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1. Introduction  

In engineering, digital signal processing techniques need to be carefully selected according 

to the characteristics of the signals of interest. The frequency-based and time-frequency 

techniques have been frequently mentioned in some literature (Cohen, 1995). The frequency-

based techniques (FBTs) have been widely used for stationary signal analysis. For 

nonstationary signals, the time-frequency techniques (TFTs) in common use, such as short-

time Fourier transform (STFT), wavelet transform (WT), ambiguity function (AF) and 

wigner-ville distribution (WVD), etc., are usually performed for extracting transient features 

of the signals. These techniques use different algorithms to produce a time-frequency 

representation for a signal.  

The STFT uses a standard Fourier transform over several types of windows. Wavelet-

based techniques apply a mother wavelet with either discrete or continuous scales to a 

waveform to resolve the fixed time-frequency resolution issues inherent in STFT. In 

applications, the fast version of wavelet transform, that is attributed to a pair of mirror 

filters with variable sampling rates, is usually used for reducing the number of 

calculations to be done, thereby saving computer running time. AF and WVD are 

quadratic time-frequency representations, that use advanced techniques to combat these 

resolution difficulties. They have better resolution than STFT but suffer from cross-term 

interference and produce results with coarser granularity than wavelet techniques do. Of 

the wavelet-based techniques, discrete wavelet transform (DWT), especially its fast 

version, is usually used for encoding and decoding signals, while wavelet packet analysis 

(WPA) are successful in signal recognition and characteristic extraction. AF and WVD 

with excessive transformation durations are obviously unacceptable in the development 

of real-time monitoring systems.  

In applications, the FBTs were typically used in noise and vibration engineering (Brigham, 

1988). They provide the time-averaged energy information from a signal segment in 

frequency domain, but remain nothing in time domain. For nonstationary signals such as 

vehicle noises, some implementation examples are the STFT (Hodges & Power, 1985), WVD, 

smoothed pseudo-WVD (Baydar & Ball, 2001) and WT (Chen, 1998). In particular, the WT as 

“mathematical microscope” in engineering allows the changing spectral composition of a 

nonstationary signal to be measured and presented in the form of a time-frequency map and 

thus, was suggested as an effective tool for nonstationary signal analysis.  
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This chapter includes three sections. We firstly briefly introduce the theory background of the 
Wavelet-based techniques, such as the CWT, DWT, WPA, as well as the Mallat filtering 
scheme and algorithm for the DWT-based calculation. Secondly, we discuss the advantages 
and drawbacks of the DWT-based methods in nonstationary signal processing by comparing 
the DWT with other TFTs. Some successful examples of the DWT used for nonstationary 
vibration and sound signals in the vehicle engineering will be given in the third section.  

2. Theory background 

2.1 Continuous wavelet transform  

For a function or signal x(t)∈L2(R), if a prototype or mother wavelet is given as Ǚ(t), then the 
wavelet transform can be expressed as:  

 x ab

1 t b
CWT (a,b) x(t)ψ( )dt x(t),ψ (t)

aa

−
= =∫  (1) 

Here a and b change continuously, so comes the name continuous wavelet transform (CWT). 
A family of wavelets Ǚab(t), each of which can be seen as a filter, is defined in (1) by dilating 
and translating of Ǚ(t). Obviously, b changes along the time axle, its role is simple and clear. 
Varible a acts as a scale function, its change alters not only the spectrum of the wavelet 
function, but also the size of its time-frequency window. The local information in time and 
frequency domain, which reflects different characteristics of the signal, is extracted by CWT. 
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Fig. 1. “mexico hat” wavelets with different a and their spectra 

If 

2Ψ( )
c dψ

ω
= ω < ∞

ω∫ is satisfied, where Ψ(ǚ) is the Fourier transform of Ǚ(t), then Ǚ(t) is an 

admissible wavelet. In this condition, original signal x(t) can be recovered from its CWT by:  

 x ab 2

1 dadb
x(t) CWT (a,b)ψ (t)

c aψ
= ∫ ∫   (2) 

In the case where Ǚ is also L1(R), the admissibility condition implies that Ψ(0)=0; Ǚ has mean 
value 0, is oscillating, and decays to zero at infinity; these properties explain the 
qualification as “wavelet” of this function Ǚ(t). From the view of signal processing, Ǚ(t) acts 
as a band pass filter. 
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2.2 Discrete wavelet transform  
The time-frequency windows of Ǚab(t) are overlapped each other, which means there is 
information redundancy in CWT. This is a disadvantage of CWT when it is used for signal 
compression or feature extraction. Thus the wavelet transform can be computed discretely on 
the time-frequency plane, to reduce the redundancy. The crucial point is how to sample a and 
b to guarantee the precise reconstruction of original signal x(t) from its wavelet transform. 
There are several forms of wavelet transform according to the different level of discretization. 

Simply let j
0a a= , where 0a 0> and j Z∈ , we can discretize a. Generally we have 0a 2= , thus 

the scale is sampled along a dyadic sequence, so the function jb jj

1 t bψ (t) ψ( )
22

−
= is a dyadic 

wavelet, and the corresponding transform x jbjj

1 t b
WT (j,b) x(t)ψ( )dt x(t),ψ (t)

22

−
= =∫  is 

called dyadic wavelet transform. 

