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1. Introduction 

The development of brain metastases is one of the complications of breast cancer most 
feared by patients, having connotations of loss of identity and independence (Mayer, 2007). 
Clinically evident brain metastases occur in 20-30% of patients with metastatic breast cancer 
(Landis et al., 1999; Lin et al., 2004) and median survival of patients who develop breast 
cancer brain metastases (BCBMs) is generally poor, ranging from 2 to 9 months (Altundag et 
al., 2007; Lee et al., 2008; Ogawa et al., 2008). The treatment of metastasis to the brain is 
complicated by the unique characteristics of the brain. The blood-brain barrier (BBB), with 
its tight junctions and lack of lymphatic drainage, makes the delivery of chemotherapeutic 
agents difficult and represents a therapeutic haven from chemotherapy (Patchell, 2003; 
Ballabh et al., 2004; Nathoo et al., 2005). In addition, brain metastatic disease is the most 
poorly understood aspect of cancer progression. The potential of malignant cells to spread 
to distant organs including lung, bone and brain is the leading cause of death from breast 
cancer. Some breast cancer metastases display tissue-specific patterns to distant organs, such 
as the brain (Palmieri et al., 2006-2007; Sanna et al., 2007) and bone (Yang et al., 2007; Wang 
et al., 2007). The metastatic process is a complex phenomenon, and involves several genes. 
Recent studies recognize cell adhesion proteins especially E-cadherin and matrix 
metalloproteinases (MMPs), growth factor receptors such as EGF-R, ErbB-2, VEGF, and 
contributions from signal transduction pathways in addition to the activation of specific 
chemokines/cytokines, as major regulators of the metastatic process (Zeljko et al., 2011; 
Klein et al., 2009; Bos et al., 2009; Kennecke et al., 2010; Carotenuto et al., 2010; Hinton et al., 
2010). Contrary to non-invasive breast cancer cells, malignant cells must display enhanced 
migratory behaviour and the ability to breach blood vessel walls and the dense collagenous 
matrix surrounding tumours. Additionally, metastatic cells must overcome the dynamics of 
a foreign microenvironment, to colonize and survive at a distant target site. Once metastasis 
has occurred, tumour growth is highly dependent on the ability of tumours to induce their 
own vascularization (Harlozinska, 2005; Hinton et al., 2008). There are key events to which 
malignant cells must adhere to complete their migration and angiogenesis: invasion of the  
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surrounding stromal tissue, intravasation, evasion of programmed cell death and growth 
within a new microenvironment (Kaplan et al., 2006). These events are governed by several 
important genes that can regulate cell cancer invasion to a specific organ such as lung, bone 
and brain. In this chapter, we will discuss the contributions of E-cadherin, MMPs EGF-R, 
ErbB-2, VEGF and chemokine genes, to the induction and progression of metastasis of breast 
cancer especially to the brain. 

2. MMPs and E-cadherin in brain metastasis 

Ecadherin and MMPs family proteins are heavily involved in the metastases of the brain 

(VanMeter et al., 2001; Lewis-Tuffin et al., 2010). MMPs are a broad family of zinc-

dependent proteinases that play a key role in extracellular matrix (ECM) degradation in 

metastasis (Kessenbrock et al., 2010); their expression is regulated via cytokines, and the 

ECM metalloprotease inducer is found on the surface of tumour cells. MMP activity is 

known to correlate with invasiveness, metastasis, and poor prognosis (Murphy, 2008; 

Kessenbrock et al., 2010). Earlier study found that MMP-2 is present in all metastatic brain 

tumours tested regardless of the site of origin and that the level of activity inversely 

correlated with survival (Jäälinojä et al., 2000; Deryugina and Quigley, 2006). Meanwhile, 

although MMP-9 was found to be up-regulated in all brain metastases and primary brain 

tumours, there was an inability to correlate up-regulation with survival (Arnold et al., 1999). 

Furthermore, previous studies showed that MMPs might be involved in the metastases of 

breast cancer to the brain (Cheng and Hung, 2007). A breast cancer brain metastases rat model 

was derived from injection of a carcinogen-induced mammary adenocarcinoma cell line in 

the left ventricle of rat (Mendes et al., 2005). The micro-metastasis in the brain showed a 

significantly higher expression of MMP-2, -3 and -9 and an increase in MMP-2 and MMP-3 

activity compared to the normal brain tissue (Deryugina and Quigley, 2006). Furthermore, the 

development of brain metastasis was significantly decreased by the treatment with a 

selective synthetic MMP inhibitor (Mendes et al., 2005). This phenomenon was confirmed by 

another study in which human breast cancer cells over-expressed with MMP2 were 

inoculated into the left ventricle, a higher incidence of metastasis to brain was observed 

(Tester et al., 2004). Another study also showed that brain seeking breast cancer cells have a 

higher total and active amount MMP-1 and MMP-9 with higher migration and invasion 

capacity, which could be decreased by the application of MMP-1 and/or MMP-9 inhibitor 

(Stark et al., 2007).  

