume of 

contaminated groundwater with a permeable reactive material (Figure 6). For physical 

chemical processes such as described above, the reactive materials need to be replenished or 

replaced after a certain time of operation, a process which is extremely expensive and in 

some cases not practical. Using microorganisms as the main reactants aims at achieving a 

self-replenishing system since the bacteria can regenerate themselves. For biodegradable 

compounds that can be mineralized to CO2 and H2O such as petrochemical pollutants, this 

works perfectly. Unfortunately, metals can only be converted from one form to another such 

that the converted form may be trapped in the barrier material until measures are taken to 

remobilise the pollutant to clean the barrier. 

 

Contaminated 

groundwater

Treated 

groundwater

Reactive cell 

containing SRB
Fill

Contaminated 

groundwater

Treated 

groundwater

Reactive cell 

containing SRB
Fill

 

Reactive Cell 
Containing CRB 

 

Fig. 6. Elevated view of a permeable reactive barrier configuration for groundwater 
treatment. 

10.2 Application to Cr(VI) and toxic metal removal 

As stated earlier, no full scale applications of BPRBs for treating Cr(VI) have been attempted 

thus far. The group at the University of Pretoria has been evaluating several remediation 

scenarios for in situ treatment of Cr(VI) in groundwater environments. One possibility is in 

situ bioinoculation in which the Cr(VI) reducing mixed-culture of bacteria is injected into the  
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aquifer and allowed to acclimate to the new conditions. This facilitates in situ selection for 

adaptable organisms. In order for the organisms to flourish in the new environment, the 

prevailing conditions in the environment must just be suitable for the organisms and this is 

difficult to predict in advance. 

A more futuristic approach is the in situ molecular augmentation in which transposable 

elements carrying the metal reducing genes could be introduced into the environment to be 

taken up by native bacteria in the environment. Upon assimilation of the foreign genetic 

elements, the native bacteria could then become competent in neutralising the targeted 

pollutant(s). In this way, importation of foreign bacteria across ecosystems could be 

avoided. Genetic carriers such as transposons and plasmids have been used in the 

experiments to evaluate this process by shuttling genetic information for toxic metal 

remediation into native species that are already best suited to the target environment. 

Several species of bacteria are capable of picking up and retaining circular fragments of 

DNA called Broad-Host-Range Plasmids which may be engineered to carry specific genes 

for the degradation of xenobiotic compounds and transformation of toxic metals (Vincze 

and Bowra, 2006).  

A similar process can be applied using genetically engineered linear DNA called 

transposons. Although studies have been conducted using these techniques in laboratory 

microcosms, the application in actual environments has not been attempted (Hill et al., 

1994). In the future, it is foreseeable that these methods will find wide application for the 

new varieties of recalcitrant pollutants being discharged into the environment from several 

sources. 

10.3 Microcosm performance 

Cores from an actual contaminated site were set up in the laboratory as microcosm reactors 

as shown in Figure 7. Contaminant loading was simulated by gravity feeding as is the case 

in open aquifers a representative Cr(VI) polluted site in Brits (North West Province, South 

Africa). The experimental systems were installed and operated as packed-bed reactors. All 

microcosm reactors were operated under a feed concentration of 40 mg/L, representing the 

observed concentration at the actual site (Brits). 1 mL samples drawn from the influent and 

effluent were centrifuged at 6000 rpm (2820  g) for 10 minutes to remove soil particles 

followed by analysis for Cr(VI) and total Cr as described below. 

The microcosm reactors were operated without any added organic carbon sources in the 

feed solution and no minerals apart from those already found in the soil. Since the system 

was being developed for possible application in the groundwater environment, introduction 

of potentially polluting organic carbon sources is not desirable. Autotrophic organisms in 

the soil are thus expected to use bicarbonate (HCO3-) as carbon source and nutrients from 

soil and decaying vegetation overlying the soil. Efforts are under way to characterise the 

composition of the organic matter coming from the soil using TOC, DIC, and GC/MS 

analysis. 

The experiments consisted of two non-sterile reactors (R1 and R4) containing native bacteria 

from the soil, two sterile reactors (R2 and R5) sterilized by autoclaving at 121oC for 30 min., 

and two consortium inoculated non-sterile reactors (R3 and R6) containing bacteria from 

dried activated sludge and native soil bacteria. All reactors were operated under a feed 

concentration of 40 mg/L.  
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Fig. 7. Experimental setup of the gravity-fed microcosm reactor system. 

