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This review summarizes both the structure and function of IL-1 receptor antagonist
(IL-1Ra), and relates our new findings, particularly those obtained in IL-1Ra-deficient
mice (IL-1Ra-/-), to the role of IL-1Ra in arterial diseases and cholesterol metabolism.
IL-1Ra-/- mice show an increase in neointima-formation after arterial injury. Heterozy-
gosity in the IL-1Ra gene against the apolipoprotein E-deficient background revealed
a role for IL-1 in promoting atherogenic cell signaling and that the larger lesions of IL-
1Ra-/- mice are enriched in macrophages and depleted of smooth muscle cells. Fur-
thermore, IL-1Ra-/- mice developed severe fatty livers and hypercholesteroremia fol-
lowing 20 weeks on a atherogenic diet compared to WT mice. Taken together, these
results suggest that IL-1Ra plays important roles in restenosis after angioplasty, the
development of atherosclerosis, and the metabolism of cholesterol in vivo. J
Atheroscler Thromb, 2006; 13: 21–30.
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Introduction

Interleukin (IL)-1 is a physiologically active factor pro-
duced and secreted by a variety of cells including those
responsible for controlling immunity. Furthermore, it plays
an important role in immune reactions, cell damage, and
cell-proliferation (1, 2). IL-1 consists of two molecules,
IL-1α and IL-1β, both of which exert similar but not com-
pletely overlapping biological functions mediated through
the IL-1 type I receptor (IL-1RI). Another IL-1 receptor,
the type II receptor (IL-1RII), has also been identified,
but this receptor is not considered to be involved in sig-
nal transduction, but is rather thought to play a regula-
tory role as a “decoy”. In addition, another member of
the IL-1 gene family, IL-1 receptor antagonist (IL-1Ra),
binds to IL-1 receptors without exerting agonistic activ-
ity. IL-1Ra as well as IL-1RII and the secretory forms of

IL-1RI and IL-1RII are considered to negatively regulate
IL-1 signaling (3).

The balance between IL-1 and IL-1Ra has significant
effects on host responses to inflammation and infection
(4, 5). In the immune system, IL-1 has many systemic
effects in the protection of the body, being involved in
fever, the response to stress, and the metabolism of in-
sulin, lipid and bone (6, 7). Notably, in vascular homeo-
stasis, IL-1 is considered one of the most potent
proinflammatory cytokines acting on endothelial cells
(ECs) and smooth muscle cells (SMCs) (8). IL-1 is pro-
duced from these cells as well as macrophages (Mφs)
and hepatocytes (9, 10). IL-1 induces the expression of
surface leukocyte adhesion molecules in ECs, prolifera-
tion of SMCs, and secretion of other cytokines and
chemokines from ECs, SMCs, and Mφs (11, 12). These
effects of IL-1 are strongly implicated in cardiovascular
diseases (13–15). IL-1Ra, one of the negative regulators
of IL-1 signaling, plays a role as an anti-inflammatory
cytokine, similar to IL-10 and TGF-β, in acute- and
chronic- inflammation of the vascular wall (16, 17). IL-
1Ra is also produced by ECs and SMCs as well as Mφs
for maintaining vascular homeostasis (18, 19). This re-
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view, focuses on the effects of IL-1Ra on atherogenesis
and cholesterol metabolism.

Structure of Human IL-1 Ra

IL-1Ra was originally discovered as an inhibitor of IL-1
in the urine of patients with fever (20). A cDNA encoding
the secreted form of the molecule was identified in a hu-
man monocyte library (21). Secretory IL-1Ra (sIL-1Ra) is
synthesized as a 177-amino acid protein requiring the
cleavage of a 25-amino acid leader sequence prior to
secretion as a variably glycosylated 152-amino acid pro-
tein. A second cDNA coding for an intracellular form of
IL-1Ra (icIL-1Ra) was cloned from a different human
monocyte library (22). These two isoforms of IL-1Ra are
created by alternative splicing yielding different first ex-
ons (23). The internal splice acceptor site for icIL-1Ra
was located within the first exon for sIL-1Ra, near the 3’
end of the sequence coding for the signal peptide. icIL-
1Ra does not have a functional leader sequence and re-
mains in the cytoplasm. The sIL-1Ra protein is produced
by many cells that can synthesize IL-1. icIL-1Ra is found
constitutively in keratinocytes and other epithelial cells
but is also a delayed product of stimulated Mφs (24, 25).
Neutrophils contain only sIL-1Ra mRNA, whereas fibro-
blasts are capable of producing the mRNA and protein
for both IL-1Ra isoforms, when appropriately stimulated
(26).

