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Hyperbolic systems of conservation laws.

Alberto BRESSAN

Abstract

This is a survey paper, written in the occasion of an invited talk
given by the author at the Universidad Complutense in Madrid,
October 1998. Its purpose is to provide an account of some re-
cent advances in the mathematical theory of hyperbolic systems
of conservation laws in one space dimension. After a brief review
of basic concepts, we describe in detail the method of wave-front
tracking approximation and present some of the latest results on
uniqueness and stability of entropy weak solutions.

1 Review of basic theory

This chapter reviews the basic definitions and properties of systems of
conservation laws. For a comprehensive introduction to the theory of
hyperbolic systems we refer to [22, 23, 24].

1.1 Basic definitions

A single conservation law in one space dimension is & first order partial
differential equation of the form

u + f(u)z = 0. (1.1)

Here u is the conserved quantity while f is the flux. Integrating (1.1)
over the interval [a, b one obtains
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]:u(t,a:) dr = /:'ut(t,a:) dz

—fb flu(t, z)),_ dx (1.2)
= f(u(t,a)) — flu(t, b))

= |inflow at a] — [outflow at b]

& s

In other words, the quantity u is neither created nor destroyed: the total
amount of u contained inside any given interval [a, b] can change only
due to flow of u across the two endpoints.

Using the chain rule, (1.1) can be written in the quasilinear form

Uz + a(uw)u, =0, (1.3)

where a = f’ is the derivative of f. For smooth solutions, the two equa-
tions (1.1) and (1.3) are entirely equivalent. If u has a jump, however,
the left hand side of (1.3) will contain the product of a discontinuous
function a(u) with the distributional derivative u,, which in this case
contains a Dirac mass at the point of jump. In general, such a prod-
uct is not well defined. Hence (1.3) is meaningful only within a class
of continuous functions. On the other hand, working with the equation
in divergence form (1.1} allows us to consider discontinuous solutions
as well, interpreted in distributional sense. More precisely, a locally
integrable function u = u(t,z) is a weak solution of {1.1) provided that

[ s+ sl dedt - 0 (1.4)

for every differentiable function with compact support ¢ € Cl.

The main object of our study will be the nxn system of conservation
laws
g{ul + Ba;[ filw, .. un)] =0,
e (1.5)
Zun+ £ falwa,...,un)] =0.
For simplicity, this will still be written in the form (1.1), but keeping

in mind that now u = (u1,...,u,) is & vector in R and that f -
(f1s.-., fa) is a map from R™ into itself. Calling A(u) = Df(u) the



Hyperbolic systems of conservation laws

n x n Jacobian matrix of the map f at the point u, the system (1.5) can
be written in the quasilinear form

u + A(u)u; = 0. (1.6)

We say that the above system is strictly hyperbolic if every matrix A(u)
has n real, distinct eigenvalues, say A1(u) < -+ < Ap(u). In this case,
one can find dual bases of left and right eigenvectors of A(u), denoted
by {;1(u}, ..., la{u) and ri(u),. .., ra(u), with

1 i =g,
1.2 Linear systems

We consider here two elementary cases where the solution of the Cauchy
problem can be written explicitly.

The linear homogeneous scalar Cauchy problem with constant coef-
ficients has the form

U + A, =0, u(0, z) = u(zx), (1.7
with A € R. If & € C?, one easily checks that the travelling wave
u(t, z) = 4z — At) (1.8)

provides & classical solution to (1.7). In the case where the initial con-
dition @ is not differentiable and we only have % € L{,., the function u

defined by (1.8) can still be interpreted as a solution, in distributional
sense.

Next, consider the homogeneous system with constant coefficients
u + Aug =0, u(0, z) = 4(x), (1.9)

where A is a nxn hyperbolic matrix, with real eigenvalues A\; < - -+ < Ag
and eigenvectors r;, I;, chosen so that l; - r; = &;;. Call u; = {; - u the
coordinates of a vector v € IR™ w.r.t. the basis of right eigenvectors
{ry,+--,rp}. Multiplying (1.9) on the left by I1,...,{, we obtain

(ui)e + Ai(ui)z = (Lu)e + Ai(lin)y = Liug + L Aug = 0,
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w(0,) = Li(z) = t(a).

Therefore, (1.9} decouples into n scalar Cauchy problems, which can be
solved separately in the same way as (1.7). The function

u(t,z) = Zﬁ,-(a: — Mt) (1.10)
i=1
now provides a solution to (1.9), because

u(t, x) = i =Ailli - U (2 — Ait))r; = —Aug(t, 2).
im1

Observe that in the scalar case (1.7) the initial profile is shifted with
constant speed A. For the system (1.9), the initial profile is decomposed
as a sum of n waves, each travelling with one of the characteristic speeds
Aly-- -y Ane

As a special case, consider the Riemann initial data

PSR I T if <0,
u(m)_{u+ if z>0.

The corresponding solution (1.10) can then be obtained as follows.

t i=a

2

figure 1
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Write the vector ut — u~ as a linear combination of eigenvectors of
A e

n
uwt —uT =) ey
=1

Define the intermediate states

w.;é'u"+2cjrj, i=0,...,n
isi

<o that each difference w; — w;—; is an i-eigenvector of A. The solution
then takes the form (fig. 1):

Wo = U~ for zft < Az,
u(t,w) =4 W for A\j < 2/t < Aita, (1.11)
wp = ut for z/t > An.

1.3 Loss of regularity

A basic feature of nonlinear systems of the form (1.1) is that, even for
smooth initial data, the solution of the Cauchy problem may develop
discontinuities in finite time [16]. To achieve a global existence result,
it is thus essential to work within a class of discontinuous functions,
interpreting the equations (1.1) in their distributional sense (1.4).

Example 1. Consider the scalar conservation law (inviscid Burgers’

equation)
02
w+|5) =0 (1.12)
F

with initial condition

u(0, x) = u(z) = T2

For t > 0 small the solution can be found by the method of characteris-
tics. Indeed, if u is smooth, (1.12) is equivalent to

tg -+ uy = 0. (1.13)
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By (1.13) the directional derivative of the function % = u(t, z) along
the vector (1,u) vanishes. Therefore, u must be constant along the
characteristic lines in the t-z plane:

t
(2 = -—_ .
= (¢, z + tu) (t,m+l+$2)

For t < T = 8/v/27, these lines do not intersect (fig. 2). The solution to
our Cauchy problem is thus given implicitly by

t 1
= : 1.14
“(t’m+1+m2) 1 +a? (114)

On the other hand, when ¢ > 8/v/27, the characteristic lines start to
intersect. As a result, the map

t

Tt e

is not one-to-one and (1.14) no longer defines a single valued solution of
our Cauchy problem.

A

NS

\\\\

figure 2

An alternative point of view is the following (fig. 3). As time in-
creases, points on the graph of u(t, -) move horizontally with speed w,
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equal to their distance from the z-axis. This determines a change in the
profile of the solution. As t approaches the critical time T' == 8/v/27,
one has

Jgp { inf, wa62)} = oo

and no classical solution exists beyond time T. The solution can be
prolonged for all times ¢ > 0 only within a class discontinuous functions.

u(0) u(T)

s

figure 3

1.4 Discontinuous solutions

Motivated by the previous example, for a nonlinear system of conserva-
tion laws, global solutions must be studied in a space of discontinuous
functions. We now derive conditions imposed by (1.4) on a solution at
points of jump. To fix the ideas, consider a piecewise smooth solution
u = u(t, ) having a discontinuity across a line z = (t). Call

+ .
u ()= lim wult,z
( ) z—+y(t)x ( )

the right and left limits of u(Z,-) at the point of jump. For any ¢ € C!,
applying the divergence theorem to the vector field (u- ¢, f(u):¢) on
the two domains on the right and on the left of v we obtain

0 {u-det f(u)-da} dode = — [ {ue + A(uuz} - ¢ dodt
+ 1 {lwt(0) — @O — [Fut () — T @)} - 668, 7)) d.

(1.15)
Since (1.15) is valid for every differentiable ¢ with compact support, from

(1.4) it follows that the equation (1.6) must hold at all points ocutside
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the line of jump. Moreover, along y one must have

[ — w7l = flu*) - f(u7), (1.16)

The vector equations (1.16) are the famous Rankine-Hugoniot condi-
tions. They form a set of n scalar equations relating the right and left
states ut, 4~ € JR™ and the speed 4 of the shock.

Define the averaged matrix

A, v) = /01 A(Bu+ (1— 0)v) df (1.17)

with A = Df the Jacobian matrix of f, and call A;(u, v) its eigenvalues.
One can then write (1.16) in the equivalent form

Fout—uT) = f(ut) - f(u7)
= D_[Ol Df(Ou* + (1 —60)u~) - (ut —u~) do
= A(ut,u7) - (Wt —u). (1.18)

In other words, the Rankine-Hugoniot equations hold iff the jump ut —
u” is an eigenvector of the averaged matrix A(u*,u™) and the speed ¥
coincides with the corresponding eigenvalue.

In the scalar case, (1.16) reduces to a single equation. One can thus
assign wt, u™ arbitrarily and use the equation to determine the shock
speed:

._f(u'*_)'_f(uﬂ)_ 1 v
Ve T e e ) f(w) du. (1.19)

7
7 ut

figure 4

—_—

The last expression in (1.19) shows that the shock speed coincides
with the average of the characteristic speeds f/(u) over the interval
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[4~,ut]. Of course (fig. 4), this is closely connected with the conserva-
tion of the total area below the graph of u(t, ).

Example 2. In the case of Burger’s equation u; + (u?/2),; = 0, one
finds

_{(w*)?/2] — {(u)2/2] wttu-
— — ===, (1.20)

1.5 Entropy conditions

In the presence of discontinuities, the Rankine-Hugoniot equations (1.16)
may not suffice to single out a unique solution to the Cauchy problem.

Example 3. For Burgers' equation (1.12}, the Cauchy problem with

initial data
1 if z >0,

"(0’”’):{0 if <0,

admits infinitely many weak solutions. Namely, for every a € [0, 1], the
piecewise constant function

0 if  z<at/2
Ua(t, 2) = { o if  at/2<z2<(14+a)t/2,
1 if  z2(1+a)t/2,

provides a solution in distribution sense. Indeed, the Rankine-Hugoniot
conditions (1.20) hold along the two lines of discontinuity £:(t) = ot/2,
£2(t) = (a + 1)t/2. Outside these two lines, u, is constant, hence the
equation u; + wu; = 0 is trivially satisfied.

From the previous example it is clear that, in order to achieve a the-
orem stating uniqueness and continuous dependence on the initial data,
the notion of weak solution must be supplemented with further “ad-
misgibility conditions”, possibly motivated by physical considerations.
Some of these conditions will be presently discussed.

Admissibility Condition 1 (Vanishing viscosity). A weak solution
u of (1.1) is admissible if there exists a sequence of smooth solutions u*
to

ug + A(u)us = eul, (1.21)

which converge to u in L! as £ — 0+ .
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Unfortunately, it is very difficult to provide uniform estimates on
solutions to the parabolic system (1.21) and to characterize the corre-
sponding limits as € — 0+. From the above condition, however, one can
deduce other conditions which can be more easily verified in practice.