To recover x(t) from its dyadic wavelet transform, the dual wavelet ˆ (t)ψ of Ǚ(t) must be 

introduced. Dual wavelet has the same scale and time shift as original wavelet, that is 

jb jj

1 t b
ˆ ˆψ (t) ψ( )

22

−
= . The relationship between ˆ (t)ψ and Ǚ(t) is: 

2j

j

Ψ( )Ψ̂( )

Ψ(2 )
∞

=−∞

ω
ω =

ω∑
, 

where Ψ̂( )ω  is the Fourier transform of ˆ (t)ψ . We can prove x(t) is reconstructed by:  

 3 j/2
x j

j

t b
ˆx(t) 2 WT (j,b) ( )db

2

∞
−

=−∞

−
= ψ∑ ∫   (3) 

To ensure the recovery, there should be
2j

j

A Ψ(2 ) B
∞

=−∞
≤ ω ≤∑ , where A and B are constants, 

this is the stability condition. Obviously, dual wavelet of a stable function is also stable. 
To step further, we sample time domain by taking b=kb0, where b0 should be chosen to ensure 

the recovery of x(t). When a is changed from j 1
0a − to j

0a , the central frequency and the band 

width of the wavelet are all decreased by a0 times, so the sample interval can increase to a0 

times. In this case, the discretized wavelet function is
j

00
jk jj

00

t ka b1ψ (t) ψ( )
aa

−
= , and its 

wavelet transform is: 
j

00
x jkjj

00

t ka b1
WT (j,k) x(t)ψ( )dt x(t),ψ (t)

aa

−
= =∫ . This decomposition 

is called discrete wavelet transform (DWT). From this formula, while time t is still continuous, 
we only compute the wavelet transform on a grid in the time-frequency plane, as depicted in 
Fig. 2.  
Given dj(k)=WTx(j,k), we hope to recover x(t) from formula like 

 j jk
j 0 k

ˆx(t) d (k) (t)
∞ ∞

= =−∞

= ψ∑ ∑   (4) 
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This formula is called wavelet series, in which dj(k) is wavelet coefficients and jkˆ (t)ψ  is dual 

wavelet. To recover x(t) using (4), many questions should be answered, such as: are Ǚjk(t) 

complete to describe arbitrary signal x(t)∈L2(R); is there information redundancy in the 

decomposition; how to determine the sample interval of a and b. Daubechies studied them 

thoroughly, and her wavelet frame theory answered these questions [1].  
 

 

Fig. 2. The computing grid of DWT 

We call a function family {Ǚn} a frame if there exist two constants A>0 and B>0 such that for 

an arbitrary x(t)∈L2(R), 
22 2

n
n

A x x, B x≤ ψ ≤∑ is satisfied. When A=B the frame is said to 

be tight. A frame defines a complete and stable signal representation, which may also be 

redundant. When the frame vectors are normalized
2

n 1ψ = , the redundancy is measured 

by the frame bounds A and B. The frame is an orthogonal basis if and only if A=B=1. If A>1 

then the frame is redundant and A can be interpreted as a minimum redundancy factor. 

If a frame operator S is defined as n n
n

Sx x,= ψ ψ∑ , then 1 1
n n n n

n n

x x,S x, S− −= ψ ψ = ψ ψ∑ ∑ , 

so we can define 1
n n

ˆ S−ψ = ψ  as the dual frame of Ǚn, with bounds A-1 and B-1. If A=B, we have 

n n

1
ˆ

A
ψ = ψ . So the recovery process in (4) is well founded.  In many cases where precise 

reconstruction is not a pursuit, we can take jk jk

2
ˆ (t) (t)

A B
ψ ≈ ψ

+
, 

jk jk
j,k

2
x(t) x(t), (t) (t) e(t)

A B
= ψ ψ +

+ ∑ , here e(t) is the error and 
B A

e(t) f
B A

−
≤

+
. 

The only remain problem is how to construct a wavelet frame. Obviously, the smaller b0 and 

a0 are, the greater the information redundancy is, and the reconstruction is easier. On the 

contrary, Ǚn will be incomplete when b0 and a0 are big enough, which make precise recovery 

of x(t) impossible. For this problem, there are two theorems: (1) If 

j
j2

jk 00 0ψ (t) a ψ(a t kb )
− −= −  

is a frame of L2(R) then the frame bounds satisfy

2

0

0 0

Ψ( )
2 d

A B
b ln a

∞ ω
π ω

ω≤ ≤
∫

; (2) Define 

0

j j
0 0

j0 a

( ) Ψ(a ) Ψ(a )sup
∞

=−∞≤ ω≤

β ξ = ω ω+ ξ∑  and
1

2

0 0k
k 0

2 k 2 k
[ ( ) ( )]

b b

∞

=−∞
≠

π − π
Δ = β β∑ , if b0 and a0 are such that 
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0

2j
0 0

0 a0 j

1
A ( Ψ(a ) ) 0

b inf
∞

≤ ω≤ =−∞

= ω − Δ >∑ and
0

2j
0 0

0 a0 j

1
B ( Ψ(a ) )

b inf
∞

≤ ω≤ =−∞

= ω + Δ < ∞∑ , then {Ǚjk(t)} is 

a frame of L2(R). These two theorems are the sufficient and necessary conditions to construct 

wavelet frame.  

