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Hyperbolic systems of conservation laws.
Alberto BRESSAN

Abstract
Titis ja a survey paper, written iii the occasion of an invited tahk

given by tite autitor at tbe Universidad Complutense in Madrid,
Octoher 1998. Its purpose is to provide an account of sorne re-
cent advances in tite matitematical theory of byperbolic systems
of conservation laws in one apace dimension. After a brief review
of basic concepts, we describe in detail tbe metitod of wave-front
tracking approximation and present sorne of tbe latest resulta on
uniquenees and stabiity of entropy weak sohutions.

1 Review of basic theory
Tbis chapter reviews the basic definitions and properties of systems of
conservation Iaws. For a comprehensive introduction to the theory of
hyperbolic systems we refer to [22, 23, 24].

1.1 Basic definitiona

A single canservation law in one space dimension is a flrst order partial
differential equation of the form

ut±f(u)x=O. (1.1)

Here u is tite conserved quantity whule f is the fln¿ Integrating (1.1)
over the interval [a, b] one obtains
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136 Alberto Bressan

dx = Lbu(tx> dx

= Lb f(u(t, x))~ dx (1.2)
= f(u(t, a)) — f(u(t, b))
= [infhowat a] — [outflowat bj

In other words, tite quantity u is neither created flor destroyed: the total
amount of u contained inside any given interval [a, b] can change only
due to fiow of u across the two endpoints.

Using tite chain rule, (1.1) can be written in tite quasilinear form

u~ + a(u)ua, = 0, (1.3)

where a = f’ is the derivative of f. Por smootit solutiona, the two equa-
tions (1.1) and (1.3) are entirely equivalent. If u itas a juníp, itowever,
the left hand side of (1.3) wihl contain tite product of a discontinuous
function a(u) witit tite distributional derivative u~, which in titis case
contains a Dirac mass at tite point of junip. In general, sucit a prod-
uct is not well defined. Hence (1.3) is meaningful only wititin a class
of continuous functions. On the other hand, working with the equation
in divergence form (1.1) ahlows us to consider discontinuous solutiona
as well, interpreted in distributional sense. More precisely, a hocahly
integrable function u = u(t, x) is a wea’e solutior¿ of (1.1) provided that

fJ [u~ + f(u)#tI dzdt = 0 (1.4)

for every differentiable function with compact support ~ E

Ihe main object our study wilh be tite ti x ti system of conservation
latus

1 kh-~-~[ fíóú,...,u,1)]=O,. . . (1.5)

1 ~
Por simphicity, this wilh still be written in tite form (1.1), but keeping
in mmd that now u (uí,...,u,.) is a vector in JW and titat f
(fi,..., f~) is a map from E’ into itself. Cahling A(u) 4 1)1(u) the
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ti x ti Jacobian matrix of the map f st the point u, tite system (1.5) can
be written in the quasihinear form

ut+A(u)ua,=0. (1.6)

Wc say that tite aboye systern 18 strtct¿y hyperboltc if every matrix A(u)
has u real, distinct cigenvalues, say Ai(u) < ... < A,,(u). In titis case,
one can find dual bases of left and right eigenvectors of A(u), denoted

1 it’ i=j,u>—10 it’ i#j.

1.2 Linear systems

Wc consider here two elementarycases where the solution of the Caucity
problem can be written explicitly.

The linear liomogeneous scalar Cauchy problem with constant coef-
ficients has the form

ui+Au~=0, u(0,x)=di(x), (1.7)

witit A E iR. It’ ti c 6’, one easily checks that the travehling wave

u(t, x) = t2(x — Nt) (1.8)

provides a chassical solution to (1.7). In the case where tite initial con-
dition ti la not differentiabhe and we only itave ti E ~ the function u
defined by (1.8) can still be interpreted as a solution, in distributional
sense.

Next, consider tite itomogeneous system with constant coefficients

where A isa nxn ityperbolic rnatrix, witit real elgenvalues A1 < ... < A,
and elgenvectora r,, 1~, chosen so that 4 . y1 = 6~. Cali iij S 4 u the
coordinates of a vector u E JR’ w.r.t. tite basis of rigitt cigenvectora
{r1,. . . , r,,}. Multiphying (1.9) on the left by Li, . . . , 1,, we obtain

(u,)t + A1(uí),, = (lIu» + A1(4u» =

4ut + 4
44ua, 0,
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uí(O,x) = 11t(x) 4

Therefore, (1.9) decouples into u sealar Cauchy problems, whicit can be
solved separately in the same way as (1.7). The function

n
u(t,z) = >5421(x — A1flr1 (1.10)

¿=1

now provides a solution to (1.9), because
II

u¿(t, x) = >3 —A1(11 . ua,(x — >.~t))r~ = —Au~(t, x)
1=1

Observe titat in tite seahar case (1.7) the inhial profihe is shifted with
constant speed A. Por the system (1.9), the initial profihe is decomposed
as a suin of ti waves, escit travehling witit one of tite characteristic speeds

As a special case, consider tite Riemann initial data

f4x) = f ir if x<0,
l~u~ if x>O.

The corresponding solution (1.10) can titen be obtained as follows.

x=X
2

t

1=>~,

(Dl

= o>o

O
figure 1
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Write the vector u+ — ir as a linear combination of eigenvectors of
A, h.e.

n
~ —ir =>5c~r,.

:1=1

Define tite intermediate states

w1iu+>5c~r~,

so that eacit difference co1 — w1..q is an i-eigenvector of A. Tite solution
then talcos the form (Sg. 1):

w0u forx/t <A1,

u(t, x) = w. for A. < x/t < Aí+í, (1.11){ w~=u+ forx/t >A~.

1.3 Loss of regularity

A basic feature of norilinear systems of tite form (1.1) is that, even for
smooth iriltial data, tite sohution of the Cauchy problem may develop
discontinuities in finito time [16]. To achieve a global existence result,
it is thus essential to work within a class of discontinuous functions,
interpreting tite equations (1.1) in their distributional sense (1.4).

Example 1. Consider tite scalar conservation law (inviscid Burgers’
equation)

(1.12)

with initial condition
1¡40, x) = 42(x) 1 + X

2

Pbr t > O srnall the solution can be found by the rnethod of characteris-
tics. Indeed, if u is smooth, (1.12) is equivalent to

ut + uua, 0. (1.13)
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By (1.13) the directional derivative of the function u u(t, x) along
tite vector (1, u) vanisites. Titerefore, u must be constant along tite
citaracteristic limes in the t-x plane:

b—~Q, x+tu)=Q, x+2).

For t <T 4 8/V~7, titese hines do not intersect (fig. 2). Tite sohution to
our Cauchy problem is thus given imphicitly 1»’

1’ tu ~t, x+ 1+z2)—1+z2. (1.14)

On tite other itand, witen t > 8/VTI, tite characteristic limes start to
intersect. As a result, tite map

tx ‘-~ ~ + í + x
2

(1.14) no longer defines a single valued solution ofis not one-to-one and
our Cauchy problem.

An alternative point of view is tite fohlowing (fig. 3). As
creases, points on tite graph of u(t,.) move horizontah]y with

time in-
speed u,

A
figure 2
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equal to titeir distance from tite x-axis. Titis determines a change in the
profile of the solution. As t approaches the critical time T 1
orie itas

2!w { ini u~(t, x) } =

and no classical
prolonged for ah

solution exists beyond time T. Tite sohution can be
times t > Oonly within a class discontinuous functions.

u(O) u(T)

1.4 Discontinuous solutions

Motivated by the previous example, for a nonlinear system of conserva-
don laws, global solutions must be studied in a space of discontinuous
functions. Wc now derive conditions imposed by (1.4) on a sohution at
points of jump. To fix tite ideas, consider a piecewise smooth sohution
u = u(t,x) having a discontinuity across a Une x = Mt). Cail

u~(t) = hm u(t, x)

the rigitt and left limits of u(t,.) at tite point of jump. For any ~ c (4,

applying the &vergence theorem to tite vector fleid (u . 4’, f(u) . 4’) on
tite two domaina on tite right and on the heft of 7 we obtain

ff {u.tt+f(u).t~} dxdt=—ff{u¿+Á(u)ua,F4’dxdt
+ £ {[u± (t)— tc(t)]$t) — [f(u~(t)) — f(uit))I} . 7(t)) dt.

(1.15)
Since (1.15) is valid forevery differentiable4’with compact support, from
(1.4) it follows that tite equation (1.6) must hohd at ahí points outside

figure 3
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tite une of juníp. Moreover, ahong -y one must itave

[u~ — ufl4 = f(u~) — f(ufl, (1.16)

The vector equations (1.16) are tite famous Rarzkfne-Hugoníot condí-
tiotis. They form a set of ti scahar equations relating the rigitt and heft
states zd, ir E IR” and tite speed 4 of the shock.
Define the averaged matrix

A(u, y) sf A(Ou + (1— O)v) dO (1.17)

witit A Df tite Jacobian matrix of f, and cail .X~(u, y) its elgenvalues.
One can titen write (1.16) in the equivalent form

4. (j~~ — ufl = f(u~) — f(ir)

= Df Df(Ou~ + (1— O)ir) . (tÉ — u) dO

= A(u~, ufl . (tÉ — ir). (1.18)

In other words, tite Ranldne-Hugoniot equationa itoid uf tite jump u~ —

ir is an eigenvector of tite averaged matrix A(u+, u—) and the speed 4
coincides with tite corresponding cigenvaine.

In tite sealar case, (1.16) reduces to a single equation. One can titus
assign u~, ir arbitrarily and use the equation to determine tite sitock
speed:

u-

figure 4

The last expression in (1.19) sitows that tite shock speed coincides
witit the average of tite characteristic speeds f’(u) over the interval

+u
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[ir, tÉ]. Of course (fig. 4), titis is closely connected with the conserva-
tion of tite total area behow tite grapit of u(t,.).