A continuously differentiable function n : R™ — R is called an
entropy for the system (1.1), with entropy fluz ¢ : R* — R if

Dn(u) - Df(u) = Dg(u) u € IR". (1.22)

Observe that (1.22) implies that, if « = u(t, z) is a C! solution of (1.1),
then

[n()], + [g(w)], = 0. (1.23)
Indeed,

Dn(u)u + Dg(u)u, = Dn(u)| — D f(u)uz| + Dg(u)u, = 0.

Hence, whenever we have a smooth solution of (1.1), not only the quanti-
ties uy, ..., ur are conserved, but the additional conservation law (1.23)
holds as well. On the other hand, when « is discontinuous, in general
it does not provide a weak solution to (1.23), i.e. # = n(u) is not a
conserved quantity. This can be seen in Example 2, taking n(u) = u?
and g{u) = (3/4)u?.

We now study how a convex entropy behaves in the presence of s

small diffusion term. Assume 7, g € C?, with n convex. Multiplying both
sides of (1.21) on the left by Dn(u€) one finds

(), + (g(w)), = eDn(u)us, = e{ln(w)l,, — D*n(v®) - (uz ® '(ui)}-)
1.24
Observe that the last term in (1.24) satisfies

a?n(ufl 3us B
>
B Oz 0,

Dn(u)(u; @ ug) = Z

J_l

because 7 is convex, hence its second derivative at any point u¢ is s pos-
itive semidefinite quadratic form. Multiplying (1.24) by a nonnegative

smooth function ¢ with compact support and integrating by parts, we
thus have

f f {n(u)ee + g(u)ps} dedt > —¢ f N(u) Pz ded.
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If u® — u in L! as € — 0, the previous inequality yields

f f {n(u)pe + g(u)p:} dedt > 0 (1.25)

whenever ¢ € Cl, ¢ > 0. The above can be restated by saying that
n(u)¢+g(u): < 0 in distribution sense, i.e. any convex entropy does not
increase in time. The previous analysis leads to:

Admissibility Condition 2 (Entropy inequality). A weak solution
u of (1.1) is entropy-admissible if

[7(w)]; + [q(u)], <0 (1.26)

in the sense of distributions, for every pair (5, ¢), where 1 is a convex
entropy for (1.1) and g is the corresponding entropy flux.

Let u = u(t, ) be a piecewise smooth function with jumps along the
lines £ = z,(t), @ = 1,,m. Repeating the computations at (1.15), one
finds that u satisfies (1.26) provided that

Dn(u)ue + Dg(u)u, <0

outside the jumps, while

fanuleat)) — n@(za-))] 2 qu(zat)) ~aulza=))  (1.27)

along each shock line.

Of course, the above admissibility condition can be useful only if
some nontrivial convex entropy for the system (1.1) is known. Forn xn
systems, (1.22) can be regarded as a first order system of n equations for
the two scalar variables 7, g. When n > 3, this system is overdetermined.
In general, one should thus expect to find solutions only in the case
n < 2. However, there are important physical examples of larger systems
which admit a nontrivial entropy function.

In the scalar case, convex entropy functions are easy to construct.
In particular, for each k € IR, consider the functions

7(u) = {u— k|, q(u) = sgn{u - k) - (f(u) — f(k)).

145
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It is easily checked that 7, ¢ are locally Lipschitz continuous and satisfy
(1.22) at every u # k. Although 7,4 ¢ C!, we can still regard 1 as a
convex entropy for {1.1), with entropy flux ¢. Following Kruzhkov [17],

we say that a bounded measurable function u is an entropic solution of
(1.1) if

f f {Iu— kit + sgn(u — K)(f(u) — F(R)pe} dedt >0  (1.28)

for every constant £ € IR and every C! function ¢ > 0 with compact
support.

According to (1.28), one can show that a shock connecting the left
and right states u—, u" is admissible if and only if

u+___ * *y u-

(1.29)

ut —u* u* —u-

for every u* = aut + (1 — @)u~, with 0 < a < 1. The above inequality
can be interpreted as a stability condition. Indeed, let u* € [u~, 4] be
an intermediate state and consider a slightly perturbed solution (fig. 5a-
b}, where the shock (u~,u%) is decomposed as two separate jumps,
(v~,u*) and (u*,u"), say located at y~(t) < yt{t) respectively. By the
the Rankine-Hugoniot conditions, the two sides of (1.29) yield precisely
the speeds of these jumps. If the inequality holds, then 4~ > 4%, so
that the backward shock travels at least as fast as the forward one.
Therefore, the two shocks will not split apart as time increases, and the
perturbed solution will remain close to the original solution possessing
a single shock.

|

+
uj u_

— -

—— A&
u_.

P

uv =
—_ -+
u u4
X X

figure 5a figure 5b
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Observing that the Rankine-Hugoniot speed of a shock in (1.19) is
given by the slope of the secant line to the graph of f through the points
u~,ut, the condition (1.29) holds if and only if for every a € [0,1] one
has

flaut + (1 —a)u ) > af(uf)+(1-a)f(u™) if u~ <ut,
flavt + (1 —a)u™) <af(ut)+ (1 —a)f(u™) if u” >ut
(1.30)
In other words, when 4~ < u% the graph of f should remain above the
secant line (fig.6a). When u~ > ut, the graph of f should remain below
the secant line (fig.6b).

A third admissibility condition, due to Lax {18}, is particularly useful
because it can be applied to any system and has a very intuitive geomet-
rical mesaning. According to {1.18), every shock will travel with a speed
4 = M(u~,ut) equal to an eigenvalue of the averaged matrix A(u~, ut).
In this setting, the Lax condition requires that the i-characteristics, trav-
elling on the left and on the right of the shock with speeds A;(u™), A;(ut)
respectively, both run into the shock:

Admissibility Condition 3 (Lax Condition). A shock connecting
the states 4, ut, travelling with speed ¥ = A\;(u~, u*) is admissible if

Ai(u7) = A(u—,ut) = (). (1.31)
This situation is illustrated in fig. 7a. On the other hand, one can

check that for the solutions constructed in Example 3, neither of the two
shocks satisfies the above condition (fig. 7b).
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1.6 Shock and rarefaction curves

Fix a state up € IR" and an index i € {1,...,n}. As before, let r;(u) be
the i-th eigenvector of the Jacobian matrix A(u) = Df(u). The integral
curve of the vector field r; through the point ug is called the i-rarefaction
curve through ug. It is obtained by solving the Cauchy problem in state
space:

du

= = "i(w), #(0) = uo. (1.32)

We shall denote this curve as
o Ri(o)(ug). (1.33)

Of course, the parametrization depends on the choice of the eigenvectors
ri. In particular, if we impose the normalization |r;(u)| = 1, then the
rarefaction curve (1.33) will be parametrized by arc-length.

Next, for a fixed ug € IR™ and 7 € {1,...,n}, we consider the curve
of states u which can be connected to the right of 4y by an i-shock,
satisfying the Rankine-Hugoniot equations (1.16). According to (1.18),
these equations imply that the vector u — up is a right i-eigenvector
of the averaged matrix A(u,uo). By a theorem of basic linear algebra,
this holds if and only if u — ug is orthogonal to every left j-eigenvector
of A(u,ug), with j # 4. The Rankine-Hugoniot equstions can thus be
written in the form

Li(u,u) - (4 —ug) =0 for all 7 #£4, (1.34)
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together with ¥ = A;{u, up). We regard (1.34) as a system of n—1 scalar
equations in n variables (the n components of the vector u). Linearizing
(1.34) at the point u = ug we obtain the linear system

tj(%)'(w-'uﬂ)zo i#4

whose solutions are all the points w = ug + eri{up), ¢ € R. By the
implicit function theorem, it thus follows that the set of solutions is a
regular curve, tangent to the vector r; at the point ug. This will be
called the shock curve through the point ug and denoted as

g — Si(o){uo). (1.35)
Using a suitable parametrization, the two curves R;, S; will have a second

order contact at the point ug (fig. 8). More precisely, the following
estimates hold [18, 24].

R'l(a)('u'ﬂ) =1ug + U'T'i(uﬂ) + 0(1) ' 021 (1 36)
Si(o)(uo) = uo +ori(ug) +O(1) - 02, '
|Ri(0) (1) — Si(0)(uo)| = O(1) - 0%, (1.37)

Ai(Si(0)(uo), o) = Ai(uo) + %(Dz\a(uo)) -ri(ua) + O(1) - 0%, (1.38)
Here and throughout the following, the Landau symbol (1) denotes a

quantity whose absolute value satisfies a uniform bound, depending only
on the system (1.1).
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1.7 The Riemann problem

The basic building block toward the solution of the general Cauchy prob-
lem for (1.1) is the the solution of the following initial value problem:

u if <0
zr = R = ! 1,
u + f(u)z =0, (0, z) {u+ >0 (1.39)

The initial data have here a very simple form, being constant for x < 0
and for £ > 0, with a single jump at the origin.

Before describing the general solution of (1.39), a key assumption
will be introduced. Recall that X;(u), r;(u) denote the i-th eigenvalue
and right eigenvector of the matrix A(u) = Df(u). Following [18], the
i-th characteristic field is called genuinely nonlinearif DA;(u) -ri(u) £0
for all . On the other hand, if D;(u) - r;(u) = 0 for all u, we say that
the i-th field is linearly degenerate. In the genuinely nonlinear case, we
can choose the orientation of the eigenvectors r; so that

DXi(u) - ri(u) > 0. (1.40}

Observe that if the i-th characteristic field is genuinely nonlinear, then
the characteristic speed A; is monotonically increasing along the i-rarefaction
curves (1.33). On the other hand, if the i-th field is linearly degenerate,
then ); is constant along the curves R;. Throughout the following, a so-
lution of the Riemann problem will be constructed under the following
assumptions:

(%) The system (1.1) is strictly hyperbolic with smooth coefficients.
For each i € {1,...,n}, the i-th characteristic field is either gen-
uinely nonlinear or linearly degenerate.

We shall first study three special cases:

1. Centered Rarefaction Waves. Let the i-th field be genuinely
nonlinear, and assume that u* lies on the positive i-rarefaction curve
through u~, i.e. u! = Ri(0)(u™) for some o > 0. For each s € |0, g],
define

Ai(8) = Ai(Ri(s)(u7)).
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By genuine nonlinearity, the map 8 — X;(s) is strictly increasing. For
t > 0, the function

u” if oz <th(u),
ult,x) = { R;(s)('u,‘) if T = t)«.-(s), € [0, 0’], (1.41)
ut if x> th(uh),

is then a piecewise smooth weak solution of the Riemann problem {1.39).
Indeed,

Jim (e, ) — @l = 0.