In some cases, wavelet frame {Ǚjk(t)} is orthogonal or independent, the more correlated the 

functions are , the smaller the subspace spanned by the frame is. This is useful in noise 
reduction. When b0 and a0 is close to 0 and 1, the functions of the frame are strongly related 
and behave like continuous wavelet. In other cases, redundancy or dependency is avoided 
as possible, so Ǚ, b0 and a0 are chosen to compose an orthogonal basis. 

2.3 Multiresolution analysis and mallat algorithm 

Multiresolution analyze (MRA) provides an elegant way to construct wavelet with different 

properties. A sequence {Vj}j∈Z of closed subspaces of L2(R) is a MRA if the following 6 

properties are satisfied:  

1. j
j j( j,k) Z,f(t) V f(t 2 k) V∀ ∈ ∈ ⇔ − ∈ , 

2. j 1 jj Z,V V+∀ ∈ ⊂ , 

3. j j 1

t
j Z,f(t) V f( ) V

2
+∀ ∈ ∈ ⇔ ∈ , 

4. j j
j j

V V {0}lim
∞

→∞ =−∞

= =∩ , 

5. 2
j j

j j

V Closure( V ) L (R)lim
∞

→−∞ =−∞

= =∪ , 

6. There exists θ such that {θ(t-n)}n∈z is a Riesz basis of V0.  

 

 

W0 W1 W2 V3 

V2 

V1 

V0 

4

π
2

π
8

π π ω
 

Fig. 3. Partition of function space by multiresolution analyze 

The main idea of MRA is described in Fig. 3, the space L2(R) is orderly partitioned. The 
relationship between adjacent spaces Vj and Vj+1 is reflected from condition 2) and 3), so the 
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basis of Vj and Vj+1 differs only on the scale by 2. We only discuss how to construct an 

orthogonal wavelet basis here, so a space series Wj which satisfy j j j 1V W V −⊕ ⊂ are 

introduced. By this idea, the function space can be decomposed like 

0 1 2 j jV W W W V= ⊕ ⊕ ⊕ ⊕" and so 2
m

m

L (R) W
∞

=−∞
= ⊕ , which can be seen in Fig. 3. By this 

kind of decomposition, components in each space Wj contain different details of the 
function, or from the view of signal processing, the original signal is decomposed by a 
group of orthogonal filters. 
To construct an orthogonal wavelet basis, we first need to find an orthogonal basis of V0. 
From the following theorem: a family {φ(t-n)}n∈z is a standard orthogonal basis ↔ 

2

k Z

Φ( 2k ) 1
∈

ω+ π =∑ , where Φ(ǚ) is the Fourier transform of φ(t). If {θ(t-n)}n∈z, with Fourier 

transform Θ(ǚ), is not an orthogonal basis of V0, from the above theorem, we can compute 

2

k Z

Θ( )Φ( )
Θ( 2k )

∈

ω
ω =

ω+ π∑
, and {φ(t-n)}n∈z must be orthogonal. We call φ(t) the scale function, 

and we will take {φ(t-n)}n∈z as the orthogonal basis of V0 in this chapter. 

From above discussion, {φ(t-n)}n∈z is an orthogonal basis of V0, and 1 0

t
( ) V V
2

ϕ ∈ ⊂ , we have 

k

t
( ) 2 h(k) (t k)
2

∞

=−∞
ϕ = ϕ −∑ . In the frequency, 2Φ(2 ) H( )Φ( )ω = ω ω , where 

ik

k

H( ) h(k)e
∞

− ω

=−∞
ω = ∑ . If we take n Z

t
{ ( n)}

2
∈ψ −  as an orthogonal basis of W1, since we have  

0 1 1V V W= ⊕  from above discussion of MRA, then 
k

t
( ) 2 g(k) (t k)
2

∞

=−∞
ψ = ϕ −∑  and 

2Ψ(2 ) G( )Φ( )ω = ω ω  are hold. Combine all these expressions with (t)dt 0ψ =∫  and 

(t)dt 1ϕ =∫ , we have following conclusions: 1) 
k

h(k) 2=∑  and 
k

g(k) 0=∑ ; 2) H(0) 2=  

and G(0)=0. From this, H is a low pass filter and G band pass filter. 

From formula 
2

k Z

Φ( 2k ) 1
∈

ω+ π =∑ , which means {φ(t-n)}n∈z is an orthogonal basis, we have  

 
2 2

H( ) H( ) 2ω + ω+ π =   (5) 

hold for arbitrary ǚ. The same conclusion is hold for G, that is 

 
2 2

G( ) G( ) 2ω + ω+ π =   (6) 

Since the orthogonality between {φ(t-n)}n∈z and {Ǚ(t-n)}n∈z,  

 H( )G( ) H( )G( ) 0ω ω + ω+ π ω+ π =   (7) 

www.intechopen.com



Discrete Wavelet Transfom for Nonstationary Signal Processing 

 

27 

must be satisfied. One solution of (7) is iG( ) e H( )− ωω = − ω+ π , or equivalently 
kg(k) ( 1) h(1 k)= − − . Till here, the constructive method of an orthogonal wavelet basis is 

completed.  
From MRA, Mallat developed a fast algorithm to compute DWT of a given signal. 

