
 

 

1217

INTRODUCTION 
 
Domestic chickens are the most common poultry and 

are valuable sources of protein for humans. Recently, the 
dual roles of microbiota in the gastrointestinal tract (GIT) 
have attracted attention: they support digestion of food and 
also provide nutrients. In addition, the GIT microbiota may 
play crucial roles in the health and immune system of 
chickens (Brisbin et al., 2008; Stanley et al., 2014). 
However, the diverse and complex structure of GIT 
microbiota hindered the understanding of the roles of GIT 
microbiota in chicken’s growth and health. As relatively 
few cultivated specimens of chicken GIT microbes are 
available mainly due to their requirement for anaerobic 
conditions similar to those in the GIT, researchers have 
turned to new culture-independent approaches, 
metagenomics, to predict nutritional and ecological roles of 
GIT microbes. Metagenomics is the study of genetic 

materials from environmental or host-associated microbiota 
to identify the microbial diversity and its functions. 
Previously, conventional, low-throughput Sanger 
sequencing method has been limited in metagenomic 
studies of GIT microbiota due to high sequencing costs and 
insufficient sequence data. Recently, newly developed 
sequencing platforms such as next-generation sequencing 
(NGS) have allowed the substantial researches into the 
diversity and functions of microbiota from the guts of 
various livestock animals. High-throughput NGS generates 
large volumes sequence data containing genetic information 
(Metzker, 2010), and this allows hypothesis-driven 
researches on chicken GIT microbiota, thereby highlighting 
the roles of previously unknown and rare microbial GIT 
species (Sogin et al., 2006; Medinger et al., 2010). 
Furthermore, metagenomic data have raised new questions 
such as how microbiota stability and ecological shifts are 
influenced by nutrients and hosts (Andersson et al., 2008). 
Here, we review the current status on metagenomics-driven 
studies on chicken GIT’s microbiota and the involved 
methodology, and suggest possible approaches for better 
understanding of GIT microbiota to increase chicken 
productivity and overall health. 
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CHARACTERIZATION OF CHICKEN GIT 
MICROBIOTA 

 
Bacterial community profiling based on 16S rRNA gene 
sequence and functional inference 

When determining the composition of GIT microbiota 
using a gene-targeted-metagenomic approach, several 
marker genes such as those for ribosomal protein subunits, 
elongation factors, and RNA polymerase subunits represent 
distinct microbial populations. One of the most general 
choices for resolving the taxonomic composition of the 
microbial community is the hypervariable region in genes 
encoding 16S rRNA (Figure 1). Bacterial 16S rRNA gene 
possesses 9 hypervariable regions flanked by highly 
conserved regions, which are generally designated as 
polymerase chain reaction (PCR) primer sites. Sequence 
variations in hypervariable regions allow accurate bacterial 
taxonomic estimation by comparing against 16S rRNA gene 
sequences deposited in databases such as GreenGenes 
(DeSantis et al., 2006), the Ribosomal Database Project 
(Cole et al., 2014), and SILVA (Pruesse et al., 2007). 
Several bioinformatic pipelines of 16S rRNA gene NGS-
based profiling (e.g., 16S amplicon sequencing: using 454 
pyrosequencing, Illumina MiSeq, and Ion PGM Systems) 
have been proposed and designed for obtaining taxonomic 
information via processing raw sequences of 16S rRNA 
genes. These pipelines generally consist of the following 
steps: quality filtering of low-quality sequences and 

chimera checking (Edgar et al., 2011; Haas et al., 2011), 
removing pyrosequencing-oriented sequencing errors (Huse 
et al., 2007), and producing a cluster of nearly identical 
sequences referred to operational taxonomic units (OTUs) 
(Caporaso et al., 2010; Cole et al., 2014). OTUs are defined 
by two approaches i) unsupervised clustering on sequence 
similarity and ii) supervised clustering that directly assigns 
sequences to trained taxonomic clusters (Sul et al., 2011). 
For undefined microbiota, OTUs generated by unsupervised 
clustering are generally used to serve as individual 
phylotypes (Medinger et al., 2010). The representative 
sequences, which are either the most abundant sequences or 
sequence with the least distance summation within all 
sequences in the same OTUs, are then matched to those in 
the public database (e.g. the Ribosomal Database Project) to 
obtain taxonomic classification. This information has also 
been used to account for the degree of divergence between 
different communities or sample types. The latter approach 
is most useful for studying low-complexity microbiota and 
comparative analysis of the same type of samples under 
different experimental conditions. 