Example 2. In tite case of Burger’s equation u~ + (u2/2)a, = 0, nne
finds

• [(u+)2/21— [(1112/2] _ u~ +ir (1.20)
2

1.5 Entropy conditions

In tite presence of discontinuities, tite Rankine-Hugoniot equationa (1.16)
may not suifice to single out a unique sohution to tite (Jaucity problern.

Example 3. Por Burgers’ equation (1.12), tite Caucity problem witit
initial data

{i
if x>0,

u(0,x) = it’ x <0,

admits infinitehy rnany weak sohutions. Naníely, for every a E [0,1], tite
piecewise constant function

if x <at/2,
u

0(tx) = at/2 =x < (1 + a)t/2,
x =(1+a)t/2,

provides a solution in distribution sense. Indeed, tite Ranldne-Hugoniot
conditiona (1.20) hohd along tite two unes of discontinuity 41(t) = at/2,

= (a + 1)t/2. Outside these two Unes, ua is constant, itence the
equation Uj + uu2 = O is triviahly satisfied.

From tite previona example it is clear that, in order to achieve a tite-
orem stating uniqueness and continuous dependence on the initial data,
tite notion of weak solution must be supplemented with further “ad-
missibility conditions”, possibly motivated by pitysical considerations.
Sorne of titese conditions will be presently discussed.

Admissibility Condition 1 (Vanisbing viscosity). A weak solution
u of (1.1) is adniissible if there exists a sequence of smooth solutions u

t
to

i4 + A(tt)u = eu~ (1.21)
witicit converge to u in L1 85 E —* 0+.
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Unfortunately, it is very difficuht to provide uniform estimates en
sohutions to tite parabolic system (1.21) and to citaracterize tite corre-
sponding limits as e —> 0±.From tite aboye condition, however, oxte can
deduce other cenditions whhch can be more easily verified in practice.

A continueusly differentiable functien i~ IR” í-+ IR is called an
entropy lcr tite system (1.1), with entropy flux q : IR” ‘—* IR if

Dq(u).Df(u)=Dq(u) ueJff’. (1.22)

Observe that (1.22) imphies that, if u = u(t, x) is a £9 selution of (1.1),
titen

[n(u)h + [q(u)]~= 0. (1.23)
Indeed,

Dn(u)ut + Dq(u)u~ = D~(u)[ — Df(u)u~J + Dq(u)ua, = 0.

Hence, witenever we have a smootit sehutienef (1.1), not enly tite quanti-
ties u1, ... , u,, are conserved, but tite additional conservation haw (1.23)
itohds as well. Oit tite otiter itand, when u is discentinuous, in general
it does not provide a weak sohutien to (1.23), i.e. t~ = ~(u) is net a
censerved quantity. Titis can be seen in Example 2, taking ~(u) = u

3
and <¡(u) = (3/4)u4.

We new study itew a convex entrepy beitaves in tite presence of a
small diffusion term. Assunie ~1,q c C2, with ,~ convex. Muhtiphying both
sides of (1.21) en the left by D~(u’) ene finds

[~(u9J,+ [q(u’)j~ = cDn(u’»4a, = s{[n(u’)I~± — D2~(u’) . (u ® t4)}.
(1.24)

Observe that tite last term in (1.24) satisfies

“ ¿92r¡(u’) 5u~Ou >oD2n(u9(i4®i4)= >5
~ OujOu~ Ox Ox

because t~ is convex, hence its second derivative at any point u’ is a pos-
itive semidefinite quadratic ferm. Multiplying (1.24) by a nonnegative
smeotit funetien cp with compact support and integrating by parts, we
titus itave

+ q(u’)~x} dxdt =—c JJu(u9soa,~ dxdt.
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If u’ —* u in L1 as e —* 0, tite previous inequality yields

ff {n(utot + q(u)p±}dxdt > 0 (1.25)

witenever 40 E (4, ~o> 0. The aboye can be restated by saying titat
«u» +q(u» =O in distribution sense, i.e. any convex entropy does not
increase in time. The previous analysis heads to:

Admissibillty Condition 2 (Entropy inequallty). A weak solution
u of (1.1) is etitropy-admisstble if

[n(u)J~+ [q(u)]a,=0 (1.26)

in tite sense of distributions, for every pair (i>, q), where ij is a convex
entropy for (1.1) and q is tite corresponding entropy flux.

Let u = u(t, x) be a piecewise smootit function witit jumps along the
unes x = x

0(t), a = 1,,m. Rapeating the computations at (1.15), oxte
finds titat u satisfies (1.26) provided titat

Dn(u)ut + Dq(u)u~ =O

outside tite jumps, while

±c4ti(u(xa+))— «u(x~—))] =q(u(x0+)) — q(u(xa—)) (1.27)

along eacit shock line.

Of course, tite aboye admissibihity condition can be useful only if
sorne nontrivial convex entropy for tite system (1.1) is known. For ti x ti
systems, (1.22) can be regarded as a first order system of ti equations for
tite two scalar variables q, q. Witen ti > 3, this system is overdetermined.
In general, one should thus expect to find solutions only in the case
ti < 2. However, titere are important pitysical examples of larger systems
which adrnit a nontrivial entropy funetion.

In the scalar case, convex entropy functions are easy to construct.
In particular, for eacit ‘e E IR, consider tite functions

~(u) = u—/el, <¡(u) = sgn(u — ‘e) . (f(u) — f(k)).
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It is easily citecked that i>, ej are locahly Lipscbitz continuous and satisfy
(1.22) at every u ~ ‘e. Altitougit t~,q ~ O’, we can still regard n as a
convex entropy for (1.1), witit entropy flux ej. Following Kruzitkov [17],
we say that a bounded measurable function u is an entropic solution of
(1.1) if

Jf{¡u—k140t +sgn(u— ‘e)(f(u) — f(k))401} dxdt >0 (1.28)

for every constant ‘e c IR and every O’ function ~ =O witit compact
support.

According to (1.28), oxte can show that a sitock connecting the left
and right states ir, tÉ is admissible it’ and only it’

f(u~)—f(u”) f(u”)—f(ir) (1.29)
u —zr

for every u” = au~ + (1 —a)ir, with 0< a < 1. The aboye inequality
can be interpreted as a stability condition. Indeed, let u’ c [ir, ufl be
an intermediate state and consider a shightly perturbed solution (fig. 5a-
b), where the sitock (ir, u+) is decomposed as two separate jumps,
(ir, u”) and (u”, u+), say hocated at “>r(t) <y~(t) respectively. By tite
tite Ranldne-Hugoniot conditions, tite two sides of (1.29) yield precisely
tite speeds of titese junips. If the inequality itolds, titen $ = ‘5’~, so
that tite backward shock traveis at least as fast as tite forward one.
Therefore, the two shocks whhI not split apart as time increases, and tite
perturbed solution will remain close to tite original solution possessing
a single shock.

u

x
figure Sa figure Sb
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ff

Observing titat tite Rankine-Hugoniot speed of a sitock in (1.19) 18
given by the siope of tite secant une to tite grapit of f through the points
ir, tÉ, tite condition (1.29) itolds if and only if for every a E [0,11oxte
has{ f(au~ + (1 — a)ir) =af(u~) + (1— a)f(ir) if ir <W~,

f(au~ + (1 — a)ir) =af(u~) + (1 — a)f(u) if ir > tÉ.
(1.30)

In otiter words, witen ir <u~ tite grapit of f sitouhd remain aboye the
secant Une (fig.6a). Witen ir > tÉ, the graph of f sitould remain behow
the secant une (fig.6b).

A third adndssibility condition, dueto Lax [18),is particularly useful
because it can be applied to any system and has a very intuitive geomet-
rical meaning. According to (1.18), every sitock will travel witit a speed
‘5= >.1(tr, u± )equal to an eigenvalue of the averaged matrix A(ir, u± ).
In Uds setting, tite Lax condition requires that tite i-citaracteristics, trav-
elling on tite left and on the right of tite shock with speeds N1(ir), >q(u~)
respectivehy, botit run into tite sitock:

Adinissibillty Condition 3 <Lax Condition). A shock connecting
tite states ir, tÉ, travehlhng w¡th speed ‘5= A1(ir, u~) is admissible if

A1(ufl =Adir,u~) > A.(zÉ). (1.31)

Titis situation is illustrated in fig. la. On tite otiter itand, one can
check that for the solutions constructed in Example 3, neititer oftite two
shocks satisfies tite aboye condition (fig. 7b).

u U~ U~
figure 6a figure Ob
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figure 7b

1.6 Shock and rarefaction curves

Fix a state uc> E IR” and an índex i E {1,.. . ,nj}. As before, let r1(u) be
tite i-tit cigenvector of tite Jacobian matrix A(u) = Df(u). The integral
curveof tite vector fleid r~ titrough the point 110 is called tite i-rarefaction
curve titrough 110. It 18 obtained by solving the Cauchy problem in state
space:

du
da u(O) = 110. (1.32)

We shalh denote this curve as

a k-* Rí(oj(uo). (1.33)

Ofcourse, tite parametrization depends on tite citoice of tite eigenvectors
r1. In particular, it’ we impose tite normahization lrdu)¡ = 1 titen tite
rarefaction curve (1.33> wiIl be parametrized by arc-lengtit.

