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1. Introduction 

Infections are caused by a vast variety of pathogenic agents including viruses, bacteria, 
fungi, protozoa, multicellular parasites, and even proteins (Anderson and May 1979; 
Morse 1995; Bartlett 1997; Mandell and Townsend 1998) that target host organisms from 
virtually all kingdoms of life (Daszak, Cunningham et al. 2000; Williams, Yuill et al. 2002). 
Infectious diseases in humans account for 170 thousand deaths in the United States and 
14,7 million deaths world-wide (2004; Rossi and Walker 2005). “Neglected diseases”, a 
group of tropical diseases that are spread among the poorest segment of the world’s 
population, account for a large portion of human infections (Ayoola 1987; Trouiller, 
Olliaro et al. 2002). With the reluctance of the pharmaceutical industry to invest in the 
development of drugs for neglected diseases, there is an increasing pressure on the 
scientific community in academia and non-profit organizations to obtain a fast and 
inexpensive cure (Trouiller, Torreele et al. 2001; Maurer, Rai et al. 2004; Fehr, Thurmann et 
al. 2006). In addition to human infections, infections in plant and animals have a 
multibillion dollar economic impact each year (Bowers, Bailey et al. 2001; Whitby 2001). 
Expanding the studies to the whole animal kingdom allows scientists to study the host-
pathogen evolution of virulence mechanisms that are common among plant and animals, 
such as type III secretion system (T3SS), an elaborate protein-delivery system (Espinosa 
and Alfano 2004; Abramovitch, Anderson et al. 2006). Moreover, studying interactions 
between pathogens and simpler model organisms, such as drosophila, has led to 
important findings in mammalian systems and is critical for understanding human 
infections (Cherry and Silverman 2006). Recently another threat has come to scientists’ 
attention: the potential use of some pathogens as bioweapons (Whitby 2001; Moran, Talan 
et al. 2008). The attacks can target population directly, or they can target strategic 
resources such as the world’s most consumed crops. Studying HPIs may provide critical 
knowledge for the development of infection diagnosis and treatment for disaster planning 
in case of a bioterrorism event. 
A pathogen causing an infectious disease generally exhibits extensive interactions with the 
host (Munter, Way et al. 2006). These complex crosstalks between a host and a pathogen 
may assist the pathogen in successfully invading the host organism, breaching its immune 
defence, as well as replicating and persisting within the organism. Systematic determination 
and analysis of HPIs is a challenging task from both experimental and computational 
approaches, and is critically dependent on the previously obtained knowledge about these 
interactions. The molecular mechanisms of host-pathogen interactions (HPIs) include 
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interactions between proteins, nucleotide sequences, and small ligands (Lengeling, Pfeffer et 
al. 2001; Kahn, Fu et al. 2002; Stebbins 2005; Forst 2006). The interactions between the 
pathogen and host proteins are one of the most important and therefore widely studied 
group of HPIs (Stebbins 2005). During the last decade, an increasing amount of experimental 
data on virulence factors, their structures, and their functions has become available 
(Sansonetti 2002; Stebbins 2005). The first steps towards large-scale systematic determination 
and analysis of molecular HPIs have recently emerged for important pathogens (Shapira, 
Gat-Viks et al. 2009; Dyer, Neff et al. 2010). Recent progress in data mining and 
bioinformatics allows scientists to accurately predict novel protein-protein interactions, 
structurally characterize individual proteins and protein complexes, and predict protein 
functions on a scale of an entire proteome (Thornton 2001; Russell, Alber et al. 2004; 
Shoemaker and Panchenko 2007). Unfortunately, there have been only a handful of methods 
designed to address the protein interactions between pathogenic agents and their hosts 
(Cherkasov and Jones 2004; Davis, Barkan et al. 2007; Dyer, Murali et al. 2007; Lee, Chan et 
al. 2008; Evans, Dampier et al. 2009; Tyagi, Krishnadev et al. 2009; Doolittle and Gomez 
2011).  As it is the case for many bioinformatics areas, collecting HPI data into a centralized 
repository is instrumental in developing accurate predictive methods. Recently, several such 
HPI repositories have been introduced, some are manually curated, while others are reliant 
on the existing databases (Winnenburg, Urban et al. 2008; Driscoll, Dyer et al. 2009; Kumar 
and Nanduri 2010). While this is a promising first step towards a large-scale HPI data 
collection, one of the largest and most comprehensive sources of experimentally verified 
HPI data remains largely underexplored:  PubMed, a database of peer-reviewed biomedical 
literature, which includes abstracts of more than 20 million research papers and books 
(http://www.ncbi.nlm.nih.gov/pubmed/). Unfortunately, the comprehensive manual 
identification and data extraction of the abstracts containing HPI information from PubMed 
is not feasible due to the size of PubMed. Furthermore, no informatics approach currently 
available to do this automatically.  
In this chapter, we discuss several possible solutions to the problem of automated HPI data 
collection from the publicly available literature. The chapter is organized as follows. First, 
we describe some of the popular HPI databases that are currently available publicly. Second, 
we discuss the state-of-the-art approaches to a related problem of mining general protein-
protein interactions from the literature. Third, we propose three approaches to mine HPIs 
and discuss the advantages and disadvantages of these approaches. In conclusion, we 
discuss the future steps in the area of HPI text mining by highlighting factors that are critical 
for its successful development. 