In addition to providing taxonomic information, the 
OTUs provide information on population diversity, 
indicating richness and evenness of individual species in a 
sample as alpha diversity (Colwell, 2009). Both richness 
and evenness of the diversity of the microbiota are often 
important indicators of the health of livestock. For instance, 
the number of microbes in the gut decreases during 

Figure 1. Metagenomic strategies for chicken GIT microbiota. GIT, gastrointestinal tract. 
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antibiotic treatment or nutrient imbalance (Lozupone et al., 
2012). Several indices, including Chao, abundance-based 
coverage estimators, Shannon, and Simpson, calculate the 
abundance or distribution of OTUs within a particular 
population. For example, low richness suggests low number 
of species in the community and low evenness indicates that 
the sample consists of a few dominating taxa. These alpha 
diversity indices could be obtained using a bioinformatics 
pipeline such as MOTHUR (Hughes et al., 2011; Schloss et 
al., 2009) and Qiime (Caporaso et al., 2010). MOTHUR 
output consists of numeric data presented in a table or as 
rarefaction curves, which can then be compared with the 
values for the microbial community samples. Alpha 
diversity is generally considered to provide a poor reflection 
of microbial functional inference as an ecosystem. Although 
alpha diversity is not consistent with different samples, 
functionality can be maintained and replaced by the closely 
related and/or functionally similar species (Purschke et al., 
2013). However, recent reports showed that alpha diversity 
is strongly correlated with diversity in a specific gene 
functions (Johnson et al., 2014). In addition, a few studies 
suggested that gut microbiota with high diversity could be 
more stable or healthier than those with low diversity 
(Clemente et al., 2012; Lozupone et al., 2012). These 
studies indicate that alpha diversity can contribute 
functional inference about the underlying microbiota 
mechanism.  

Beta diversity is used when comparing multiple 
communities to determine the number of OTUs or taxa 
shared among them. Beta diversity integrates information 
about the degree of functional dissimilarity between 
multiple populations. Beta diversity calculated as a 
similarity index (e.g., Jaccard, Bray-Curtis) that shows 
shared populations between the microbial profiles of 
multiple communities, whereas alpha diversity shows a 
statistical summary of diversity in a single population 
(Martiny et al., 2011). Two approaches to measure beta 
diversity are widely used: unweighted UniFrac (qualitative) 
and weighted UniFrac (quantitative) (Lozupone and Knight 
2005; 2007). UniFrac is a method to calculate a distance 
between microbial communities using phylogenetic 
diversity. Many studies using UniFrac show that beta 
diversity is strongly influenced by environmental factors 
such as substrates, temperature, and pH. 

Inflation of microbial diversity results could occur 
during a sequencing process due to sample preparation and 
preservation, DNA extraction, and choice of PCR primers 
(Lauber et al., 2010; Cruaud et al., 2014; Hang et al., 2014). 
The diversity results can be statistically varied even though 
the samples were stored at 4°C or lower. DNA extraction 
methods seem to affect the diversity results in different 
sample types. The choice of 16S rRNA gene’s 

hypervariable regions to be amplified by selected PCR 
primers introduces significant variation in the microbial 
diversities in the samples, because different regions show 
considerable differences in taxonomic coverage. These 
artifacts clearly indicate that the diversity results with 
different sample preparations should be carefully 
interpreted. 