Next, forafixed u0 E iR!’ and i E {1,...,n}, weconsidertitecurve
of states u witich can be connected to tite right of 110 by an i-shock,
satisfying tite Rankine-Hugoniot equations (1.16). According to (1.18),
titese equations imnphy titat the vector u — 110 is a right i-eigenvector
of tite averaged matrix A(u, 110). By a theorem of basic linear algebra,
titis holds if and only it’ u — u0 is ortitogonal to every heft j-eigenvector
of A(u, no), witit j ~ 1. The Ranldne-Hugoniot equations can titus be
written in tite form

¿(u IZo) . (u .—. un) — O
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togetiter with -y = >.~(u,u~). We regard (1.34) asa system of n—1 scalar
equations in ti variables (tite ti components of tite vector u). Linearizing
(1.34) at tite point u = no we obtain tite linear system

lj(uo).(w—no)O Ni,

whose solutiona are ah tite points sc = ~ + Crí(u0), e E IR. By tite
imphicit function titeorem, it titus follows titat tite set of solutions is a
regular curve, tangent to tite vector r1 at tite point ~o• This wiIl be
called tite shoc’e curve througit the point no and denoted as

a ‘—~ S¿(a)(uo). (1.35)

Usinga suitable parametrization, tite two curves R~, S~ will itave a second
order contact at the point 11~ (fig. 8). More precisehy, the following
estimates itoid [18,24].

{ ~ = no +arí(no) + 0(1) . &, (1.36)
= tlo + 0T1(tLo) + 0(1).

I.Rda)(uo) — S1(oj(~)¡ = 0(1) .~3 (1.37)

r~(no) + 0(1) a~. (1.38)
A1(S~(a)(uo), uo) = A¿(uo) + 2

Here and througitout tite following, the Landau symbol 0(1) denotes a
quantity witose absolute value satisfies a uniform bound, depending only
on tite system (1.1).

st

R.

s.

r.
u0

figure 8



150 Alberto Rressan

1.7 The Riemann problem

Tite basic building block toward tite solution of tite general Cauchy prob-

lem for (1.1) is tite tite solution of the fohlowhng initial value problem:

if x<0, (1.39)
if x>0.

Tite initial data itave itere a very simple t’orm, being constant for x < O
and for x > 0, witit a single junip at tite origin.

Before describing the general sohution of (1.39), a key assuniption
will be introduced. Recalí titat Ae(u), r1(u) denote tite i-tit eigenvalue
and right elgenvector of tite matrix A(u) = Df(u). Following [181,tite
i-tit characteristic fleid is called genuinely nonltnearif DA~(u) .r1(u) $0
for all u. On tite other hand, if DA~(u) . r¿(u) = O for sil u, we say that
tite i-th field is lir¿eartyj degenerate. In the genuinely nonlinear case, we
can choose tite orientation of tite eigenvectors r~ so tbat

DA¿(u) . r¿(u) > 0. (1.40)

Observe titat it’ tite i-th characteristic fleid is genuinely nonlinear, titen
tite citaracteristie speed A. is monotonically incressing along tite i-rarefaction
curves (1.33). On the otiter hand, it’ the i-tit fleid is Unearhy degenerate,
titen \~ 18 constsnt along tite cunes 1?,. Throughout tite following, a so-
lution of tite Riemann problem will be constructed under tite following
sssumptions:

(4) The system (1.1) is strictly hyperbolic witit smootit coefficients.
Por each i e {1, . . . , n}, tite i-tit citarscteristic field is eititer gen-
uinely nonhinear or hinearly degenerate.

Wc sitail first study titree special cases:

1. Centered Rarefáction Waves. Let tite i-tit fleid be genuinely
nonlinear, and sssunxe titat u~ lies on tite positive i-rarefaction curve
titrougit ir, i.e. tÉ = R,(oj(ir) for sorne o- > O. Por escita E [0,4
define

A1(s) = AdRds)(ir)).
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By genuine nonlinearity, the map s ~ A1(s) 18 .strictly increasing. For
t =O, tite function

<ir if x <tA.(ir),
u(t, x) = Rj(s)(ir) it’ x = tA,(s), s E [O,a], (1.41)

it’ x>tA¿(u+),

is then a piecewise smooth weak solution of the Riemann problem (1.39).
Indeed,

hm ¡¡u(t, j — UIIL1 = 0.
¿—.0+

Moreover, tite equation (1.6)18 trivially satisfied in the sectors witere x <
ÉA,(ir) or x > iA1(u+), since itere t¿~ = = O. Next, asgume x = tA1(s)
for sorne a c]0,a[. Since uis constant along each ray {(ttx’); o! =

we clearly have

u¿(t,x) + A1(s)u2(t,x) = 0. (1.42)

Observing titat

Ou = dRj(s) (ir) da dA1 fdA1(a)V’ 1
= Ox da dAda) ~fr =rdu) kífr)

is an cigenvector of tite matrix A(u) with eigenvalue A1(a) = A1Q4t, x)),
from (1.42) it again folhows (1.6).

Observe that tite assumption a > O is essential for the vaildity of
tbis construction. In the opposite case a <0, tite definition (1.41) would
yield a triple-valued functionin tite region where x/t E [A1(u~),A1(ir)].
2. Shocks. Msume again that tite i-th family is genuinely nonlinear
and that the state u~ is connected to the right of ir by an i-shock,
i.e. u~ = S1(oj(ir). Titen, cailing A S A1(u~, ir) tite Rankine-Hugoniot
speed of tite sitoclc, the function

u(t,x) = if ~ < >«~ (1.43)
it’ a,> At,

provides a piecewise constantsohution to tite Riemann problem. Observe
that, it’ a <0, titan titis solution is entropy admissible in the sense of
Lax. Indeed, since tite speed is monotonically increasing along the shock
curve, recalling (1.38) we have

X¿(u+) <A.(uu+) <X}u+) (1.44)
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In the case a > 0, however, one itas A1(ir) <.A1(u+) and the admissi-
bility condition (1.31) is viohated.

3. Contact discontinuities. Assuxne titat the i-th fleld is Iinearly de-
generate and titat the state u~ lies on the i-th rarefaction curve titrough
ir, i.e. tÉ = Rda)(ir) for some a. By sssumption, the i-tit citsrac-
teristic speed A1 is constant ahong this curve. Citoosing A = A(ir), tite
piecewise constant funútion (1.43) titen provides a solution to tite Rio-
mann problem (1.39). Indeed, tite Ranldne-Hugonlot conditions hold at
tite pohnt ofjunxp:

f(u~) — f(u) = Df(Rds)(ir))rí(Rí(s)(ir)) da (1.45)

— Adir)’ [R.doj(ir) — ir~.

In titis case, tite Lax entropy conditions hoid regardless of tite sign of a.
Indeed,

A1(u~) = A1(ir,tÉ) — A(tÉ). (1.46)

Observe titst, according to (1.45), for hinearly degenerate fielda tite sitock
and rarefaction curves actually coincide, i.e. S~(o)(uo) = Ri(oj (uo) for
ah a.

The aboye results can be suinmarized 58 foilows. For a fixed left
stste ir snd i E {1, . . ., n} define the mira! curve

‘P1(a) (ir) = 1 R,(a)(u) íf o- > o~ (1.47)
1. S¿(oj(ir) it’ o<0.

In the special case where u~ = ‘P1(a)(ir) for sorne a, tite Riemann
problem can titen be solved by an elementary wave: a rarefaction, a
sitock or a contsct discontinuity.

Relying on thc previous analysis, tite solution of tite general Riemann
problem (1.39) can now be obtained by finding intermediate states wo =

ir, wi,..., w,, = tÉ sucit that each pair of sdiacent states ~ w¿ can
be connected by an ehementary wave, i. e.

= ‘1’~(a¿)(w¿...i) i = 1,...,n. (1.48)

Titis can be done whenever tÉ is sufficiently close to ir. Indeed, for
Iu+ — ir ¡ small, tite implicit function titeorem provides tite existence of
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unique wave strengths a1,... o, such that (fig. 9)

= ~I’,«a,) o... o t(oO(ir).

u~= o)o
figure 9

In turn, these determine the intermediate states co, in
solution to (1.39) is now obtained by piecing togetiter tite
tite ti Riemann problems

(1.48). The
solutiona of

Ut + f(u),, = 0, u(0,x) =
if :i,<0,
if x>.0

on different sectors of the t-x plane. By construction, each problem has
an entropy-ad.missible sohution consisting ot’ a simple wave of tite i-tit
characteristic famihy. More precisely:
Case 1: The i-th characteristic fleid is genuinely nonlinear and a1 > 0.
Titen tite solution of (1.50) consists of a centered rarefaction wave. Its
i-th characteristic speeds range over tite interval [A; Afl, defined as

4 At 4 A1(w1). (1.51)

Case 2: Bititer the i-tit characteristic fleld is genuhnely nonlinear and
a. =0, or else the i-tit characteristic fleid is hinearly degenerate (with a1
arbitrar>’). Titen tite solution of (1.50) consists of an admissible sitock
or of a contact discontinuity, travelling with Rankine-Hugoniot speed

(1.49)

u½o)

(1.50)

(1.52)
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figure 10

Tite solution to tite original problem (1.38) can now be constructed
(fig. 10) by piecing togetiter the solutions of the ti Riemann problems
(1.50), i = 1,..., ti. Indeed, for al,..., a,. sufficiently smail, tite speeds
A;, At introduced at (1.51) or (1.52) remain close to tite corresponding
eigenvalues A1(ir) of tite matrix A(ir). By strict hyperbolicity and
continuity, we can titus assunie that tite u intervais [A, AtJ are disjoint,
1.6.

Therefore, a piecewise smooth solution u : [0,00) x JA ‘—. E” is weIl
defined by tite assignment:

1’ tr=w0 if ¿ EJ—oc,
u(t, x) = Rds)(wí~i) if ~ = A¿(Rí(a)(w¿1)) E [A;, AZ[,

~ [Ap,if ~ c
1. if ¶ c [At, oo[.

(1.53)

Observe titat tbis solution is self-similar, having tite form u(t, x) =

V’(x/t), witit i,b : E ‘—> IR” general>’ discontinuous.