On the other hand, E-cadherin/catenin complex is vital for the maintenance of both 

normal and tumour cytoarchitecture as well as a necessary mediator of cell-cell adhesion. 

ǃ-catenin, as well as plakoglobin (Ǆ-catenin), associate directly with the highly conserved 

cytoplasmic domain of E-cadherin in a mutually exclusive manner (Yasmeen et al., 2006; 

Al Moustafa et al., 2008). The E-cadherin/ǃ-catenin complex is linked via ǂ-catenin either 

directly or indirectly to the actin filament network via the actin-binding proteins ǂ-actinin 

or vinculin (Yasmeen et al., 2006; Al Moustafa et al., 2008). The association of the E-

cadherin/catenin complex with the cytoskeleton is essential for tight cell-cell adhesions. 

In the metastatic escape of a tumour, clone cells reduced intercellular adhesion and 

disrupted cytoarchitecture, and are thus prone to separation from the primary tumour 

mass (Al Moustafa et al., 2011). These clones are then free to invade both locally as well as 

to continue on to intravasation and further progress in the cascade (Nathoo et al., 2005).  
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Decreased expression of the E-cadherin/catenin complex has been correlated with 
invasion, metastasis, and unfavorable prognosis (Bremnes et al., 2002). Shabani et al. (2003) 
established a correlation between E-cadherin/catenin complex expression and an increased 
mindbomb homolog 1 (MIB1) index in metastatic adenocarcinomas. Further, E-cadherin is 
expressed in most meningiomas (Tohma et al., 1992; Figarella-Branger et al., 1994; Howng 
et al., 2002), and its loss may be associated with tumour progression (Schwechheimer et al., 
1998). E-cadherin expression in glioblastoma multiforme or glioblastomas appears to be an 
exception to the epithelial-mesenchymal transition (EMT) rule, which is an important event 
in the progression cancer and metastasis (Lewis-Tuffin et al., 2010; Al Moustafa et al., 2011) 
(Figure 1). The molecular mechanisms underlying the contribution of E-cadherin to growth 
and/or invasiveness in glioblastomas are currently unknown. Although, the two main 
sources of brain metastasis - adenocarcinomas of the lung or the breast represent different 
models of the course of the disease (Bos et al., 2009); Zeljko et al. (2011) have showed that 
E-cadherin changes were frequent in metastases from both those malignancies. Moreover, 
Saad et al. (2008) demonstrated that loss of E-cadherin in patients with adenocarcinomas 
and squamous cell carcinomas of the lung is significantly associated to the increased risk of 
developing brain metastases. The results of other authors investigating E-cadherin 
involvement in brain metastasis (Arnold et al., 1999; Shabani et al., 2003; Prudkin et al., 
2009) collectively demonstrate that Ecadherin is constantly expressed in metastatic 
deposits. Furthermore, our recent studies also demonstrated that E-cadherin-catenin 
complex is involved in cell migration and metastasis in vivo and in vitro (Yasmeen et al., 
2007). In order to investigate the cooperation effect between ErbB-2 receptor and high-risk 
human papillomavirus (HPV) in breast carcinogenesis and metastasis, we generated 
double transgenic mice carrying ErbB-2 and E6/E7 of HPV type 16 under mouse mammary 
tumour virus (MMTV) and human keratin 14 (K14) promoters, respectively. Within six 
months, these double transgenic mice developed large and extensive invasive breast 
cancers to several vital organs including lung, bone and brain. Histological analysis of 
ErbB-2/E6/E7 transgenic mouse tumours revealed the presence of invasive breast 
carcinomas. However, breast tissues from ErbB-2 and E6/E7 singly transgenic mice 
showed only in-situ cancer and normal mammary phenotype, respectively (Yasmeen et al., 
2007). In parallel, to assess the outcome of ErbB-2/E6/E7 cooperation in human breast 
carcinogenesis, we examined the effect of ErbB-2 and E6/E7 of HPV type 16 on the BT20 
breast cancer cell lines. We found that ErbB-2/E6/E7 cooperate in the BT20 cell line to 
induce large colony formation and cell migration using soft agar and wound healing 
assays, respectively, in comparison with ErbB-2, E6/E7 and wild type cells. Moreover, we 

demonstrated that ErbB-2/E6/E7 cooperation induces a nuclear translocation of β-catenin 

in BT20 cells; regarding the mechanism of this translocation, we reported that ErbB‑