Columns that experienced severe short-circuiting (R4 and R5) were discontinued. Only 
reactors R1, R2, R3, and R6 were fully tested. Since the cores were extracted from 
approximately the same depth at the site, the resistance to flow was almost the same with 
higher flow rates observed in Reactors 1 and 3.  
Data collected showed that one of the columns inoculated with Cr(VI) reducing bacteria (R6) 
achieved near complete removal of Cr(VI), however, the effectiveness of removal was 
relatively low at a higher hydraulic loading rate (data not shown). Chromium removal of 
approximately 95% was observed in the slow feeding reactor R6 (flow rate, Q = 0.310 
cm3/hr) (Figure 8). The removal rate was lower, approximately 80%, in the column with a 
higher flow rate of 0.608 cm3/hr (R3). No Cr(VI) removal was observed in the sterilised and 
in the non-inoculated (native bacteria) controls. The performance of the reactors under 
different loading conditions is summarised in Table 2. 
These experiments clearly show that it is possible to introduce microbial cultures into the 

environment in a controlled way to achieve Cr(VI) reduction in flowing water. The results 

do not show how the reduced Cr species, suspected to be predominantly Cr3+, could be 

remobilised and extracted from the barrier zone once it starts affecting the hydraulic 

conductivity of the barrier. 

10.4 Microbial culture analysis 

10.4.1 Characteristics of initial consortium  

The robustness of the barrier system was evaluated by monitoring the survival of 

microorganisms from the Cr(VI) reducing inoculum in the microcosm simulating the aquifer 

environment. The original inoculum was obtained from dry sludge from sand drying beds  
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Fig. 8. Cr(VI) reduction in microcosm reactors: Reactor 2 = sterilised column, Reactor 3 = 
inoculated non-sterile reactor, and Reactor 6 = inoculated non-sterile reactor. 

at Brits Sewerage Works (Brits, SA). The sludge bacteria used to inoculate enrichment 
cultures under microaerobic conditions (under 100 mg/L Cr(VI)) and the colonies isolated 
based on morphology were further purified and analysed. The predominant species under 
these enrichment conditions were the Gram-positive Bacilli mainly due to inhibition of 
anaerobic species by oxygen in the sample. Partial sequences of 16S rRNA matched the 
Bacillus groups – Bacillus cereus ATCC 10987, Bacillus cereus 213 16S, Bacillus thuringiensis 
(serovar finitimus), Bacillus mycoides – and two Microbacterium group – Microbacterium 
foliorum and Microbacterium sp. S15-M4 (Table 3). A phylogenetic tree was constructed for 
the species from purified cultures grown under aerobic conditions based on a basic BLAST 
search of rRNA sequences in the NCBI database (Figure 9). 
 

Reactor Number 
and Type 

Effluent Cr(VI) Conc. 
mg/l 

Effluent Cr(III) Conc.
mg/l 

Cr(VI) Removal 
% 

    

Native-soil R1 39.0 ± 2.0 0.0 ± 0.0 0.0 ± 0.0 

Non inoculated R2 37.8 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 

Inoculated R3 6.7 ± 0.8 1.5 ± 0.4 80 ± 3.6 

Inoculated R6 1.9 ± 0.3 3.2 ± 1.1 95.3 ± 1.4 

Table 2. Performance of gravity-fed microcosm reactors operated under an influent Cr(VI) 
concentration of 40 mg/L (0.310 cm3/h). 

www.intechopen.com



 
Biodiversity 

 

92

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

AJ542506| |LMG 21831B acillus  d ren tens is
T

C Xan7

AJ315060| |LMG 19492Virg ibac illus  p ic tu rae
T

C Xan10

C Xan15

DQ207729| |CCM 2010B a cil lu s  cereus
T

AF290545| |ATCC 10792Ba cillus  thu ring ie ns is
T

AB021192|B acil lus  m yco ide s

C Xan17

DQ411811| |ATCC 14025Ente ro coccus a v ium
T

C Xan2

DQ411809| |ATCC 49372E nte rococcus pse udoa v ium
T

DQ411813| |ATCC 19434E nte roco ccus fae c ium
T

C Xan11

AB073191|Pa en iba c illu s pabu li

C Xan12

C Xan6a

C Xan6b

X83408|A rth rob acter  oxyda ns

X83409|A rth roba cter  su lfu reus

C Xan3

X81665| i|DSM 2403A cine tob acte r  lw o ff i
T

X80725 |E scher ich ia co li| ATCC 11775T

100

97

100

100

100
100

75

99

100

100

100

99

76

61

100

93

100

100

100

100

 