Moreover, the equation (1.6) is trivially satisfied in the sectors where & <
thi(u™) or ¢ > tA;(ut), since here 4, = u, = 0. Next, assume z = t1;(s)
for some 8 €]0,0]. Since u is constant along each ray {(t',2); o' =
t'Xi(8)}, we clearly have

w(t, z) + Mi(8)uz(t,z) = 0. (1.42)
Observing that
. - , ) -1
u::@:d_R.&)(L). ds .&zn(u)_(d)\,(s)) 1
Oz ds dxi(s) dx ds t

is an eigenvector of the matrix A(u) with eigenvalue \;(3) = Ai(u(t, z)),
from (1.42) it again follows (1.6).

Observe that the assumption o > 0 is essential for the validity of
this construction. In the opposite case ¢ < 0, the definition (1.41) would
yield a triple-valued function in the region where 2/t € [Mi(u™), Ai(u™)].

2. Shocks. Assume again that the i-th family is genuinely nonlinear
and that the state u' is connected to the right of 4~ by an i-shock,
i.e. ut = S;(¢)(u~). Then, calling A = \;(ut, u~) the Rankine-Hugoniot
speed of the shock, the function

u if T <At
= ’ 14

ult, z) {u+ if x>\, (143)
provides a piecewise constant solution to the Riemann problem. Observe
that, if & < 0, than this solution is entropy admissible in the sense of
Lax. Indeed, since the speed is monotonically increasing along the shock
curve, recalling (1.38) we have

Ai(ut) < i(u,ut) < A(uh). (1.44)
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In the case o > 0, however, one has A;(u~) < Xi(ut) and the admissi-
bility condition (1.31) is viclated.

3. Contact discontinuities. Assume that the i-th field is linearly de-
generate and that the state u* lies on the i-th rarefaction curve through
u~, i.e. 4t = Ri(o)(u™) for some 0. By assumption, the i-th charac-
teristic speed A; is constant along this curve. Choosing A = A(u™), the
piecewise constant function (1.43) then provides a solution to the Rie-
mann problem (1.39). Indeed, the Rankine-Hugoniot conditions hoid at
the point of jump:

S~ 1) = [" DR (R ) o (1.45)
— M) [R(o)u) — .

In this case, the Lax entropy conditions hold regardless of the sign of &.
Indeed,

At = A(um, ut) = M(ut). (1.46)

Observe that, according to (1.45), for linearly degenerate fields the shock
and rarefaction curves actually coincide, i.e. Si(¢)(u) = Ri(0)(ug) for
all o.

The above results can be summarized as follows. For a fixed left

state u~ and % € {1,...,n} define the mixed curve
- ; - if >0,
¥i(o)(u) = { g'((:))((:_)) A (1.47)

In the special case where u* = ¥;(o)(u~) for some o, the Riemann
problem can then be solved by an elementary wave: a rarefaction, a
shock or a contact discontinuity.

Relying on the previous analysis, the solution of the general Riemann
problem (1.39) can now be obtained by finding intermediate states wg =
u”, w1,..., Wy =u" such that each pair of adiacent states w;_1,w; can
be connected by an elementary wave, i. e.

w; = W¥i(o:)(wi-1) i=1,...,n (1.48)

This can be done whenever ut is sufficiently close to u~. Indeed, for
|4t — ™| small, the implicit function theorem provides the existence of
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unique wave strengths o, . ..o, such that (fig. 9)

ut = ¥,(on) 00 ¥y (o) (). (1.49)

- o=Y (o) (mo)
figure 9

In turn, these determine the intermediate states w; in (1.48). The
solution to (1.39) is now obtained by piecing together the solutions of
the n Riemann problems

_ _ jwica if =x<0,
e+ f(u)e = 0, (0, 7) = {w‘_ TS (so)
on different sectors of the -z plane. By construction, each problem has
an entropy-admissible solution consisting of a simple wave of the i-th
characteristic family., More precisely:

Case 1: The i-th characteristic field is genuinely nonlinear and ; > 0.
Then the solution of (1.50) consists of a centered rarefaction wave. Its
i-th characteristic speeds range over the interval [A7, Af], defined as

A = Ai{wi—1), Aj- = Ai(wi)- (1.51)

Case 2: Either the i-th characteristic fleld is genuinely nonlinear and
o; <0, or else the i-th characteristic field is linearly degenerate (with o;
arbitrary). Then the solution of (1.50) consists of an admissible shock
or of a contact discontinuity, travelling with Rankine-Hugoniot speed

A=A = Awion, W) (1.52)
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Y b
figure 10

The solution to the original problem {1.38)} can now be constructed
(fig. 10} by piecing together the solutions of the n Riemann problems
(1.50), 4 = 1,...,n. Indeed, for @y, ..., 0, sufficiently small, the speeds
A7, Al introduced at (1.51) or (1.52) remain close to the corresponding
eigenvalues A;(u™) of the matrix A(u™). By strict hyperbolicity and
continuity, we can thus assume that the n intervals [A]", A}} are disjoint,
i.e.

AT SAT < A7 €A <0 < A7 <A

Therefore, a piecewise smooth solution u : {0,00) x IR — IR" is well
defined by the assignment:

U =w if %e}"m! ,\'1-[,
ul(t, x) = Ri(8)(wi1) if % = M(Ry(8)(wi-1)) € [y, AT,
B e it £ eV, Al
ut=w, if Fe[Al, oof.

(1.53)
Observe that this solution is selfsimilar, having the form u(t,z) =
P(z/t), with ¢ : R — IR" generslly discontinuous.
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Example 4. The 2 x 2 system of conservation laws

U _ Uy _
[uﬂt+[1+u1+u2];ﬁ0' [Wlt"‘l"——_i ‘: 0, u1,uz >0,

(1.54)
is motivated by the study of two-component chromatography. Writing
(1.54) in the quasilinear form (1.6), the eigenvalues and eigenvectors of
A(u) are found to be

1 1
)l = 5 A = —
l(ﬂ‘) (1 + +’U¢2)2, 2(“) 1+ ug +us ’
(W) =~ - (—t1, ) raW) = - (1, = 1)
1 = = TATWL, T H 2 = L B
uf +u V2

The first characteristic field is genuinely nonlinear, the second is linearly
degenerate. In this example, the two shock and rarefaction curves S;,
R; always coincide, for i = 1, 2. Their computation is easy, because they
are straight lines (fig. 11):

Ry(0)(u) = u + ari(u), Ry(o)(u) =u+ora(u).  (1.55)

figure 11
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Observe that the integral curves of the vector field r; are precisely
the rays through the origin, while the integral curves of r, are the lines
with slope —1. Now let two states u~ = (uT,uz), ut = (uf,ud)
be given. To solve the Riemann problem (1.39), we first compute an
intermediate state u* such that u* = Rj(o1)(u™), u*t = R2(02)(u*) for
some o1, 02. By (1.55), the components of u* satisfy

u o+ g = uf 4 uf, wjuy = uug.
The solution of the Riemann problem thus takes two different forms,
depending on the sign of ¢; = \/(ul‘)2 + (ug)? - ‘/(uj)2 + (u3)2.

Case 1: o7 > 0. Then the solution consists of a centered rarefaction
wave of the first family and of a contact discontinuity of the second
family:

u” i z/t < A(u™),
u(t, z) = su +(1—shu™ if z/t=M(su*+(1~s)u"),s<€(0,1],
’ u* if () < z/t < do(ut),
ut it x/t > da(uh).

(1.56)

Case 2: 0; <0. Then the solution contains a compressive shock of
the first family (which vanishes if o1 = 0) and a contact discontinuity of
the second family:

u” if o/t < M(u,ut),
u(t,z) =¢ v i M(uT,u’) <2/t < Aa(uh), {1.57)
wt i z/t > Aa(ut).

Observe that Ag(u*) = Ag(u®) = (1+uf +ud) !, because the second
characteristic field is linearly degenerate. In this special case, since the
integral curves of r; are straight lines, the shock speed in (1.57) can be
computed as

1
M, u?) = /Oxl(suw(l-s)u“) ds

1
= fo 1+ s(u] +u3) + (1 — 8)(u7 —i—u;)]_2 ds
1
(L+ul +ud)(i+uy +ug)
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Example 5. A model for isentropic gas dynamics (in Lagrangisn coor-
dinates) is provided by the following 2 x 2 hyperbolic system:

v — Uz =0, g -+ p(v)e = 0. (1.58)

Here v > 0 is the specific volume, i.e. v = p~! where p is the density,
and u is the velocity. The function p = p(v) gives the pressure in terms
of the specific volume. It is thus natural to assume

p>0, p'<0, p">0. (1.59)
A typical choice, valid for most gases, is
= k 1 3
p(v) - ;)?: <7y <d

Here 7y is called the adiabatic gas constant.

Introducing the vectors

U= ('U, u) F(U) = ( - U, p('v))’
the system (1.58) can be written in the standard form
Us + [F(U)], = 0. (1.60)

If the assumptions {1.59) hold, then the system (1.60) is strictly hyper-
bolic. Indeed, the Jacobian matrix

o=ty J)

has the two real distinct eigenvalues

A = =/~ () <0 < \/~P(v) = Da, (1.61)

with corresponding {unnormalized) eigenvectors

1= (1, /—P(v)), rz2=(—1, y/-p'(v)) (1.62)

We now study the Riemann problem for the system (1.60), with
initial data
U =(w",u") if =<0,

U0, 2) = {U+ =@t ut)  if 23>0, (1.63)
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assuming, that v—, vt > 0.

By (1.62), the 1-rarefaction curve through U~ is obtained by solving
the Cauchy problem

% = \/T(v), w(vT) =u".

This yields the curve

m={ow u-v = [ Jreal  0s

Similarly, the 2-rarefaction curve through the point U~ is
Ry = {(‘U,u): w—u = -/_ \/—p’(y) dy}. (1.65)

Next, the shock curves §),8; through U~ are derived from the
Rankine-Hugoniot conditions

Av—v7) = —(u—u7), Mu—u") =p(v) —p(v7). (1.66)

Using the first equation in (1.66) to eliminate A, these shock curves are
computed as

8 = {('u,'u.); —(u—u) = (v = v )(p(v) - plo)), A= — 2 < 0} (1.67)
5= { @i —u P = @) o) —pl) A = 22 > 0}.68)

Recalling (1.61)-(1.62) and the assumptions (1.59), we now compute
the directional derivatives

'

DAr; = =P 1.

(DA1)r; = (DA2)ry SNar=10o} >0 (1.69)
From (1.69) it is clear that the Riemann problem (1.60), (1.63) admits
a solution in the form of a centered rarefaction wave in the two cases
Ut € Ry, vt >v7, orelse UT € Ry, vt < v~. On the other hand, a
shock connecting U~ with U+ will be admissible provided that either
Ut eS8 and vt <v,orelse Ut € 83 and vt > v™.
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Taking the above admissibility conditions into account, we thus ob-
tain four lines originating from the point U~ = (v~,u™), i.e. the two
rarefaction curves

o+ Ri(0), Ra(o) o >0,
and the two shock curves
o 81(0), S2(0) o<0.

In turn, these curves divide a neighborhood of U~ into four regions
(fig 12):

Q, bordering on  Rj, So, 22, bordering on Ry, Rs,
Qa, bordering on  Si, S, 4, borderingon 8, Ra.

figure 12

For Ut sufficiently close to U™, the structure of the general solution
to the Riemann problem is now determined by the location of the state
U™, with respect to the curves R;, S; (fig 13).