2. Host-pathogen interaction databases 

During the last several years, a number of resources collecting HPI data have emerged 
(Snyder, Kampanya et al. 2007; Winnenburg, Urban et al. 2008; Driscoll, Dyer et al. 2009; 
Kumar and Nanduri 2010). Many resources rely on the automated post-processing of the 
large-scale databases for general protein-protein interactions, while some other obtain the 
HPI data by manually curating the biomedical literature. Often the resources focus on the 
human-pathogen interactions. Next, we will briefly describe some of the popular databases 
that include HPI data. 
HPIDB - Host-Pathogen Interaction DataBase. One of the most recent HPI database, 
HPIDB (Kumar and Nanduri 2010) integrates the information from other HPI database, PIG 
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(Driscoll, Dyer et al. 2009), and more general protein-protein interaction databases, BIND 
(Gilbert 2005), GeneRIF(Mitchell, Aronson et al. 2003; Pruitt, Tatusova et al. 2003), IntAct 
(Aranda, Achuthan et al. 2010), MINT (Zanzoni, Montecchi-Palazzi et al. 2002), and 
Reactome (Matthews, Gopinath et al. 2009). Currently, the database has 22,841 protein-
protein interactions between 49 host and 319 pathogen species (Kumar and Nanduri 2010). 
HPIDB is searchable via a keyword search, a BLAST search, or a homologous HPI search. 
For each query, the following output information is obtained: UniProt accession numbers of 
both host and pathogen proteins, host and pathogen names, detection method, author name, 
PubMed publication ID (PMID), interaction type, source database, and comments. The 
homologous HPI search option allows the user to do one or both of the following: search for 
a set of homologous host proteins, and search for a set of homologous pathogen proteins. 
PATRIC – PAThosystems Resource Integration Center. PATRIC is a resource that 
integrates genomics, proteomics, and interactomics data on a comprehensive set of bacterial 
species as well as a set of data mining and comparative genomics tools (Snyder, Kampanya 
et al. 2007; Sullivan, Gabbard et al. 2010). The human-pathogen interaction data for 30 
bacterial pathogens are also a part of the resource. Similar to HPIDB, the data are extracted 
and post-processed from a number of general protein-protein interaction databases 
including BIND (Gilbert 2005), DIP (Xenarios, Fernandez et al. 2001), IntAct (Aranda, 
Achuthan et al. 2010), and MINT (Zanzoni, Montecchi-Palazzi et al. 2002).  With PATRIC a 
user selects a pathogen from the home page.  The search can be refined by selecting specific 
interaction types (e.g., “direct interaction”, “colocalization”), detection methods (e.g., 
“coimmunoprecipitation”, “two hybrid”), or source databases. The results can be visualized 
as a network of interacting proteins with the colour nodes representing different species and 
weighted edges representing the number of independent experimental sources supporting 
the interaction. The Pathogen Interaction Gateway (PIG) is a part of PATRIC that is focused 
on collecting and analysing exclusively the protein-protein human-pathogen interactions 
and the corresponding interaction networks (Driscoll, Dyer et al. 2009). The PIG web 
interface allows mining the data using two query types: the BLAST search and text keyword 
search. PIG also has a utility that allows the user to visualize the network of protein-protein 
HPIs followed by the network comparison between the HPI networks extracted for two 
different pathogen genes. 
PHI-base – the Pathogen-Host Interaction dataBASE. PHI-base collects information on 
experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal, 
and Oomycete pathogens and includes a variety of infected hosts from plants, mammals, 
fungus, and insects (Winnenburg, Urban et al. 2008). All database entries are manually 
curated and are supported by experimental evidence and literature citations. The current 
version has a total of 1,065 gene entries participating in 1,335 interactions between 97 
pathogens and 76 hosts, supported by 720 literature references. The interaction between a 
host and pathogen organism is considered in this database in a more general sense and often 
is not associated with any physical interaction between the host and pathogen proteins. 
Using the PHI-base web interface, a user can do either a simple quick search or an advanced 
search, where the user selects one or many of the following search terms: gene, disease 
(caused by pathogen), host, pathogen, anti-infective, phenotype, and experimental evidence. 
The search output is a list of interactions and their details including PHI-base accession 
number, gene name, EMBL accession number, phenotype of the mutant, pathogen species, 
disease name, and experimental host.  The user can also obtain additional information on 
nucleotide and amino acid sequences of the pathogen gene, experimental evidence of the 
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interaction, gene ontology (pathogenesis, molecular function, and biological process), and a 
publication reference. 

3. Current approaches for mining protein-protein interactions 

Rapid growth of published biomedical research has resulted in the development of a 

number of methods for biomedical literature mining over the last decade (Krallinger and 

Valencia 2005; Rodriguez-Esteban 2009). The methods dealing with the biomolecular 

information can be generally divided into three categories based on the domain of 

biomedical knowledge they target: (i) automated protein or gene name identification in a 

text (Mika and Rost 2004; Seki and Mostafa 2005; Tanabe, Xie et al. 2005), (ii) literature-based 

functional annotation of genes and proteins (Chiang and Yu 2003; Jaeger, Gaudan et al. 

2008), and (iii) extracting the information on the relationships between biological molecules, 

such as proteins and RNAs, or genes (Hu, Narayanaswamy et al. 2005; Shatkay, Hˆglund et 

al. 2007; Lee, Yi et al. 2008). The relationships detected by the third group of methods range 

from a co-occurrence of the genes and proteins in a text (Hoffmann and Valencia 2005) to 

detecting the protein-protein interactions (PPIs) (Blaschke and Valencia 2001; Marcotte, 

Xenarios et al. 2001; Donaldson, Martin et al. 2003) and identification of signal transduction 

networks and metabolic pathways (Friedman, Kra et al. 2001; Hoffmann, Krallinger et al. 

2005; Santos and Eggle 2005). Being a special case of protein-protein interactions, HPIs could 

directly benefit from the advancements of the currently existing text mining methods.  

Extraction of protein-protein interactions from the text has been one of the three main tasks 

for the recent BioCreAtIvE (Critical Assessment of Information Extraction systems in 

Biology) challenges, a community-wide effort for evaluating biological text mining and 

information retrieval systems (Hirschman, Yeh et al. 2005; Krallinger, Leitner et al. 2008). 

Three subtasks have been specified: (i) detection of protein-protein interactions relevant 

documents (interaction article subtask, IAS), (ii) identification of sentences with protein-

protein interactions (interaction sentences subtask, ISS), and (iii) identification of interacting 

protein pairs (interaction pair subtask, IPS). A relevant problem, the protein interaction 

method subtask (IMS), is concerned with identification of the type of experimental data 

used to determine an interaction. Approaches that address these subtasks vary from 

supervised machine learning classifiers, to address the first subtask, to statistical language 

processing and grammar-based methods to address the second and third subtasks. 