Fig. 9. Phylogenetic tree of species from Brits dry sludge reflecting microbial diversity under 
anaerobic conditions. 
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Inoculation culture Consortium  Culture in Reactor 3 and 6 at end of 

 experiment 

Type Predominant species  Type Predominant species 

X1 Bacillus cereus 213 16S, Bacillus 

thuringiensis 16S 

 A Pantoea or Enterobacter sp. 

X2 Bacillus cereus ATCC 10987, 

Bacillus thuringiensis str. Al 

Hakam 

 B Bacillus sp. possibly Bacillus 

thuringiensis/ cereus group 

X3 Bacillus cereus ATCC 10987, 

Bacillus thuringiensis str. Al 

Hakam 

 C Pantoea or Enterobacter sp. 

X4 Bacillus mycoides BGSC 6A13 

16S. Bacillus thuringiensis 

serovar finitimus BGSC 4B2 16S 

 D Lysinibacillus sphaericus strain BG-

B111, Bacillus sp. G1DM-64, 

Bacillus sphaericus  

X5 Bacillus mycoides BGSC 6A13 

16S. Bacillus thuringiensis 

serovar finitimus BGSC 4B2 16S 

 E Bacillus sp. possibly Bacillus 

thuringiensis/ cereus group 

X6 Bacillus mycoides BGSC 6A13 

16S. 

Bacillus thuringiensis serovar 

finitimus BGSC 4B2 16S 

 F Bacillus sp. possibly Bacillus 

thuringiensis/ cereus group 

X7 Bacillus mycoide BGSC 6A13 

16S. Bacillus thuringiensis 

serovar finitimus BGSC 4B2 16S 

 G Bacillus cereus strain ZB 

Table 3. Microbial culture changes after operation of the microcosms reactors for 15 days 

under an influent Cr(VI) concentration of 40 mg/L. 

10.4.2 Characterisation of microcosm bacteria (after 15 days) 

After operating the reactors under oxygen stressed conditions in the presence of other soil 

bacteria, a community shift was expected. In reactors R3 and R6, the soil contained a wide 

range of soil dwelling species of bacteria as well as the newly introduced bacteria from the 

sand drying bed sludge. The microbial dynamics monitored by the 16S rRNA fingerprinting 

showed a decrease in culturable species after exposure to Cr(VI) as shown in Tables 3. Only 

the B. cereus and B. thirungiensis serotypes persisted either due to resilience against toxicity 

or adaptation to the changing conditions in the reactor. The Lysinibacillus group is also a 

well known sludge bacteria. Both Bacilli (B. cereus and B. thuringiensis) and the Lysinibacillus 

species contain well known Cr(VI) reducing serotypes such as Bacillus K1 (Shen et al., 1996), 

Bacillus cereus, Bacillus thirungiensis (Camargo et al., 2003), and Lysinibacillus sphaericus AND 

303 (Pal et al., 2005).  
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10.4.3 Culture composition at the end of experiment 

Several species from the original sludge culture disappeared from the consortium after 

operating the microcosm reactors for 17-20 days. Instead, other species not originally 

observed appeared in the reactors (Figure 10). Some species in the samples also showed 

associations with gram-negative species belonging to the Enterococcus and Escherichia 

groups. These results confirmed the adaptability of the cultures at the community level. 