2/E6/E7 cooperation provokes a dissociation of E‑cadherin/catenin complex by tyrosine 

phosphorylation of β‑catenin through pp60(c‑Src) kinase phosphorylation. Subsequently, 

the free β-catenin enters to the nucleus and modulates cell transcription via its association 
with the Tcf/Lef transcription factors (Yasmeen et al., 2007; Al Moustafa et al., 2008) 

(Figure 2). In conclusion, our in vitro and in vivo models demonstrated that the ErbB‑2 

tyrosine kinase receptor cooperates with E6/E7 of high‑risk HPVs in breast tumorigenesis 

and metastasis via E‑cadherin/catenin complex (Yasmeen et al., 2007; Al Moustafa et al., 
2008). These studies provide evidence that MMPs and E-cadherin play an important role in 
brain metastases of breast cancer.  
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Fig. 1. Transformation of normal mammary epithelial to non-invasive and invasive cancer 
cells. Several oncogenes can transform normal epithelial cells to cancer ones; meanwhile, 
other genes such as, EGF-R, ErbB-2, VEGFs and chemokines, convert non-invasive cancer 
cells to invasive ones which can invade several vital organs including bone, lung, brain and 
liver. Invasion is a multi-step process which allows cell migration and invasion through 
dysfunctional cell–cell adhesive interactions, loss of cell–cell junctions and reorganization of 
the cytoskeleton; these procedures result in the loss of apical polarity and the acquisition of 
a more spindle-shaped morphology; this process is identified as the epithelial-mesenchymal 
transition (EMT). This event is accompanied by inhibition of epithelial markers such as E-
cadherin and over-expression of mesenchymal markers such as vimentin. 

3. EGF-R and ErbB-2 in brain metastasis 

The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor 
tyrosine kinases. This family includes four receptors: EGF-R/ErbB-1/HER-1, ErbB-2/HER-
2/Neu, ErbB-3/HER-3, and ErbB-4/HER-4 (Carney et al., 2007; Lee-Hoeflich et al., 2008) 
that are structurally related. All HER members except HER-3 contain intracellular tyrosine 
kinase domain and all except HER-2, bind to extracellular ligands (Carpenter et al., 1990). 
Certain discrete genes, with several alternative splice variants, encode either the “Epidermal 
Growth Factor (EGF) receptor ligands” or the Neuregulins that bind to different ErbB 
receptors as a co-receptor. Different ligands bind to more than one receptor with high 
affinity; consequently ErbB-2 ligands readily activate ErbB-2 in combination with the 
appropriate high affinity co-receptor. The biological activity and affinity is often higher with 
the presence of ErbB2 complex than without it. The mammalian ligands that bind to the 
ErbB family include EGF, Transforming growth factor-ǂ (TGF-ǂ), heparin-binding EGF-like 
growth factor (HB-EGF), amphiregulin (AR), betacellulin (BTC), epiregulin (EPR), epigen, 
tomoregulin and neuregulins (NRG-1, NRG-2, NRG-3 and NRG-4) (Chang et al., 1997; 
Bublil and Yarden, 2007). The architecture of ErbB kinases, like most receptor tyrosine 
kinases (RTKs), is characterized by an extracellular ligand-binding domain, a 
transmembrane domain, a juxtamembrane (JM) segment, a kinase domain, and a COOH  
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Fig. 2. VEGF-R, EGF-R, ErbB-2 and chemokines receptor signaling pathways in cancer cells. 
Ligands can activate downstream-signaling pathways of these receptors which also can 
interact with other protein complexes such E-cadherin/catenins. Therefore, these pathways 
alter the activity of multiple nuclear transcription factors which in turn can activate several 
genes implicated in diverse cellular procedures such as angiogenesis, cell adhesion, 
migration and invasion; after which cancer cells can migrate to several organs including 
brain. 