Case 1: Ut € Q;. The solution consists of a 1-rarefaction wave and a
2-shock.

Case 2: Ut € Q2. The solution consists of two centered rarefaction
waves.
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Case 3: U1 € Q3. The solution consists of two shocks.

Case 4: Ut € Q4. The solution consists of a 1-shock and a 2-rarefaction
wave.

R S
i Ut
u \/ Case 1
Ut
Y R R
u W Case 2
S S
U+
+ R
Uy S
\ -
' U \/ Case 4

figure 13

2 Wave-front tracking approximations

The main goal of this chapter is to prove the global existence of a weak,
entropy admissible solution to the Cauchy problem

u+ f(u): =0, (2.1)
w(0, z) = 4(x), (2.2)



Hyperbolic systems of conservation laws

for every integrable initial data @ with sufficiently small total variation.

Theorem 1. Let the system (2.1) be strictly hyperbolic and assume
that each characteristic field is either linearly degenerate or genuinely
nonlinear. Then there exists a constant § > 0 such that, for every initial
condition & € L'(IR; R™) with

Tot. Var.(u) < 6, (2.3)

the Cauchy problem (2.1)-(2.2) has an entropy admissible weak solution
u = u(t, z) defined for allt > 0.

Theorem 1 was first proved in the fundamental paper of Glimm [15],

constructing approximate solutions by means of a random restarting
procedure.
Here we shall describe an alternative method for constructing approxi-
mate solutions, based on wave-front tracking. Roughly speaking, a front
tracking e-approximate solution (fig. 14) is a piecewise constant func-
tion u = u(f, z) whose jumps are located along finitely many segments
Z = Z4(t) in the {-z plane. At each time t > 0, these jumps should
approximately satisfy the Rankine-Hugoniot conditions

3 [alutt, Tat) - ult, za~)] = [(ult, zat)) - f(ult, za-)]| = OCE).

If  is a convex entropy with flux g, recalling (1.27), at each time ¢ one
should also have

T {lgutt, wat)) —g(ult, 2a= )| ~ali(ut, za+)) ~n(ult, 2a=))] } < O

In practice, since we want to use these approximations for a detailed
analysis of solutions, it is convenient to require a number of additional
properties, described below.

Deflnition 1. Given ¢ > 0, we say that u : [0, oo[ — L(R; R™) is an
e-approzimate front tracking solution of (2.1) if the following holds:

1. As a function of two variables, u = u(t,x) is piecewise constant,
with discontinuities occurring along finitely many lines in the t-z plane.
Only finitely many wave-front interactions occur, each involving exactly
two incoming fronts. Jumps can be of three types: shocks (or contact
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discontinuities), rarefactions and non-physical weves, denoted as J =
SURUNP.

2. Along each shock (or contact discontinuity) x = 24(t), a € 8, the
values u~ = u(t, Zo—) and ut = u(t, 2o+) are related by

ut = S (0a)(u™), (2.4)

for some kg € {1,...,n} and some wave size 0. If the ka-th family
8 genuinely nonlinear, then the entropy admissibility condition 0, < 0
also holds. Moreover, the speed of the shock front satisfies

|Ea — Mo (uh,u7)| <& (2.5)

3. Along each rarefaction front x = z4(t), a € R, one has
ut = Ry, (0a)(u7), Oa €]0,¢] (2.6)
for some genuinely nonlinear family k.. Moreover,

|Za(t) ~ A (uF) < €. (2.7)

4. All non-physical fronts ¢ = z4(t), a € N'P have the same speed:

Ealt) = A, (2.8)

where X is a fized constant strictly greater than all characteristic speeds.
The total strength of all non-physical fronts in u(t, -} remains uniformly
small, namely

D [ult,Zat) — ult,za-)| < e forallt>0.  (29)
aENP

if, in addition, the initial value of u satisfies
(0, ) ~ ull: <e, (2.10)

we say that u is an &-approrimate solution to the Cauchy problem (2.1 )-
(2.2).

Toward a proof of Theorem 1, we shall first establish the existence
of front tracking approximations.
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Theorem 2. For every ¢ > 0 and every initial data 4 with suffi-
ciently small total variation, the Cauchy problem (2.1)-(2.2) admits an
e-approzimate front tracking solution, defined for all t > 0.

In & second step, we will show that a suitable sequence of front
tracking approximations converges to a limit, providing an entropy weak
solution to the Cauchy problem.

We now describe an algorithm which generates these front track-
ing approximations. The basic ideas were introduced in the papers
of Dafermos [12] for scalar equations and Di Perna [13} for 2 x 2 sys-
tems, then extended in [1, 3, 21} to general n x n systems. The con-
struction (fig. 14) starts at time ¢t = 0 by taking a piecewise constant
approximation «(0,-) of @ satisfying (2.10), with Tot.Var.{u(0,-)} <
Tot.Var.{G}. Let #; < --- < zy be the points where u(0,-} is dis-
continuous. For each o = 1,..., N, the Riemann problem generated
by the jump (u(0,zo—), u(0,zs+)) is approximately solved on a for-
ward neighborhood of (0, z.) in the t-z plane by a function of the form
u(t,z) = o((x — Ta)/t), with ¢ : IR — IR piecewise constant. More
precisely, if the exact solution of the Riemann problem contains only
shocks and contact discontinuities, then we let u coincide with the ex-
act solution, which is already piecewise constant. On the other hand,
if centered rarefaction waves are present, they sre approximated by a
centered rarefaction fan, containing several small jumps travelling with
a speed close to the characteristic speed.

t
/ s

figure 14
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The approximate solution u can then be prolonged until a time 4
is reached, when the first set of interactions between two or more wave-
fronts takes place. Since u(t,-) is still & piecewise constant function,
the corresponding Riemann problems can again be approximately solved
within the class of piecewise constant functions. The solution u is then
continued up to a time t3 where the second set of wave interactions takes
place, etc. ..

figure 15a figure 15b

accurate Riemann solver simplified Riemann solver

figure 16a figure 16b

For general n x n systems, the main source of technical difficulty
stems from the fact that the number of wave-fronts may approach in-
finity in finite time, in which case the construction would break down.
To see this, observe that at a generic interaction point there will be two
incoming fronts, while the number of outgoing fronts is n (if all waves
generated by the Riemann problem are shocks or contact discontinu-
ities), or even larger (if rarefaction waves are present). In turn, these
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outgoing wave-fronts may quickly interact with several other fronts, gen-
erating more and more lines of discontinuity (see fig. 15a).

We thus need to modify the algorithm, to ensure that the number
of fronts will not become infinite within finite time. Following (1, 3|, we
will use two different procedures for solving a Riemann problem within
the class of piecewise constant functions: An Accurate Riemann Solver
(fig. 16a), which introduces several new wave-fronts, and & Simplified
Riemann Solver (fig. 16b), which involves a minimum number of outgo-
ing fronts. In this second case, all new waves are lumped together in a
single non-physical front, travelling with a fixed speed A strictly larger
than all characteristic speeds. The main feature of this algorithm is il-
lustrated in fig. 15a-b. If all Riemann problems were solved accurately,
the number of wave-fronts could approach infinity within a finite time
7 {fig. 15a). However, since the total variation remains small, the new
fronts generated by further interactions are very small. When their size
becomes smaller than s threshold parameter p > 0, a Simplified Riemann
Solver is used, which generates one single new (non-physical) front, with
very small amplitude. The total number of fronts thus remains bounded
for all times (fig. 15b).

Given a general Riemann problem at a point (2, Z),

v + f(v)z =0, v(f,z) = {z; g v : 2’ (2.11)

we now describe two procedures, which yield approximate solutions
within the class of piecewise constant functions. As in the previous
chapter, for a given state u € IR™, we denote respectively by

o — Ri(o)(u), o — Si(o)(u) (i=1,...,n) (2.12)

the i-rarefaction and i-shock curve through the state u. Moreover, we
set

. | Ri(o)(u) if @20,
. -~ 2.
ilo)(u) {S.-(a) W  if o<o. (2.13)
Accurate Riemann Solver.
Given u—,ut, we first determine the states wo, w1, . .., wn and para-
meter values oy,. .., 0, such that

wo=1t", we =0, w="Y(e)wi_1)i=1,...,n (2.14)
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Of course, wy, . . ., wy, are the constant states present in the exact solution
of the Riemann problem. If all jumps (w;_1,w;) were shocks or contact
discontinuities, then the Riemann problem would have a piecewise con-
stant solution with < 7 lines of discontinuity. In the general case, the
exact solution of (2.11) is not piecewise constant, because of the presence
of rarefaction waves. These will be approximated by piecewise constant
rarefaction fans, inserting additional states w; ; as follows.

t @,;

(t,%) X
figure 17

Let 6 > 0 be a fixed small constant. If the i-th characteristic field is
genuinely nonlinear and o; > 0, consider the integer

pi = 1+ {0:/4], (2.15)

where [s] denotes the integer part of s, i.e. the largest integer < s. For
J=1,...,p; define

wij = Yi(joi/p)wi-1),  Zij(t) =3+ (- Dhi(wiy).  (2.16)

On the other hand, if the i-th characteristic field is genuinely nonlinear
and o; <0, or.if the i-th characteristic field is linearly degenerate (with
o; arbitrary), define p; =1 and

Wil = Wy, 2i1(t) = 2+ (t — D) Ai(wi-1, wi)- (2.17)
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Here A:(w;—1,w;) is the Rankine-Hugoniot speed of a jump connecting
w;—1 with w;, so that
AMwi-1, wi) * (Wi — wi-1) = flan) — flwi-1)- (2.18)

As soon as the intermediate states w;; and the locations z; ;(t) of
the jumps have been determined by (2.16) and (2.17), we can define an
approximate solution to the Riemann problem (2.11) by setting (fig. 17)

u” if z<zy(t),
ut if 2> 2n,.(1),
DT i) T B < < B0
Wi § if zij)<z<zijri@®)@G=1,...,p: —1).
(2.19)

Observe that the difference between v and the exact self-similar solution
of (2.11) is due to the fact that every centered i-rarefaction wave is here
divided into equal parts and replaced by a rarefaction fan containing p;
wave-fronts. Because of (2.15), the strength of each one of these fronts
is < 4.

Simplified Riemann Solver.

Case 1: Let j,j € {1,...,n} be the families of the two incoming
wave-fronts, with j > j'. Assume that the left, middle and right states
Uf, Urs, Ur before the interaction are related by

U = ¥5(0)(w), U = Ve (0") (tm).- (2.20)
Define the auxiliary right state
¥;(a) o ¥y (o) (w) if >,
iy = (2.21)
(o + 0')(ur) if j= 7.

Let 7 = 4(t, ) be the piecewise constant solution of the Riemann prob-
lem with data u, i, constructed as in (1.19). Because of (2.21), the
piecewise constant function 9 contains exactly two wave-fronts of sizes
o', 0, if § > §', or a single wave-front of size o + o', if j = §'.