Linked with the performance data, the results suggest that more competent species were 

selected after a long time of exposure to Cr(VI). 
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Fig. 10. Phylogenetic tree of species from microcosm reactors after operation under 40 mg/L 
influent Cr(VI) concentration for 17-20 days. 
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11. Conclusion 

Since the first Cr(VI) reducing bacteria were isolated in the 1970's, a lot of progress has been 
made in isolating and developing higher performing cultures adapted to various 
environments. New research using genetic tools has yielded new cultures and new 
understanding of the Cr(VI) reduction process both at the molecular level [through genetic 
studies] and at culture community level [through genomics and proteomics]. Pure and 
mixed cultures of bacteria have been applied successfully in treating industrial effluents 
containing high levels of Cr(VI). However, application of biological systems in the 
remediation of contaminated environments still faces a challenge. Although culture 
performance under natural conditions has been evaluated using laboratory microcosms, 
more research is still required to elucidate the fate and possibility of recovery of artificial 
microbial barriers. The question of the fate of reduced Cr species and what to do about the 
foreseeable blockage by hydroxide species remains unanswered. In order for the in situ 
bioremediation technology to work for Cr(VI) and other toxic heavy metals, a solution must 
be found for feasible recovery of the barrier zones involving remobilisation of reduced Cr 
species. 

12. Acknowledgement 

The research on biological Cr(VI) reduction at the University of Pretoria was funded by the 
National Research Foundation (NRF) of South Africa through the Focus Areas Programme 
Grant No FA2007030400002 awarded to Evans M. N. Chirwa. 

13. References 

Ackerley, D.F.; Gonzalez, C.F.; Park, C.H.; Blake R.; Keyhan, M. & Matin A. (2004). 

Chromate-Reducing Properties of Soluble Flavoproteins from Pseudomonas putida 

and Escherichia coli. Applied And Environmental Microbiology, Vol.20, No.2, (February 

2004), p. 873-882, ISSN 0099-2240. 

Beszedits, S. (1988). Chromium Removal from Industrial Wastewaters, In: Chromium in the 

Natural and Human Environments, pp. 232-263, Nriagu, O. & Nieboer E. (Eds.), John 

Wiley, ISBN 978-0471856436, New York, New York, USA.  

Bopp, L.H.; Chakrabarty, A.M. & Ehrlich, H.L. (1983). Chromate Resistance Plasmid in 

Pseudomonas fluorescens. Journal of Bacteriology, Vol.155, No.3, (September 1983), pp. 

1105-1109, ISSN 0021-9193. 

Bopp, L.H. & Ehrlich, H.L. (1988). Chromate Resistance and Reduction in Pseudomonas 

fluorescens Strain LB300. Archives of Microbiology, Vol.150, No.5, (September 1988), 

pp. 426-431, ISSN 0302-8933. 

Brown, S.D.; Thompson, M.R.; Verberkmoes, N.C.; Chourey, K.; Shah, M.; Zhou, J.Z.; 

Hettich, R.L. & Thompson, D.K. (2006). Molecular Dynamics of the Shewanella 

oneidensis Response to Chromate Stress. Molecular Cell Proteomics, Vol.5, No.3, 

(March 2006), pp. 1054-1071, ISSN 535-9476. 

Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J. & Johnson, S.G. (2009). Microbial 

Biofilm Growth on Irradiated, Spent Nuclear Fuel Cladding. Journal of Nuclear 

Materials, Vol.384, No.2, (February 2009), pp. 140-145, ISSN 0022-3115. 

www.intechopen.com



 
Biodiversity 

 

96

Camargo, F.A.O.; Bento, F.M.; Okeke, B.C. & Frankenberger, W.T. (2003). Chromate 

Reduction by Chromium-Resistant Bacteria Isolated from Soils Contaminated with 

Dichromate. Journal of Environmental Quality, Vol.32, No.4, (July 2003), pp. 1228-

1233, ISSN 0047-2425. 

Cervantes, C.; Campos-Garcia, J.; Devars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Torres-

Guzman, J.C. & Moreno-Sanchez, R. (2001). Interactions of Chromium with 

Microorganisms and Plants. FEMS Microbiology Review, Vol.25, No.3, (May 2001), 

pp. 335-347, ISSN 0168-6445.  

Chabalala, S. & Chirwa, E.M.N. (2010). Uranium(VI) Reduction and Removal by High 

Performing Purified Anaerobic Cultures from Mine Soil. Chemosphere, Vol.78, No.1, 

(January 2010), pp. 52-55, ISSN 0045-6535. 

Chen, Y. & Gu, G. (2005). Preliminary studies on continuous chromium(VI) biological 

removal from wastewater by anaerobic-aerobic activated sludge process. 

Bioresource Technology, Vol.96, No.15, (October 2005), pp. 1713-1721, ISSN 0960- 

8524. 