terminal tail (C-terminal tail). The EGF-R is involved in many cellular processes including 
cell proliferation, motility, adhesion and angiogenesis via the activation of primarily two 
pathways: Phosphatidylinositol-3 Kinase (PI3K)/Akt pathway, and the External signal-
Regulated Kinase (ERK) pathway (Yasmeen et al., 2006; Bublil and Yarden, 2007) (Figure 2). 
EGF-R is widely expressed in a variety of human cancers including non-small-cell lung 
cancer NSCLC, colorectal, pancreatic, breast, ovarian, prostate and gastric cancers 
(Raymond et al., 2000). It is thought that EGF-R plays an important role in the tumour 
development and progression (Grandis et al., 2004). In addition to their well established 
contributions to cell proliferation and survival, EGF-R and ErbB-2 are also linked with other 
characteristics of aggressive tumours such as local invasion and intravasation (Figure 2), 
independently of their effects on growth (Xue et al., 2006; Zhan et al., 2006). Gene expression 
profiling and immunohistochemical studies have indicated that 50–70% of basal-type breast 
tumours, which are ErbB-2 “triple-negative” carcinomas, exhibit EGF-R expression (Burness 
et al., 2010). This type of breast cancers is associated with large size, high tumour grade, 
increased frequency of distant metastases to several vital organs including brain (Da Silva et 
al., 2007).  
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ErbB-2/HER-2/Neu oncogene, located on the long arm of chromosome 17 (17q12-q21), is 
over-expressed or amplified in 18–35% of invasive breast cancers and in 60% of intraductal 
breast carcinomas but are not over-expressed relative to the normal breast epithelium 
(Pawlowski et al., 2000). Over-expression of ErbB-2 in breast carcinoma patients is 
associated with a shorter survival period and more frequent disease recurrence compared 
with patients without ErbB-2 over-expression (Slamon et al., 1987). Moreover, over-
expression of ErbB-2 in breast cancer cell lines increases the portion of cells that present 
stem-like properties (Korkaya et al., 2008) and display intrinsic resistance to antiestrogen 
therapy (Jordan et al., 2007; Fan et al., 2009). ErbB-2 amplification/over-expression is a 
prognostic and predictive factor for the development of CNS metastases (Evans et al., 2004; 
Gabos et al., 2006). Autopsy data show that the incidence rate for CNS metastases in ErbB-2-
positive breast cancer patients is higher (ie, 30% to 50%) than that in ErbB-2-negative breast 
cancer patients (approximately 30%) (Aragon-Ching et al., 2007). On the other hand, a 
retrospective study on 9524 women with early stage breast cancer identified ErbB-2 as a 
clear risk factor for the development of CNS relapse (Pestalozzi et al., 2006). However, the 
precise biological explanation for the tendency of ErbB-2-positive breast cancer cells to 
metastasize to CNS has not been completely elucidated; although it has been suggested that 
it may occur as a result of both the aggressiveness of this breast cancer subtype and of a 
particular affinity for CNS. Interestingly, the survival time after the diagnosis of brain 
metastasis is longer for patients with ErbB-2-positive disease than ErbB-2-negative. It is 
estimated that one-third of women receiving Herceptin for metastatic ErbB-2-positive breast 
cancer develop CNS metastases during the course of their illness (Bendell et al., 2003; Lai et 
al., 2004). Herceptin levels in cerebrospinal fluid are 300-fold lower than those in plasma 
(Pestalozzi et al., 2000; Rusnak et al., 2001), indicating that Herceptin cannot cross the BBB 
due to its large molecular weight. The inability of Herceptin to cross the BBB may also 
contribute to the increased incidence of brain metastases in patients with ErbB-2-over-
expressing breast cancer. This is most likely because of the inherent aggressiveness of ErbB-
2-positive disease, as well as the prolongation in survival and control of extracranial disease 
attributable to Herceptin therapy (Clayton et al., 2004). Interestingly, ErbB-3 expression was 
increased in breast cancer cells residing in the brain. Neuregulin-1, the ligand for this 
receptor, is abundantly expressed in the brain (Law et al., 2004; Da Silva et al., 2010). These 
findings suggest that neuregulin/ErbB-3 activation is an important mechanism for breast 
cancer cell colonization of the brain and imply that the inhibition of ErbB family receptors 
especially EGF-R and/or ErbB-2 may play a significant role in the treatment of patients with 
brain metastases from breast cancer. 