Of course, in general one hss 4, # u,. We let the jump (%, u,) travel
with a fixed speed A, strictly bigger than all characteristic speeds. In a
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forward neighborhood of the point (f, Z), we thus define an approximate
solution v as follows (fig. 18a-b)

o(t, z) if z—Z<(t—0DA
v(t,x) = ) (2.22)
Uy f z-z>@F—-tA

Observe that this simplified Riemann solver introduces a new non-physical
wave-front, travelling with constant speed . In turn, this front may in-
teract with other (physical) fronts. One more case of interaction thus
needs to be considered.

Case 2: A non-physical front hits from the left a wave-front of the
i-characteristic family (fig. 18¢), for some i € {1,...,n}.

Let uy, um, ur be the left, middle and right state before the interac-
tion. If

U = Wi(0)(Um), (2.23)
define the auxiliary right state
Gy = Wi(o)(w). (2.24)

figure 18a figure 18b figure 18¢

Call ¥ the solution to the Riemann problem with data wy, 4., con-
structed as in (2.19). Because of (2.24), ¥ will contain a single wave-front
belonging to the i-th family, with size 0. Since @, # u, in general, we
let the jump (&, u.) travel with the fixed speed X. In a forward neigh-
borhood of the point (Z, Z), the approximate solution u is thus defined
again according to (2.22).
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i By construction, all non-physical fronts travel with the same speed
X, hence they never interact with each other. The above cases therefore
cover all possible interactions between two wave-fronts.

To complete the description of the algorithm, it remains to specify which
Riemann solver is used at any given interaction. The choice is made in
connection with a threshold parameter p > 6:

— The accurate method is used at time ¢ == 0, and at every interaction
where the product of the strengths of the incoming waves is |oo’| >
p.

— The simplified method is used at every interaction involving 8 non-
physical wave-front, and also at interactions where the product of
the strengths of the incoming waves is |go’| < p.

In the above, we tacitly assumed that only two wave-fronts interact
at any given point. This can always be achieved by an arbitrarily small
change in the speed of one of the interacting fronts. We shall also adopt
the provision that, in the Accurate Riemann Solver, rarefaction fronts of
the same family of one of the incoming fronts are never partitioned (even
if their strength is > &). This guarantees that every wave-front can be
uniquely continued forward in time, unless it gets completely cancelled
by interacting with another front of the same family and opposite sign.

The construction of an approximate solution thus involves three pa-
rameters:

— A fixed speed ), strictly larger than all characteristic speeds.

— A small constant § > 0, controlling the maximum strength of
rarefaction fronts.

— A threshold parameter p > 0, determining whether the Accurate
or the Simplified Riemann Solver is used.

This completes the definition of our algorithm. To prove Theorem
2, we now need to show that for any £ > 0, if the initial data @ has
small total variation, by a suitable choice of the parameters 4, p our
algorithm will produce an ¢-approximate solution defined for ali t > 0.
Observe that one can always solve the new Riemann problems generated
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by wave-front interactions provided that the states u~,ut are close to
each other. A key part of the proof will thus consist in showing that the
total variation of the approximate solution remaing small for all times.
An outline of the proof is given below.

1. Interaction Estimates. Whenever two wave-fronts interact, the
new Riemann problem is solved in terms of a family of outgoing waves.
Well known estimates [15, 24| state that the difference between the
strengths of the corresponding incoming and outgoing fronts is of second
order. More precisely, the following holds.

+ + o-"‘ +
o+ G o, k G
J

GC. G g O
1 J

figure 19a figure 19b

(i) Let o;,0; be the sizes of two incoming fronts, belonging to the
distinct characteristic families ¢ > j. Their interaction determines
a Riemann problem (fig. 19a), whose solution consists of outgoing
waves say of sizes g7f,...,0,/. These are related to the incoming
waves by the estimate

o —ail +lof — a5l + D loft| = O(1) - |oio;] (2.25)
ki,

(ii) Let g,0' be the sizes of two incoming fronts, both belonging to the
i-th characteristic family. As before, calling o} ,..., 0} the sizes
of the outgoing waves generated by the corresponding Riemann
problem (fig. 19b), one has

lof —o—o'l+ Y lof| = O(1) - lod'|(lo] + |o']) (2.26)
ki
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(iii) Let o, o' be the sizes of two incoming fronts, say of the families i, ¢'.
Let U, %m, 4, be the left, middle and right states before interaction,
80 that (2.20) holds. Introducing the auxiliary right state @, as in
(2.21), one has (fig. 18a-b)

| — ur| = O(1) - lod’]. (2.27)

(iv) Let a non-physical front connecting the states u;, um interact with
an i-wave of size ¢, connecting tm,, r, 50 that (1.13) holds. Defin-
ing the auxiliary right state i, as in (2.24), one has (fig. 18¢c)

|t — ue| = O1) - |0 |1t — wt]- (2.28)

2. Bounds on the Total Variation. These a priori bounds are de-
rived from the above estimates (2.25)—(2.28), using an interaction func-
tional introduced in [15]. Let u = u(t, r) be a piecewise constant approx-
imate solution. At a fixed timet let o, @ = 1,..., N, be the locations of
the fronts in u(t, -). Moreover, let |04} be the strength of the wave-front
at To. In case of & non-physical front, one simply defines

iaﬂi = I‘U(t, ma“") - H(t, ma_)i- (2-29)

In the following, for notational convenience we say that non-physical
fronts belong to & (n -+ 1)-th characteristic family.
As in [15], consider the two functionals

V)= loal, (2.30)
measuring the total strength of waves in u(t, ), and
QW)= 3 loaosl (2:31)
{a,5)cA

measuring the wave interaction potential In (2.31), the summation
ranges over all couples of approaching wave-fronts. More precisely, we
say that two fronts, located at points o < Zg and belonging to the char-
acteristic families kq, kg € {1,...,n+ 1} respectively, are approaching if
ke > kg or else if ko = kg and at least one of the waves is & genuinely
nonlinear shock.
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Now consider any approximate solution constructed by the front
tracking algorithm. At every time 7 where two fronts of strength |o|, |o”|
interact, the interaction estimates (2.25)-(2.28) yield

V(t+) = V(r-) = 0(1) - |gd’|, (2.32)

Qr+) — Q(1=) = —|ad’| + OQ) - |od’| - V(T-). (2.33)

Indeed, the two fronts o, ¢/ are no longer approaching after time 7. If V
remains sufficiently small, (2.33) implies

oc’|
5

By (2.34) and (2.32) we can thus choose a constant Cp large enough so
that the quantity

QUT+) ~Q(r—) £ — (2.34)

T(t) = V(t) + CoQAt)

decreases at every interaction time, provided that V remains sufficiently
small. Observing that

V(t) = 0(1) - Tot.Var.{u(t, )}, Q(t) < V(1) (2.35)

we conclude that, if the total variation of the initial data u(0, -) is suffi-
ciently small, then

V(t) + CoQ(t) < V(0) + CoQ(0) for all ¢ > 0. (2.36)

By (2.35), the total variation of u(t,-) thus remains small for all times
t 2 0. In particular, the approximate solutions of all Riemann problems
generated by the interactions are well defined.

3. Bounds on the number of wave fronts. To prove that the
total number of wave fronts remains finite, we recall that the Accurate
Riemann Solver is used when the strengths of the interacting waves
satisfy |oo’| > p. This can happen only finitely many times. Indeed, by
(2.34) at such times one has

Qr+) — Q(r—) < —p/2. (2.37)

Therefore, new physical fronts are introduced only at a number < 2Q(0)/p
of interaction points, hence their total number is finite. In turn, a new
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non-physical front is generated only when two physical fronts interact.
Clearly, any two physical fronts can cross only once. Hence the total
number of non-physicsl fronts is also finite.

The above steps 1-3 show that, for small enough initial data, the
piecewise constant approximate solution is well defined for all times ¢ >
0.

4. Strength of each rarefaction front is small. By construction,
at a time ¢y, where a new rarefaction front is introduced by the Accurate
Riemann Solver, its size is o(tg) €]0,8]. Observe that two rarefaction
fronts of the same family never interact. If a rarefaction hits a shock
of the same family, its size will decrease due to a cancellation. On the
other hand, by subsequent interactions with fronts of other families, &
rarefaction front may increase its initial strength. However, using the
interaction estimates {2.25), it is not difficult to show that this strength
remains uniformly bounded:

a(t) = O(1) - alto) = O(1) - 6 for all ¢ > to. (2.38)

Choosing § > 0 sufficiently small, the right hand side of (2.38) remains
smaller than ¢.

5. Total strength of non-physical fronts is small. Toward this
estimate, to each wave-front in « we attach an integer number, counting
how many interactions were needed to produce such front. More pre-

cisely, the generation order of a front is inductively defined as follows
(fig. 20).

— All fronts generated by the Riemann problems at the initial time
t = 0 have generation order k£ = 1.

~ Let two incoming fronts interact, say of the families¢,i' € {1,...,n+
1}, with generation orders k, ¥’. The orders of the outgoing fronts
are then defined as follows.
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figure 20

Case 1: i £1i'. Then

- the outgoing i-wave and i'-wave have the same orders k, k' as the
incoming ones.

- the outgoing fronts of every other family j # i 4’ have order
max{k, k'} + 1.

Case 2: i =i'. Then

- the outgoing front of the -th family has order min{k, &'},

- the outgoing fronts of every family § # i have order max{k, k'} +1.

For k > 1, call Vi(¢) the sum at time ¢ of the strengths of all waves
of order > k. Moreover set Qx(t) = T |0a0p|, where the sum extends
over all couples of approaching waves in u(t, -), say of order ka, kg, with
max{kq, k3} > k. If the total variation is sufficiently small, from the
interaction estimates (2.25)—(2.28) one obtains the a priori bounds

Vi(t) < Cv* forall t >0, k> 1, (2.39)

for some constants C and 7y < 1. Now let N be the number of wave-
fronts in u(0+,-). At any time ¢ > 0, the number of first order fronts
in u(t,-) is thus < N. From each interaction between fronts of first
order, recalling that rarefaction waves are partitioned into pieces of size
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< 4, a number O(1) - 1/§ of fronts of second order is generated. The
total number of fronts of second order fronts is thus O(1) - N2/§. By
induction, the total number of of fronts of order < k in u(Z,-) can be
estimated by some polynomial function of N,é~1, say

[number of fronts of order < k] < Pi(N,671). (2.40)

The particular form of F% is of no interest here. By the interaction esti-
mate (2.27), if at some time fg the Simplified Riemann Solver introduces
a new non-physical front, the strength of this new front is

lo(to)l = O(1) - oo’} = O(1) - p. (2.41)

By subsequent interactions, the strength of a non-physical front may
increase. However, using the estimates (2.28), one can show that this
strength remains uniformly bounded:

o) = 0Q) - lo(te)] = O(1) - p for all £ > tg.
Therefore
[maximum strength of each non-physical front in u} < C'p  (2.42)

for some constant C’. To estimate the total strength of all non-physical
waves in u(t, -) we keep track of the fronts having generation order > k
and < k separately. Using (2.39), (2.40) and (2.42) we deduce

[total strength of non-physical fronts in uft, -)]
= Z oot + Z loalt)]
ordet{a)>k order{a)<k
< [total strength of all fronts of order > k|
+ [maximum strength of non-physical fronts]
- [number of fronts of order < k|
< Cv¥* 4+ C'p- Pu(N,67Y). (2.43)
For any given € > 0, since v < 1 we can now choose k large enough
so that Cy* < £/2. We then choose p > 0 small enough so that the

second term on the right hand side of (2.43) is < /2. For all ¢ > 0, this
achieves

[total strength of all non-physical fronts in u(t,-)] < ¢, (2.44)
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completing the proof of Theorem 2.