Chirwa, E.M.N. & Wang, Y.-T. (1997a). Hexavalent Chromium Reduction by Bacillus sp. in a 

Packed-Bed Bioreactor. Environmental Science and Technology, Vol.31, No.5, (May 

1997), pp. 1446-1451, ISSN 0013-936X. 

Chirwa, E.M.N. & Wang, Y.-T., (1997b). Chromium(VI) Reduction by Pseudomonas fluorescens 

LB300 in Fixed-Film Bioreactor. Journal of Environmental Engineering, Vo.123, No.8, 

(August 1997), pp. 760–766, ISSN 0733-9372. 

Chirwa, E.N. & Wang, Y.-T. (2000). Simultaneous Cr(VI) Reduction and Phenol Degradation 

in an Anaerobic Consortium of Bacteria. Water Research, Vol.34, No.8, (August 

2000), pp. 2376-2384, ISSN 0043-1354. 

Cheung, K.H. & Gu, J.D. (2007). Mechanism of Hexavalent Chromium Detoxification by 

Microorganisms and Bioremediation Application Potential: A Review. International 

Biodeterioration and Biodegradation, Vol.59, No.1, (January 2007), pp. 8-15, ISSN 0964-

8305. 

Dakiky, M.; Khamis, M.; Manassra, A. & Mer’eb, M. (2002). Selective Adsorption of Cr(VI) in 

Industrial Waste Water Using Low-Cost Abundantly Available Adsorbents. 

Advances in Environmental Research, Vol.6, No.4, (October 2002), pp. 533–540, ISSN 

1093-0191. 

Dickerson, R.E. (1980). Cytochrome c and the Evolution of Energy Metabolism. Scientific 

American, Vol.242, No.1, (January 1980), pp. 136-153, ISSN 0036-8733. 

Eary, L.E. & Rai, D. (1988). Chromate Removal from Aqueous Wastes by Reduction with 

Ferrous Ion. Environmental Science and Technology, Vol.22, No.8, (August 1988), pp. 

972-977, ISSN 0013-936X. 

Evanko, C.R. & Dzombak, D.A. (1997). Remediation of Metals-Contaminated Soils and 

Groundwater. Technology Evaluation Report. Ground-Water Remediation 

Technologies Analysis Center, Pittsburgh, Pennsylvania, USA. Available online 

<http://www.clu-in.org/download/toolkit/metals.pdf> 

Federal Register, (2004). Occupational Safety and Health Administration. Occupational 

Exposure to Hexavalent Chromium. 69 Federal Register 59404. October 4, 2004. 

www.intechopen.com



Biological Cr(VI) Reduction: Microbial Diversity,  
Kinetics and Biotechnological Solutions to Pollution 

 

97 

Francis, C.A.; Obraztsova, A.Y. & Tebo, B.M. (2000). Dissimilatory Metal Reduction by the 

Facultative Anaerobe Pantoea agglomerans SP1. Applied and Environmental 

Microbiology, Vol.66, No.2, (February 2000), pp. 543-548, ISSN 0099-2240.  

Ganguli, A. & Tripathi, A.K. (2002). Bioremediation of Toxic Chromium from Electroplating 

Effluent by Chromate-Reducing Pseudomonas aeruginosa A2 Chr in Two Bioreactors. 

Applied Microbiology and Biotechnology, Vol.58, No.3, (March 2002), pp. 416–420, 

ISSN 0175-7598. 

Garbisu, C.; Alkorta, I.; Llama, M.J. & Serra, J.L. (1998). Aerobic Chromate Reduction by 

Bacillus subtilis. Biodegradation, Vol.9, No.2, (March 1998), pp. 133-141, ISSN 0923-

9820. 

Garrels, R.M. & Christ, C.L. (1965). In Solutions, Minerals and Equilibria, pp. 403-435. Harper 

and Row Publishers, ISBN 978-0867201482, New York, New York, USA. 

Guha, H.; Jayachandran, K. & Maurrasse, F. (2001). Kinetics of Chromium (VI) Reduction by 

a Type Strain Shewanella alga under Different Growth Conditions. Environmental 

Pollution, Vol.115, No.2, (December 2001), pp. 209-218, ISSN 0269-7491. 

He, M.; Li, X.; Guo, L.; Miller, S.J.; Rensing, C. & Wang, G. (2010). Characterization and 

Genomic Analysis of Chromate Resistant and Reducing Bacillus cereus Strain SJ1. 