.4.
x =

o)
2

t

í=X= 4

o>’

= o>o

O
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Example 4. The 2 x 2 system of conservation.laws

Luíb+ =0, [11216+[1±¿12±112]X=0,111,112>0,
(1.54)

is motivated by tite study of two-cornponent cbromatograpity. Wrhting
(1.54) in tite quasilinear form (1.6), tite eigenvalues and eigenvectors of
A(u) are found to be

1 1

ri(u) = 1 (—ui, —ura) r2(u) — 1 (1 —1).

Tite first citaracteristic fleld is genuinel>’ nonlinear, the second is linean>’
degenerate. In titis example, tite twa sitock and rarefaction curves S1,
I?~ always coincide, for i = 1, 2. Their computation 15 easy, because tite>’
are straigitt Unes (fig. 11):

Ri(oj(u) = u + ari(u), R2(oj(u) = u + ar2(u). (1.55)

u2

u1

figure 11
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Observe that the integral curves of the vector fleid r1 are precisel>’
tite rays titrough the origin, wbile tite integral curves of r2 are tite Unes
witit siope —1. Now let two states ir = (uT,ui), tÉ — (u+,4)
be given. To solve the Riemann problem (1.39), we first compute an
intermediate state u such that u” = Ri(ai) (u—), u+ = R2(a2) (it) for
some o-1, a~. By (1.55), tite components of it satisfy

t4+t4=u~+ujj, u4=ujt4.

Tite solution of the Riemann problem titus talces two different t’orms,
depending on the sign of u~ = (~T)

2 + (‘uj)2 — (111)2 + (ufl2.

Case 1: rr
1 > O. Titen the sohution consists of a centered rarefaction

wave of tite first famil>’ and of a contact discontinuity of tite second
fam11>’:

f ir if xli < Ai(u-j,
att + s)u if x/t = Ai(st? + (1— s)ir), 8 C [0,1],

u(t,x) = it it’ Ai(tt) <xii < A2(tÉ),

1 if x/i =A2(u~).
(1.56)

Case 2: a~ <0. Then tite solution contains a compressive sitock of
tite first famil>’ (witich vanishes ifaj = 0) and a contact discontinuity of
tite second famil>’:

f x/i < Ai(tr, u”),{ ~2-u(t,x) = Ai(irot)=x/t<A2(u~), (1.57)f x/t=A2(u+).

Observe titat A2(u”) = A2(tÉ) = (1+ut-I-4t’, because tite second
characteristic fleid is Unearí>’ degenerate. In titis special case, since tite
integral curves of r1 are straight lines, the shock speed in (1.57) can be
computed as

Ai(ir, u”) = ¡ Aj(su + (1 — s)ir) ds

= JL1+s(u;+u;)±e~aMuj-+ujy2ds
1

(l+t4± t4)(1÷ur±u~)
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Example 5. A model for isentropie gas d>’namics (in Lagrangian coar-
dinates) Ls provided by the t’ollowing 2 x 2 ityperbolic system:

2)6 — 2½ = O, u6 +p(v)±= 0.

Mere y > O is tite specific volume, i.e. y = p
1 where p is tite dcnsity,

and u is the velocit>’. The funetion p = p(v) gives thc pressure in terms
of the specific volume. It is titus natural to assmne

(1.59)

A t>’pical choice, valid for most gases, is

p(v) = ‘e~1 1<7<3.

Here y is calla! the adiabatie gas constant.
Introducing tite vectors

U 1 (y, u)

tite s>’stem (1.58) can be written in the standard form

Ut+[F(U)1±=0.

II tite assumptions (1.59) hoid, then tite s>’stem (1.60) is
bolic. Indeed, the Jacobian matrix

A(U) 4 DF’(U) =

strictl>’ hyper-

~1)

itas the two real distinct eigenvalues

A
1 =— —p’(v) <0< —p’(v)= A2, (1.61)

witit corresponding (unnormalized) eigenvectora

r2=(—1, —¡1(v)).

Wc now study the Riemann problem for the system
inltial data

(1.62)

(1.60), with

U(0, x) = { ~j%= (ir,ir)
= (v+, u+)

(1.58)

F(U) 4 (—u, p(v)),

(1.60)

it’ x<0,
it’ x>0,

(1.63)
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assuming, titat vjv~ >0.
8>’ (1.62), tite 1-rarefaction curve titrougit U is obtained b>’ solving

tite Caucity problem

du — —¡1(v), u(vfl = u.
dv

This >‘ields tite curve

Rí={(v¡u); u—ir=f —P’(v)dI/}. (1.64)

Similarí>’, the 2-rarefaction curve titrougit tite point U is

u—ir =—f —P’~i) dy}. (1.65)

Next, tite sitock curves S1, 52 through U are derived from tite
Rankine-Hugoniot conditions

A(v—tC) = —(u—ir), A(u—ir) =p(v)—p(vfl. (1.66)

Using tite first equation in (1.66) to eliminate A, these shock curves are

computed as

= {(vu); —(u ~ut2 = (y — vt(p(v) —p(vj),s U
_____ > 0}~i.68)

Recailing (1.61)-(1.62) and tite assumptions (1.59), we now compute
the directional derivatives

p”(v)(DAi)r¿ = (DA2)rta — 2 —¡1(v) > 0. (1.69)

From (1.69) it is clear that the Riemann problem (1.60), (1.63) admits
a solution in tite t’orm of a centered rarefaction wave in tite two cases

E R1, v~ > v5 or else U~ E It, v~ <ir. On tite other hand, a
sitock connecting U with U~ will be admissible provided that cititer
U~ c S~ and ~ <ir, or else U’ c 82 and v~ > ir.
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Taking the aboye adniissibihity conditions into account, we titus ob-
tain four unes originating from tlie point U = (v, ir), i.e. tite two
rarefaction curves

o’—4Ri(a), R2(a) a>O,

and the two shock cunes

ai—* Si(a), 52(0)

In tun,
(fig 12):

a<0.

these curves divide a neigitborhood of Lh into four regiona

(1~, bordering on

(1~, bordering Qn
Ri S2,

S1, S2,
(12

(14,

bordering on
bordering on

For U~ sufllciently close to U, tite structure of the general solution
to tite Riema~ problem is now determina! by tite hocation of tite state
U~, witit respect to tite curves R,~, S1 (fig 13).
Case 1: U~ E 6h. Tite solution consists of a 1-rarefaction wave and a
2-sitock.
Case 2: U~ E (1~. Tite solution consists of two centered rarefaction
waves.

R1,
S1,R2.

u

a

Li

y

figure 12
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Case 3: U~ E Tite solution consists of two sitocks.
Case 4: U~ C (14. Ihe solution consistsof a l-sitock and a 2-rarefaction
wave.

+U’

k 8

Case 1

R R

Case 2

Case 3

Case 4

figure 13

2 Wave-front tracking approximations
The main goal of titis citapter is to prove the global existence of a weak,
entropy admissible solution to the Cauchy problem

tL¿ + 1(u)2 = 0, (2.1)

u(0, x) = 42(x), (2.2)
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for ever>’ integrable initial data 42 witit suflicientí>’ small total variation.

Theorem 1. Let tite ayatem (2.1) be stuictly ityperbolio atid asaume
thai each chan¡cteriatic Jield is either linearly degenerate or genutnely
nonlinear. Titen itere exista a conataní 6 > O sucit thai, for every initial
condition 42 c L’(IR; IR”) utiih

Toi. Var.Q2) <6 (2.3)

tite Caucity problem (2.1)-(2.2) itas an entropy admisaible meo/e solution
u = u(i,x) deflnedfor alí 1=0.

Titeorem 1 was first prova! in the fundamental paper of Ghimm [15],
constructing approximate sohutions by means of a random restarting
procedure.
Here we sitahí describe an alternative metitod for constructing approxi-
mate sohutions, based Qn wave-front tracking. Rougitly speaking, a front
tracking c-approximate solution (fig. 14) is a piecewise constant fune-
tion u = u(t, x) witose junps are located along finitel>’ man>’ segments
x = x0(t) in tite t-x plane. At each time 1 > 0, titese jumps sitould
approximately satisfr the Rankine-Hugoniot conditions

>5~±0[u(tx0± )—u(i,x~—)] — [f(u(t,x0-4-)) —f(u(i,x0—fl1~ = 0(c).
a

If i~ is a convex entropy with flux q, recalhing (1.27), at each time 1 one
sitould also have

>5 {k¡(u(i, x0+))—q(u(i, x.,—))] —±4t4u(t,x0-t))—«u(t, xc—))] } =O(s).
a

In practice, since we want to use titese approximations for a detaihed
analysis of solutions, it is convenient to require a number of additional
properties, described below.
Definition 1. Given e >0, we soy thai u: [0,oo[~-.L

1(IR; IR”) is art
s-approximaie fi-rna iracking soluijon of (2.1) if tite follou’ing holds:

1. As a funotion of tu’o variables, u = u(i, x) is piecetuise cor¿stant,
tuiiit discontinuiiiea occurning along finitely many Unes in tite t-x plane.
Only finitely many tvave-front inieractions occur, each involving exacily
twa tncoming fronta. Jumpa can be of three iypes: shoc/es (or contad
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dtscotitinu¿ties), rarefactiotis <md non-physical waves, denoted as .7 =

SuR uKP.
2. Along each a/wc/e (or contact disconúnutty) x = x0(t), a E 5, tite
values ir 4 u(t, z0—) atid 11+4 u(t, x0+) are retraed by

=
5i, (o-

0)(~) (2.4)

for sorne k~ E {1, . . . , ti> <md sorne tuave size a~. If tite k0-th fam4
is genuinely nonlinear, titen tite entropy adrnisstbihty condition o~ <0
also itolds. Moreover, tite speed of tite a/toe/e fi-ant satisfies

— Ai,~(tÉ, ufll =e. (2.5)

3. Alony eadt rarefaction frvnt x = x0(t), a c 1?, one has

tÉ — a~) (ufl, o~ c~0,eJ (2.6)

br sorne genuinely nontinear famay k0. Moreover,

— Ai,0(u~)I =e. (2.7)

4. ALt non-physical fronta x = x0(t), a E KV have tite sanie apeed:

±0(t)= A (2.8)

mitere A is a jixed constant strtctly greater titan alt citaracteriatio apeeda.
Tite total strengtit of alt non-pitysical fronta in u(t,.) remains uniformly
amatí, narnely

>3 ¡u(t, x0+) — u(t, xa—)I <e for <¡lii > 0. (2.9)
aGNP

If, in addition, tite initial value of u aattsfies

— ~IIL’ ce, (2.10)

me say titat u is ait e-approximate solution to tite Cauchy problem (2.1)-
(2.2).