A simple approach to extract protein-protein interactions is to determine the co-existence of 
proteins in the same sentence (Stephens, Palakal et al. 2001; Hoffmann and Valencia 2005). 
However, this approach is insufficient to handle structured information of biomedical 
sentences. Therefore, pattern matching methods have been proposed that rely on either 
manually defined patterns (Leroy and Chen 2002; Corney, Buxton et al. 2004) or patterns 
that are automatically generated using dynamic programming (Huang, Zhu et al. 2004; Hao, 
Zhu et al. 2005). Another popular group of methods employs the natural language 
processing parsers. A basic approach, called shallow parsing, decomposes sentences into 
non-overlapping fragments and chunks, and defines the dependencies between the chunks 
without extracting their internal structure (Thomas, Milward et al. 2000; Leroy, Chen et al. 
2003). Many shallow parsing approaches employ finite-state automata to recognize the 
interaction relationships between proteins or genes (Thomas, Milward et al. 2000; Leroy, 
Chen et al. 2003). One of the most prominent approaches relies on the deep parsing 
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techniques, where the entire structure of a sentence is extracted (Park, Kim et al. 2001; Ding, 
Berleant et al. 2003; Daraselia, Yuryev et al. 2004; Pyysalo, Ginter et al. 2004; Kim, Shin et al. 
2008; Miyao, Sagae et al. 2009). Many deep parsing approaches have successfully employed 
link grammars (Sleator and Temperley 1995), context-free grammars that rely on a 
dictionary of rules (linking requirements) to connect, or “link”, pairs of related words 
(Ahmed, Chidambaram et al. 2005; Seoud, Youssef et al. 2008; Yang, Lin et al. 2009).  
Each of the above methods, while directly addressing the second and the third subtasks, can 

also solve the abstract classification problem from the first subtask, based on whether or not 

the method is able to extract any protein-protein interactions. The accuracy of such 

classification, however, depends on the accuracy of a more difficult subtask of protein-

protein  interaction extraction. Thus, several methods have been developed to directly 

address the problem of binary classification of protein-protein interaction relevant 

publications (Marcotte, Xenarios et al. 2001; Calli 2009; Kolchinsky, Abi-Haidar et al. 2010). 

The methods primarily rely on supervised and unsupervised feature-based classification 

techniques. Recently, the first method for classification of HPI-relevant documents has been 

introduced, which employs a Support Vector Machines (SVM) supervised classifier (Yin, Xu 

et al. 2010).  

4. New approaches to detection and mining host-pathogen interactions from 

biomedical abstracts 

HPI literature mining is related to a general problem of protein-protein interaction literature 
mining. However, the additional requirement that the interaction occurs exclusively 
between the host and pathogen proteins makes the task more challenging. The accuracy  
of an HPI mining method will depend on additional factors, such as its ability to correctly 
assign a host or pathogen organism to the interacting protein. Similar to the way  
the BioCreAtIvE initiative defines three types of protein-protein interaction mining 
problems (Hirschman, Yeh et al. 2005), the problem of HPI mining can be split into three 
specific tasks: 
HPI Mining Task 1: Given a biomedical publication (a paper or an abstract), determine 
whether or not it contains information on HPIs. 
HPI Mining Task 2: Given a biomedical publication containing HPI information, determine 
specific sentences that contain this information. 
HPI Mining Task 3: Given a biomedical publication that contain HPI information, determine 
specific pairs of host and pathogen proteins participating in the interactions and the 
corresponding organisms. 
The first task can be formulated as a standard classification problem, which is often 

addressed by machine learning methods and for which a number of the method assessment 

protocols have been developed. Here we rely on the following five basic measures. The first 

measure, accuracy, is calculated as f
AC
 N

TP
 N

TN  / N , where NTP and NTN are the number 

of true positives and negatives, correspondingly, and N is the number of classified 

interfaces. The other two related measures, precision and recall, are calculated as 

fPR  NTP / NTP  NFP   and , correspondingly, where NFP and NFN are 

the number of false positives and negatives. F-score is calculated as . The last 

fRE  NTP / NTP  NFN 

F  2
fPR fRE

fPR  fRE
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measure, the Matthew correlation coefficient is calculated as 

. Similarly, performance on the last 

task can be easily assessed based on the available information about the host and pathogen 

proteins and their respective organisms. Specifically, we use four different measures. The 

first two measures, fORG and fPRT, address the accuracy of detecting the pairs of interacting 

host and pathogen organisms as well as their proteins. Each measure is calculated as a 

percentage of the number of correctly detected pairs of organisms/proteins to the total 

number of pairs. The other two measures, gORG and gPRT, account for the partial detection of 

HPI information, when at least one of the two organisms or proteins is detected. Both 

measures are defined as the percentage of the total number of detected organisms/proteins 

to the total number of organisms/proteins in all HPIs.   
Unfortunately, evaluating a method’s performance for the second task is more challenging, 
since the HPI data are often (i) scattered across multiple sentences and (ii) redundant (for 
instance, the same interaction between two proteins can be mentioned in several sentences). 
The method assessment for the second task becomes even more challenging when multiple 
HPIs are present in the same abstract. 
We next introduce several strategies that address the above tasks for the PubMed 
biomedical abstracts (here and below, we will always consider an abstract of the biomedical 
publication together with the publication’s title; the latter often provides important 
information on HPIs). One of the main reasons behind extracting HPI information from the 
abstracts rather than entire papers is the fact that for many papers, the abstract is the only 
information that is freely available in PubMed. The first strategy is to rely on the existing 
methods for mining protein-protein interactions followed by additional post-processing to 
filter out the intra-species interactions. Another approach employs the language-based 
methods traditionally used in protein-protein interaction literature mining. The last 
approach introduces a supervised-learning feature-based methodology, which has recently 
emerged in the area of biomedical literature mining. While each of the approaches is 
applicable to each of the three tasks, here we will focus on assessing their performance for 
the first and third tasks. 