BMC Microbiology, Vol.10:221, (2010), pp. 1-10. Available online < 

http://www.biomedcentral.com/1471-2180/10/221>  

Hill, K.E.; Fry, J.C. & Weightman, A.J. (1994). Gene Transfer in the Aquatic Environment: 

Persistence and Mobilization of the Catabolic Recombinant Plasmid pDlO in  

the Epilithon. Microbiology, Vol.140, No.7, (July 1994), pp. 1555-1563, ISSN 1350- 

0872. 

Horitsu, H.; Futo, S.; Miyazawa, Y.; Ogai, S. & Kawai, K. (1987). Enzymatic Reduction of 

Hexavalent Chromium by Hexavalent Tolerant Pseudomonas ambigua G-1, 

Agricultural and Biological Chemistry, Vo.51, No.9, (September 1987), pp. 2417-2420, 

ISSN 0002-1369. 

Ishibashi, Y.; Cervantes, C. & Silver, S. (1990). Chromium Reduction in Pseudomonas putida. 

Applied and Environmental Microbiology, Vol.56, No.7, (July 1990), pp. 2268-2270, 

ISSN 0099-2240. 

Jukes, T.H. & Cantor, C.R. (1969). Evolution of Protein Molecules, In: Mammalian Protein 

Metabolism, pp. 21-123, Munro, H.N. (Ed.), Academic Press, ISBN 9780125106047, 

New York, New York, USA. 

Li, X. & Krumholz, L.R. (2007). Regulation of Arsenate Resistance in Desulfovibrio 

desulfuricans G20 by an arsRBCC Operon and an arsC Gene. Journal of Bacteriology, 

Vol.189, No.10, (May 2007), pp. 3705-3711, ISSN 0021-9193.  

Li, X. & Krumholz, L.R. (2009). Thioredoxin Is Involved in U(VI) and Cr(VI) Reduction in 

Desulfovibrio desulfuricans G20. Journal of Bacteriology, Vol.191, No.15, (August 2009), 

pp. 4924-4933, ISSN 0021-9193. 

Llovera, S.; Bonet, R.; Simon-Pujol, M. & Congregado, F. (1993). Chromate Reduction by 

Resting Cells of Agrobacterium radiobacter EPS-916. Applied and Environmental 

Microbiology, Vol.59, No.10, (October 1993), pp. 3516-3518, ISSN 0099-2240. 

Lloyd, J.R. (2003). Microbial Reduction of Metals and Radionuclides. FEMS Microbiology 

Reviews, Vol.27, No.2-3, (2003), (June 2003), pp. 411-425, ISSN 0168-6445. 

www.intechopen.com



 
Biodiversity 

 

98

Merian, E. (1984). Introduction on Environmental Chemistry and Global Cycles of Arsenic, 

Beryllium, Cadmium, Chromium, Cobalt, Nickel, Selenium, and Their Derivatives. 

Toxicological and Environmental Chemistry, Vol.8, (1984), pp. 9-38, ISSN 0277- 

2248. 

Mertz, W. (1974). Chromium as a Dietary Essential for Man, In: Trace Elements Metabolism, 

ed. Hoekstra, W. G., Suttie, J. W., Ganther, K. E., and Mertz, (Eds.), Proceedings of the 

Second International Symposium of Trace Elements Metabolism in Animals, pp. 185-198, 

University Park Press, Baltimore, Maryland, USA. 

Molokwane, P.E. & Chirwa, E.M.N. (2009) Microbial Culture Dynamics and Chromium (Vi) 

Removal in Packed-Column Microcosm Reactors. Water Science and Technology, 

Vol.60, No.2, (July 2009), pp. 381-388, ISSN 0273-1223. 

Molokwane, P.E.; Nkhalambayausi-Chirwa, E.M. & Meli, K.C. (2008). Chromium (VI) 

Reduction in Activated Sludge Bacteria Exposed to High Chromium Loading: Brits 

Culture (South Africa). Water Research, Vol.42, No.17, (October 2008), pp. 4538-4548, 

ISSN 0043-1354. 

Myers, C.R.; Carstens, B.P.; Antholine, W.E. & Myers, J.M. (2000). Chromium(VI) Reductase 

Activity is Associated with the Cytoplasmic Membrane of Anaerobically Grown 

Shewanella putrefaciens MR-1. Journal of Applied Microbiology, Vol.88, No.1, (January 

2000), pp. 98-106, ISSN 1364-5072. 

