
Vol. 3, No. 9                                                                  Modern Applied Science 

 84 

   

 
 
 
 

Optimal Programming Models for Portfolio Selection 

with Uncertain Chance Constraint 
 

Limei Yan  
Department of Mathematics, Dezhou University 

Dezhou 253023, China 
E-mail: yanlimei9898@163.com 

 
Abstract 
The paper is concerned with the portfolio selection problem about how to assign one’s money in security market in 
order to obtain the maximal profit. One type expected maximization programming model with chance constraint in 
which the security returns are uncertain variables are proposed in accordance with uncertainty theory. Since the 
provided models can not be solved by the traditional methods, the crisp equivalents of the corresponding models are 
discussed when the uncertain returns are chosen as some special cases such as linear uncertain variables, trapezoidal 
uncertain variables and normal uncertain variables. Two numerical examples with different types of uncertain variables 
are given in order to demonstrate the effectiveness and feasibility of the proposed programming models. Finally, the 
paper gives the conclusion.  
Keywords: Chance constrain, Portfolio selection, Uncertain variable, Crisp equivalent programming 
1. Introduction 
Portfolio selection is concerned with an investor who is trying to allocate one’s wealth among alternative securities so 
that the investment goal can be achieved. The problem was initialized by Markowitz (1952, p.77) and his mean-variance 
methodology has been regarded as the basis for the theory of modern portfolio selection. The pioneer work of Markowitz 
combined probability and optimization theory to model the investment behavior under uncertainty. An investor should 
always strike a balance between maximizing the return and minimizing risk for a predetermined return level. More 
importantly, Markowitz initially quantified investment return as the expected value of returns of securities and risk as 
variance from the expected value. 
After Markowitz’s work, scholars have been showing great enthusiasm in portfolio selection and tried to use different 
approaches to develop the theory of portfolio selection. Generally speaking, there are three models to deal with the 
portfolio selection problems with uncertain return rates. The first is expected value model (EVM), which optimizes the 
expected objective function subject to some expected constraints. The second chance-constrained programming (CCP) 
was proposed by Charnes and Cooper (1965, p.73) and developed by many scholars as means of dealing with uncertainty 
by specifying a confidence level at which the uncertain constraints hold. The employment and development of 
chance-constrained programming in portfolio selection with stochastic parameters can be found by Brockett (1992, p. 
385), by Li (1995, p. 577) and by Williams (1997, p.77). Following the idea of stochastic chance-constrained 
programming, Liu (2002) developed a spectrum of general forms of fuzzy chance-constrained programming and a 
general of uncertain chance-constrained programming (2009). To use the theory of chance-constrained programming, the 
author tries to do something in portfolio selection problems when the return rates are assumed to be uncertain variable 
which is also proposed by Liu (2009). Two type of portfolio selection models are provided with uncertain return rates and 
the crisp equivalent programming of the corresponding models are given when the return rates are chosen as some special 
cases. 
The rest of the paper is organized as follows. After recalling some definitions and results about uncertain measure and 
uncertain variable in section 2, two types of programming models for portfolio selection with chance constrain are 
introduced in section 3. Then section 4 discusses the crisp equivalents when the return rates are chosen as some special 
uncertain variables such as linear uncertain variable, trapezoidal uncertain variable and normal uncertain variable. In 
section 5, we provide two numerical examples to demonstrate the potential application and the effectiveness of the new 
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models. Finally, we conclude the paper in section 6.  
2. Preliminaries 
Let Γ  be a nonempty set, and let Α  be a σ -algebra over Γ . Each element Α∈Λ  is called an event. In order to 
provide an axiomatic definition of uncertain measure, it is necessary to assign to each event Λ a number }{ΛM which 
indicates the level that Λ  will occur. In order to ensure that the number }{ΛM has certain mathematical properties, Liu 
(2009) proposed the following five axioms: 
Axiom 1 (Normality) 1)( =ΓM ; 

Axiom 2 (Monotonicity) )()( 21 Λ≤Λ MM  whenever 21 Λ⊆Λ ; 

Axiom 3 (Self-duality) 1)()( c =Λ+Λ MM  for every event Λ ; 

Axiom 4 (Countable subadditivity) For every countable sequence of events }{ iΛ , we have  

)()( 11 iiii MM Λ∑≤Λ ∞
=

∞
=U . 

The following is the definition of uncertain measure. 
Definition 1 (Liu (2009)). The set function is called an uncertain measure if it satisfies the normality, monotonicity, 
self-duality and countable subadditivity axioms. 
Example 1 Let },{ 21 γγ=Γ . For this case, there are only 4events. Define 

1)(,0)(,6.0}{,4.0}{ 21 =Γ=== MMMM φγγ , 

then M  is an uncertain measure because it satisfies the four axioms. 
Definition 2 (Liu (2009)). Let Γ  be a nonempty set, Α  a σ -algebra over Γ , and M  an uncertain measure. Then 
the triplet ),,( MΑΓ  is called an uncertain space. 