Function of IL-1 Ra

In spite of extensive studies on IL-1 over the past two
decades, the important roles that this cytokine may play
in normal biology are unclear (27, 28). Furthermore, it
remains unknown whether the function of IL-1Ra is lim-
ited to regulating the agonistic effects of extracellular IL-
1 in normal biologic processes or in pathophysiological
conditions. Studies on the functional consequences of
overexpression or absence of expression of IL-1Ra in
transgenic or knockout mice, respectively, may clarify
some possible roles of this cytokine in normal biology.
This review relates our new findings (obtained from IL-
1Ra-deficient mice (IL-1Ra-/-)) about the effects of IL-1Ra
on arteries and cholesterol metabolism.

IL-1Ra and neointima formation after injury
Neointimal hyperplasia is characterized by the activa-

tion, migration, and proliferation of SMCs and is associ-
ated with inflammatory mediators such as cytokines. IL-
1β is a chemoattractant and mitogen for SMCs (28) that
is overexpressed at sites of the active proliferation and
migration of this cell type subsequent to injury (29). Fur-
thermore, a recent report demonstrated that IL-1RI gene-
deficient mice tended to develop less neointima than wild-
type mice (30). In sum, these previous studies suggested

that IL-1 might promote neointimal formation. However,
it remained uncertain whether IL-1Ra, the endogenous
inhibitor of this central cytokine, could significantly sup-
press this response in the vasculature. Using IL-1Ra-/-

mice (on the C57BL/6J background) and wild-type (IL-
1Ra+/+) mice, we investigated neointimal formation 3
weeks after femoral artery injury induced with an exter-
nal vascular cuff. The mean intimal thickness and the in-
tima/media ratio of IL-1Ra-/- mice increased by 249% and
257%, respectively, compared with IL-1Ra+/+ mice (Fig.
1A) (31). Control immunostaining for IL-1Ra in injured
vessels identified IL-1β and the endogenous inhibitor in
the endothelium and inflammatory cells of adventitia in
IL-1Ra+/+ mice but not IL-1Ra-/- mice (Fig. 1B) (31). These
results suggest that IL-1Ra protein prevents inflamma-
tion of both the intima and adventitia after cuff injury.
Indeed, IL-1Ra-/- mice showed an increase in the prolif-
erating cell nuclear antigen (PCNA) index of the intima
and adventitia after injury. Within the adventitia, prolifer-
ating monocytes and macrophages comprised the ma-
jority of PCNA-positive cells. Recent studies have shown
that adventitial passive fibroblasts can become active
myofibroblasts under conditions of adventitial inflamma-
tion (32, 33). On the other hand, SMCs were the pre-
dominant proliferating cell type in the intima (31). IL-1
itself is a mitogen for SMCs (28), and furthermore, a re-
cent study showed that vascular intima formation after
mechanical injury mainly involves inflammatory cells that
originate from the bone marrow (34). Our study demon-
strated definitively that a deficiency of endogenous IL-
1Ra promotes neointimal formation, revealing a crucial
role for this protein in hyperplastic responses of the vas-
culature. Our results may be compatible with the report
that p80 IL-1 type I receptor knockout mice tended to
develop a smaller (7-fold) neointimal area induced by low
shear stress compared to wild-type controls (30). This
report demonstrated that IL-1 modulates low shear
stress-induced neointimal formation, thus providing a
direct proinflammatory cytokine signaling link between
biomechanical forces to a vessel wall and the remodel-
ing response of the artery. They also concluded that spe-
cific anti-IL-1 therapy may lessen neointimal formation.