We now work toward a proof of Theorem 1. Fix any sequence &,
decreasing to zero. For every v > 1, Theorem 2 yields the existence of
an &,-approximate solution u, of the Cauchy problem (2.1)-(2.2). By
the previous analysis, these %, have uniformly bounded total variation.
Moreover, the maps t — u,(t, -) are uniformly Lipschitz continuous with
values in L(/R; IR"). Indeed,

|l (£) — un(8)ligr < (¢ — 8) - [total strength of all wave fronts]
-[maximum speed|
<L-(t—s)

(2.45)
for some constant L independent of v. We can thus apply Helly's com-
pactness theorem and extract a subsequence which converges to some
limit function % in L}_.

Since ||u,(0) — @ljy1 — 0, by (2.45) the condition (2.2) clearly holds.

To prove that u is a weak solution of the Cauchy problem, it remains
to show that, for every ¢ € C' with compact support contained in the
open half plane where ¢ > 0, one has

/000 f_o:o ¢u(t, z)u(t, T) + ¢ (t, ) f(u(t, z)) dzdt = 0. (2.46)

Since the w, are uniformly bounded and f is uniformly continuous on
bounded sets, it suffices to prove that

i | [ [7 {out.0huntt, ) + 6t ) St o))} dodt] =o.

(2.47)
Choose T' > 0 such that ¢(t,2) = 0 whenever ¢t ¢]0,T[. For a fixed v,
at any time ¢ call z,(t) < --- < zn(t) the points where u,(Z,-) has a
jump, and set

Au,,(t, 330:) = 'u.,,(t, ma"‘) - 'U.y(t, xa—)s

Af(u(t, xa)) = flu(t, 2at)) — fFu(t, Ta—)).
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figure 21

Observe that the polygonal lines # = a,(t) subdivide the strip
[0, T] x IR into finitely many regions I'; where u, is constant. Intro-
ducing the vector

= (¢ -, ¢ flw)),
by the divergence theorem the double integral in (2.47) can be written

as
> f div ®(t,z) dedt =) ] $ - n do. (2.48)

Here O1'; is the oriented boundary of I';, while n denotes an outer normal
(fig. 21). Observe that ndo = £(i4, —1)dt along each polygonal line
Z = x4(t), while ¢(¢,z) = 0 along the lines t = 0,t = T. By (2.48) the
expression within square brackets in (2.47) is computed by

[ [ Bt 0) — Af(un e, 2a)) 6 7alt) . (2.49)

To estimate the above integral, let |o,| be the strength of the wave at

T,. If this wave is a shock, a rarefaction or contact discontinuity, by
(2.4)-(2.7) one has

[alt) - Ayt 20) — Af(wt, za))| = O(1) - €./ 0al- (2.50)
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On the other hand, if the wave at x,, is non-physical with strength |o,|,
then

[ba - A (t,2a) = Af(u(t,2a)| = O) -loal. (251)

We now split the summation in (2.49), considering physical (shocks,
contacts or rarefactions) and nonphysical waves separately:

imsup | 30 [£a(t) - Auu(t, 7o)
y—oo aE€SURUN'P

~Af(ult, )] Bt 2o 1))
s(maxt,zlqs(t,mn)-1imsup{0(1). S o 252

aeSUR
+O(1)- 3 Iaa|} = Q.
aeNP

Indeed, the total strength of waves in u, remains uniformly bounded,
while the amount of non-physical waves by (2.44) approaches zero as
g, — 0. The limit (2.47) now follows from (2.52). Therefore, u is
a weak solution to the Cauchy problem. In the presence of a convex
entropy n with entropy flux ¢, an entirely similar argument shows that
the inequality (1.26) is also satisfied.

3 A semigroup of solutions

The analysis in the previous chapter has shown the existence of a global
entropy weak solution of the Cauchy problem for every initial data with
sufficiently small totsl variation. More precisely, recalling the definitions
(2.30)-(2.31), consider a domain of the form

D= cl{u € L'(R; R™); u is piecewise constant,

(3.1)
T(u) = V(u) + Co - Q(u) < b},
where ¢l denotes closure in L!. With a suitable choice of the constants
Cy and &y > 0, the proofs of Theorems 1, 2 show that, for every % € D,
one can construct a sequence of c-approximate front tracking solutions
converging to a weak solution u taking values inside D. Observe that,
since the proof of convergence relied on a compactness argument, no
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information was obtained on the uniqueness of the limit. The main goal
of the present chapter is to show that this limit is unique and depends
continuously on the initial data:

Theorem 3. For everyit € D, asc — 0 every sequence of c-approrimate
solutions u, : [0, co[— D of the Cauchy problem (2.1)-(2.2) converges to
a unigue limit solution u : [0, cof++ D. The map (&,t) — u(t,-) = S4
s a uniformly Lipschitz semigroup, i.e.:

Soi =%,  Su(St)) = Sereti, (3.2)

IS¢ —S,bllgs < L-(|la—Dlg+|t—s|) for all 4,5 €D, s,t>0. (3.3)

A construction of the semigroup was first carried out in [2] for linearly
degenerate systems, then in [6] for 2 x 2 systems and in [7] for general
n X n systems. All these earlier estimates were based on a linearization
method. In order to estimate how the distance between two solutions
u, v varies in time, one constructs a one-parameter family of solutions
u® joining u with v, as shown in fig. 22. At any time ¢ € (0,7, the
distance ||u(t) — v({}|ly: is thus bounded by the length of the curve
4 : 8 — uO(f). In turn, as long as all solutions v remain sufficiently
regular, the length of ; can be computed by integrating the norm of
a generalized tangent vector v. The advantage of this approach is that
tangent vectors satisfy a linearized evolution equation. From a uniform
a-priori estimate on the norm of these tangent vectors, one obtains a
bound on the length of yr and hence on the distance between u(T’) and
v(T). Unfortunately, this approach is hampered by the possible loss of
regularity of the solutions 4®. In order to retain the minimal regularity
(piecewise Lipschitz continuity) required for the existence of tangent
vectors, in [6, 7] various approximation and restarting procedures had
to be devised. These yield entirely rigorous proofs, but at the price of
heavy technicalities.
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uft)
figure 22

In the remainder of this chapter, we will thus follow the new approach
of Liu and Yang [19, 20] in its simplified version [11].

To prove the uniqueness of the limit of front tracking approxima-
tions, we need to estimate the distance between any two e-approximate
solutions u,v of (2.1). For this purpose, following [11] we introduce a
functional ® = ®(u,v), uniformly equivalent to the L! distance, which
is “almost decreasing” along pairs of solutions. Recalling the construc-
tion of shock curves at (1.33), given u, v, consider the scalar functions
¢: defined implicitly by

v(Z) = Splga(z)) 0 -+ o Si(q1(@))(ulz)). (3.4)

Intuitively, g;(2) can be regarded as the strength of the i-shock wave in
the jump (u(z), v(x)). On a compact neighborhood of the origin, we
clearly have

1 n
o lo(z) —u(z)| < 3 la(z)] < Cr - p(z) — u(z)| (3.5)
i=1
for some constant C7. We now consider the functional
oo
2w =Y [ ju@IWie) do, (36)
=17

where the weights W; are defined by setting:

Wi(z) = 1+ k; -] total strength of waves in « and in v
which approach the i-wave g;(z)]
+ kg - [ wave interaction potentials of u and of v
= 1+ k1 Ai(z) + £2[Q(u) + Q(v)]. (3.7)
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The amount of waves approaching ¢;{z) is defined as follows. If the
i-shock and i-rarefaction curves coincide, we simply take

A@=| > + 3 [leal (3.8)

Ta<t, t<kaSn Zo>z, 1<ka <t

The summations here extend to waves both of u and of v. According
to [25], the definition (3.8) applies if the i-th field is linearly degener-
ate, or else if all i-rarefaction curves are straight lines. On the other
hand, if the ¢-th field is genuinely nonlinear with shock and rarefactions
curves not coinciding, our definition of A4; will contain an additional
term, accounting for waves in u and in v of the same 4-th family:

Ai(z) = 3 + > loal

a€ET(uIUT (v) ac J{u)uT(v)
za<s, i<kaln To>z, 15k <t
, - -
X+ Y |l if a(@) <0, (3.9)
ko=t kg =i
L acS ) < a v}, Ta>Td
+4 - (v), za<z €J(v}), e -
> + Z loal if gi(z) > 0.
ko=i kg =t
\ La€F(v), za<z ot T{u), za>z

Here and in the sequel, J(u} and J(v) denote the sets of all jumps in
2 and in v, while 7 = J(u) U J(v). We recall that k, € {1,...,n+ 1}
is the family of the jump located at z, with size ¢,. Notice that the
strengths of non-physical waves do enter in the definition of €. Indeed,
a non-physical front located at z, approaches all shock and rarefaction
fronts located at points £g > z,. On the other hand, non-physical fronts
play no role in the definition of A;.

The values of the large constants «;,x2 in (3.7) will be specified
later. Observe that, as soon as these constants have been assigned, we
can then impose a suitably small bound on the total variation of u,v so
that

1 <Wi(z) <2 for all %, z. (3.10)
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From (3.5), (3.6) and (3.10) it thus follows

1
oI =ul SRV <201 fo—ulyy.  (31)
Recalling the definition T(u) = V(u) + CoQ(u), the basic L! stability
estimate for front tracking approximations can now be stated as follows.

Theorem 4. For suitable constants Cy, k1, k2,00 > 0 the following

holds. Let u,v be c-approzimate front tracking solutions of (1.1) con-
structed by the algorithm in Chapter 2, with

T(u(t)) < do, T((t)) < & for all t>0. (3.12)
Then the functional ® in (3.6)-(3.9) satisfies

D(u(t), v(t)) — B(u(s), v(s)) < Coe(t — ) forall 0<s<t. (3.13)

Relying on the above estimate, a proof of Theorem 3 can be easily
worked out. Indeed, let @ € D be given. Consider any sequence {u, },>1,
such that each u, is a front tracking e, -approximate solution of Cauchy
problem (2.1)-(2.2), with

lim ¢, =0, T(uw(t)) < &0 forall t>0, v>1.