In diversity analysis, it is important to account for the 
contribution of sequencing errors on dramatically different 
outputs (Huse et al., 2007; Kunin et al., 2010). These errors 
can be caused by regions of 16S rRNA, read length and 
sequencing technology (Gilles et al., 2011). Recently, 
Illumina MiSeq and HiSeq are becoming widely popular 
sequencing platform for high-throughput sequencing since 
sequencing errors produced in these systems are easier to 
manage computationally than those from 454 
pyrosequencing (Claesson et al., 2010; Luo et al., 2012). 
Another type of error that occurs during gene amplification 
is generation of chimeric sequences from two unique 
parental 16S rRNA gene sequences. Various computation 
programs have been developed to remove chimeric 
sequences by using reference sequences or self-query 
sequences (Edgar et al., 2011; Haas et al., 2011). Quality 
sequence filtering process is essential before analysis of 
microbial diversity.  

 
Functional gene-targeted metagenomics  

In contrast to 16S rRNA gene profiling, analysis of 
genes encoding proteins that function to regulate metabolic 
pathways can help to explore the diversity of particular 
ecological functions in the GIT sample (Figure 1). Further, 
protein-coding genes can be used as phylogenetic markers 
(most likely with 16S rRNA gene), although the high 
evolutionary rate of functional genes can mislead to linking 
with functional and taxonomic results (Case et al., 2007). 
Functional Gene Pipeline and Repository (FunGene; 
http://fungene.cme.msu.edu/) provides databases of 
biogeochemical, biodegradation, and antibiotic functional 
genes, as well as a pipeline that allows analysis of 
functional diversity based on OTUs (Fish et al., 2013). 
Using FunGene, the sequences are analyzed through two 
approaches: reference-based approaches or unsupervised 
approaches. The reference-based approaches use a tool, 
named FrameBot, to correct a sequencing error generated 
frameshift by matching the sequences against curated 
reference sequences (Wang et al., 2013). The unsupervised 
approaches cluster the aligned sequences generated by 
HMMER3, which is based on implementation of hidden 
Markov model for searching similar protein sequences and 
for making protein sequence alignment (Finn et al., 2011). 
All clustered sequences can be submitted into calculation of 
alpha and beta diversity, and classification of representative 
sequences extracted from each cluster using FunGene 
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database. Approaches to further analysis of functional genes 
would be similar to analysis of 16S rRNA genes, but 
abundance of functional genes can be highly influenced by 
the function of interest in the ecosystem (Pereyra et al., 
2010). Therefore, the accurate and fast quantification of 
functional genes in the ecosystem is a critical step to 
understand the potential of microbial function in the 
ecosystem. Multiplex PCR combined with q-PCR 
(Multiplex q-PCR) is an ideal tool to be used in this context, 
since not only quantitative results about the target 
functional gene, but also the distribution of multiple genes 
in the ecosystem is crucial for understanding microbial 
function in different ecosystems (Elnifro et al., 2000; Smith 
and Osborn, 2009). The multiplex q-PCR can amplify more 
than one targeted gene by addition of more than one pair of 
primers in the same reaction. This technique shows strong 
potential to save time and labor for multiple samples and 
genes targeted in different areas (Stedtfeld et al., 2008). For 
example, 18 antibiotic resistance types (total 141 primer 
sets) were successfully tested to evaluate the abundance and 
diversity of antibiotic resistance genes in swine gut 
microbiota using multiplex q-PCR (Looft et al., 2012). 
Recently, 3rd generation PCR technology, named digital 
PCR (dPCR), has developed for directly quantifying and 
clonally amplifying nucleic acids. Although dPCR is carried 
out a single reaction within a sample, the sample is 
distributed into a hundred thousands of partitions and PCR 
reactions are carried out in parallel. This feature provides 
for more accurately quantifying results than conventional q-
PCR. Microarrays have been developed to use gene 
expression studies and monitor environmental processes. 
GeoChip is one of well-known comprehensive microarray 
chips in microbial ecology, especially useful to study 
ecosystem processes and functions (He et al., 2007). 
Current version of GeoChip contains more than 50,000 
gene probes involved in biogeochemical cycles, metal 
reduction, resistance and organic compound degradation. It 
is a promising tool for high-throughput and cost-effective 
analysis in quantifying functional genes. 