The product uncertain measure is defined as follows. 
Axiom 5 (Liu (2009)). (Product Measure Axiom) Let kΓ  be nonempty sets on which kM are uncertain measures, 

nk ,,2,1 L= , respectively. Then the product uncertain measure on Γ  is  
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For each event Α∈Λ , denoted by nMMMM ∧∧∧= L21 . 

Definition 3 (Liu (2009)). An uncertain variable is a measurable function ξ  from an uncertainty space ),,( ΜΑΓ  to 
the set of real numbers, i.e., for any Borel set Β  of real numbers, the set 

})(|{}{ Β∈Γ∈=Β∈ γξγξ  

is an event. 
A random variable can be characterized by a probability density function and a fuzzy variable may be described by a 
membership function, uncertain variable can be characterized by identification function. 
Definition 4 (Liu (2009)). An uncertain variable ξ  is said to have a first identification function λ  if 

(1) )(xλ  is a nonnegative function on R such that  
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(2) For any set Β  of real numbers, we have 
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Definition 5 (Liu (2009)). The uncertainty distribution ]1,0[: →Φ R  of an uncertain variable ξ  is defined by 

}{)( xMx ≤=Φ ξ . 
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3. Uncertain programming models for portfolio selection 
In Markowitz models, security returns were regarded as random variables. As discussed in introduction, there does exist 
situations that security returns may be uncertain variable parameters. In this situation, we can use uncertain variables to 
describe the security returns. 

Let ix  denote the investment proportion in the thi security, iξ  represents uncertain return of the thi security, 
ni ,,2,1 L= , respectively, and a  the minimum return level that the investor can tolerate. Following chance constraint 

idea, if we want to maximize the expected value or minimize risk of the total return subject to some chance constraints, 
to express it in mathematical formula, the models are as follows: 
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where )1,0(∈α  is a specified confidence level the investor given, and a is the minimum return that the investor can 
accept satisfying αξξξ ≤≤+++ }{ 2211 axxxM nnL in which axxx nn ≤+++ ξξξ L2211  means the investment 
risk. E  is the expected value of uncertain variable. It is obvious that the combination of securities that can maximize 

][ 2211 nnxxxE ξξξ +++ L  is the optimal portfolio the investor should select. 

If the investor wants to minimize the investment risk with some chance constraints, then we have the following model, 
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where V denotes the variance of the total return which represents the risk of the investment. 

4. Crisp equivalents 
In general, to solve the uncertain programming model the traditional solution methods require conversion of the 
objective function and the chance constraints to their respective deterministic equivalents. And this process is usually 
hard to perform and only successful for some special cases. In the next content, we will consider several special forms 
of uncertain return rate iξ , and convert the models (1) and (2) into their crisp equivalents. 
4.1 Models for linear uncertain variable  
An uncertain variable ξ  is called linear if it has a linear uncertainty distribution  
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denoted by ),( baL  where a  and b  are real number with ba < . 
Suppose that the return rate iξ  of the thi security is linear uncertain variable ),( iii baL=ξ with 
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In accordance with the propositions of linear uncertain variables, the expected value and variance of the total return are 
as follows, 
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Since the nonnegativity of the term 2
1 )]([ iii

n
i abx −∑ = , to minimize 2

1 )]([
12
1

iii
n
i abx −∑ = is equivalent to minimize  

)(1 iii
n
i abx −∑ = . 

Theorem 1 Let nxxx ,,, 21 L  be nonnegative decision variables and iξ  be linear uncertain variable ),( ii baL  with 
niba ii ,,2,1, L=< . Suppose that nξξξ ,,, 21 L  are independent uncertain variables. Then for any scalar a  and any 

confidence level )1,0(∈α , the chance constraint  

αξ ≥≥∑ = }{ 1 axM ii
n
i  

holds if and only if  
α−≤Φ 1)0(  

where )(xΦ  is the uncertainty distribution of axxx nn −+++ ξξξ L2211 . 
Proof: Since iξ  are assumed to be independent linear uncertain variables, the quantity  

axxx nn −+++ ξξξ L2211  
is also linear uncertain variable with parameters aaxaxaxa nn −+++=′ L2211  and 

abxbxbxb nn −+++=′ L2211 . So the uncertainty distribution of axxx nn −+++ ξξξ L2211  is  
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Thus the inequality  
αξ ≥≥∑ = }{ 1 axM ii

n
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is equivalent to the inequality 
αξ −≤≤−∑ = 1}0{ 1 axM ii

n
i . 