4.1 Data collection 

Collecting accurate, unbiased, non-redundant data on HPIs is a critical step for efficient 
training of a supervised method as well as for an accurate assessment of any literature 
mining approach. Both the positive set (abstracts containing HPI information) and the 
negative set (abstracts that do not contain HPI information) were manually selected and 
annotated. To obtain the set of potential candidates for the positive and negative sets we 
have combined of both searching the existing HPI databases and the PubMed database. Our 
positive set consisted of 175 HPI containing abstracts that include human and non-human 
hosts. The abstracts containing human-pathogen interactions were collected by searching 
and manually curating abstracts from PIG, a database of host-pathogen interactions 
manually extracted from the literature (Driscoll, Dyer et al. 2009). For each abstract, we 
required the presence of organism and protein names for both the host and the pathogen, 
resulting in 89 abstracts. Unfortunately, in its current form, PIG only has the abstracts with 
annotated human-pathogen interactions. Therefore to obtain the list of interactions between 
non-human hosts and their pathogens, we searched using an extensive PubMed query. We 

MCC 
NTPNTN  NFPNFN

NTP  NFP  NTP  NFN  NTN  NFP  NTN  NFN 
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required the presence in the same abstract of (i) at least one (non-human) host name, (ii) at 
least one pathogen name, (iii) and at least one interaction keyword. We then manually 
selected from the list another 86 abstracts that contained HPI information, adding them to 
the positive set.  
To obtain candidates for the negative set, we performed an almost identical search 
strategy using the same PubMed query but including ‘human’ to the list of the host 
names. We again manually selected the abstracts to ensure that that they did not have any 
HPI information, even though they contained the important keywords. Note that it is 
significantly harder for a computational approach to distinguish between the abstracts 
from the obtained negative training set and those from the positive set, compared to a 
negative training set consisting of abstracts that were randomly chosen from PubMed. As 
a result, we selected 175 abstracts where no HPI information was found, although some of 
the abstracts included information on intra-species protein-protein interactions. The list of 
manually curated positive and negative sets of PubMed abstracts can be found at: 
http://korkinlab.org/datasets/philm/philm_data.html 

4.2 A naïve approach based on literature mining of protein-protein interactions 
In a simple naïve approach, we first establish whether an abstract contains any information 
on a protein-protein interaction using the existing state-of-the-art literature mining methods 
followed by extraction of the pair of interacting proteins (Fig. 1A). We rely on the PIE 
system, which integrates the natural language processing and machine learning methods to 
determine the sentences that contain protein-protein interactions in a PubMed abstract and 
extract the corresponding protein names and the interaction keywords (Kim, Shin et al. 
2008). Next, for each interacting protein we identify its corresponding organism by applying 
NLProt protein/gene tagging software (Mika and Rost 2004). NLProt uses a number of 
techniques, such as the dictionary search, rule-based detection, and feature-based 
supervised learning, to extract the names of proteins and genes and tag them using SWISS-
PROT or TrEMBL identifiers (Boeckmann, Bairoch et al. 2003). The method also predicts the 
most likely organisms associated with these proteins/genes. It was reported to have a 
precision of 75% and a recall of 76% on detecting protein/gene names (Mika and Rost 2004). 
Finally, for each sentence identified as containing a protein-protein interaction by the PIE 
system, we determine if this interaction is a HPI. Specifically, if each of the two proteins 
forming a protein-protein interaction belongs to a different organism, and these organisms 
can be assigned the host-pathogen roles, then the interaction is classified as an HPI. To 
assign the host-pathogen roles, we use our manually curated dictionaries of host and 
pathogen organism names (Table 1). 
We assessed the naïve approach by applying it to our testing set of 88 abstracts, 44 positive 
and 44 negative examples. As a result in addressing Task 1, the obtained accuracy was 0.53, 
precision was 1.0, and recall was 0.07 for the classification of HPI-containing abstracts (Task 1); 
F-score and Matthews Correlation Coefficient were 0.13 and 0.19, correspondingly. We found 
that the method almost completely failed to detect the abstracts containing HPI information; 
the contribution to the accuracy came primarily from the true negative hits, containing 44 (out 
of 44) abstracts from the negative testing set. Interestingly, both high precision and low recall 
values could be attributed to the same property of the naïve approach: it failed to accurately 
detect the protein-protein interactions. Indeed, all 41 false negatives were not due to the 
approach’s failure to assign the host and pathogen roles to the identified organisms, but due to 
its failure to identify a protein-protein interation in the abstract.  
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It is also not surprising that the naïve approach performed poorly when addressing Task 3: 
the method was able to detect only two proteins out of 44 protein pairs and none of the 44 
pairs of organisms, resulting in the only non-zero score of gPRT = 0.02; the other three scores, 
fORG, fPRT, and gORG were equal to zero. 
 
 
 

 
 
 

Fig. 1. Three HPI literature mining approaches. (A) Naïve approach. (B) Language-based 
approach (C) Feature-based supervised machine learning approach.  
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Dictionary name N Examples 

Interaction keywords 54 Interact, associate, bind  

Experimental keywords 28 Yeast two-hybrid, chemical crosslinking 

Negation keywords 11 Not, neither, inability 

HPI specific keywords 17 Virulence, effectors, infection 

Host names 309 Host, plant, human 

Pathogen names 349 Listeria monocytogenes, Hepatitis virus 

Table 1. Dictionaries of keywords used by all three approaches.  N is the number of unique 

entries for each dictionary. 