Suppose xj-1(k), xj(k) and dj(k) are coefficients of x(t) projected on Vj-1, Vj and Wj, dj(k) here 

has the same meaning with that in (4), which is WTx(j,k). The Mallat algorithm includes 

the following Eqs:  

 j j 1 j 1
n

x (k) x (n)h(n 2k) x (k) h(2k)
∞

− −
=−∞

= − = ∗∑  (8) 

 j j 1 j 1
n

d (k) x (n)g(n 2k) x (k) g(2k)
∞

− −
=−∞

= − = ∗∑  (9) 

 j 1 j j
n n

x (k) x (n)h(k 2n) d (n)g(k 2n)
∞ ∞

−
=−∞ =−∞

= − + −∑ ∑  (10) 

In them, (8) and (9) are for decomposition and (10) is for reconstruction. By decomposing it 

recursively, as in Fig. 4(a), the approximate signal xj(k) and detail signal dj(k) are computed 

out successively.  

 

 
h(k) 2↓ 

g(k) 

xj-2(k) xj-1(k) xj(k) 

2↓

dj-1(k) dj(k) 

h(k) 2↓ 

g(k) 2↓ 

 
(a) Decomposition 

 
 

 
2↑ h(k) 

2↑ 

xj-2(k) xj-1(k)xj(k) 

g(k) 
dj-1(k)

dj(k) 

2↑ h(k) 

2↑ g(k) 

 
 

(b) Reconstruction 
 

Fig. 4. The Mallat algorithm 

3. Time-frequency representation comparisons  

The task of signal processing is to find the traits of the signals of interest. As known that 

most of the signals in engineering are obtained in time domain. However, features of the 

signals can usually be interpreted in frequency domain, so the frequency domain analysis is 
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important in signal analysis. The Fourier transform and its inversion connect the frequency 

domain features with the time domain features. Their definitions are as below: 

 j2 ftX(f) x(t)e dt− π= ∫  (11) 

 j2 ftx(t) X(f)e dfπ= ∫  (12) 

In the stationary signal analysis, one may use the Fourier transform and its inversion to 
establish the mapping relation between the time and frequency domains. However, in the 
practical applications, the Fourier transform is not the best tool for signal analysis due to the 
nonstationary and time varying feature in the most engineering signals, such as engine 
vibration and noise signals. For these signals, although their frequency elements can be 
observed from their frequency spectrum, the time of frequency occurrence and frequency 
change relationship over time can not be acquired. For further research on these signals, the 
time-frequency descriptions are introduced. Fig. 5 shows three time-frequency descriptions 
of the linear frequency modulation signal generated from the Matlab Toolbox: (a) is the 
frequency domain description which loses the time information; (c) is the time domain 
description which loses the frequency information; (b) is the time-frequency description 
which shows the change rule of frequency over time clearly. 
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Fig. 5. Three description methods of linear frequency modulation signal 
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The basic idea of time-frequency analysis is to develop a joint function to combine the 

time and frequency factors. The time-frequency analysis, which can describe the signal 

traits on a time-frequency plane, has become an important research field. Many time-

frequency methods have been presented, which can be divided into three types: linear, 

quadratic and nonlinear. The STFT and WT belong to the linear type, and the Wigner-

Ville distribution (WVD) and pseudo Wigner-Ville distribution (PWVD) belong to the 

quadratic type. This section compares the STFT, WVD, PWVD and WT for showing the 

advantage of WT. 

The basic idea of STFT, which is presented by Gabor in 1946, is to cut out the signal by a 

window function, in which the signal can be regard as stationary, and analyze the signal to 

make sure the frequency elements in the window by the Fourier Transform, then move the 

window function along the time axle to obtain the change relationship of frequency over 

time. This is time-frequency analysis process of STFT and the STFT of the signal x(t) can be 

described as: 

 
j2 ft '* '

xSTFT (t, f) x(t ')g (t t)e dt'
− π

= −∫   (13)  

The WVD, which was presented by Wigner in the research of quantum mechanics in 1932 
and applied to signal, processing by Ville later, satisfies many mathematical properties 
expected by time-frequency analysis. The WVD of the signal x(t) can be described as: 

 j2 f*
xWD (t, f) x(t / 2)x (t / 2)e d− π τ= + τ − τ τ∫  (14) 

To suppress the disturbing of cross term in the WVD, the PWVD, which can be equivalent to 
smooth the WVD, is introduced. The PWVD of the signal x(t) can be described as: 

 j2 f*
xPWVD (t, f) h( )x(t / 2)x (t / 2)e d− π τ= τ + τ + τ τ∫  (15) 

A nonstationary signal is analyzed in four time-frequency methods, i.e., STFT, WVD, 

PWVD and WT. Fig. 6 shows the oscillogram of a signal contain four Gauss components. 