That is α−≤Φ 1)0( which proves the theorem. 
In this case, models (1) and (2) can be converted into its deterministic equivalents as follows, 
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or 
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4.2 Models for trapezoidal uncertain variable  
If the return rates are all trapezoidal uncertain variables, Let iξ  be ),,,,( iiii dcba  where 

 nidcba iiii ,,2,1, L=<≤< . Then ii
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Theorem 2 Let nxxx ,,, 21 L  be nonnegative decision variables and iξ  be trapezoidal uncertain variable 
),,,( iiii dcba with nidcba iiii ,,2,1, L=<≤<  and nξξξ ,,, 21 L  be independent. Then for any scalar a  and any 

confidence level )1,0(∈α , the chance constraint  
αξ ≥≥∑ = }{ 1 axM ii

n
i  

holds if and only if  
α−≤Φ 1)0(  

where )(xΦ  is the uncertainty distribution of ax ii
n
i −∑ = ξ1 . 

Thus the models (1) and (2) can be changed into the following formulas, 
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4.3 Models for normal uncertain variable  
An uncertain variable ξ  is called normal if it has a normal uncertainty distribution 

Rxxex ∈
−

+=Φ − ,))
3

)(exp(1()( 1

σ
π , 

denoted by ),( σeN where e and σ are real number with 0>σ . Suppose that the return rate of thi security is 
normally distributed with parameters ie  and nii ,,2,1,0 L=>σ . Then we have 
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Theorem 3 Assumed that nxxx ,,, 21 L  be nonnegative decision variables and nξξξ ,,, 21 L are independently 

uncertain variables with expected values neee ,,, 21 L  and variance 22
2
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1 ,,, nσσσ L , respectively. Then for any 

scalar a  and α , the chance constraint  
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where Φ is the standardized normal distribution , i.e., 
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Proof: Since iξ  are assumed to be independently normal uncertain variables, the quantity 
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is also normal uncertain variable with the following expected value and variance, 
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We note that  
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must be standardized normal uncertain variable. Since the inequality  
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where η  is the standardized normal uncertain variable. This inequality holds if and only if  
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The theorem is proved. 
Under the conditions, the models (1) and (2) may be formulated as the following linear equivalents, 

                                

.,,2,1,0,1
,))((

:toSubject
max

21

1
1

1

nixxxx
aex

ex

in

iii
n
i

ii
n
i

LL =≥=+++
≥Φ+∑

∑

−
=

=

ασ
                            (7) 

and    

                                

.,,2,1,0
,1

,))1((

:toSubject
min

21

1
1

1

nix
xxx

aex

x

i

n

iii
n
i

ii
n
i

L

L

=≥
=+++

≥−Φ+∑

∑

−
=

=

ασ

σ

                                    (8) 

Thus we can solve the models (3)-(8) by traditional methods. 
5. Numerical Examples 
Example 2 Assume that there are 6 securities. Among them, returns of the six securities are all normal uncertain 
variables 6,5,4,3,2,1),,( == ieN iii σξ . Let the return rates be  
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Suppose that the confidence level 05.0=α , and the minimum excepted return the investor can accept is 1.0−=a , 
then .62.105.01 −=Φ − ）（ Thus the models (7) is the following: 
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By use of Matlab 7.0 on PC we obtain the optimal solution of model (9). The optimal solution of model (9) is  
)2649.0,2444.0,4907.0,0000.0,0000.0,0000.0(  
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and the optimal value of the objective function is 2.7742. This means that in order to gain maximum expected return 
with the risk not greater than -0.1 at the confidence level 0.05, the investor should assign his money according to the 
optimal. The corresponding maximum expected return is 2.7742.  
In model (8), if the investor gives the preset total return rate is 5.0=a  and the preset confidence level is 9.0=α , then 
the model (8) is the following, 
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we obtain the optimal solutions of model (10) is  
)0000.0,0000.0,8778.0,0000.0,1131.0,0091.0( , 

and the value of objective function is 1.0000. This means that in order to minimize the risk with the return rate not less 
than 0.5 at the confidence level 0.9, the investor should assign his money according to the optimal. The corresponding 
minimum risk is 1.0000.   
6. Conclusions 
In this paper, uncertain variable is applied to portfolio selection problems, and two types of uncertain programming 
models for portfolio selection with uncertain returns on basis on the uncertain theory are provided. In order to solve the 
proposed models by traditional methods we discuss the crisp equivalents when the uncertain returns are chosen to be 
some special uncertain variables and give two examples to explain the efficiency of the method. The paper does not 
include the conditions when the return rates are general uncertain variables, this can be interesting areas for future 
researches.  
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