Although amplicon-based profiling is the most common 
approach to study environmental microbial diversity, it 
showed several limitations including amplicon size, primer 
(or probe) sensitivity, and errors during amplification and 
contamination. However, metagenome analysis without the 
PCR amplification step can be a powerful alternative to 
amplicon-based profiling for investigating all metabolic 
processes of microorganisms found in environmental 
samples. The process of metagenomic analysis compared 
with amplicon-based profiling is summarized in Figure 1. 
The simplest way to analyze the metagenome is by using 
short reads directly after the quality sequence filtering step 
(Thomas et al., 2012). These short reads can be used as 
taxonomic markers and matched against a marker gene 

database (e.g. Phylosift, EggNOG) and functional markers 
quantifying abundance of genetic pathways (Darling et al., 
2014; Powell et al., 2014). These analyses provide 
taxonomic (e.g. MEGAN) and functional (e.g. KEGG 
pathway) contents of single data sets to rapidly search for 
interesting research targets and test hypothesis generated 
from experimental design. Alternatively, assembly 
algorithms can be used to reconstruct short reads into a 
sequence contig, which is a set of overlapping sequences 
representing the contiguous DNA fragment (Mende et al., 
2012; Thomas et al., 2012). Although obtaining a complete 
individual genome from metagenomic sequences is still 
challenging unless high sequencing coverage, it is sufficient 
to characterize the major functions of the microbial 
communities as well as to identify their taxon by assigning 
to public genome reference database (Howe et al., 2014; 
Nielsen et al., 2014).  

 
THE DIFFERENT ROLES OF  

CHICKEN GIT MICROBIOTA IN  
NUTRIENT METABOLISM IN HOST 

 
The chicken GIT is like a machine for metabolizing 

nutrients. In most recent studies, researchers have not 
focused on culture-dependent studies but on culture-
independent phylogenetic profiling against chicken GIT. 
Taking advantages of NGS, metagenomic approaches 
revealed the bacterial composition of the chicken GIT and 
also functional genes highly related to host digestion and 
nutrient absorption mechanisms. This technique brings us 
understanding of the taxonomic variety of the co-
metabolizing micro-community within the host and the 
gene level of target nutrients metabolism. Therefore, we 
reviewed the recent reports about the candidates of target 
bacteria or genes to understand how they can help in host 
metabolism.  

 
Polysaccharide metabolism  

The caecum is a key organ for fermentation of various 
forms of polysaccharides and is highly associated with host 
health and performance (Stanley et al., 2014). Cecal 
microbiota play a central role in metabolizing 
polysaccharides because chickens do not possess a 
complete metabolic cycle for producing readily absorbable 
forms of polysaccharides. Recently, Sergeant et al. (2014) 
reported numerous polysaccharide degrading enzymes in 
the cecal metagenome, and Qu et al. (2008) showed that the 
genes for carbohydrate metabolism occupied about 20% 
genes in the GIT microbiota metagenome (Qu et al., 2008; 
Sergeant et al., 2014) including key enzymes like: 
carbohydrate esterase, polysaccharide lyase, and glycoside 
hydrolase which are lacking in chickens (Beckmann et al., 
2006; Yeoman et al., 2012). During the digestion of 
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polysaccharides, GIT microbiota produced various short 
chain volatile fatty acids (SCFA), mostly acetate, while 
propionate, butylate, valerate, isobutylate, and isovalerate 
are other forms also found (Dunkley et al., 2007; Yeoman et 
al., 2012). The ratio of SCFA production was lower during 
the uptake and digestion of soluble polysaccharides than 
during the uptake and digestion of insoluble 
polysaccharides (Lei et al., 2012). In addition, carbohydrate 
metabolism-related proteins were most commonly found in 
the metaproteomic analysis of chicken GIT microbiota 
(Tang et al., 2014). Recently, Tang et al. (2014) showed the 
positive correlation between metagenomic and 
metaproteomic analyses for chicken microbiome 
composition and protein expression.  