4.3 A language-based approach 

Our second approach is inspired by the language-based methods in biomedical text mining, 
which are also widely used in mining protein-protein interactions. In HPI text mining, we 
are faced with additional challenges such as correctly associating the organism name for 
each protein, ensuring that the extracted interaction is inter- and not intra-species 
interaction, and combining the information about an HPI from multiple sentences. As a 
result, these additional challenges necessitate adding new modules to the computational 
pipeline of our approach compared with a pipeline for extracting general protein-protein 
interactions. The HPI mining pipeline consists of the following 7 steps (Fig. 1B): (1) text 
preprocessing, (2) entity tagging, where we identify protein/gene and organism names, (3) 
grammar parsing, where we parse the input text into dependency structures (4) anaphora 
resolution, where we identity references to pronouns, (5) syntactic extraction, where we split 
a complex sentence into simple ones, (6) role matching, where we identify semantic roles in 
each simple sentence, (7) interaction keyword tagging, and (8) extraction of the actual HPI 
information. We note that this approach directly addresses Tasks 2 and 3 by finding the 
sentences containing HPI information and extracting the corresponding pairs of host and 
pathogen organisms and the interacting proteins/genes. Task 1 is addressed by classifying 
each abstract based on whether there was at least one HPI with the complete information 
extracted from the abstract’s text. 
Entity tagging. The entity tagging module identifies named entities in a abstract, such as 
protein/gene names and the corresponding organism names. For a language-based text 
mining approach, it is critical that all named entities are accurately identified. Thus, our 
language–based approach for HPI literature mining has the most elaborate entity tagging 
module of all three approaches introduced here. Specifically, the module includes three 
stages: (i) protein/gene name tagging using NLProt, (ii) host/pathogen organism dictionary 
match, and (iii) post-processing. First, we apply the NLProt tagger to identify the names of 
all proteins/genes occurring in the text and the corresponding organism names (Mika and 
Rost 2004). We note that in a case when a protein with the same name exists for multiple 
species, NLProt assigns the most likely organism for each entry of this protein. Second, we 
find a UniProt accession number (Bairoch, Apweiler et al. 2005) for each identified protein 
followed by grouping the proteins/genes with the same accession number into a 
protein/gene entity. Third we search for the organisms missed by NLProt using expanded 
versions of our host and pathogen organism dictionaries that include synonyms for each 
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organism name and group the organisms under NCBI Taxonomy IDs (Wheeler, Barrett et al. 
2006). Since NLProt may not identify all organisms in the abstract, our module rescans the 
abstract text again to find the remaining host and pathogen organisms.  Finally, the system 
revisits the entity tagging module again after the next module, Link grammar parsing, 
provides the internal structure of the sentences in terms of its basic units, phrases. The idea 
is that we can use the internal sentence structure to (i) find additional host/pathogen 
information that is not present in the dictionary, and (ii) reassign protein/gene name to its 
correct organism, if needed. This stage plays an important role in the entity tagging module, 
since our host and pathogen dictionaries are potentially incomplete (not all organisms 
provided by NLProt may be covered); in addition, the dictionaries overlap with each other 
(the same organism can be both, a host and a pathogen).  If an organism name suggested by 
NLProt for a protein is not found in our dictionary, the entity tagging module nevertheless 
tries to assign the organism’s role as a host or pathogen. It does so by searching for generic 
keywords  (such as “host”, “pathogen”, “pathogenic”, “pathogenesis”, etc.), in each phrase 
containing the organism name. Similarly, the module checks the organism name suggested 
by NLProt for a protein/gene by identifying the organism’s name in the phrase that 
contains a protein/gene name. To do so the module relies on two search patterns: 
1. Organism name + protein name (e.g., “Arabidopsis RIN4 protein”); 
2. Protein name + preposition + organism name (e.g., “RXLX of human”). 
The newly obtained information about the organism assignment then replaces the current 

suggestions provided by NLProt. For instance, in the phrase “the Arabidopsis RIN4 protein”, 

NLProt associates RIN4 with a pathogenic organism, while the dictionary search matches 

Arabidopsis as a host organism and identifies this phrase as pattern P1. Therefore, Arabidopsis 

is assigned as the organism for RIN4 protein, followed by the correct assignment of RIN4 as 

a host protein. 

Link grammar parsing. In our next module, we use natural language processing methods to 

determine the intrinsic structure of each sentence in the abstract. In our approach, all 

grammatical constructions are based on the link grammar, a context-free grammar that 

relies on the dependency structure of natural language (Sleator and Temperley 1995). In link 

grammar, every word has a linking requirement, which specifies which types of other 

words or phrases can link to it. Two words can only be linked if their linking requirements 

match. A link is represented as an arc above the two words (Fig. 2). The linking 

requirements are organized into a dictionary that the grammar parser refers to when 

analyzing a sentence. The principal structure in link grammar is the linkage, a set of links 

that completely connect all words in a sequence. Such a sequence of words is called a link 

grammar sentence if it satisfies three conditions: (i) the links do not cross (planarity), (ii) 

each word is connected to at least another word by a link (connectivity), and (iii) the linking 

requirements for each word in the sentence are not violated (satisfaction). For example, the 

linkage for the sentence “Avirulence protein B targets the Arabidopsis RIN4 protein” is 

shown in Fig. 2. In total, the link grammar has 107 main links, each of which can derive 

many sub-links. We implemented the module using an open source link grammar parser 

from AbiWord project (http://www.abisource.com/projects/link-grammar/). This project 

implements the original link grammar (Sleator and Temperley 1995), combining it with 

additional features such as adaptation of the parser to the biomedical sublanguage, BioLG 

(Pyysalo, Salakoski et al. 2006) and an English-language semantic dependency relationship 

extractor, RelEx (Fundel, Kuffner et al. 2007).  
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Fig. 2. Internal sentence structure annotated by a link grammar parser for an HPI relevant 
sentence. Words are labelled with the part-of-speech tags: .n (noun) and .v (verb). A link 
between two words can be formed to specify a dependency relation. Each dependency type 
has its own unique label: AN, GN, Ss, Os, D*u, G.  

Anaphora resolution. In the anaphora resolution module, we determine semantic meaning 
for pronouns (it, they, he, she), and other language structures in the sentences. Unlike the 
case of intra-species protein-protein interactions, the information on HPIs often spans 
multiple sentences, with the pronouns often replacing the names of organisms or 
proteins/genes. Therefore, to extract the complete information on a HPI, it is critical to have 
an accurate anaphora resolution module. The module relies on the RelEx anaphora 
resolution method, which employs Hobbs’ pronoun resolution algorithm (Hobbs 1978). For 
example, in the sentence “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein”, 
the anaphora resolution module resolves ‘it’ as ‘The Pseudomonas syringae type III effector 
protein avirulence protein B (AvrB)’. 
Syntactic extraction. Our syntactic extraction module splits each sentence into one or more 
simple sentences, where a simple sentence consists of four components organized into the 
following structure: 

Subject (S) + Verb (V) + Object (O) + Modifying phrase of verb (M).  