4. VEGFs in brain metastasis 

Vascular endothelial growth factor (VEGF) belongs to VEGF family that consists of five 
members: VEGF (or VEGF-A), VEGF-B, VEGF-C, VEGF-D, and placental growth factor 
(PlGF) (Li et al., 2001; Nagy et al., 2003; Yamazaki et al., 2003). There are three receptor 
protein-tyrosine kinases for the VEGF family ligands (VEGFR-1, VEGFR-2, and VEGFR-3), 
which are primarily expressed by the endothelium and are required for normal vascular 
development (Millauer et al., 1993; Peters et al., 1993; Terman et al., 1994). Each of these 
receptors consists of seven immunoglobulin-like loops in the extracellular domain, a single 
transmembrane domain, and an intracellular protein-tyrosine kinase segment that contains a 
kinase insert, and a carboxy-terminal tail (Fantl et al., 1993) (Figure 2). Several ligands of 
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VEGF family bind to two non-enzymatic receptors (neuropilin-1 and -2), and heparan 
sulfate proteoglycans that are found on the plasma membrane and in the extracellular 
matrix (Dougher et al., 1997; Gluzman-Poltorak et al., 2000). Binding of VEGF to its 
receptors induces proliferation and migration of cancer cells (Figure 1 and 2). 
Although VEGF is considered potent mitogen for vascular endothehal cells, it is also 
considerably involved in the mitogenic activity of other cells. VEGF mRNA and protein are 
found in several tissues and organs (Berse et al., 1992; Ng et al., 2001; Maharaj et al., 2006). 
Also, VEGF gene expression and protein are found in many of human malignancies such as 
breast, non-small cell lung, colorectal, neuroblastoma, and prostate carcinomas (Fukuzawa 
et al., 2002; Hoeben et al., 2004; Xu et al., 2004). On the contrary, VEGF receptors are 
generally limited to endothelial cells in the cardiovascular and lymphatic systems (Kukk et 
al., 1996; Lymboussaki et al., 1999). 
In the nervous tissue, VEGF is crucial for vascular growth during brain development (Breier 
et al., 1992; Ogunshola et al., 2000; Vates et al., 2005). However, in the intact adult CNS, the 
expression of VEGF becomes restricted to the choroid plexus, area postrema cerebellar 
granule cells (Monacci et al., 1993), and VEGF receptor expression becomes extremely low 
(Kremer et al., 1997; Soker et al., 1998). VEGF expression was demonstrated to be up-
regulated in neurons and astroglia during pathological processes in the CNS that are 
associated with angiogenesis and increased BBB permeability, including tumours and 
ischemia (Pietsch et al., 1997; Issa et al., 1999; Lee et al., 1999; Plate et al., 1999; Jin et al., 2000; 
Graumann et al, 2003). VEGF direct application to fetal cortical and ventral mescencephalic 
explants has been shown to induce significant angiogenesis and astroglial proliferation 
(Silverman et al., 1999; Mani et al., 2005; Krum et al., 2008). Furthermore, continuous 
interstitial infusion of recombinant human VEGF165 protein administered to the cerebrum 
produced significant increases in the activity and, unexpectedly, in the astroglial 
proliferation within the adult CNS (Krum et al., 2002). VEGF, thus, was considered a direct 
astroglial mitogen (Krum et al., 2002). 
It was postulated, forty years ago, by Folkman that  tumours require to be vascularized to 
grow (Folkman, 1971). Tumour cells enter the vascular system after switching on the 
angiogenic process, and forming new ascites, leading to the initiation of metastasis. VEGF, 
among other various angiogenic factors, plays an essential role in tumour angiogenesis. VEGF 
is expressed and secreted by most solid tumours, but little occurs in endothelial cells (Ribatti et 
al., 1998; Shemirani and Crowe, 2000). In contrast, VEGF receptors (VEGFR-1 and VEGFR-2 
mRNAs and proteins) are largely expressed in vessels lining and penetrating the tumours; 
where they are exclusively expressed in endothelial cells (Brown et al., 1995; Mentzel et al., 
2001). These observations are consistent with the notion that VEGF acts in a paracrine manner, 
in which VEGF that is secreted from  tumour cells influences nearby endothelial cells.  
The finding that VEGF is highly expressed in metastatic cerebral tumours originating from 
angiosarcoma, renal cell carcinomas, melanomas, and adenocarcinomas provide further 
evidence that supports the significant role for VEGF in human metastases (Strugar et al., 
1994). VEGF expression was associated with considerable staining of microvascular and the 
formation of vasogenic brain edema, revealing both the angiogenic and permeability 
properties of VEGF (Strugar et al., 1994). On the other hand, VEGF- mRNA is significantly 
correlated with vascularisation in both gliomas and meningiomas, indicating a pivotal role 
for VEGF in the vascularization of primary brain tumours (Samoto et al., 1995). It is 
currently well established that the formation of metastases correlates with the number of 
microvessels (the amount of vascularisation) that can be detected in a primary tumour.  
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A number of mechanisms account for tumour vascularisation, including sprouting 
angiogenesis, intussusceptions, recruitment of circulating endothelial precursors, 
cooption, mosaic vessels, and vascular mimicry. VEGF family members are considered the 
major players that control these mechanisms.  Sprouting angiogenesis has been suggested 
as the mechanism that is used by the brain for vasculrization. In sprouting angiogenesis, 
VEGF-A produces vasodilatation of preexisting capillaries and increases permeability 
(Auguste et al., 2005). VEGF-A also induces endothelial cell proliferation (Auguste et al., 
2005) and an increase in metalloproteases and plasminogen activators, which lead to the 
degradation of the extracellular matrix permitting endothelial cell migration (Pepper et 
al., 1991; Vu et al., 1998; Bergers et al., 2000). Vessel guidance mechanisms that direct host 
vessels into the tumour have been identified in the brain. VEGF and its receptors have 
been postulated as important guidance signal. It seems that cells located at the invading 
front of the blood vessels, huddle VEGFR-2 and follow a VEGF gradient (Gerhardt et al., 
2003). Tumour cells injected into the brain were found to develop vascularization 
immediately by angiogenic sprouting with loss of the BBB. Tumour cells are speculated to 
be organized in cuffs of pseudopalisading cells around VEGFR-2 positive vessels, and to 
use these vessels to invade other brain areas. Vessels supply  tumour cells with oxygen 
and nutriments. 
A different mechanism of brain tumour vascularization that is distinct from the sprouting 
mechanism has been described. Accordingly, tumours in the brain can use a cooption 
mechanism for vascularization (Holash et al., 1999; Fischer et al., 2005). Vessels are 
surrounded by  tumour cells, and cooped endothelial cells are induced to express 
angiopoietin-2. Binding of angiopoietin-2 to its receptors located at the endothelial cell 
surface leads to the dissociation of the mural cells from endothelial cells, and an increase in 
apoptosis. Angiopoietin-2 activity causes a significant decrease in tumour vessel number 
and an increase in vessel diameter. Accordingly, the scarcity of vessels leads to hypoxia 
which upregulates VEGF-A expression in tumour cells. As a consequence, strong 
angiogenesis develops mainly at the tumour periphery (Holash et al., 1999; Zagzag et al., 
2000; Fischer et al, 2005). Rat mammary carcinomas was shown to be vascularized by 
cooption when cells are injected inside the brain. Metastases of Lewis lung carcinoma and 
melanoma cells into brain have been demonstrated to be partially vascularized by cooption 
(Holash et al., 1999; Kusters et al., 2002). Decreasing VEGF production, by antisense 
transfection, to 20–50% of original cell level was shown to be associated with inhibition of 
both angiogenesis and brain metastasis formation (Yano et al., 2000). In conclusion, VEGF is 
a key factor in the vascularization and metastasis of primary tumours into brain. 