IL-1Ra and atherogenesis
Atherogenesis is a complex process in which the acti-

vation of ECs and SMCs appears to be a central theme
(8). IL-1 is produced by these cells as well as Mφs and
hepatocytes (9, 10). Furthermore, stimulation and acti-
vation of ECs and SMCs by IL-1 causes a wide range of
inflammatory processes within the atheroma, such as the
enhanced expression of leukocyte adhesion molecules
(9, 12), clotting factors and inhibitors of fibrinolysis (11),
and chemokines (28), as well as increased proliferation
of SMCs (8, 15), suggesting a central role for IL-1 in the
development of atherosclerosis. The activity of IL-1 is
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counter-regulated by its endogenous inhibitor IL-1Ra (15,
27) and a previous report showed that IL-1Ra is ex-
pressed in ECs and atherosclerotic lesions (18). Treat-
ment with recombinant IL-1Ra proved an effective
therapy for atherosclerosis in apoE-/- mice (35). Further-
more, low density lipoprotein receptor-deficient (LDLR-/-)
mice crossed with transgenic mice expressing high levels
of murine sIL-1Ra were also partially protected compared
to their non-transgenic controls. In contrast, LDLR-/-IL-
1Ra-/- mice had a tendency to develop foam cell lesions
on a diet rich in cholesterol and cholate (36). Moreover,
in humans IL-1Ra gene polymorphism is significantly as-
sociated with coronary artery disease (37). These find-
ings suggest that endogenous IL-1Ra may suppress ath-
erosclerosis. To directly answer the question of whether
a deficiency of IL-1Ra promotes the development of ath-

erosclerotic lesions and/or can modulate the phenotype
of atheroma, we employed IL-Ra-/- mice. Using apoE-/-

mice as an animal model of atherosclerosis, we estab-
lished three genotypes (IL-1Ra+/+/ apoE-/-, IL-1Ra+/-/
apoE-/-, and IL-1Ra-/-/ apoE-/- mice) by cross-breeding.
This study focused on the comparison of atherosclerotic
lesions and IL-1Ra+/+/ apoE-/- and IL-1Ra+/-/ apoE-/- mice,
because of the significantly leaner phenotype in IL-1Ra-/-/
apoE-/- mice. Interestingly, the size of the atherosclerotic
lesion safter 16 weeks was significantly increased (30%)
in IL-1Ra+/-/ apoE-/- mice compared to IL-1Ra+/+/ apoE-/-

mice (38). Following 32 weeks, the differences in lesion
size between these mice failed to achieve statistical sig-
nificance (38). However, immunostaining demonstrated
an 86% increase in the MOMA-2-stained area in IL-
1Ra+/-/ apoE-/- mice (Fig. 2A). In addition, α-actin stain-

Fig.1. Lack of IL-1Ra promotes neointimal
formation after injury
A. Histology of cuffed femoral arteries (day
21) of IL-1Ra+/+ (left) and IL-1Ra-/- (right) mice.
Intimal thickness was significantly increased
in IL-1Ra-/- mice compared with IL-1Ra+/+

mice. Sections were stained with Masson’s
trichrome. Original magnification X 50.
B. Representative photomicrographs depict
immunohistochemical staining for IL-1Ra in
cuffed femoral arteries of IL-1Ra+/+ (left) and
IL-1Ra-/- (right) mice (day 7). Boxed areas are
enlarged at the bottom of the panels. IL-1Ra
protein is present in both the endothelium
and some inflammatory cells (arrows) in IL-
1Ra+/+ mice. Original magnification X 100 (up-
per panels) and X150 (bottom panels).
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ing in these lesions was significantly decreased (–15%)
compared to that in IL-1Ra+/+/ apoE-/- mice (Fig. 2B) (38).
Our real-time polymerase chain reaction (RT-PCR) analy-
sis revealed that deletion of IL-1Ra increases the mRNA
expression of the adhesion molecules vascular cell ad-
hesion molecule (VCAM)-1 and intercellular adhesion mol-
ecule (ICAM)-1 in the aorta, and enhances mRNA levels
of monocyte chemoattractant protein (MCP)-1 (38). These
changes may contribute to the enhanced accumula-
tion of Mφs in advanced plaques. Interestingly, IL-1β-/- /
apoE-/- mice showed opposite results, thus demonstrat-
ing that the size of atherosclerotic lesions at the aortic
sinus in IL-1β-/- /apoE-/- mice at 12 and 24 weeks of age
showed a significant decrease of 30% compared with
that in IL-1β+/+ /apoE-/-mice, and the mRNA levels of
VCAM-1 and MCP-1 in the IL-1β-/- /apoE-/- aorta were
significantly reduced compared with those in the IL-

1β+/+ /apoE-/- mice (39). They suggested that IL-1β ex-
erts an atherogenic action by enhancing the expression
of VCAM-1 and MCP-1 in the aorta. This report may sup-
port our results. Taken together, these findings suggest
an important role for IL-1Ra in suppressing the develop-
ment of lesions early during atherogenesis and further-
more, implicate it in the modulation of plaque composi-
tion.