V=00

For every u,v > 1 and t > 0, by (3.11) and (3.13) it now follows

lleu(®) = w (Ol < Cr- B(uu(t), uu(t))
< C1 - [0(uu(0), w(0)) + Cat - max{e,, £.}]
< 2C?||uu(0) — u(0)|jp1 + CiCat - max{e,, €,}.
(3.14)

Since the right hand side of (3.14) approaches zero as u,v — oo, the
sequence is Cauchy and converges to a unique limit. The semigroup
property (3.2) is an immediate consequence of uniqueness. Finally, let
4,7 € D be given. For each v > 1, let u,,v, be front tracking e,-
approximate solutions of (2.1) with

-I "uy(ﬂ) - ﬁ“l,l < Epy ”Uv(o) - "_’”Ll < Ey,y vll{gc gy = 0. (3-15)
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Using again (3.11) and (3.13) we deduce
lw(t) =2 < Cr- 2uu(t), wit)
Cr - [$(w(0), ul0) +Coter]  (3.16)
< 2CH ) (0) — v, (O)Ip: + C1Catey.
Letting v — o0, by (3.15) it follows

IA

llu(t) — v(tHips < 2CF - 18— ||y . (3.17)

This establishes the uniform Lipschitz continuity of the semigroup with
respect to the initial data. Recalling (2.45), the Lipschitz continuity
with respect to time is clear. This completes the proof of Theorem 3.

In the remainder of this chapter we will sketch the main ideas in
the proof of Theorem 4. The key point is to understand how the func-
tional ¢ evolves in time. In connection with (3.4), at each z define the
intermediate states wo(z) = u(z), wi(z), ... , wa(z) = v(z) by setting

wi(z) = Si@i(z)) o Sia(@-1(z))o -+ oSi(m(z))(u(z)). (3.18)
Moreover, call

Ai(z) = Xi(wi—1(z), wilx)) (3.19)
the speed of the i-shock connecting w;_1(x) with w;(z). A direct com-
putation now yields

£9(u(0), v(t) = Taes Tims {|0@a—)|Wilza-)
-|Qi($a+)]vvi(ma+)} ¢ i'a
= Eae:f E;;l {IQ?'*lW.-“* (A?+ - ia)
g W (0 — 2},
with obvious meaning of notations. We regard the quantity |g:(z)|Ai(z)

as the flux of the i-th component of jv — u| at . For 2,1 < x < 24,
one clearly has

g A WDt 2 @) (@) Wiz) = [T AT WE

(3.20)

Moreover, the assumption u(t), v{t) € L! and piecewise constant implies
gi(t,z) = 0 for = outside a bounded interval. This allowed us to add and
subtract the above terms in (3.20), without changing the oversll sum.
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In connection with (3.20), for each jump point a € J and every
i=1,...,n, define

Eoi = | WO — o) — g7 IWP™ (A — 2a)- (3.21)

Our main goal will be to establish the bounds

Y Eai <O(1) |oal a € NP, (3.22)

i=1

Y Eai < O(1) - €logl a€RUS. (3.23)
i=1
As usual, by the Landau symbol O(1) we denote a quantity whose ab-
solute value satisfies a uniform bound, depending only on the system
(2.1). In particular, this bound does not depend on £ or on the func-
tions u,v. It is also independent of the choice of the constants xy, k2 in
(3.7).
From (3.22)-(3.23), recalling (2.9) and the uniform bounds (3.12) on
the total strength of waves, one obtains the key estimate

s (u(t), v(1) < 00) ¢ (3.24)

If the constant kg in (3.7) is chosen large enough, by the interaction
estimates (2.25)—(2.28) all weight functions Wj(z) will decrease at each
time 7 where two fronts of u or two fronts of v interact. Integrating
(3.24) over the interval {s, t] we therefore obtain

B(u(t), v(t)) < D(u(s), v(s))+ O(1) -&(t — s), (3.25)

proving the theorem. All the remaining work is thus aimed at establish-
ing (3.22)-(3.23).

If a € NP, calling o0, the strength of this jump eas in (2.29), for

i=1,...,n one has the easy estimates
- =0(1):0a,
MY-Af"  =0Q)-o0.. (3.26)

wet —we- =0 if @2 >0
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Therefore, writing

Eoi = (1684 — g8~ DWEt (A — &)
HeET|(Wt — W)t — £a) (3.27)
+Hed T IWET (Y — A8,

the estimate (3.22) is clear.

The proof of (3.23) requires more work. Instead of writing down
all computations, we will try to convey the main ideas with the help
of a few pictures. For all details we refer to [11]. Given two piecewise
constant functions u,v with compact support, fori = 1,...,n we can
define the scalar components u;,v; as in [19], by induction on the jump
points of u,v. We start by setting 4;(—o00) = v;(—00) = 0. If 2, € J(u)
is 8 jump point of u, then we let v; be constant across z, and set

%i(Zat) = %hi(Ta—) — [gi(zat) — gi(za—)]

On the other hand, if 2, € J(v) is a jump point of v, then we let u; be
constant across z, and set

vi(Tat) = vi(Ta—) + [€i(Tat) — G(Ta—)]-

These definitions trivially imply

¢(z) = vi(z) — ui(z) forall ze R, i=1,...,n.
q,
- | i
I
- o
X
figure 23

Observe that, according to the definition (3.9), the i-waves in u and v
which approach ¢;(z) are those located within the thick portions of the
graphs of w;, v; in fig. 23. Viceversa, for a given i-wave o, located at
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Zo, the regions where the jumps ¢;(2) approach o, are represented by
the shaded areas in in fig. 24.

%

figure 24

Now let v have a wave-front at z, with strength o4, in the genuinely
nonlinear k-th family. To fix the ideas, assume that vg(Tat) > uk(Za)-
In connection with this front, for every i < k the functional &(u,v)
contains a term of the form (fig. 25)

Aqi =K1 -|04]- [area of the region between the graphs of u;
and v;, to the right of z,).

figure 25

By strict hyperbolicity, the i-th and k-th characteristic speeds are
strictly separated, say A — A; > ¢ > 0. If each component wu;,v;, ¢ =
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1,...,n, were an exact solution to a scalar conservation law:
(ui)e + Fi(w)z = 0, (F{ =X)
uncoupled from all the other components, then we would have the esti-
mate
dA. ; .
=222 < —ka|0allgf T (Ea — ATY) < —cmiloaligl . (3.28)

dt ~

Here At = A\i(ui(Zat), vi(za+)) is a speed of an i-shock of strength
¢™*. In general, the estimate (3.28) must be supplemented with coupling
and error terms, whose size is estimated as

i#k

o) - (E +1ge gt + loal) + 3 IQ?+I) {oal. (3.29)

A detailed computation thus yields

E.i < O(1)- (6 +lag0egt +Hioal) + > lq;”l) loal — cx1|gf|loali # k.
J#k
(3.30)
Next, according to (3.9) the functional ®(u,v) also contains a term of
the form

Ank = K1 |0a|- [area of the region between the graphs of uy
and vg, to the right of z,].
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If the components ug, vx were exact solutions of a genuinely nonlinear
scalar conservation law, say

(uk)t + Fr(ur): =90, (F = X&) (3.31)
with FY! > ¢ > 0, then one would have the estimate
dAax

ok < s loalldf (o - X*) < —maloalgf |- 5 (651 + loal).

(3.32)
The decrease of this area is illustrated in fig. 26. In general, the estimate
(3.32) must be supplemented with coupling and error terms, whose size
is again estimated as (3.29). A detailed computation thus yields

Bar <O (e +1gg 106 + loal) + T 105H1) loal
~<84g loal (g5 + loa))-

Choosing k; sufficiently large, (3.30) and (3.33) together yield (3.23).

(3.33)

A different estimate is needed in the case where the jump in vx crosses
the graph of ux, say w(zat+) < ur(za) < vk(zoa—). To fix the ideas,
assume

gk Tl = [ve(@at) — up(@a)| < for(@a—) —ur(@a)l = |gg7].  (3.34)

In this case, the estimates (3.30) remain valid. In connection with the
k-th field, the functional @ contains a term of the form (fig. 27):




Hyperbolic systems of conservation laws 189

Aq i = [area of the region between the graphs of ux and v], (3.35)

where the above area includes points both to the right and to the left of
To-

If the components ug, vx provided an exact solution to the genuinely
nonlinear scalar conservation law (3.31), due to genuine nonlinearity we
would have

dAak
dt

Indeed, by (3.34),

d _ ¢ o
< —Elqﬁ |- lgg*i < —Z|0a||fb:+|- (3.36)

loal = lgg ™| + gt ™| < 2lgg7-

In general, the estimate (3.36) must be supplemented with coupling
and error terms, whose size is again estimated as (3.29). A detailed
computation thus yields

i
Eap <0(1)- (E +lgeT ARt +loal) + Iq;-’+|) |oal — 716 [loal.
ik

(3.37)

Assuming that the total strength of waves remains sufficiently small,

we have J

621 + ool < 7,

hence (3.30) and (3.37) together yield (3.23). For details we again refer
to [11].

4 TUniqueness of solutions

Having proved that the limits of front tracking approximations are unique
and determine a semigroup of solutions, we would like to show that this
semigroup is canonically associated with the system (2.1). In other
words, when % € D, the semigroup trajectory ¢t — S:i is the unique
entropy weak solution to the corresponding Cauchy problem. For scalar
conservation laws, a very general uniqueness and stability result was
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proved in the fundamental paper of Kruzhkov [17]. In the case of n x n
systems, under some mild regularity assumptions, results in this direc-
tion were recently obtained in [8, 9, 10]. For sake of clarity, a complete
set, of assumptions is listed below.

(A1) {Conservation Equations) The function u = u(t,z) is a weak
solution of the Cauchy problem (2.1)-(2.2), taking values within
the domain D of a semigroup S. More precisely, u : [0,T} — D
is continuous w.r.t. the L' distance. The initial condition (2.2)
holds, together with

/ f (upr + fu)ps) dedt =0 (4.1)

for every C! function ¢ with compact support contained inside the
open strip |0, T[ x R.

(A2) {Entropy Condition) Let u have an approximate jump discon-
tinuity at some point (7,£) €0, T[<R. More precisely, let there
exists states u~, ut € © and a speed A € IR such that, calling

L) u ifz <&+ At —17),
Utt,z) = { ut ifz>&6+At-1) “.2)

there holds

1 1 f7te péte dod )
0t p_zfr_p /;_P Iu(t,m%U(t, :v)l zdt = 0. (4.3)

Then, for some i € {1,...,n}, one has the entropy inequality:
Ai(u™) > A > M(wt). (4.4)

(A3) (Tame Oscillation Condition) For some constants C, ) the
following holds. For every point € IR and every t, h > 0 one has

lu(t+h, ) —u(t, )| < C-Tot.Var.{u(t, -); [z— M, =+ Ah}}. (4.5)

(A4) (Bounded Variation Condition) There exists § > 0 such that,
for every space-like curve {t = 7(z)} with |dr/dz| < 4 s.e., the
function x — u(7(z), z) has locally bounded variation.
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Remarks. Assumption (A2) generalizes the Lax entropy condition.
Indeed, if (4.2)-(4.3) hold, using (4.1) one can prove that the states
u~,ut and the speed A must satisfy the Rankine-Hugoniot conditions.
By (1.18), the speed of the jump coincides with an eigenvalue of the
averaged matrix A(u~,ut), say A = Ai(u~,ut). In this setting, the
condition (4.4) requires that the speed of an i-shock be greater than the
i-speed of the state 4t ahead of the shock, but smaller than the i-speed
of the state u~ behind the shock. In the t-z plane, the i-characteristic
lines thus flow into the shock curve from both sides.