Toward a proof of Theorem 1, we sitalí first estabUsh the existence
of front tracking approximationa.
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Theorem 2. Por every e > O and every initial data 42 mith auffi-
ciently arnalí total variation, tite Cauchy probtern (2.1)-(2.2) admita art
e-approximate front trackÁng sotution, defined for alt t > 0.

In a second step, we will show that a suitable sequence of front
tracking approximations converges to a Iimit, providing an entropy weak
solution to tite Cauchy problem.

We now describe an algorithrn witich generates these front track-
ing approximations. The basic ideas were introduced in tite papera
of Dafermos [12]for scalar equations and Di Perna [131for 2 x 2 sys-
tenis, then extended in [1, 3, 21] to general ti x ti systems. The con-
struction (fig. 14) starts at time t = O by taking a piecewise constant
approximation «0,.) of u satisfying (2.10), witit Tot.Var.{u(0, ~)}<
Tot.Var.{42}. Let x1 < ... < xp¡ be tite points witere u(0,.) is dis-
continuous. For each a = 1, ..., N, tite Riemann problem generated
by tite jump (‘u(0, x0—), u(0, x0+)) is approximately solved on a for-
ward neighborhood of (0, x0) in the t-x plane by a function of tite form
u(t,x) = ~((x — x0)/t), with ~ IR ~.-* IR” piecewise constant. More
precisel>’, it’ tite exact solution of tite Riemann problem contains only
shocks and contact discontinuities, titen we Iet u coincide witit the ex-
act solution, which is aIread>’ piecewise constant. Qn tite otiter hand,
if centered rarefaction waves are present, tite>’ are approximated by a
centered rarefaction fan, containing several smahl jumps travelling witit
a speed close to tite characteristic speed.

NP

t

x

ti

figure 14
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The approximate sohution u can then be prolonga! until a time ti
is reached, witen tite first set of interactions between two or more wave-
fronts takes place. Since «t1,.) is stiil a piecewise constant funetion,
tite corresponding Riemann problems can again be approximately solved
within the class of piecewise constant functions. The solution u is then
continua! up to a time t2 where the second set of wave interactions talces
place, etc...

ir

figure iSa

accurate Rieníann solver

figure 16a

simplified Riemann solver

figure 16b

Fbr general ti x u s>’stems, tite main saurce of technical difficulty
stems from tite fact that tite nuinber of wave-fronts ma>’ approach in-
finit>’ in finite time, in which case tite construction would break down.
To see this, observe titat at a generic interaction point there wihl be two
incoming t’ronts, while tite nuniber of outgoing fronts is ti (if alí waves
generated b>’ tite Riemann problem are shocks or contsct discontinu-
ities), or even larger (if rarefaction waves are present). In turn, these

figure 15b
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outgoing wave-fronts ma>’ quickl>’ interact witit several other fronts, gen-
erating more and more Unes of discontinuity (see fig. isa).

We thus need to modMy the algorititm, to ensure titat the nuinber
of t’ronts wihl not become infinite within finite time. Foilowing [1, 3], we
will use two different procedures for solving a Riemann problem within
tite class of piecewise constant functions: An Accurate Riemaxm Solver
(fig. lOa), witicit introduces several new wave-fronts, and a Simplified
Riemann Solver (fig. 1Gb), witicit involves a miimum nurnber ofoutgo-
ing fronts. In tbis second case, ahí new waves are lurnped togetiter in a
single tion-phyaical front, travelling with a fixed speed A strictly larger
than ahí characteristic speeds. Tite main feature of titis algorititn is il-
lustrated in fig. 15a-b. II ah Riemann problems were solved accuratel>’,
the number of wave-fronts could approacit inflnity within a finite time
r (fig. 15a). However, since the total variation remains smail, tite new
fronts generated b>’ furtiter interactions are ver>’ small. When titeir size
becomes smalher titan a titresholdparameter p > 0, a Simplified Riemann
Solver is used, which generates oxte single new (non-ph>’sical) front, witit
ver>’ smail amplitude. The total numnber of fronts titus remaina bounded
for ahí times (fig. 15b).

Given a general Riemann problem at a point (t, ~),

v(t,x)= {“+ it’ ~ (2.11)
if x>Z,

we now describe two procedures, whicit >‘ield approximate solutions
within the chass of piecewise constant functions. As in the previous
chapter, for a given state u E IR”, we denote respectivel>’ b>’

o’—.Rí(o)(u), o-’—.S~(o)(u) (i=1,...,ti) (2.12)

tite <-rarefaction and i-shock curve througit tite state u. Moreover, we

set ‘P1(oj(u) 4 { &(a)(u) if a =0~ (2.13)
S1(oj (u) it’ o <O.

Accurate Riemann Solver.
Given ir, u~, we first determine tite states wo, w1,... , w,. and para-

meter values ~i,... , o,. such that

(2.14)
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Ofcourse, Wc,,.. . , w,, are tite constantstates present in the exact solution
of tite Riemann problem. 11 ah juinps (w11, w1) were shocks or contact
discontirnilties, titen tite Riemann problem would itave a piecewise con-
stant solution witit < ti Unes of discontinuity. In tite general case, tite
exact solution of (2.11)18 not piecewiseconstant, because ofthe presence
of rarefaction waves. Titese will be approximated by piecewise constant
rarefaction fans, inserting additional states w~j 85 follows.

Let 6 > O be a fixed smail constant. It’ tite i-th characteristie fleld is
genuinely nonlinear and a~ > 0, consider the integer

1 + fr~/~!, (2.15)
witere taj denotes the integer pan of a, i.e. the largest integer =s. For
j=1,...,p¿,define

wí,j = x~~(t) = 2 + (t — OAdw1J. (2.16)

On tite otiter hand, it’ the i-tb characteristic fleld 18 genuinel>’ nonlinear
and o~ <0 or if tite i-tit citaracteristic fleld is linean>’ degenerate (with
aí arbitrar>’), define p~ 4 1 and

o) o)2

(t,i) x
figure 17

wi,1 = col, x1,i(t) =2+ (t —OAe(w1...i,wO. (2.17)
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Here A¿(w1...x, w¿) is tite Ran]dne-Hugoniot speed of a jmnp connecting

wj.1 witit w~, so titat

A(w¿.4, w¿) . (w~ — w¿..a) = f(w1) — f(w1.-i). (2.18)

As soon as tite intermediate states w~j and tite locationa x¿,g(t) of
tite jumps itave been determina! by (2.16) and (2.17), we can define an
approximate solution to tite Riemann problem (2.11) b>’ sett¡ng (fig. 17)

f u it’ x < xi,1(t),

v(t,x) = j u± it’ x >

(2.19)
Observe that tite difference between y and theexact self-similar solution
of (2.11) is due to tite fact titat ever>’ centered i-rarefaction wave is itere
divided into equal parts and replaced b>’ a rarefaction fan containing p~
wave-fronts. Because of (2.15), tite strength of eacit one of titese fronts
is <6.
Shnphified Riemann Solver.
Case 1: Let j,j’ c {1, . . . ,n} be tite families of tite two incoming
wave-fronts, witit j > j’. Assume titat the left, middle and right states11L, u,,,, u,. before tite interaction are relata! b>’

u,,, = %(a)(u¿), u,. = ‘I’~(o’)(u,,.). (2.20)

Define tite auxiliar>’ right state

*j(a) o ‘1’j’(a’)(u¡) if j >j’,
(2.21)

1. Q~(a+a’)(u,.) jt’ j =1
Let 43 = 43(t, x) be the piecewise constant solution of the Riemann prob-
lem witit data u¡,ú,., constructed as in (1.19). Because of (2.21), the
piecewise constant function O contains exactí>’ two wave-fronts of sizes
010 it’ j > j’, or a single wave-front of size a + a’, it’ j = j’.

Ofcourse, in general one itas 4~,. # u,.. We let tite jump (43~,., u,.) travel
witit a fixed speed A, strictly bigger titan ahí citaracteristic speeds. In a
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forward neighborhood of tite point (1, ~), we thus define an approximate
solution y as follows (fig. 18a-b)

1 iJ(t, x)
v(t, x) = 1~ ~

if x—±<(t—flA,

it’ x—±>(t—OA.

Observe titat this simplified Riemann solver introduces a new non-physical
wave-front, travelhing witit constant speed A. In turn, this front ma>’ in-
tersa witit otiter (pit>’sical) fronts. Oxte more case of interaction thus
needs to be considera!.
Case 2: A non-pitysical front hits from tite left a wave-front of the
i-characteristic famil>’ (fig. 18c), for some i E .1...., ti}.

Let u1, u,,,, u,. be tite left, middle and rigitt state before the interac-
tion. If

‘Uir = (2.23)

define the auxiliar>’ right state

42r = t(u)(uO.

a
figure iSa

a

u’.