The four time-frequency analysis results are showed in Fig. 7, in which (a), (b), (c) and (d) 

denote the results of STFT, WVD, PWVD and WT respectively. As shown in Fig. 7 (a), the 

resolution of STFT is lower and fixed. Although the WVD and PWVD have higher 

resolution and time-frequency concentration, they are disturbed strictly by cross terms as 

shown in Figs. 7 (b) and (c). In contrast, the resolution of WT is higher than STFT and can 

change with frequency. There have a good frequency resolution in the low frequency 

range, and a good time resolution in the high frequency range. And the cross terms in 

WVD and PWVD disappeare. Though the STFT covers the shortage of the FT to some 

extent in local analysis, its defects can not be overcome. That is, when the window 

function is determined, the size of windows is fixed and the time resolution and 

frequency resolution is fixed. As the resolution of window function is restricted by 

Heisenberg uncertainty principle, the frequency resolution is higher and the time 

resolution is lower when a long window is used, the situation is reversed when a short 

window is used. Therefore, the key of application is how to choose reasonable window 

length. When the signal which contains a variety of difference of scales is analyzed, the 

method of STFT becomes useless. 

www.intechopen.com



 Discrete Wavelet Transforms - Theory and Applications 

 

30 

0 20 40 60 80 100 120 140
-1.5

-1

-0.5

0

0.5

1

1.5

2

t

A

 

Fig. 6. The oscillogram of a signal contain four Gauss components 
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Fig. 7. Four time-frequency representations  

The WVD has higher time-frequency resolution and many mathematical properties such as 
time-frequency concentration, symmetry, reversibility and normalizing. But the shortage is 
that it can not ensure non-negative and produce strictly cross terms especially for nonlinear 
signals, thus many researchers presented a variety of new patterns such as PWVD. These 
methods can suppress the disturbing signal of cross term to a certain extent, but they can not 
eliminate completely and damage many mathematical properties in WVD. 
Although the WT is also restricted by Heisenberg uncertainty principle, the window in WT 
can be adjusted. In the WT, the mother wavelet can be stretched according to frequency to 
provide reasonable window, a long time window is used in low frequency and a short time 
window is used in high frequency. This time-frequency analysis which fully reflects the 
thought of multiresolution analysis is in accordance with the features of time varying 
nonstationary signal. Though the resolution of WT is lower than WVD and PWVD, the cross 
terms don't appear as the WT is linear time-frequency analysis. 
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4. Applications of the WT on nonstationary signals 

This section gives some examples of the DWT successfully applied to nonstationary vehicle 
vibration and sound signals (Wang, et al, 2004, 2007, 2009, 2010).  

4.1 Wavelet transform for nonstationary vehicle vibration 
Most of the research on vehicle vibration systems assumed that the vehicles were running at 
certain constant speeds, therefore, were regarded as a stationary random process. In more 
usual cases such as starting, accelerating and braking, vehicles work under variable speed 
conditions, and its vibration should be considered as a nonstationary process accordingly. 
For nonstationary signals, both the frequencies and their magnitudes vary with time, thus 
the conventional Fast Fourier Transform is incapable for dealing with them. The CWT and 
DWT were used to study the nonstationary inputs and responses of the vehicle vibration 
system (Wang and Lee, 2004).  
A dynamic model of a full vehicle with eight degrees of freedom, was built shown in Fig. 8. 
And the corresponding differential equations were derived from the Lagrange equation as, 

 
.. .

[M]{Z} [C]{Z} [K]{Z} [P]{I(t)}+ + =   (16) 

Where [M] , [C] , [K]  are matrixes of mass, damping and stiffness respectively, {I(t)}  is the 

road roughness vector; [P]  is the transfer matrix from the road roughness vector to the force 

excitation. {z}  is the system response vector. 
 

 

Fig. 8. Dynamic model of a vehicle with 8 DOFs 

Assuming that the vehicle starting at a speed 0v 0= , first accelerating with an acceleration 

1a  up to mv , and then braking with a deceleration 2a  down to fv , the instantaneous 

vehicle speed at any time t were shown as, 

 0 1 m 1

m 2 m 1 m 1 m 1 m 2

v a t 0 t v /a
V(t)

v a (t v /a ) v /a t (v /a v /a )

+ < <⎧
= ⎨ + − < < −⎩

 (17)                

The above process was called “AAB” process. Using the Runge-Kutta Method, the time 
series of road roughness and vehicle response were calculated by Eqs. (16) and (17). 
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Fig. 9. 2D and 3D scalograms result from CWT during the “AAB” process: (a) the vertical 
vibration of the driver seat; (b), (c) and (d) the vertical, pitch and roll vibrations of the 
vehicle body; (e) the vertical vibration of the front axle; (f) the road roughness of the right-
rear wheel. 

The CWT and DWT are performed by using the Mallat algorithm in the Matlab toolbox. The 
selected parameters for calculation are: the Daubechies wavelet with a filter length of seven, 
the scaling factor a=1-350, i.e., the frequency range: 0.404-138.5 Hz. Fig. 9 (a)-(f) shows the 
acceleration scalograms, which were obtained from the CWT, of the seat, vehicle body, axle 
and road roughness during the “AAB” process, respectively. As seen from Fig. 9, the worst 
ride performance of the vehicle happened at 8s during the “AAB”, and there was a little 
time delay in the vibrations transfer from road to the vehicle system. In the accelerating 
process, the vibration energies of the vehicle are getting bigger, moving, as well, to the 
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higher-frequency area; their frequency bands are getting broader, and vice versa in the 
braking process. As a rule, these phenomena of energy flow are transmitted to the other 
levels through the suspension system.  
In view of the vehicle design, the ride comfort of the passenger seat is the most important. 
Comparing Fig. 9 (a)-(f), the energy of road excitation has been greatly restrained by the 
suspension system of the vehicle. However, the similar time frequency traits can be seen in 
(a), (b) and (c), and the ride comfort of the seat deteriorates suddenly at a certain running 
speed. That means that the vertical and the pitching movement of the vehicle body have 
more effect on the vibration of seats than the rolling movement, and that the vibration 
energy of the vehicle body flowed into the resonance frequency region of the seat vibration 
system during the “AAB” process.  
From the above findings, the WT can provide the time-frequency map of transient “energy 
flow” of the examined points of interest in the vehicle vibration system. Thus, the WT may 
be used in vehicle vibration system design, especially for the transient working cases.  