IL-1Ra and cholesterol metabolism during
chronic inflammation

Infection and inflammation induce an acute-phase re-
sponse (APR) (40), leading to multiple alterations in lipid
and lipoprotein metabolism (41). Serum triglyceride (TG)
levels are increased by multiple cytokines, including IL-
1, IL-2, IL-6 and tumor necrosis factor (42–48), because
of increased secretin of very low density lipoprotein

Fig.2. Deficiency of IL-1Ra modulates
plaque composition in ApoE-/- mice.
A. Representative photomicrographs of
sections of advanced atherosclerotic
plaques (immunohistochemical staining for
MOMA-2) from the aortic sinus of IL-1Ra+/+/
apoE-/- (Ra+/+/E-/-) (left) and IL-1Ra+/-/apoE-/-

(Ra+/-/E-/-) (right) mice at 32 weeks of age.
IL-1Ra+/-/apoE-/- mice showed markedly in-
creased numbers of macrophages in le-
sions compared with IL-1Ra+/+/apoE-/- mice.
Original magnification X100.
B. Representative photomicrographs of
sections of advanced atherosclerotic
plaques (immunohistochemical staining for
α-smooth muscle cell actin) from the aortic
sinus of IL-1Ra+/+/apoE-/- (Ra+/+/E-/-) (left) and
IL-1Ra+/-/apoE-/- (Ra+/-/E-/-) mice (right) at 32
weeks of age. SMC numbers in the lesions
in IL-1Ra+/-/apoE-/- mice were significantly
decreased compared with those in IL-
1Ra+/+/apoE-/- mice. Original magnification
X100.
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(VLDL) as a result of adipose tissue lipolysis (49–51). With
more severe inflammation, the clearance of VLDL de-
creases secondary to decreased lipoprotein lipase and
apolipoprotein E in VLDL (52–54). LPS and cytokines re-
duce total serum cholesterol levels in primates, whereas
in rodents they increase cholesterol levels by stimulating
de novo cholesterol synthesis (55, 56), decreasing lipo-
protein clearance (57), limiting the conversion of choles-
terol to bile acids (58, 59), and decreasing the secretion
of cholesterol into the bile (60–63). Many of the changes
in lipoproteins during inflammation help to protect the
host from harmful effects of the stimuli. However, if pro-
longed, these changes in the structure and function of
lipoproteins will contribute to atherogenesis. Of note, in-
flammatory cytokines are increased and play a patho-
genic role in a variety of very common disorders, such
as diabetes, obesity, metabolic syndrome, and athero-

sclerosis (64–68). Many of these disorders display ab-
normalities in lipid metabolism that are similar to those
that occur during infection and inflammation. However,
the effect of chronic inflammation on lipid metabolism
has been unclear. Furthermore, there is no report that
shows the role of IL-1Ra in the metabolism of choles-
terol under chronic inflammatory conditions.

To elucidate the role of IL-1Ra, we fed an atherogenic
diet (with cholate) to both IL-1Ra-/- and IL-1Ra+/+ mice.
IL-1Ra-/- mice developed severe fatty liver after 20 weeks
compared to IL-1Ra+/+ mice (Fig. 3A) (69). Histological
examination revealed an increase in the number and size
of intracellular vacuoles, portal fibrosis, and collagen
deposition as well as lobular and portal inflammation in
livers of IL-1Ra-/- mice. Expectedly, the plasma lipid pro-
file became more proatherogenic with increased total
cholesterol levels (942 ± 160 mg/dl versus 240 ± 13 mg/

Fig.3. IL-1Ra -/- mice showed severe fatty liver and hypercholesterolemia following 20 weeks on
an atherogenic diet when compared with IL-1Ra+/+ mice.
A. Macroscopic appearance of livers from IL-1Ra-/- (Ra-/-) and IL-1Ra+/+ (WT) mice fed an athero-
genic diet for 20 weeks. There was a prominent change in color and size in the liver of IL-1Ra-/-

versus IL-1Ra+/+ mice.
B. Plasma levels of VLDL (upper), LDL (middle upper), HDL (middle lower) and triglycerides (lower)
in IL-1Ra-/- (Ra-/-) and wild-type (WT) mice. All values are expressed as the mean + SEM.  * p <
0.05, ** p < 0.01 for Ra-/- mice versus WT mice.
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dl, n = 5; p < 0.01), higher apoB-containing lipoprotein
levels (699 ± 126 mg/dl versus 192 ± 36 mg/dl; p < 0.01),
and decreased HDL levels (31 ± 10 mg/dl versus 54 ± 3
mg/dl; p < 0.05) in IL-1Ra-/- mice compared to IL-1Ra+/+