040’

ji

unl
o a

figure 18b

(2.24)

a

u

figure 18c

Cali O tite sohution to the Riemann problem witit data uz, O,., con-
structed as in (2.19). Because of (2.24), 43 will contain a single wave-front
belonging to tite i-tit fandí>’, with size a. Since 42,. $ u,. in general, we
let tite juinp (42,., u,.) travel with tite fixed speed A. In a forward neigh-
boritood of tite point (4±),tite approximate solution u is titus defined
again according to (2.22).

(2.22)

u 1

u
ti

u

ci
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B>’ construction, all noxt-ph>’s¡cal fronts travel with the same speed
A, hence tite>’ never interact with each otiter. The aboye cases titerefore
cover all passible interactions between two wave-fronts.
To complete tite description of tite algorithm, it remains to specify which
Riemann solver is used at an>’ given interaction. Tite choice is made in
connection with a titresitold parameter p> O:

— Tite accurate metitod is used at time t 0, and at every interaction
witere the product of tite strengtits of the inconrdng waves is Ioa’j>
/>~

— Tite simplified metitod is usa! at ever>’ interaction involving a non-
physical wave-front, and also at interactions witere tite product of
tite strengths ot’ the incoming waves is ¡ua’~ <p.

In tite aboye, we tacitly assurned titat onl>’ two wave-fronts interact
at an>’ given point. Titis can alwa>’s be achieved b>’ an arbitraril>’ smail
citange in the speed of oxte of the interacting fronts. We sitail also adopt
tite provision titat, in tite Accurate Riemann Solver, rarefactionfronts of
the samefamil>’ of oxte of the incoming fronts are never partitioned (even
it’ their strength is > 6). This guarantees titat ever>’ wave-front can be
uniquel>’ continua! forward in time, unless it gets completel>’ cancehled
by interacting with anotiter front of the same famil>’ and opposite sign.

The construction of an approximate solution titus involves titree pa-
rameters:

— A fixed speed Á, strictl>’ larger titan ah characteristic speeds.

— A smahl constant 6 > 0, controlling the maximrnn strengtit of
rarefaction fronts.

— A threshold parameter p> 0, determining whether tite Accurate
or tite Simphified Riemann Solver Ls used.

Titis completes tite definition of our ahgorithn. To prove Theorem
2, we now need to sitow that for an>’ a > 0, if the initial data fi itas
small total variation, b>’ a suitable choice of tite parameters 6, p our
ahgorithm wiil produce an e-approximate solution deffned for alí t > 0.
Observe titat one can alwa>’s solve tite new Riemann problems generated
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by wave-front interactions provided that tite states ir, u~ are clase to
each atiter. A key pan of the proof wiil titus consist in sitowing that the
total variation of the approximate salution remains smail far alí times.
An outUne of tite proof is given belaw.
1. Interaction Estiniates. Whenever twa wave-frants interact, tite
new Riemann problem is solved in terms of a famil>’ of autgoing waves.
Well knawn estimates [15, 24] state that tite difference between the
strengths ofthe corresponding incoming and outgoing fronts is of secand
arder. More precisel>’, tite following itolds.

figure 19a figure 19b

(i) Let o-Í~o-3 be tite sizes of twa
distinct characteristlc families
a Riemann problem (fig. 19a),
waves sa>’ of sizes at, .. ., 4.
waves by tite estimate

incoming fronts, belonging to tite
i > j. Iheir interaction determines
witase solution cansists of autgoixtg
These are relata! to the incoming

lo~ —a~1+ lo-Y —o-ji + >5 lo-tI=O(’).lo-~a1I
k#Iá

(2.25)

(u) Let a, a’ be the sizes oftwo incoming fronts, both belonging to the
i-th characteristic famil>’. As befare, calling a~, ... , 4 the sizes
of the outgoing waves generated by tite corresponding Riemann
problera (fig. 19b), oxte itas

lot—o-— al + >5141 — 0(1). loa’I(¡o¡ + ¡—‘1)
k#I

(2.26)

+ 4

a. a a’
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(iii) L.et a, o-’ be the sizes of two incoming fronts, sa>’ of the famihies i, i’.
Let u¡, u,,,, u,. be tite left, middle and rigitt states befare interactian,
so titat (2.20) halds. Introducing the auxiliar>’ right state 42,. as in
(2.21), oxte has (fig. 18a-b)

Iiir — u,.I = 0(1) . lo-o-’j. (2.27)

(iv) Let a non-pit>’sical frant connectixtg the states U¡, u,,, interact with
an i-wave of size o-, connecting u,,,, u,-, so titat (1.13) holds. Defin-
ing tite auxiliar>’ rigitt state 42,. as in (2.24), oxte has (fig. lSc)

142r — u,.l =0(1). bo-lIu,, — u¡I. (2.28)

2. Bounds on tite ‘Tbtal Variation. These a priori bounds are de-
rival t’rom the aboye estimates (2.25)—(2.28), using an interaction func-
tional introduced in [15~.Let u = u(t, a,) be a piecewise canstant approx-
imate solutian. At a fixed time t let a,«, a = 1,. . . , N, be the lacationa of
the frants in u(t, j. Mareover, let o-0~ be the strength of the wave-front
at x0. In case af a naxt-pitysical front, one simpí>’ defines

lo-al 4 ¡u(t, x0+) — u(t, x0—)I. (2.29)

In tite follawing, for natatianal canvenience we sa>’ titat non-pitysicah
fronts belong to a (ti + 1)-th citaracteristic famil>’.

As in [15],consider the two functionals
V(t) 4>5 lo-al, (2.30)

a
messuring the total strength of tuaves in u@,~), and

Q(t) 4 >5 O~U¡3[ (2.31)

(a,P)CA

measuring tite tuave ititeraction potential. In (2.31), the summatian
ranges over ah cauples of approaching wave-froxtts. More precisel>’, we
say titat two fronts, located at points a,0 <x0 and belonging to the citar-
acteristic families ka, kp E {1, . . . , n+ lj} respectivel>’, are approachitig if
‘e, > k~ or else if’e<, = kp and at heast oxte of tite waves is a genuinel>’
nonlinear shack.
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Now consider an>’ approximate solution canstructed b>’ the t’ront
tracking ahgoritbm. At ever>’ time ‘i- where twa fronts of strength ja¡,
interact, tite interactian estimates (2.25)—(2.28) >‘ield

V(r+) — V(r—) = 0(1) . ¡o-o-’¡, (2.32)

Q(r+) — Q(r—) = —lo-a’! + 0(1) . laa’l VQ-—). (2.33)
Indeed, the twa froxtts o-, o-’ are no longer approaching after time ‘,-. It’ V

remains suificientí>’ small, (2.33) implies

Q(r+) — QQr—) <Á¶1 (2.34)

B>’ (2.34) and (2.32) we can titus choase a constant Cc, large enough so
titat tite quantit>’

T(t) 4 V(t) + C’oQ(t)

decreases at ever>’ interactian time, provided that y remains sulficientí>’
smail. Observing titat

V(t) = 0(1) . Tot.Var.{u(t, .)}, Q(t) =V2(t), (2.35)

we conclude that, if tite total variation of the initial data u(O,.) is suRi-
ciently small, then

V(t) + CoQ(t) =y(o) + CoQ(0) for alí t > 0. (2.36)

By (2.35), the total variation of u(É,.) titus remains smail for ahí times
t > 0. In particular, the approximate solutions ofalí Riemann problems
generated b>’ tite interactiona are well defixted.
3. Bounds on tbe number of wave fronts. To prove titat tite
total number of wave t’ronts remains finite, we recalí that the Accurate
Riemann Solver is usa! when the strengtits of the interacting waves
satist’y Jo-a’¡ =p. Titis can itappen only finitel>’ man>’ times. Indeed, by
(2.34) at sucit times oxte itas

Q(r+) — QQr—) =—p/2. (2.37)

Titerefore, new pit>’sical froxtts are intraduced onl>’ at a number =2Q(0)/p
of interaction poixtts, itence their total number is finite. In tun, a new
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noxt-pit>’sical frant Ls generated onl>’ when twa pit>’sical t’ronts interact.
Olean>’, an>’ twa ph>’sical fronts can cross axil>’ once. Hence tite total
number of non-ph>’sical fronts is also finite.

Tite aboye steps 1—3 shaw titat, for small enougit initial data, tite
piecewise constant approximate solutian is well defined for alí times t>
0.

4. Strength of eacb rarefaction front le email. E>’ constructian,
at a time t<.~ where a new rarefaction front Ls intraduced by the Accurate
Riemann Solver, its size 18 o-(tc,) E ]0,6]. Observe titat twa rarefaction
fronts of tite same famil>’ never interact. II a rarefactian bits a sitack
of tite same famil>’, its size wilh decrease due to a cancellatian. On tite
otiter itaxtd, b>’ subsequent ixtteractions with fronts of ather families, a
rarefaction frant ma>’ increase its inilial strextgth. However, using the
interaction estimates (2.25), it is not difficult to shaw titat titis strengtit
remains unit’ormh>’ bounded:

o-(t) = 0(1) . o-(to) = 0(1) .6 for ah t > tc,. (2.38)

Citoosing 6 > O suificientí>’ small, tite right hand side of (2.38) remains
smaller than e.

5. TÓtal strength of non-phyeical frente le sinail. Toward tbis
estimate, to each wave-frant in u we attach an integer number, counting
how man>’ interactions were needed to produce such front. More pre-
cisel>’, the generatioti onLer of a t’ront is inductivel>’ defined as follows
(fig. 20).

— Alí fronts generated by the Riemann problems at the initial time
t = O have generation order ‘e = 1.