4.2 DWT-based denoising for nonstationary sound signals 
In sound quality evaluation (SQE) engineering, distortion of the measured sounds by certain 

additive noises occurred inevitably, which came from both ambient background noise and 

the hardware of the measurement system; therefore, the signal needed to be denoised. In the 

former researches, we found that the unwanted noises are mainly write random noises 

which distributed in a wide frequency band but with small amplitudes. Some techniques for 

white noise suppression in common use, such as the least square, spectral subtraction, 

matching pursuit methods, and the wavelet threshold method have been used successfully 

in various applications. The wavelet threshold method in particular has proved very 

powerful in the denoising of a nonstationary signal. Here a DWT-based shrinkage denoising 

technique was applied for SQE of vehicle interior noise. 

Sample vehicle interior noises were prepared using the binaural recording technique. The 

following data acquisition parameters were used: signal length, 10 s, sampling rate, 22 050 

Hz. The measured sounds have been distorted by the random write random noises, and 

then wavelet threshold method is applied. This technique may be performed in three steps: 

(a) decomposition of the signal, (b) determination of threshold and nonlinear shrinking of 

the coefficients, and (c) reconstruction of the signal. Mathematically, the soft threshold 

signal is sign(x) (|x|-t) if |x|>t, and otherwise is 0, where t denotes the threshold. The 

selected parameters were: Daubechies wavelet “db3”, 7 levels, soft universal threshold equal 

to the root square of 2 log (length(f)). As an example, a denoised interior signal and 

corresponding specrum are shown in Fig. 10. It can be seen that the harmony and white 

noise components of the sample interior noise are well-controlled. The wavelet shrinkage 

denoising technique is effective and sufficient for denoising vehicle noises. 

Based on the denoised signals, the SQE for vehicle interior noise was performed by the 
wavelet-based neural-network (WT-NN) model which will be mentioned in detail in the 
next section, the overall schematic presentation of the WT-NN model is shown in Fig. 11. 
After the model was well trained, the signals were fed to the trained WT-NN model and the 
Zwicker loudness model which is as reference. It can be seen that the predicted specific 
loudness and sharpness in Fig.12 are consistent with those from the Zwicker models. The 
wavelet threshold method can effectively suppress the write noises in the nonstationary 
sound signal. 
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Fig. 10. Comparison of the interior noises (left panel) and their spectra (right panel) before 
and after the wavelet denoising model.  

4.3 DWT for nonstationary sound feature extraction 
In the above section, we mentioned a new model called WT-NN used for SQE for vehicle 
interior noise shown in Fig. 11. A wavelet-based, 21-point model was used as the pre-
processor of the new WT-NN SQE model for extracting the feature of the nonstationary 
vehicle interior noise. For interpreting this new proposed model in detail, here we extend 
this model to another kind of noise-passing vehicle noise.  
 

 

Fig. 11. Schematic presentation of the data inputs and outputs to the neural network 

Sample passing vehicle noises were prepared identically as the above vehicle interior 
noises. The measured signals were denoised by using the wavelet threshold method 
mentioned before. Based on the pass-by vehicle noises, the 21-point feature extraction 
model for pass-by noises was designed by combining the a five-level DWT and a four-
level WPA shown in Fig.13. It was used to extract features of the pass-by noises. The 
results are shown in Fig. 14. 
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Fig. 12. Comparisons of specific loudness (left panel) and sharpness (right panel) between 
(a) the Zwicker model (upper), and (b) the WT-NN model  (down) 

 
 
 

 
 
 

Fig. 13. Twenty-one-point wavelet-based feature extraction model for pass-by noise analysis 
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Fig. 14. Feature of the pass-by noise in time-frequency map extracted by the 21-point model 

As the inputs of the WT-NN models, the above wavelet analysis results provide the time-
frequency features of the signals. The SQM (sound equality matrices) of the pass-by noise as 
the outputs is taken from the psychoacoustical model. The loudness was adopted, which is 
related to the SQE of the vehicle pass-by noises. The output SQM is expressed as, 

TSQM [TL SL]=  

where the vectors TL and SL denote the total and specific values of loudness, respectively. 
After training the WT-NN model, the signals were fed into the Zwicker loudness model and 
the trained WT-NN model. It can be seen that the predicted specific loudness in Fig. 15 
coincide well with those from the Zwicker models, thus as the pre-processor of the WT-NN 
model, the newly proposed wavelet-based, 21-point model can extract the feature of 
nonstationary signal precisely. 
 