NAS (1974). The Relation of Selected Trace Elements to Health and Disease, In: Geochemistry 

and the Environment - I., pp. 533. US National Academy of Engineering, Washington 

DC, USA. 

Ngwenya N. and Chirwa E.M.N. (2011). Biological Removal of Cationic Fission Products 

from Nuclear Wastewater. Water Science and Technology, Vol.63, No.1, (January 

2011), pp. 124-128, ISSN 0273-1223. 

Nkhalambayausi-Chirwa, E.M. & Wang, Y.-T. (2001). Simultaneous Chromium(VI) 

Reduction and Phenol Degradation in a Fixed-Film Coculture Bioreactor: Reactor 

Performance. Water Research, Vol.35, No.8, (August 2001), pp. 1921-1932, ISSN 0043-

1354.  

Nkhalambayausi-Chirwa, E.M. & Wang, Y.-T. (2005). Modeling Cr(VI) Reduction and 

Phenol Degradation in a Coculture Biofilm Reactor. ASCE Journal of Environmental 

Engineering, Vol.131, No.11, (November 2005), pp. 1495-1506, ISSN 0733- 

9372. 

Ohtake, H.; Fujii, E. & Toda, K. (1987). Reduction of toxic chromate in an industrial effluent 

by use of a chromate-reducing strain of Enterobacter cloacae. Environmental 

Technology Letters, Vo.11, No.7, (July 1990), pp. 663-668, ISSN 0143-2060. 

Pal, A.; Sumana Dutta, S. & Paul, A.K. (2005). Reduction of Hexavalent Chromium By Cell-

Free Extract of Bacillus sphaericus AND 303 Isolated from Serpentine Soil. Current 

Microbiology, Vol.51, No.5, (November 2005), 327-330, ISSN 0343-8651. 

Park, C.H., Keyhan, M., Wielinga, B., Fendorf, S. & Matin, A. (2000). Purification to 

Homogeneity and Characterization of a Novel Pseudomonas putida Chromate 

Reductase. Applied and Environmental Microbiology, Vol.66, No.5, (May 2000), pp. 

1788-1795, ISSN 0099-2240. 

www.intechopen.com



Biological Cr(VI) Reduction: Microbial Diversity,  
Kinetics and Biotechnological Solutions to Pollution 

 

99 

Park, C. H.; Gonzalez, C. F.; Ackerley, D. F.; Keyhan, M. & Matin, A. (2002). Molecular 

Engineering of Soluble Bacterial Proteins with Chromate Reductase Activity, In: 

Remediation and Beneficial Reuse of Contaminated Sediments, pp. 103–111., Hinchee, 

R.E. Porta, A. & Pellei, M. (Eds.), Batelle Press, ISBN 978-1574771299, Columbus, 

Ohio, USA. 

Parmar, N.; Warren, L.A.; Roden, E.E. & Ferris, F.G. (2000). Solid Phase Capture of 

Strontium by The Iron Reducing Bacteria Shewanella alga Strain BrY. Chemical 

Geology, Vol.169, No.3-4, (September 2000), pp. 281–288, ISSN 0009-2541. 

Romanenko, V.I. & Koren’kov, V.N. (1977). A Pure Culture of Bacteria Utilizing Chromate 

and Dichromate as Hydrogen Acceptors in Growth under Anaerobic Conditions. 

Mikrobiologiya, Vol.46, pp. 414-417, ISSN 0026-3656. 

Shen, H. & Wang, Y.T. (1993). Characterization of Enzymatic Reduction of Hexavalent 

Chromium by Escherichia coli ATCC 33456. Applied and Environmental Microbiology, 

Vol.59, No.11, (November 1993), pp. 3771-3777, ISSN 0099-2240. 

Shen, H. & Wang Y T. (1994). Modeling Hexavalent Chromium Reduction in Escherichia coli 

ATCC 33456. Biotechnology and Bioengineering, Vol.43, No.4, (April 1994), pp. 293-

300, ISSN 0006-3592. 

Shen, H., Pritchard, P.H. & Sewell, G.W. (1996). Microbial Reduction of Cr(VI) during 

Anaerobic Degradation of Benzoate. Environmental Science and Technology, Vol.30, 

No.5, (April 1996), pp. 1667-1674, ISSN 0013-936X. 