5. Chemokines and chemokine receptors  

Chemotactic cytokines, or chemo-kines, are a large subfamily of cytokines that coordinate 
leukocyte recruitment and activation, two crucial elements in the pathogenesis of several 
immuno-mediated human diseases. Chemokines have been recognized in the last few years 
as important mediators in the pathogenesis of many human diseases and have assumed 
growing relevance in clinical pathology as markers of disease onset, progression, and 
remission (Hinton et al., 2010). Since the description of the first chemokine in 1977, over 40 
related molecules have been discovered in humans and chemokines have been recognized 
as a family of functionally related small secreted molecules named "chemo-kine" because of 
leukocyte chemoattractant and cytokine-like activities (Luster, 1998; Locati and Murphy, 
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1999). Human chemokine family is currently known to include more than 40 chemokines 
and 20 chemokine receptors (Bonecchi et al., 2009). These receptors are defined by their 
ability to induce directional migration of cells toward a gradient of a chemotactic cytokine (a 
process known as chemotaxis) (Figure 2). Chemokine receptors are a family of seven 
transmembrane G protein-coupled cell surface receptors (GPCR) that are classified into four 
groups (CXC, CC, C, and CX3C) based on the position of the first two cysteines (Murphy et 
al., 2000; Zlotnik and Yoshie, 2000).  While chemokine receptors have been found in many 
different cell types, these receptors were initially identified on leukocytes and were found to 
play an important role in the homing of such cells to sites of inflammation (Loetscher et al., 
2000).  
During the past several years, other types of non-hematopoietic cells have been found to 
express receptors for various chemokines found in their distinct tissue microenvironments. 
The interactions between such receptors and their respective chemokines are thought to 
help coordinate the trafficking and organization of cells within various tissue compartments 
(Baggiolini, 1998; Moser and Loetscher, 2001). CXCR4 is one of the best studied chemokine 
receptors, primarily due to its role as a co-receptor for HIV entry (Feng et al., 1996) and its 
ability to mediate the metastasis of a variety of cancers, including prostate cancer (Zlotnik, 
2006a and b; Burger and Kipps, 2006; Sun et al., 2003). CXCR4 is a 352-amino acid 
rhodopsin-like GPCR that selectively binds the CXC chemokine stromal cell-derived factor 1 
(SDF-1), also known as CXCL12 (Fredriksson et al., 2003; Burger and Kipps, 2006). On the 
other hand, lack of either SDF-1 or CXCR4 resulted in a phenotype almost identical to that 
of late gestational lethality with defects in B cell lymphopoiesis, bone marrow colonization, 
and cardiac septal formation (Nagasawa et al., 1996; Zou et al., 1998). These studies indicate 
that CXCR4 is essential for development, hematopoiesis, organogenesis, as well as 
vascularization (Tachibana et al.,  1998; McGrath et al., 1999) and that it functions as a 
classical chemokine receptor in adults (Murphy, 1994; Baggiolini, 1998). A growing body of 
evidence now shows that CXCR4 has a role in both cancer metastasis and in cancer stem 
cells. The physiological mechanism of tissue-specific recruitment (i.e. a homing system for 
normal tissue replacement) also seems to be functional for cancer stem cells. The CXCR4-
SDF-1 axis seems to have a large influence on the biology of  tumours. High levels of SDF-1 
in organs and tissue structures such as the lymph nodes, lungs, liver, brain and bones are 
believed to direct the metastasis of CXCR4-expressing  tumour cells. In support of this 
hypothesis, several researchers have shown that multiple cancers expressing CXCR4 (e.g. 
breast, ovarian, and prostate cancers, as well as rhabdomyosarcomas and neuroblastomas) 
metastasize to the bones and the brain through the bloodstream in an SDF-1 (CXCL12)-
dependent manner (Dontu et al., 3003; Porcile et al., 2004; Sun et al., 2003; Geminder et al., 
2001; Hinton et al., 2010). The CXCR4-SDF-1-mediated trafficking/homing of  tumour cells 
during metastasis seems to share some molecular mechanisms with normal stem cell 
processes. Additionally, the mobilization, trafficking and homing of both cancer and normal 
stem cells seem to be multistep processes, as described in several studies (Hattori et al., 2001; 
Lapidot et al., 2002; Hinton et al., 2010). Previous study by Muller et al. (2001) reported in 
breast cancer that CXCR4 and CXCL12 are central players in regulating metastasis by 