"The condition (A3) restricts the oscillation of the solution. An equiv-
alent, more intuitive formulation is the following. For some constant A
larger than all characteristic speeds, given any interval [a,b] and ¢ > O,
the oscillation of u on the triangle A = {(s,9): s 2>t, a+ As<y<
b — As}, defined as

Osc{u; A} =  sup |u(s,g) —u(s',9)l,
(s,y),(a’,y’)EA

is bounded by a constant multiple of the total variation of u(t, -) on [a, b].
Assumption (A4) simply requires that, for some fixed 4 > 0, the function
1 has bounded variation along all space-like curves {t = 7(z); = € [a, b]}
with slope < 4, i.e. with

lr(z) — 7(z')] < 8|z — 2| for all z,2’ € [a,b].

One can prove that all of the above assumptions are satisfied by weak
solutions obtained as limits of Glimm or wave-front tracking approxima-
tions. The following result shows that the entropy weak solution of the
Cauchy problem (2.1)-(2.2) is unique within the class of functions that
satisfy either the additional regularity condition (A3), or (A4).

Theorem 5. Let the map u : [0,T) — D be continuous (w.r.t. the L!
distance), taking values in the domain of the semigroup S generated by
the system (2.1). If (A1), (A2) and (A3) hold, then

u(t, ) = Siu for all t € [0,T]. (4.6)

In particular, the weak solution that satisfies these conditions is unigue.
The same conclusion holds if the assumption (A3) is replaced by (A4).
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The first part of Theorem 5 follows from the results in [8], the second
part was proved in [10]. The main steps of the proof are given below.

1. Since u takes values inside the domain D of the semigroup, the total
variation of u(t, -) remains uniformly bounded. From the basic equation
(2.1}, it follows that w is Lipschitz continuous with values in L!, namely

ffu(t) — w(s)lly: < L-|t—s] (4.7

for some Lipschitz constant L. More precisely, if M and A\* are constants
such that

Tot.Var.(u) < M for all ue D,
[f(w) — FW)] € Xw — | whenever |w|, || < M,

as Lipschitz constant in (4.7) one can take I = A*M. As a conse-
quence, 4 = u{t,z) can be regarded as a BV function of the two vari-
ables ¢, z, in the sense that the distributional derivatives Dy, Dy are
Radon measures. By a well known structure theorem [14], there ex-
ists a set A C]0, T xR of 1-dimensional Hausdorff measure zero such
that, at every point (r,£)} ¢ N, u either is approximately continuous
or has an approximate jump discontinuity. Taking the projection of A/
on the t-axis, we conclude that there exists a set A C [0, T] of mea-
sure zero, containing the endpoints 0 and T, such that, at every point
(1,€) € [0,T] x R with 7 ¢ N, setting u™ = u(r,&-), ut = u(r, £+)
the following property holds.

(P) Either T = »~, in which case (4.2)-(4.3) hold with X arbitrary.
Or else u # u~, in which case (4.2)-(4.3) hold for some particular
A € IR. In this second case, for some i € {1,...,n} the Rankine-
Hugoniot equations and the Lax entropy condition hold:

(uT,ut) - (wt —wT) = ft) - f),
M) > M(uT,ut) > Nut),  (4.8)

2. The identity (4.6) will be proved by means of the error estimate:

D) = SruO)ls < L [ {mgnr IEER) -S| g, )
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valid for every Lipschitz continuous map u : {0, T] — D. Observe that
the integrand in (4.9) can be interpreted as an instentaneous error rate.
As shown in fig. 28, the distance |lu(T) — S u(0)|i,: is bounded by

the length of the path ¢ — ST_tu(t). In turn, this length is obtained by
integrating the instantaneous error rate, magnified by a factor L. Indeed

1S gyt + 1) = Sp_u(ll < L+ flutt + h) ~ Spu@)]l

For a detailed proof of (4.8), see 4, 5].

u(t+h)
gy 2O

w(0)

figure 28

We will establish (4.6) by showing that the integrand on the right
hand side of (4.9) vanishes at each time ¢ ¢ N. Because of the finite
speed of propagation, it actually suffices to show that, for each ¢t ¢ N,
€ > 0 and every interval [a, b, there holds

lim sup%/b lu(t +h, ) — (Shu(t))(a:)| dr =0(1) -e. (4.10)
h—0+ a

3. Let u = u{t, ) be as in Theorem 5. In the following, for any given

point (7, £), we denote by U 4= U?T'E) the solution of the Riemann prob-
lem

ut = u(r,€4) if  x>¢,

we + f(w)e =0, w(r,z) = {u— = u(r,£-) if  z<&

(4.11)

193
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By the property (P), apart from the trivial case where ut = u~, this
solution consists of a single entropy admissible shock. The function /4
provides a good approximation to the solution u in a forward neighbor-
hood of the point (7,£). More precisely, using the Lipschitz continuity
(4.7), one can prove that

lim 2 e h , dz =0 412
hi%lJf-E.[e_h:\ Iu(T+ 1 &) = U (T + Ay :c)l o (4.12)

for every A > 0 and every (,&) with 7 ¢ NV,

4. Next, for a given point (7,£) we denote by U = U(br,e) the solution
of the linear system with constant coefficients

wy + Aw, =0, w(T, z) = u(T, ), (4.13)

where A = A(u(r,£)). As in the previous step, we need to estimate the
difference between u and U, in a forward neighborhood of the point
(1,€). Consider any open interval ]a, b containing the point £ and fix
a speed A strictly larger than the absolute values of all characteristic
speeds. For t >  define the open intervals

JOY= Jat (E—7)A, b—(t—m)A| (4.14)
and the region
L) = {(s,z); se|m t}, z€J(s)} (4.15)

With the above notation we claim that, for every v > T,

[ s @) -0, )| de=00) swp ju(t, ) - u(r,6)
J(r") (¢, x)el(#)
: f Tot.Var.{u(t, -); J(£)} dt. (4.16)

To derive (4.16), call X;, I, ; respectively the i-th eigenvalues and left
and right eigenvectors of the matrix A. Solving (4.13) we find

-0, 2) =1 Uz~ (7 = P)A) = - ulr, 2 — (7 — D).
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Now fix any ¢’,¢"” € J(7') and consider the quantity

B¢\ ¢") =k f§ (e, 2) - V(7 2) do
i Jg ('u('r', g) —u(r, ¢ — (7' =1)\)) da.

(4.17)

Since u satisfies the conservation equation {2.1) over the domain
Di={tta); teln 7l C+E-mh<e <+ -k},

the difference between the integral of u at the top and at the bottom of
the domain D; is measured by the inflow from the left side minus the

outflow from the right side (fig. 29).
b

B [ k(0= Ra ¢+ 0-7))a (w18

- /1- i ((f(U) =)t ¢+ (t— T’)X,-)) dt.

vy & ’ g

re) v
G

figure 29
From (4.17) it thus follows

To estimate the quantity in (4.18), consider the states

() = ult, ¢+ (¢ — 1A, () S ult, ¢+ (1A B ().
We then have
L ()~ )~ Re(u )] = e [DF(@)-(0 ) =Rl )| He A™- ("),

(4.19)
where A* is the averaged matrix

A* = j: [Df(su" +(1-s)u)— Df(ﬁ)] ds.
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Since the first term on the right hand side of {(4.19) vanishes, we thus
obtain

G- () = ) = S’ — )|
= O0(1) - |u" —o'| - (Ju ~ & + |’ — @),
= 0(1) - Tot.Var-{u(t); [¢'+ (t - )X, ¢" +(t - A}
- SUD( z)er(r) [U(, 2) — u(T, E)).
In turn, (4.20) yields

- E(C, €M) = O(1) - sup(y zyerery lult, ) — ulr, )]

»/’T’ Tot.Var.{u(t, N+ E=- N, T+ (- 1")5\:']} dt.
" (4.21)

Since the estimate (4.21) holds for all i = 1,...,n and all ¢/,¢" € J(),
it implies (4.16).

3. Given 7 ¢ N, € > 0 and a < b, using either one of the assumptions
(A3) or (A4) we can cover a neighborhood of the interval [a, b] with
finitely many points £&; and open intervals I; =laj, b;[ such that the
following conditions hold (fig. 30).

(i) Each point z is contained in at most two of the open intervals I;.
(it} The total variation of u(r,-) on each I; is < ¢.

(iii) For some 7/ > 7, calling ¢; = (a; + b;)/2 and

r'j = {(t)z); te[T’T,]r a’5+(t_f):\ <z< bj_(t_"r)i[},

(4.20)

N
T+h
T - -~ -
a b
figure 30
there holds

sup |u(t,z) —u(r,{;)| <e. (4.22)
(f.::)el‘,- .
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8. We now construct a function U = U(t, z) which coincides with U(“T,&)
near each point (7, £;) and with U¢, . , in a forward neighborhood of each
point (7, (;)-
UPT,E.-)(t' ) if lz — & < (t— T):\a
U(t, x) ==
U(br,cj)(t, ) if  (t,2) € T5 \Uge; Tk-
By (4.12) and (4.16), this function U provides a good approximation of

u, for times £ = 7+ h with h > 0 small. Indeed, recalling (4.22) and the
property (i) of the covering, we have

1 b

limsup + /

h—0-4- h a
1 £i+hi

* ’ u
< .
= Ei :h'fn gup ; £l-_h:\ |'U.(1 + h, m) - U(T,f.’)(’ -+ h, :B)l dx

w(r+h, 2)—U(r+h, m)l d

1 rb —hk

Iu(‘r +h, =) - U*(T’Cj)('r + h, :I.':)i dx

+ Z lim sup 5 X
F h—0+ aj +hA

e Tv+h
< 0+ limsup {0(1) . Z 7 j Tot.Var.{u(t); I;} dt}
h—0+4 i T

£ T+h
< limsup {0(1) 4 / 2. Tot.Var.{u(t); R} dt
h-+0+ T
=0(1) e (4.23)

7. We now observe that the semigroup trajectory v(Z, -) = S;ti is also an
entropy wesk solution to the Cauchy problem (2.1)-(2.2), and satisfies all
the assumptions (A1)-(A3). In particular, the total variation of v(t, )
remains uniformly bounded, and its oscillation on each domain I'(t) of
the form (4.15) is bounded by

sup |u(t, z) —o(r,€)| = O(1) - Tot.Var.{v(7); la,b]}. (4.24)

(taz}er('r’)

As a consequence, we can repeat the estimate (4.23) with v in the role
of u and obtain

b
firm sup ~ [ lotr 8, )=V +b, 2)] do =0 e (425)
h—04 h a

197
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Together, (4.23) and (4.25) imply (4.10). Since ¢ > 0 and the interval
[a, b} were arbitrary, this achieves the proof of Theorem 5.
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