 
Nitrogen metabolism  

Recently, Qu et al. (2008) reported that the 
environmental gene tags of the subsystems-based 
annotations (SEED) database showed that the GIT 
microbiota has genes involved in metabolism of protein and 
amino acids (9%), and nitrogen (1%) as nutrient sources 
(Qu et al., 2008). In case of host leaked or incompletely 
metabolized dietary protein, the GIT microbiota digested 
further amino acids as host nutrient because chickens unlike 
some other animals lack the enzymes required for complete 
nitrogen metabolism (Latshaw and Zhao, 2011). As a result, 
effective nitrogen metabolism by GIT microbiota has 
produced healthier and more productive chickens (Stanley 
et al., 2014). When chicken GIT microbiota metabolized 
nitrogen sources, half of the nitrogen sources were 
converted into ammonia, which was excreted subsequently 
and this loss adversely affected the health of the chicken 
(McCubbin et al., 2002; Xin et al., 2011). Undissolved uric 
acid, which itself is not toxic, affects induction or 
degradation of bacterial proteins in chicken gut (Tang et al., 
2014). 

 
Fatty acids and lipids metabolism  

Commercial chickens feed on grains which usually 
contain non-starch polysaccharides (NSPs) and the 
metabolism of NSPs produces SCFA. Despite the fact that 
Firmicutes, Bacteroides, and Proteobacteria were usually 
isolated or detected in the chicken ceca, Clostridiales 
contributed the most to SCFA metabolism (Oakley et al., 
2014). SCFA can inhibit the growth of acid-sensitive 
pathogens by inducing low-pH environment and can 
improve both mineral absorption in host and growth of 
epithelial cells (Oakley et al., 2014; Sergeant et al., 2014). 
Generally, fatty acid and lipid metabolism related genes 
were detected to be only about 1% to 2% in the whole gut 
metagenome (Qu et al., 2008). Conjugated linoleic acid 
(CLA) is a by-product during metabolism of 
polyunsaturated linoleic acid and presence of CLA in the 

diet was reported to affect the death rate of embryo and 
quality of yolk (Aydin et al., 2001; Yeoman et al., 2012). 

 
Host health  

The presence of bacterial pathogens such as Salmonella, 
Clostridium, Campylobacter, Staphylococcus, and E. coli 
within chicken microbiota is a critical issue for host well-
being (Oakley et al., 2014). Bacteria that are non-
pathogenic to chickens and are found in chicken microbiota 
are sometimes pathogenic to humans (Newell et al., 2011). 
For example, recent reports suggest that most of 
Campylobacter infection cases in humans resulted from 
handling and eating raw or undercooked poultry meat 
(Kaakoush et al., 2014). Despite the presence of a pathogen 
(for humans) at a detectable level in the microbiota of 
healthy chickens, there were no significant changes in 
microbial community structure and diversity (Skraban et al., 
2013). Similarly, even infection with a pathogen will not 
cause major changes in the remaining chicken resident 
microbiota (Videnska et al., 2013). Oakley et al. (2014) 
suggested that competitive exclusion is one of the most 
effective treatments for blocking pathogens, usually 
Salmonella, leading to enrichment in intestinal regulation 
(Oakley et al., 2014). The other approach is false signal 
binders, which mimic pathogen docking sites to gut 
epithelia that can prevent gut pathogens from recognizing 
and landing on these sites (Oakley et al., 2014). 