The module is built based on the automated extractor InTex (Ahmed, Chidambaram et al. 
2005); it scans a sentence to find all links of the following four types. The first type, S-link, 
connects a subject to a verb, where the subject is located before the verb in the sentence. The 
second type, RS-link connects a verb to a subject, i.e., the subject is located after the verb in 
the sentence. The third type, O-link, connects a verb to an object. Finally, the fourth type, 
MV-link, connects a verb to a modifying phrase.  The module first determines the beginning 
of each simple sentence, which can be either an S-link or an RS-link. Following each verb 
from an S- or RS-link, the module determines the verb range by including all possible verb 
phrases, adverb phrases, or adjective phrase, before and after the verb.  Finally, for each 
simple sentence the module determines the objects and modifying phrases for the verb in 
the corresponding verb range by identifying possible O-links and MV-links.  For example, 
the modules split sentence “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein” 
into two simple sentences: “The Pseudomonas syringae type III effector protein avirulence 
protein B (AvrB) is delivered into plant cells” and “The Pseudomonas syringae type III 
effector protein avirulence protein B (AvrB)  targets the Arabidopsis RIN4 protein”. 
Interaction keyword tagging. In this module, the interaction keywords are tagged by 
searching (i) our manually curated dictionary of interaction keyword stems, to reduce the 
search time, and (ii) lexical database WordNet, which contains nouns, verbs, adjectives, and 
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adverbs grouped by semantic concepts, and which uses a morphological function to infer 
the stem of a word (Fellbaum 1998). In the previous example, the module identifies 
interaction keywords that are found in our dictionary: “delivered” (the stem is “deliver”) 
and “targets” (the stem is “target”). 
Role type matching. In this module, we specify the role of each syntactic component 
depending on whether the component contains complete information about an HPI. Here, 
we consider three types of roles: elementary, partial, and complete. A component of the 
elementary type is defined to be a host entity, a pathogen entity, or an interaction keyword. 
A component of the partial type includes any two distinct components of the elementary 
type. Finally, a syntactic component of complete type includes components of all three 
elementary types. 
Interaction extraction.  Once the role of each syntactic component is identified, the 
components are searched against a set of interaction patterns. We first select components of 
the complete type, since they contain complete information about an HPI occurring between 
two proteins/genes. Next, we combine the elementary and partial components such that 
they provide the complete HPI information.  
An interaction pattern is defined as LS=RS. The left side (LS) is used to match the complete 
type from syntactic component(s), and the right side (RS) is used to extract the interaction 
information from each component. For example, the pattern S<E>V<E>O<E> = 
P<S>I<V>H<O> indicates that if a simple sentence includes three components, each of 
elementary type: subject, verb, and object, then the sentence contains (i) a pathogen entity in 
the subject, (ii) an interaction keyword in the verb, and  (iii) a host entity in the object. Note 
that both sides include a matching part S-V-O. In this work, for our patterns we considered 
the following seven matching parts: S-V-O, S-O, S-V-M, S-M, S, O, and M (for abbreviations, 
see Syntactic extraction subsection). In addition to the above patterns, we use a set of three 
template-based filters that allows us to remove those simple sentences that although satisfy 
an interaction pattern, do not have a semantic connection between the host entity, pathogen 
entity, and interaction keyword. The introduced templates are similar to those employed by 
RelEx: 

Pattern 1: A + interaction verb + B 
Pattern 2: Interaction noun + ’between’ + A + ’and’ + B. 
Pattern 3: Interaction noun + ’of’ + A + ’by’ + B, 

where an interaction keyword can be either the interaction verb or interaction noun.  
Interaction Normalization. When mining HPI information from literature, there are several 
sources for ambiguous information. First, there may be multiple HPIs in the same abstract. 
Second, the information about a single HPI may be spread over multiple sentences. Finally, 
the sentences may contain duplicate information about the same HPI. Our last module 
ensures that all sentences containing duplicate HPIs are accounted for and each HPI is 
reported only once. To do so, we first extract all HPIs and then determine the duplicate 
pairs. We define two HPIs as duplicate if they have the same host entity and the same 
pathogen entity. We note that two duplicate HPIs may still have different interaction 
keywords. To detect the duplication in HPIs, the module refers to the normalized 
protein/gene names (in terms of UniProt accession numbers) and organism names (in terms 
of taxonomy ids) obtained at the entity tagging module.  
Performance of the language-based approach.  To compare with the feature-based 
approach, the language-based approach was evaluated using the same testing set of 44 
positive and 44 negative examples. We first assessed the method’s performance in 
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addressing Task 1. The method was able to classify the abstracts with 0.65 accuracy, 0.84 
precision, and 0.36 recall. The F-score and Matthew correlation coefficient measures were 
0.51 and 0.36, correspondingly.  The performance of the approach on a more difficult Task 3 
was significantly better than of the naïve approach, especially in partial predictions: fORG = 
0.18, fPRT = 0.14, gORG = 0.25, and gPRT = 0.25. With the pre-calculated NLProt annotation, the 
average running time of the system on a single abstract was 36.3 sec. on a 2.4 Ghz Intel 
workstation. The computationally most expensive, link grammar parsing, module used 
99.95% of the total running time. 

4.4 A feature-based machine learning approach 

The basic idea behind the feature-based approach introduced here is to extract a set of 

characteristic features that provide sufficient information for discriminating between an 

abstract containing HPI information and another abstract that does not. Using a training set 

of pre-annotated abstracts, the system can then learn how to efficiently discriminate 

between these two abstract types. Moreover, the same characteristic features can be 

calculated for the individual sentences in the abstract. Thus, we can use the same 

supervised-learning approach to solve Tasks 1 and 2. Finally, to solve Task 3 one can use a 

simple dictionary-based search for each sentence classified as containing HPI information. 