mice after 20 weeks on the atherogenic diet (Fig. 3B).
Real-time PCR analysis revealed that the decreasein the
IL-1Ra mRNA level was accompanied by a increase in
the levels of IL-1β (P < 0.001), TGF-β (P < 0.01) and CD68
mRNA (P < 0.001) in the IL-1Ra-/- liver compared to the
WT liver. Furthermore, IL-1Ra-/- mice failed to express
mRNA of cholesterol 7α-hydroxylase (CYP7A1) (p < 0.05),
the rate-limiting enzyme in bile acid synthesis, with
upregulation of small heterodimer partner 1 (SHP) mRNA
expression (p < 0.001) following 4 weeks on the athero-
genic diet (69). Indeed, IL-1Ra-/- mice showed markedly
decreased bile acid excretion, which is promoted in WT
mice to maintain cholesterol levels while feeding on an
atherogenic diet. Our results show that both bile acid
and high cytokine levels in IL-1Ra-/- mice reduced the
mRNA expression of CYP7A1 with a upregulation of SHP
mRNA expression. We summarize the mechanism of
these changes in Fig. 4. Several previous reports dem-
onstrated that administration of cholic acid in mice in-
duced SHP gene expression (70, 71) and SHP reduces
CYP7A1 expression (72). Increased concentrations of bile
acids in the liver could, in turn, induce inflammation and
the lack of IL-1Ra, an anti-inflammatory cytokine, might

worsen the inflammation in IL-1Ra-/- liver. Furthermore,
large amounts of cytokines produced in response to se-
vere inflammation in IL-1Ra-/- mice could also play an
important role in the up-regulation of SHP expression.
Cytokine-dependent signaling leads to the activation of
c-Jun N-terminal kinase (JNK) and other mitogen-acti-
vated protein kinases (73, 74). Recently, Gupta et al.
showed that c-Jun activated by cytokines induces SHP-
1 promoter activity and mutations in the AP-1 binding
site abolished bile acid responsiveness of the rat SHP
promoter (75). Thus, they suggested that activation of
the JNK/c-jun pathway is needed for the induction of SHP
by bile acids. Furthermore, Miyake et al. demonstrated
that bile acid-induced expression of cytokines (such as
TNF-α and IL-1) by macrophages correlates with repres-
sion of hepatic CYP7A1 (76), further supporting our find-
ings. Thus, atherogenic diet-induced inflammation with
both a high IL-1 level and deficiency of IL-1Ra caused
an up-regulation of SHP expression and, in turn, down-
regulation of CYP7A1. The suppression of CYP7A1
causes more cholesterol to accumulate in IL-1Ra-/- mice.
We conclude that the significant increase in SHP expres-
sion in IL-1Ra-/- liver is an indirect effect of loss of IL-
1Ra, but IL-1Ra plays an important role in maintaining
cholesterol homeostasis under conditions of cholic acid-
induced inflammation.

Fig.4. Model for up-regulation of SHP gene expression in the absence of IL-1Ra.
Bile acids activate FXR and induce inflammation. The lack of IL-1Ra could not reduce
inflammation and might induce the production of a large amount of IL-1. Then IL-1
activated the JNK signaling cascade. Activated FXR and c-Jun enhanced SHP tran-
scription by binding to the IR-1 and AP-1 elements in the SHP promoter. Elevated
SHP protein levels in turn repressed CYP7A1 transcription and the down-regulation
of CYP7A1 expression increased amounts of bile acids in hepatocytes. Finally this
loop formed a vicious circle in the metabolism of bile acids. See text for details.
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Conclusion

During the last five years, transgenic and gene knock-
out studies in murine models of vascular disease have
established IL-1 and IL-1Ra as pivotal players in the regu-
lation of vascular cell functions and cholesterol metabo-
lism. Although genetic differences between mouse and
man preclude a direct translation of these findings to hu-
man disease, these studies have identified several path-
ways whose perturbation has the potential to significantly
shift the balance between disease progression and re-
tardation. An important goal of future studies will be more-
detailed investigations of the particular genes and pro-
and anti-inflammatory pathways regulated by different
cytokines in atherogenesis and cholesterol metabolism.
This challenge could lead to promising novel therapeutic
targets for anti-inflammatory therapies, potentially even
harnessing some of the sophisticated regulatory systems
designed to normally limit the inflammatory response.
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