       

Fig. 15. Specific loudness comparison between (left panel) the Zwicker model, and (right 
panel) the WT-NN model. 
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4.4 DWT for nonstationary sound quality evaluation 
In this section a DWT-based filter bank is performed for sound octave band analysis (OBA). 
Verification results show that the DWT-based method (DWT-OBA) is accurate and effective 
for SQE of nonstationary vehicle noises. 
In the measurements, a sample vehicle is accelerated up to a running speed 50 km/h. The 
following parameters for data acquisition are used: signal length, five seconds, sampling 
rate, 50 kHz. The measured sound signals need to be denoised for avoiding signal distortion 
by using the wavelet threshold method. Based on the measured interior vehicle noise, a 
DWT-OBA procedure is performed here. The determined wavelet function is the 
Daubechies wavelet with filter length of 70, i.e., ‘db35’. The sound DWT-OBA of the interior 
noise can be performed in three steps: (a) signal resampling, (b) DWT filtering, and (c) band 
SPL calculation. The calculation procedure for the DWT-OBA of a sound signal is shown in 
Fig. 16. Then, the octave-band SPL values can be calculated from the sub-band filtered 
signals using the definition of sound pressure level in time domain, 

 

im
2

i ij ref
i j 1

1
L 10log( p /p )

m =
= ∑  (18) 

where iL is the ith band SPL, im  is the total points of the ith band signal, ijP is the ith band 

sound pressure on the thj  point, and refP  is the reference sound pressure, ijP  =20e-6. 

Comparing with the measured results, the errors of the band SPLs in Fig. 21 are within [-0.3, 

+0.2] dB, which are much less than the band error scope of ±1 dB defined in the IEC 651 

standard. The total SPL are also computed by Eq. (19),. 

 iL
T

i

L 10log( 10 )= ∑   (19) 

It is exact same as the measured value 83.7 dB. In view of the A-weighted total SPL, the 
measured value is 66.1 dB (A), and the calculated value is 66.2 dB(A). To prove transient 
characteristic of the DWT-OBA algorithm, furthermore, the time-varying A-weighted total 
SPLs of the interior vehicle noise are carried out by using the DWT-OBA and MF-OBA 
algorithms, respectively. MF-OBA is a self-designed multi-filter octave band analysis 
method also used for SQE and here is adopted as reference. The selected calculation 
parameters are: time frame length, 200 ms, frame amount, 25, and A-weightings, [-56.7 -39.4 
-26.2 -16.1 -8.6 -3.2 0 1.2 1.0 -1.1] dB, for octave band number from one to 10. The results 
shown in Fig. 17 imply a very good transient characteristic of the DWT-OBA.  
In order to examine the effectiveness of the presented DWT-OBA algorithm for more 
practical uses, we applied it and the self-designed filtering algorithm to the measured 
exterior vehicle noise, respectively. The exterior noise signal has been pre-processed 
following the DWT denoising procedure. The A-weighted band SPLs of the exterior vehicle 
noise calculated from the filtering and DWT algorithms, as well as the measurement results, 
are shown in Figs. 18 and 19. And the calculated results are summarized in Table 1. 
 

 Sound 

signal 

Resampling by 

CoolEdit 

DWT 

decomposition 

DWT 

reconstruction 

Total 

SPL 

Octave 

spectra 

 

Fig. 16. The calculation flowchart for DWT octave-band analysis of a sound signal 
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Fig. 17. Calculated time-varying A-weighted total SPLs of the interior vehicle noise by using 
the newly proposed DWT and filtering algorithms. 

 

 

Fig. 18. Linear SPL comparison of the octave-band analysis of the interior vehicle noise: (a) 
the measured result, (b) SPL values calculated by the db35 filter bank, and (c) the band SPL 
errors 
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Fig. 19. A-weighted octave-band SPLs of the exterior vehicle noise from (a) the 
measurement, (b) self-designed filtering algorithm, and (c) the DWT algorithm. 

 

Octave band 
number 

1 2 3 4 5 6 7 8 9 10 

Measured band 
SPLs(dB) 

-13.2 21.0 56.8 55.9 56.7 55.9 58.8 35.4 25.5 20.2 

Filtering band SPL 
error(dB) 

-0.09 0.48 0.05 0.37 0.19 0.12 0 -0.07 0.27 0.17 

DWT band SPL 
errors(dB) 

-0.008 0.25 -0.08 0.24 0.09 0.18 0.04 0.02 0.03 -0.01 

A-weighted total 
SPLs(dB) 

64.0 (measured ) 64.1476 (filtering) 64.0953 (DWT) 

Error percentage 
of total SPLs 

0.2306% (filtering) 0.1489% (DWT) 
 

Table 1. Summary of the calculated A-weighted SPLs of the exterior vehicle noise from 
different methods 

It can be seen that, for the exterior vehicle noise, the A-weighted SPLs from different 
methods have almost same octave patterns in frequency domain. From Table 1, the 
maximum errors of the filtering and DWT band SPLs are 0.48 and 0.25 dB, respectively, 
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which are all occurred in the octave band with a center frequency of 32 Hz. These errors can 
make very small contributions to the total SPL values, due to the special frequency 
characteristics of the vehicle noises. The octave band SPLs from the presented methods are 
satisfied the   error limitation of ± 1 dB published in the IEC 651 standard. The error 
percentage of the A-weighted total SPLs are 0.2306% and 0.1489% for the filtering and DWT 
algorithms, respectively. The above comparisons indicate that the presented DWT-OBA 
algorithm is effective and feasible for sound quality estimation of vehicle noises. 