Our feature-based approach consists of four basic stages  (Fig. 1C). First, each abstract is pre-

processed to find each protein/gene in the abstract and identify its organism name. Second, 

for each abstract a feature vector is generated. Third, our supervised learning system is 

trained by providing the feature vectors generated from the positive and negative sets. 

Finally, the trained system is used on an independent testing set of HPI and non-HPI 

abstracts to assess the approach. 

Text preprocessing. We first add the publication title to the abstract as its first sentence. The 

abstract is then further split into individual sentences by detecting the sentence termination 

patterns. A basic pattern of a period (.), followed by a space and capitalized letter can be 

directly used to distinguish sentences in a standard text. However, there are known 

challenges when preprocessing a biomedical (or any scientific) publication. For instance, the 

above simple approach is not always applicable, since the periods are often used in the 

names of proteins, abbreviations such as “i.e.”, “e.g.”, “vs.”, and others. We first identify 

such cases using a predefined dictionary, replace periods in these words by spaces, and then 

apply the above basic pattern. The next steps of the preprocessing stage concerns with 

detecting the organism and protein/gene names using the entity tagging software NLProt 

(Mika and Rost 2004). 

Support vector machines in text categorization. The problem of detecting whether an 
abstract contains HPI information can be formulated as a problem of supervised text 
categorization, with the goal of classifying abstracts into one of the selected categories. In 
our case, two categories can be naturally defined: (i) abstracts containing HPI information 
and (ii) abstracts without HPI information.  Formally, given a training set of n objects, each 
represented as a vector of N numerical features, xi = (x1, x2, …, xN), and their classification 

into one of the two classes y{-1,1},  the goal is to train a feature-based classifier based on 
the training set. After the training stage is completed, the classifier can assign a class label 
from y for any new abstract x. In our approach, we use support vector machines (SVM) 
(Vapnik 1998), a supervised learning method, which is well established in bioinformatics 
and has been recently applied to identify abstracts containing host-bacteria interaction 
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information (Yin, Xu et al. 2010). The basic type of support vector machine (SVM) that 
addresses this problem is a linear classifier defined by its discriminant function:  

, 

where w is a weight vector (Vapnik 1998). Geometrically, the problem can be described as 
finding the decision boundary, a hyperplane that separates two sets of points, 
corresponding to the sets of positive and negative examples. To do that, we maximize the 
margin defined by the closest to the hyperplane positive and negative examples. An optimal 
solution can be found by solving a related quadric optimization problem. The problem is 
further generalized by introducing soft margins, allowing the classifier to misclassify some 
points. The general optimization problem is often formulated in its dual form: 

 

and the discriminant function is defined as: 

. 

Examples from the training set for which  are called support vectors. The formalism 

can be further extended by introducing non-linear classifiers defined using kernel functions, 

, similarity measures that replace the standard inner product x, x′. In our 

approach, we applied and compared two widely used non-linear kernel functions: the 

polynomial kernel, , where d is degree of the polynomial, and 

Gaussian radial basis function (RBF), . Both kernels are 

implemented using libsvm a freely available SVM software package (Chang and Lin 2001).  
Feature vectors. One approach to generating a descriptive set of features for an abstract is  
to calculate the frequencies of occurrences of individual words (unigrams) as well as the 
word pairs (bigrams) from a biomedical text corpus (Yin, Xu et al. 2010). While these 
features can provide important information on the word usage, the number of features 
depends strongly on the size of the corpus and can easily reach thousands of features. In our 
approach, we propose to use a simpler 12-dimensional feature vector representation, 

, focusing on quantifying the information directly related to host-pathogen 

interaction. Features x1 and x2 quantify the presence of host and pathogen protein or gene 
names in the abstract and are calculated based on the protein/gene entity tagging obtained 
by NLProt (Mika and Rost 2004). Each protein is classified as a host or pathogen protein 
based on the source organisms extracted either from the NLProt tagging results or directly 
from the abstract by searching against our dictionary of host and pathogen organisms (Table 
1). The dictionary was built using the set of organisms extracted from several databases 
(Winnenburg, Urban et al. 2008; Driscoll, Dyer et al. 2009; Kumar and Nanduri 2010) and by 
adding generic keywords, such as “pathogen”, “host”, “plant”, etc.  Similarly, features x3 
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and x4 specify the number of occurrences for the host and pathogen organism names. These 
features are defined using NLProt-based organism annotation and the dictionary of host 
and pathogen organisms. Binary feature x5 specifies the presence or absence of the general 
protein-protein interaction keywords in the abstract. It is obtained by scanning the extended 
abstract against our interaction keyword dictionary (Table 1). Features x6 and x7 describe 
additional statistics on protein-protein interaction keyword occurrences. The former feature 
is defined as the percentage of interaction keywords in the total number of words in the 
abstract. The latter feature is defined as the percentage of sentences containing the 
interaction keywords in the total number of abstract sentences. Feature x8 is calculated based 
on the cumulative keyword typicality for each abstract. We define the typicality of a 
keyword as the percentage of abstracts in the training set containing this keyword. Feature 
x8 is calculated as a sum of typicalities for all protein-protein interactions keywords in a 
given abstract. Our next feature x9 quantifies the amount of experimental evidence used to 
support the HPI and is defined as the total number of experimental keywords in the 
abstract, where each keyword is detected by scanning the abstract against our dictionary 
experimental keywords (Table 1). Some abstracts report the absence of an interaction 
between host and pathogen proteins. Determining the absence of interaction in an abstract 
by a feature-based approach is difficult, since such an abstract is likely to contain the 
information similar to an abstract describing a true HPI. One of the key differences between 
these abstracts is the presence of negation keywords present in the former abstract. Feature 
x10 accounts for such keywords and is defined as the percentage of negation keywords in the 
total number of words in the abstract.  Similar to other keywords, these keywords are 
identified using our dictionary of collected negation keywords (Table XX3). A related 
feature, x11, estimates whether a negation keyword is related specifically to the information 
on protein-protein interaction in the abstract. The feature is defined as the number of words 
between the negation keyword and the closest interaction keyword in a sentence. The last 
feature, x12, accounts for the HPI-specific keywords, such as virulence, effectors, factors, etc. 
determined using the corresponding dictionary (Table 1). It is calculated as a percentage of 
such keywords in the total number of words in the abstract. 
Supervised training and HPI detection using SVM. The trained SVM classifier is applied in 
our method twice. First, it is applied to the abstracts to identify those containing HPI 
information (Task 1). Second, it is applied to the individual sentences to determine those 
that contain this HPI information (Task 2). When applied to a sentence, we generate a 12-
dimensional feature vector solely based on the information in this sentence and use it as an 
input to the SVM classifier. Once the sentences containing HPI are identified, we use the 
dictionaries of host and pathogen organisms combined with the protein/gene names to find 
the pairs of host and pathogen organisms and the corresponding proteins/genes (Task 3). 
The accuracy of an SVM-based classifier generally can be improved by optimizing a number 
of parameters during the training stage. The error cost parameter, C, controls the tradeoff 
between allowing training errors and forcing rigid margins. In our approach we select the 
cost parameter and another parameter, Gamma, by evaluating the accuracies of trained 
models for Task 1 using leave-one-out cross-validation. The values of C range from 2 to 20 
and the values for Gamma range from 2−10 to 21.  The set of parameters on which the SVM 
classifier reaches its maximum accuracy is selected as a final model. In addition, we 
optimize the degree of the polynomial when considering the polynomial kernel. 
Assessment protocols. To assess the performance of the feature-based approach in abstract 
classification, we employ two benchmarking protocols. In the first protocol, the SVM model 
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training is done on the training set and the assessment is performed exclusively on the 
testing set (Table 2). For the second protocol we use the leave-one-out and 10-fold cross 
validations on the training set. 
 