— Let twoincomingfrantsinteract, sa>’ oftite t’amiliesi, í’ c {1, . . .,

1 }, with generation orders ‘e, ‘e’. Tite ordera of tite outgoing fronts
are titen defined as follows.
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Case 1: i $ i’. Titen

- tite outgoing i-wave and i’-wave itave tite same orders ‘e, ‘e’ as tite
incoming oxtes.

- tite outgoing fronts of ever>’ otiter famil>’ j $ i, i’ itave arder
max{k, k’} + 1.

Case 2: i = i’. Titen

- tite outgoixtg frant of the i-tit famil>’ itas arder min{k, k’1,

- the outgaing fronts ofever>’ family j $ 1 itave arder max{’e, k’} + 1.

Far ‘e> 1 calí Vk(t) the snm at time t of tite strengtits of alí waves
of arder > ‘e. Moreover set Qi,(t) E a~a~¡, witere tite smn extends
ayer all cauples of approacffing waves in u(t,.), sa>’ of arder k<,, kp, witit
max{k0, k¡3} =‘e. II the total variation is sufiiciently small, from tite
interaction estimates (2.25)—(2.28) oxte obtains tite a priori bounds

Vk(t)<C-y” foral! t>0 k>1 (2.39)

for some constants C and j~ c 1. Now let N be tite number of wave-
fronts in u(0+, .). At an>’ time t > 0, tite number of first arder fronts
in u(t,.) is titus =N. From each interaction between fronts of first
arder, recalling titat rarefaction waves are partitioned into pieces of size

figure 20
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< 6, a number 0(1) . 1/6 of frants of secand arder is generatal. Tite
total number of fronts of second arder fronts is titus 0(1) . N2/6. By
induction, tite total nuxnber of of fronts of order < ‘e in u(tr) can be
estirnata! b>’ sorne polynomial functian of N, &«‘, sa>’

[numberof frants of arder =‘e] =Pk(N, 6—’). (2.40)

Tite particular farm of ~k is of no interest itere. By tite interactian esti-
mate (2.27), if at sorne time te tite Simplifla! Riemann Solver introduces
a new non-physical front, tite strengtit of this new front is

¡a(to)j = 0(1). ¡o-o-’! = 0(1). p. (2.41)

By subsequent interactions, the strength of a non-physical frant ma>’
rncrease. Hawever, using the estirnates (2.28), ane can show that this
strengtit remains unifarml>’ bounded:

!a(t)I = 0(1) . jo-(tc,)¡ = 0(1) . p for all t > to.

Titerefore

[maximumstrength of each non-ph>’sical front in u] S C’p (2.42)

for some constant C’. To estimate tite total strengtit of ahí nan-pit>’sical
waves in u(t,.) we ]ceep track of the fronts itaving generation order > ‘e
and =k separatel>’. Using (2.39), (2.40> axtd (2.42) we deduce

[total strength of non-pit>’sical froxtts in u(t, ~)]
— >5 ¡o-

0(t)~+ >2 ¡o-0(t)¡
order<o)>i, order(o)<k

=[total strengtit of ahí t’ronts of arder > k]
+ [maximumstrengtit of non-physical fronts]
[numberof fronts of arder =‘e]
+ C’p~ P&(N, 67’). (2.43)

Fbr an>’ given s > O, since .c 1 we can now citoase ‘e large enough
so that Crrk <42. We titen choase p > O small enougit so titat tite
second term on the right itand side of (2.43) Ls <c/2. Par ah t > O this
achieves

[total strengtit of ahí non-pitysical fronts in u(t, .fl <e, (2.44)
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completing the proof of Theorem 2.

We naw work toward a proof of Theorem 1. Pix an>’ sequence e,
decreasing to zero. Por every u =1, Theorem 2 >‘ields tite existence of
an e~,-approximate salution u~ of the Caucity problem (2.1)-(2.2). ~
tite previous anal>’sis, these u,, itave uniformí>’ bounded total variation.
Moreover, tite mapa t — u~(t,.) are uniformí>’ Lipschitz continuous with
values in L’(IR; IR”). Indeed,

¡¡u1.(t) — uv(a)¡¡L1 =(t — a) . [total strengtit of all wave fronts]
.[ma~cimum speed]

< L• (t — a)
(2.45)

for sorne constant .11 independent of u. We can titus appl>’ Hell>”s com-
pactness titeorem and extract a subsequence which converges to some
himit t’unction u in Li,~.

Since ¡[u~(0) — ~IlL’—* 0, b>’ (2.45) tite condition (2.2) clearí>’ itolds.
To prove that u is a weak solution of tite Caucit>’ prablem, it remains

to sitow that, for ever>’ 4’ E (2’ witit compact support contained in the
opon italf plane witere t > 0, oxte has

fi í: 4’~(t, z)u(t, a,) + 4’~Q, x)f(u(t, x)) dxdt = 0. (2.46)

Since tite u,, are uniformí>’ bounded and f is uniforml>’ continuous on
baunded sets, it suifices to prove titat

Hm ¡7ff {te(t,x)u~(t,x) +#r(t,x)f(udt,x))} dxdtl = 0.

(2.47)
Choose T> O sucit that 4$, x) = O witenever t ~ JO, T[. Por a fixed u,
st ~ time t cali a,i(t) < ... < xN(t) the points witere u,.}t,.) itas a
jump, and set

Au,,(t, x0) 4 u4t, x0+) — u,}t, a,0—),

Af(u,..(t,a,0)) f(uÁt, x0+)) — f(u,.4t, a,0—)).
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Observe titat tho pol>’gonal Unes a, = x0(t) subdivide the strip
[0,1’] x IR into finitel>’ man>’ regions 1% witere u,, Ls constant. Intro-
ducing tite vector

cbS(<b.u.,, 4’.f(u,,)),
b>’ tite divergenco titeorem tho daublo integral in (2.47) can be writtext
as

ZJidiv4(tx)dxdt=ZLr C~ndo-. (2.48)

llorear~ is the oriental boundar>’ of r~, witile n denotes an autor normal
(fig. 21). Observe titat nda = ±(±~,—1)dt along eacit pol>’gonal lino
a, = x0(t), witile 4$, a,) = O along tite Unes t = 0, t = T. B>’ (2.48) tite
expression within square brackets in (2.47) is computed b>’

JT [±0(t) . Au,,(t, a,0) — Af(u,,(t, x0))]«t, a,0(t)) <It. (2.49)

Ta estimate tite aboye integral, Lot Kl be tite strength of the wave at
x0. If this wave is a shock, a rarefaction or coxttact discontixtuity, b>’
(2.4)—(2.7) oxte itas

x
figure 21

Au4t,x0) — Af(u,(tx0))~ = 0(1) .¿4o-0~. (2.50)
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On the otiter itand, if tite wave at a,0 is non-pit>’sical with strength ¡o-0¡,
titen

±~.Au4t,x0) — Af(u~(t,x0))~ = 0(1). bo-~!. (2.51)

We now sphit the summation in (2.49), considering ph>’sical (shocks,
contacts or rarefactioxts) and noxtph>’sical waves separatel>’:

Hm sup >5L±0(t). Au~(t, x0)
cESUIZt.W’P

< (maxt.±¡4$, x)I) ~limsup { 0(1). >5 e,4a~¡ (2.52)
cESaR

+ 0(1). acKp

Indeed, tite total strength of waves ixt u,. remains unifarmí>’ bounded,
while tho amount of non-pitysical waves by (2.44) approsches zero as

0. The limit (2.47) xtow follows from (2.52). Titereforo, u is
a woak solution to tite Caucity problem. In tite prosence of a convox
entrop>’ q with entrop>’ flux q, aix ontirel>’ similar argumont sitows that
tite inequality (1.26) is also satisfied.

3 A semigroup of solutions
Tite anal>’sis in tite previous chapter itas sitown tite existence of a global
entrop>’ weak solution of the Cauch>’ problom for ever>’ initial data witit
suificientí>’ small total variatian. Mare precisoly, recahUng tite deflnitions
(2.30)-(2.31), consider a domain of tho form

= cl{u E L’(IR;IR”); u is piecewise constant, ()
T(u) 4 V(u) ±C’oQ(u) <a4,

whore cl denotes closure in L
1. Witit a suitable choice of tite constaxtts

Cc, and 6o > 0, tite proat’s of Theorems 1, 2 show titat, for every fi E 7),
oxte can coxtstruct a sequenco of c-approximato front tracking solutions
coxtverging to a weak solution u taking values insido 7). Observe titat,
sinco the proof of convorgonce rehied on a compactnoss argunxent, no
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information was obtained on tite uniqueness of the limit. Tite man goal
of the prosent chapter 18 to sitow titat titis limit is unique and deponds
contixtuously on tite initial data:

Theorem 3. Por ever¡jii E 7), ase —> O evertj sequence of e-approxirnate
aolutions u, : [0, oo[ ~-+ 7) of tite Cauchy problern (2.1)-(2.2) converges to
a utit~gue lirnit solutíoti u40, oc[ ‘-. 7). Tite rnap (42, t) ‘-* u(t,.) 4 $42
is a uniformly Lipacititz aernigroup, i. e.:

5o42 = ~, SÁScÚ) = 5.+t~, (3.2)

¡IS¿u—SSVIIL: =L.(II$2—ii3¡¡L1+¡t—s¡) far all 42,43EV, s,t =0. (3.3)

A construction of tite semigroup was fis carried out in [2]for linead>’
degenerato s>’stems, then in [6] for 2 x 2 s>’stems and in [7] for general
u x ti systems. Ah titese earUer estimates were basa! on a hinearization
motitod. In ordor to estimate how the distance between twa sohutions
u, y varios in time, ono constructs a ano-parameter famil>’ of solutions
u0joining u witit u, as sitawn in fig. 22. At an>’ time t E [0,T], tito
distance ¡¡u(t) — v(t)IILI is titus bounda! by tite length of the curve

O i—* u0(t). In tan, as long as ah solutions u0 reniain sufficiently
regular, tite length of ‘y¿ can be computed b>’ intograting tho norm of
a generalized tangent vector y. The advantago of tbis approach 18 titat
tangont vectars satisfy a linearized ovolution equation. From a uniforni
a-priori estimato on tite norm of titese tangent voctors, ono obtains a
bound on tite lextgth of ‘y~’ and hence on the distance between u(T) and
v(T). Unfortunatel>’, titis approach 18 hampered by the possiblo loss of
regularit>’ of tite solutions ¿. In ordor to retan the minimal regularity
(piecewise Lipschitz continuity) required for tho existonce of tangent
vectors, in [6, 7] various approxlinatioxt and restarting procedures itad
to be devised. These yield ontirel>’ rigoraus proofs, but at the price of
iteavy technicahitios.
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Vm

u<O>

figure 22

In tite remainder of titis chaptor, wo will thus follow tite new approacit
of Liu and Yang [19, 20] in its simplifled version [11].