4.5 DWT pattern identification for engine fault diagnosis 
In Section 4.2, 4.3 we proposed a new model called WT-NN in which the wavelet-based, 21-
point feature extraction model was designed as the pre-processor. Here we performed this 
model for engine fault diagnosis (EFD), so called EFD WT-NN model. 
To establish the EFD WT-NN model, firstly, a database including the engine fault 
phenomena and their corresponding sound intensity signals needs to be built. Based on the 
2VQS type of EFI engine mounted on the GW-II engine test bed, the sound intensities in 
different failure conditions were measured using the two-microphone recording technique 
recommended by the standard ISO 9614. The experimental equipments are arranged as that 
in Fig. 20. The measured signals were denoised by using the wavelet threshold method. 
 

 

Fig. 20. Experimental setup for sound intensity measurements 

To determine the structure of the time-frequency feature extraction model, the FFT-based 
spectral analysis is imposed on the above saved engine noise signals. The results suggest 
that the sound energies of the engine noises mainly distribute in a low-frequency range up 
to 3000 Hz (focus on the frequency interval [0-350Hz]), and decrease with increasing 
frequency. According to the above discussions, the wavelet-based, 21-point model for 
feature extraction of engine noises was applied. Using the 21-point model, the feature of the 
engine noises is extracted, and an example is shown in three dimensions in Fig. 21. Then the 
WT-NN model is built and performed for EFD. The noise signals in different engine state 
have been dealt with by applying the 21- point feature extraction model; the outputs of the 
pre-processor are defined in matrices and fed to a NN as the its inputs. Then, the failure 
phenomena corresponding to the engine state noise signals, which have been defined and 
quantified in matrices as shown in Table 2, are taken as the outputs of the NN.  
After training, we respectively fed all the signals of different engine states to the trained 
WT-NN model. Typically, we listed the outputs of WT-NN model and the simulated 
diagnosis results (patterns) at the measuring point “P1” in Table 3, where the S0, S1, S2, …, 
and S8, denoting the engine fault patterns have the same meanings as those in Table 2, and 
U is an uncertain result. 
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Fig. 21. The 21-point time-frequency feature of the engine fault state that the ECU does not 
receive the knock signals (meshing point no.2) 

 
Engine working state Target output 
Normal idling state of the engine (S0) [0 0 0 0 0 0 0 0 0] 
The nozzle in the first cylinder doesn’t work (S1) [0 1 0 0 0 0 0 0 0] 
The second and third cylinders do not work (S2) [0 0 1 0 0 0 0 0 0] 
The electric motor doesn’t work (S3) [0 0 0 1 0 0 0 0 0] 
ECU does not receive the hall senor signals (S4) [0 0 0 0 1 0 0 0 0] 
The throttle orientation potentionmeter is broken (S5) [0 0 0 0 0 1 0 0 0] 
ECU does not receive the knock signals (S6) [0 0 0 0 0 0 1 0 0] 
The 5-voltage power of the hall sensor is broken (S7) [0 0 0 0 0 0 0 1 0] 
ECU does not receive the oxygen sensor signal (S8) [0 0 0 0 0 0 0 0 1] 

Table 2. The target output definition of the engine working states 

Since the NN outputs are continuous values, the thresholds need to be defined to identify 
the calculated diagnosis results of the WT-NN model. Mathematically, the threshold rule is 
described as, 

v

fs v

v

0 0 S 0.45

S uncertain 0.45 S 0.55

1 0.55 S 1.0

≤ ≤⎧
⎪= ≤ ≤⎨
⎪ ≤ ≤⎩

 

where, Sfs denotes the fault state of the engine, Sv denotes the calculated output values of the 
WT-NN model. It can be seen that the diagnosis results in Table 4 is exactly same as that 
expected. 
We obtained similar comparison results from the simulations using engine noise signals at 
other measuring points. We found that, for the sample signals used in the NN learning, the 
outputs of the BP network are in general conformity with the desired results; when the 
input data deviate from the samples within a certain range, the NN output has a tendency to 
approach the sample failure characteristics. For a real failure diagnosis, one may select in 
measurement points under the guidance of the NN designer of the diagnosis system. 
According to the above findings, the wavelet-based model may be used to diagnose engine 
failures in vehicle EFD engineering. 
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State S0 S1 S2 S3 S4 S5 S6 S7 S8 
0 0.164 0 0 0.027 0 0 0 0 
0 0.610 0 0 0.023 0 0 0 0 
0 0.022 0.989 0 0 0 0.009 0 0 

0.001 0 0 0.987 0.001 0 0.002 0.002 0 
0 0.016 0 0.034 0.970 0.002 0 0 0.085 

0.009 0 0 0.013 0 0.995 0.002 0.011 0 
0 0 0 0 0 0.001 0.979 0 0.088 
0 0 0 0.008 0 0 0 0.885 0 

Model 
output 

0 0 0 0 0.023 0.004 0.030 0 0.976 
Result S0 S1 S2 S3 S4 S5 S6 S7 S8 

Table 4. The outputs of the WT-NN model and diagnosis results at point “P1” 
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