showing that normal breast tissues express little CXCR4, whereas breast neoplasms express 
high levels of CXCR4; CXCR4 signaling in response to CXCL12 mediates actin 
polymerization and pseudopodia formation, and subsequently induces chemotactic and 
invasive responses (Muller et al., 2001). These data formed the basis of the hypothesis that 
malignant cells may employ chemokine receptors to migrate toward chemokine ligands 
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expressed at common metastatic sites, such as the lungs, bone marrow, brain and lymph 
nodes. Indeed, CXCR4 appears to be one of a limited number of genes that are enriched in a 
subpopulation of metastatic breast cancer cells, as over-expression of CXCR4 alone 
significantly increased the number of bone and brain metastases in vivo (Kang et al., 2003). 
Supporting evidence for the hypothesis was demonstrated by Liang et al. (2005) as blocking 
CXCR4 expression by siRNAs decreased breast cancer cell invasion in vitro and inhibited 
metastasis in animal models. Interestingly, the CXCR4 carboxy-terminal domain appears to 
play a major role in regulating receptor desensitization and down-regulation, whereas 
deletion of the C-terminal domain of CXCR4 leads to the down-regulation of cell-to-cell 
contact, enhanced motility, and proliferation in breast carcinoma cells (Ueda et al., 2006). 
Elucidation of the underlying mechanisms of breast cancer invasion and metastasis focusing 
on CXCR4 has resulted in several important observations. Ligand-binding studies indicate 
that the number and affinity of CXCR4 receptors are similar in nonmetastatic cells versus 
highly metastatic cells. In metastatic cells, CXCL12 binding to the GǂǃǄ/GDP protein 
complex leads to a GTP-for-GDP exchange, allowing Gǂi to dissociate from the GǃǄ 
subunit, leading to activation of ERK1/2, IκBǂ, JNK, Akt, p38 MAPK, and GSK-3ǂǃ. In 
nonmetastatic cells, CXCR4 is able to independently form a complex with Gǂi or Gǃ 
subunits, but no GǂǃǄ heterotrimer could be associated with CXCR4 and, ultimately, GǃǄ-
dependent downstream signaling did not occur (Holland et al., 2006). Although the 
molecular basis for the difference in G-protein signaling in metastatic versus nonmetastatic 
cells remains to be elucidated, these studies have implications for clinical studies that are 
examining CXCR4 protein expression but not receptor function. As observed in breast 
cancer cell lines, detection of CXCR4 protein does not necessarily indicate CXCR4-mediated 
signaling (Fulton, 2009).  
There is increasing evidence that CXCR4 interacts with several growth factor receptor 
tyrosine kinases. Upon activating IGF-1R, IGF-1 was shown to transactivate CXCR4 signal 
transduction in metastatic MDA-MB-231 cells but not in nonmetastatic MCF-7 cells, even 
though both cell lines are positive for IGF-1R and CXCR4 (Akekawatchai et al., 2005). 
Myofibroblasts associated with breast cancer, but not those in normal breast tissue, 
produce CXCL12 and enhance growth of  tumours through mechanisms that include 
proliferation and survival of malignant cells and angiogenesis (Allinen et al., 2004; Orimo 
et al., 2005). Specific alleles of CXCL12 are associated with an increased risk of breast 
cancer (Razmkhah et al., 2005), and CXCL12 has been shown to transactivate ErbB-2 
(Cabioglu et al., 2005). CXCR4 expression was also identified as a predictive factor of 
worse outcome in some metastatic  tumours and in malignant gliomas (Scala et al., 2005; 
Ottaiano et al., 2006; Bian et al., 2007). CXCL12/CXCR4 axis is supposed to be crucial in 
brain metastases formation from breast cancer (Hinton et al., 2008). Recently, another 
CXCL12 receptor has been identified: the orphan G protein-coupled receptor (GPCR) 
RDC1, now called CXCR7 (Balabanian et al., 2005; Burns et al., 2006). This receptor does 
not mediate typical GPCR signaling through Gi or Ca2+ mobilization. Recent findings in 
zebrafish primordial germ cells showed a scavenger activity of CXCR7 generating a 
CXCL12 gradient that would lead to the formation of a guidance cue for CXCR4-positive 
cells (Thelen and Thelen, 2008). On the other hand, formation of CXCR4/CXCR7 
heterodimers enhancing CXCL12 signaling in embryonic cells was observed, suggesting a 
potential interaction between the two receptors (Sierro et al., 2007). Nevertheless, 
CXCL12/CXCR4 relevance in brain metastasis establishment/progression needs more 
investigation especially on the molecular level.  
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6. Conclusions/Perspectives 