Type Training Testing 

Negative 131 44 

Positive- Human 67 22 

Positive-Non-Human 64 22 

Total 262 88 

Table 2. Testing and training sets of positive (HPI-relevant) and negative (HPI-irrelevant) 
abstracts. Testing data are used to evaluate all three approaches, and training data are used 
for SVM learning in the feature-based approach. The abstracts are extracted from then 
PubMed database and manually curated. 

Performance of the feature based approach. During the leave-one-out cross-validation, an 
SVM model with the polynomial kernel of degree 3 and parameter values C=2 and 
Gamma=0.0175 was found to be the most accurate in the abstract classification problem 
(Table 3). The polynomial kernel was also the most accurate SVM model across both 
assessment protocols. In addition, this SVM model had the highest recall value, with the 
precision approaching its highest value. Overall, the performance of all three SVM kernels, 
across all evaluation protocols, was similar. The performance of the feature-based approach 
on Task 3 was slightly better than that of the language-based approach in partial 
predictions: gORG = 0.39 and gPRT = 0.35. However the performance in complete pair 
predictions was worse: fORG = 0.07 and fPRT = 0.07. The SVM classifier was efficient, taking 
only 0.003 sec. to classify 92 abstracts by an SVM classifier on a 2.66 Ghz Intel Xeon (Quad) 
workstation. However, the high efficiency of this approach was offset by a significantly 
slower protein tagging component that was done using NLProt and took ~18 min. on the 
same workstation to tag proteins in 262 abstracts from the dataset. 
 
 

Protocol fAC PR RE AUC F-score 

10-fold 72% 73% 71% 0.78 0.72 

Test 66% 69% 60% 0.72 0.64 

LOO 71% 72% 72% 0.78 0.71 

Table 3. Evaluations of the feature-based classifier. LOO and 10-fold denote leave-one-out 
and 10-fold cross-validation protocols applied to the models that are trained on the set of 
262 abstracts. The last protocol corresponds to the evaluation performed only on the testing 
set of 88 abstracts. 

5. Conclusion 

In this chapter, we discussed a new problem for biomedical literature mining that was 
concerned with mining molecular interactions between the host and pathogen organisms. 
Collecting HPI data is one of the very first steps towards studying and fighting infectious 
diseases. Creating an automated framework for extracting the HPI information from the 
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biomedical literature, including millions of abstracts publicly available in PubMed database, 
is instrumental in completing this step. We formulated three key tasks of HPI literature 
mining and proposed three computational approaches that addressed these tasks: (i) a naïve 
approach, which was based on the existing protein-protein interaction mining methods, (ii) 
a language-based approach, which employed the link grammar, and (iii) a feature-based 
supervised learning approach, which relied on SVM methodology. Both, feature-based and 
language-based, approaches have been implemented in the PHILM (Pathogen-Host 
Interaction Literature Mining) web-server, accessible at http://korkinlab.org/philm.html. 
Several important conclusions can be drawn from the comparative assessment of all three 
approaches. First, it became clear that being a new problem in biomedical literature mining 
(and a more difficult one than mining general protein-protein interactions), HPI text mining 
required development of new methods tailored to address the specifics of this problem. 
Indeed, for the first task the naïve approach performed with the disappointingly low 
accuracy of 53% and f-score of just 13%, while accuracy and f-score of the language-based 
approach were significantly higher, 65% and 51%, correspondingly; the feature-based 
method had even higher (10-fold) accuracy and f-score, 72% and 72%, correspondingly. We 
note that the performance accuracy of both language-based and feature-based approaches 
even at this early stage were comparable to the state-of-the-art protein-protein interactions 
mining methods (Krallinger, Leitner et al. 2008). In addition to its poor performance in the 
abstract classification task, the naïve approach completely failed to detect protein interaction 
pairs and organism pairs in the third task. The feature-based approach performed 
significantly better when detecting one of the interacting proteins or organisms, while still 
failing to accurately detect the complete pairs. It was not surprising that the highest 
accuracy of detecting both, host-pathogen organism pairs and protein pairs, was achieved 
by the most sophisticated language-based approach. Second, the analysis of incorrectly 
classified abstracts and identified pairs of proteins and organisms supported our conclusion 
that increasing the accuracy of the name tagging system is pivotal to increasing the 
classification accuracy in both approaches. Finally, both language-based and feature-based 
approaches demonstrated good performance but in different tasks, which suggests that by 
integrating these two approaches, one can obtain a system with a more accurate overall 
performance than either of the individual approaches. 
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