Stoodley, P.; DeBeer D.; Boyle, J.D. & Lappin-Scott H.M. (1999). Evolving Perspectives of 

Biofilm Structure. Biofouling, Vol.14, No.1, (January 1999), pp. 75-94, ISSN 0892-

7014. 

Thacker, U.; Parikh, R.; Shouche, Y. & Madamwar, D. (2006). Hexavalent Chromium 

Reduction by Providencia sp.. Process Biochemistry, Vol.41, No.6, (June 2006), pp. 

1332-1337, ISSN 1359-5113. 

Vidic, R.D. & Pohland, F.G. (1996). Treatment Walls, Technology Evaluation Report TE-96-01, 

Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA. 

Available online <http://www.clu-in.org/download/remed/tmt_wall.pdf> 

Vincze, E. & Bowra, S. (2006). Transformation of Rhizobia with Broad-Host-Range Plasmids 

by Using a Freeze-Thaw Method. Applied and Environmental Microbiology, Vol.72, 

No.3, (March 2006), pp. 2290–2293, ISSN 0099-2240. 

Wang, P.C.; Mori, T.; Komoril, K.; Sasatsu, M.; Toda, K. & Ohtake, H. (1989). Isolation and 

Characterization of an Enterobacter cloacae Strain that Reduces Hexavalent 

Chromium under Anaerobic Conditions. Applied and Environmental Microbiology, 

Vol.55, No.7, (July 1989), pp. 1665–1669, ISSN 0099-2240. 

Zakaria, Z.A.; Zakaria, Z.; Surif, S. & Ahmad, W.A. (2007). Biological Detoxification of 

Cr(VI) using Wood-Husk Immobilized Acinetobacter haemolyticus. Journal of 

Hazardous Materials, Vol.148, No.1-2, (September 2007), pp. 164-171, ISSN 0304- 

3894. 

Zhiguo, H.; Fengling, G.; Tao, S.; Yuehua, H. & Chao, H. (2009). Isolation and 

Characterization of a Cr(VI)-Reduction Ochrobactrum sp. strain CSCr-3 from 

Chromium Landfill. Journal of Hazardous Materials, Vol.163, No.2-3, (April 2009), pp. 

869-873, ISSN 0304-3894. 

www.intechopen.com



 
Biodiversity 

 

100 

Zhu, W.; Chai, L.; Ma, Z.; Wang, Y.; Xiao, H. & Zhao, K. (2008). Anaerobic Reduction of 

Hexavalent Chromium by Bacterial Cells of Achromobacter sp. Strain Ch1. 

Microbiological Research, Vol.163, No.6, (November 2008), pp. 616-623, ISSN 0944-

5013. 

www.intechopen.com



Biodiversity

Edited by Dr. Adriano Sofo

ISBN 978-953-307-715-4

Hard cover, 138 pages

Publisher InTech

Published online 10, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Biodiversity is strongly affected by the rapid and accelerating changes in the global climate, which largely stem

from human activity. Anthropogenic activities are causing highly influential impacts on species persistence. The

sustained environmental change wildlife is experiencing may surpass the capacity of developmental, genetic,

and demographic mechanisms that populations have developed to deal with these alterations. How

biodiversity is perceived and maintained affects ecosystem functioning as well as how the goods and services

that ecosystems provide to humans can be used. Recognizing biodiversity is essential to preserve wildlife.

Furthermore, the measure, management and protection of ecosystem biodiversity requires different and

innovative approaches. For all these reasons, the aim of the present book is to give an up-to-date overview of

the studies on biodiversity at all levels, in order to better understand the dynamics and the mechanisms at the

basis of the richness of life forms both in terrestrial (including agro-ecosystems) and marine environments.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Evans M. N. Chirwa and Pulane E. Molokwane (2011). Biological Cr(VI) Reduction: Microbial Diversity, Kinetics

and Biotechnological Solutions to Pollution, Biodiversity, Dr. Adriano Sofo (Ed.), ISBN: 978-953-307-715-4,

InTech, Available from: http://www.intechopen.com/books/biodiversity/biological-cr-vi-reduction-microbial-

diversity-kinetics-and-biotechnological-solutions-to-pollution



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