Cancer cell migration and invasion are critical processes in the metastatic cascade. They can 
be induced and executed by various signalling pathways and regulatory networks. Many of 
these pathways seem to overlap with developmental processes and are being abused by 
invasive carcinomas cells and their microenvironment. Although we have made substantial 
progress in understanding the molecular mechanisms underlying cancer cell migration and 
invasion in experimental systems, we still lack sufficient insights into the actual processes at 
work in metastatic cancer patients especially brain metastatic disease. This divergence 
between clinicopathologic and experimental observations is mainly based on the lack of 
appropriate surrogate markers and the lack of complex in vivo models that appropriately 
recapitulate human stochastic carcinogenesis. However, it is expected that the ongoing 
cellular and molecular research on cell migration will provide the urgently needed tools for 
the development of improved diagnosis, prognosis and eventually for the design of 
innovative therapies.  
There are few therapeutic approaches that are currently under development or in clinical 
trials specifically targeting metastatic breast cancer of the brain, such as interfering with 
specific pathways of some regulator genes of invasive cancer cells. However, by interfering 
with important signaling pathways that are known to modulate cell proliferation, survival, 
and differentiation, they may also affect cell migration and invasion. Examples are inhibitors 
against the activities of different receptor tyrosine kinases, such as EGF-R, ErbB-2, VEGF-Rs, 
fibroblast growth factor receptors, chemokine receptors, and c-Met, as well as various anti-
angiogenesis regimen or even in combinations. Altogether, such multifaceted inhibitory 
approaches may provide efficient therapeutic measures that repress not only primary  
tumour outgrowth but also metastasis formation by interfering with cancer cell migration 
and invasion to the brain and other organs. However, the cellular and molecular variations 
to cancer cell migration discussed above raise the caveat that this endeavour will not be 
easy. We believe that using microarray technology and new in vitro and in vivo cancer 
metastatic models, including brain, should help us to understand the mechanism of cancer 
metastasis and consequently facilitate the design of more successful, personalized cancer 
therapies. 
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