The antibiotic effect on the GIT microbiome depends 
upon the dose of antibiotics and the age of host (Zhou et al., 
2007; Stanley et al., 2014). In recent studies, no significant 
changes were detected in different flocks grown with or 
without antibiotics (Pedroso et al., 2013). Although, after 
discontinuing input of antibiotics, GIT microbiota was 
found to struggle to recover and to resist compositional 
change (Dethlefsen et al., 2008; Stanley et al., 2014). The 
mannan-oligosaccharide (MOS) treatment raised the 
Firmicutes population, whereas, there was no effect on the 
Bacteroidetes population. An increased ratio of 
Firmicutes/Bacteroidetes is known to be related to obesity 
in mouse and human, owing to improved energy harvesting 
capacity for Firmicutes species (Turnbaugh et al., 2006; 
Stanley et al., 2014). MOS has been shown to reduce the 
abundance of E. coli (Baurhoo et al., 2007) and Salmonella 
in cecal contents of experimentally infected chickens 
(Fernandez et al., 2002). This reduction may be due to the 
ability of mannose in MOS to bind to mannose-binding 
lectins of Gram-negative bacteria expressing type 1 
fimbriae, which consequently, reduces bacterial attachment 
to the intestinal epithelial cells (Ganner and Schatzmayr, 
2012). The recent study suggested that MOS promotes a 
greater increase of the villi heights and goblet cell numbers 
of birds under mild environmental stress than when under 
antibiotic treatment. Finally, MOS can increase mucins, a 
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main component of mucus, production so that it can better 
maintain host intestinal health. The intestinal mucus 
thickness is a key for defending against invasion of enteric 
pathogens into epithelial cells and is reduced by antibiotics 
(Stanley et al., 2014). Unlike MOS, Fructooligosaccharide 
directly improves host performance, and while it does not 
inhibit pathogens activity, it promotes beneficial bacteria 
activity (Xu et al., 2003; Stanley et al., 2014). Several 
studies have reported that feed with probiotics containing 
Lactobacillus cultures can enhance chicken to gain weight 
more and create efficient feed absorption (Oakley et al., 
2014). For example, two members of the Lactobacilli, 
Bifidobacterium thermophilum, and Enterococcus faecium, 
increased the intestinal muscle thickness and the jejuna 
villus perimeter and height (Chichlowski et al., 2007). 
Twelve Lactobacillus strains complex reduced serum 
cholesterol level in broilers (Jin et al., 1998). As shown in 
human and pig cases, Firmicutes also helps chickens to 
increase nutrient absorption, whereas Bacteriodetes 
decrease nutrient absorption (Jumpertz et al., 2011).  

 
FUTURE TRENDS 

 
Increase knowledge of the chicken GIT microbiome via 

culture-independent metagenomic analysis has helped to 
understand the dynamics of microbial communities and 
their role in metabolism and health state of chicken. Further 
GIT microbiota research will focus on finding the microbe’s 
role in mediating chicken growth under various 
environmental conditions, such as nutrients, stress and 
welfare to determine better quantity and quality of 
productivity. From metagenomic data of chicken GIT 
microbiota, identifying and tracking the key enzymatic 
genes (suggested in Table 1) related to metabolism and 
health states valuations may find an approach to improve 
the growth and productivity of chickens by combating 
deficiencies by administering in diet or doses, and 

introducing useful or less harmful bacteria possessing 
nutrient digesting genes. In addition, development of 
metagenomic approaches and bioinformatic tools will be 
crucial for progress in an analysis of chicken gut microbiota. 
By focusing on functional genes of chicken GIT microbiota, 
strategies for improving nutrient metabolism can be 
designed. For example, identifying the more effective 
polysaccharides degrading probiotic bacteria which then 
can be used to facilitate chicken metabolism. Strain-specific 
16S rRNA gene sequencing with improved bioinformatic 
tools (Eren et al., 2014) can trace how each strain will be 
changed under various growth and environmental 
conditions and then monitor the abundance changes of 
target strains by food treatment. In addition, metabolism 
specific real-time PCR, performed with primer sets to detect 
each nutrient gene allows us to monitor the state of GIT 
microbiota. Metagenomic analyses in combination with 
other approaches will allow the identification of the 
microorganisms and real players among GIT microbiota 
that help in host metabolism and in maintaining its health. 
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