To provo tite uniqueness of tite limit of front tracking approxima-
tions, we need to estimate tite distance between an>’ two c-approximate
solutions u,v of (2.1). For tffis purpose, following [11] we introduce a
functional 4’ = $(u, y), uniforml>’ equivalent to tite L1 distance, witicit
15 “ahnost decroasing” a]ong pairs of solutions. Hecailing tho construc-
tion of sitock cunes at (1.33), given u, y, consider tite scalar functions
ejí defined impUcití>’ by

v(x) = S,,(q,4x)) o ... o Si(qi(x))(u(x)). (3.4)
Intuitivel>’, q¿(x) can be regarded 85 tite strength of tite í-shock wave in
the jump (u(x), v(x)). On a compact neighboritood of tite origin, we
cloarí>’ hayo

1 n—.Iv(x)u(x)l =Elqdx)i=Cí.lv(x)—u(x)I
C

1
t=1

(3.5)

for some constant ~71.We now consider tite ftmctional

4’(u,v) >zJ ¡q¿(x)lW1(x) dx,

whero tite woights VV1 aro dofined b>’ setting:
W¿(x) 4 1 + n1 [total strength of waves un u and in y

which approach tite i-wave q1(x)J
+ K2~ [wave interaction potentials of u and of y]

— 1 + níA¿(x) + n2[Q(u) + Q(v)].

(3.6)

(3.7)
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Tite amount of waves approaching ej~(x) is defined 85 fohlows. II tito
i-shock and i-rarofaction curves coincide, we simpí>’ talco

~ 1 io-~¡. (3.8)..4¿(x) + ±a>±,1<k0<iJ

Tite summations here extend to waves both of u axtd of y. According
to [25],the definition (3.8) appUes II the i-th fleid is linean>’ degener-
ate, or else if alí i-raret’action curves are straigitt linos. On the otitor
itand, if tite i-th fiold is genuinel>’ nonlinear witit shoclc and rarefactions
cunes not coinciding, aur definition of A1 wihl contain an additional
term, accounting for waves un u and in y of tite same i-tit famil>’:

A¿(x)4 [ >5 + >5 1
aGff<tÓLuff(tÓ]

F >5 + 1 ¡o-~~¡ it’ q1(x) <0, (3.9)
nGJ(u). LoO oEJ(tÓ, za>z

+~ 1[ >5 + >2 ¡ ¡aol if q~x)>0.
]

aEJ(n). oC~ cEff<tí>, ra>±

Mere and in tite sequel, 3(u) and ¿1(v) denote the sets of all juxnps un
uaxtdinv,whileJ4J(u)U3’(v). Werocalltitatk0e{1,...,n+1}
is the famil>’ of tite juinp beata! at a,0 witit size o-0. Notice that tite
strengtits of non-ph>’sical waves do enter in tite definition of Q. Indeed,
a non-pit>’sical frant located at x0 approachos ah sitad and rarefaction
fronts located at points x~ > x0. On tite otiter itand, non-pit>’sical fronts
pía>’ no role in tite definition of A1.

Tho values of the largo constants ni, n2 un (3.7) wilI be specified
later. Observe that, as soon as titese constants hayo been assigned, we
can titen impose a suitabí>’ small bound on tite total vaniation of u, y so
that

1
1

1=Wdx)=2 forahl i,x. (3.10)
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From (3.5), (3.6) and (3.10) it titus follows

1— . II” — uIILI =$Qu,v) =2C1 . ¡¡y — ~IIL’. (3.11)
<A

Hecahhing the definition T(u) 4 V(u) + CoQ(u), tite basic L’ stabilit>’
estimato for front traclcing approximations can now be stated as follows.

Theorem 4. Por suitab(e constanta <72, iq, n2,
6o > O tite follovAng

halcAs. L~ u, y be E-approxtrnate frr.rnt tracking solutions of (1.1) con-
structed bu tite algorititrn in Chapter 2, tvitit

T(u(t)) <do, T(v(t)) <6o for ah t > 0. (3.12)

Titen tite fi.rnctional < itt (8.6)—<’S.9) satialies

«11(t), v(t)) — $(u(s), y(s)) =C
2c(t — a) for oIl 0< a <t. (3.13)

Rel>’ing on tite aboye estimato, a proof of Titeorem 3 can be easily
worlced out. Indeed, lot 42 CV be givon. Consideran>’ sequence {u,,}~>i,
such titat each u,, is a front traclcing e,,-approximate solution of Cauch>’
problem (2.1)-(2.2), witit

hm 4..=0, T(u~(t)) <6c, forahí t>0 u> 1
U—~00

Por evory ji, u =1 and t >0, b>’ (3.11) and (3.13) it now follows

¡¡u~(t) — uu(t)¡¡L: =<A «u~(t), u,.}t))

=Cw [s(u,40), u,,(0)) + C2t . max{e~, ~1.}]
<2C?¡¡u~(0) — u,,(O)t[LI + C1C2t . max{e~, gui.

(3.14)
Since tite rigitt hand side of (3.14) approachos zoro as ji, u —. oc, tito
sequence is Caucity and converges to a unique limit. Tite semigroup
property (3.2) 18 an immediate consequence of uniqueness. Finahl>’, lot
42,13 c 7) be given. Far eacit u > 1, let u,,,v,, be front traclcing e,..-
approximate solutions of (2.1) witit

— ~IIL’<CV, Ik,,(O) — V¡¡LX <e,,, hm ~, = 0. (3.15)
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Using again (3.11) and (3.13) we deduce

< c1. [s(udo), w(0)) + C2tEj (3.16)
< 2Cfl¡u,,(0) — v,..(0)I¡L1 + C1C2te,,.

Letting u .-. oc, b>’ (3.15) it follows

¡¡u(t) — v(t)IILI =2C~ . ¡¡42— u¡¡LL . (3.17)

Titis estabhishos the uniform Lipechitz continuit>’ of tite semigroup with
respect to the initial data. RecaUing (2.45), tite Lipschitz continuit>’
witit respect to time is clear. This complotes tite proof of Theorem 3.

In tite remainder of titis citapter we wilI slcetch tite main ideas in
tite proofof Theorom 4. Tito lce>’ point is to understand itow the func-
tional <1’ evolves in time. lix connection with (3.4), at each a, define the
intormediate states wo(x) = u(a,), wi(a,), ... , w,,(x) = v(x) by setting

w~(x) 4 S¿(qí(x)) o ~ o • o Si(qi(x))(u(x)). (3.18)

Moreover, cali
4 A1(w11(x), w1(x)) (3.19)

tite speed of the i-shock connectixtg w~.-i(x) with w1(x). A direct com-
putation now yields

~
4¡$(u(t), v(t)) = >3~~j 2~’=~ { ¡q¿(x

0—)¡W1(x0—)

.rc
(3.20)

= 2061 L=~ {Iq9t~W9+(A?+ —

~jq?~W?0~}A? 4)}~

with obvious moaning of notations. We regard tite quantit>’ ¡q1(x)¡A¿(x)
as tite flux of tite i-th component of y — uj at x. Por x0~ <x <x0,
one cloarly itas

~fr-l)±¡ A~0’>±j4a1>+ = ¡ej~(a,)IA~(x)W~(a,) = ¡qV¡ A~ W
0

Moreovor, tite assumption u(t), v(t) E L’ and piecewiso constant implies
q
1(t, x) O for x outside a bounded interval. This alhowed us to add and

subtract tite above terms in (3.20), without citanging tite overall sunx.
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In connection with (3.20), for each jump point a E ¿1 and ever>’

i=1,...,u,defino

E0,1 4 ¡q’+¡W9+(A9+ — t) — ¡CtIt
0(A? — ±~). (3.21)

Our main goal will be to establish tite bounds

n
>5 E

0,1 =0(1) ¡o-0~ a E KV, (3.22)
í=1

>5 E0,1 =0(1) E¡00J a E RUS. (3.23)
1=1

As usual, by tite Landau s>’mbol 0(1) wo denote a quantit>’ whoso ab-
soluto value satisfies a uniform bound, depending onhy on the s>’stem
(2.1). In particular, titis bound does not dopend Oxt E or on tite func-
tions u,v. It is also independent of tite choice of tite constants ¡cl, t~2 in
(3.7).

From (3.22)-(3.23), recalling (2.9) and tite uniform bounds (3.12) on

tite total strongth of waves, oxte obtains tite lce>’ estimate
a
a.rb(u(t), y(t)) =0(1) .c. (3.24)

If tite constant ¡c2 in (3.7) is citosen largo enough, b>’ tite interaction
estimates (2.25)—(2.28) aU weight functions W1(x) will decrease at eacit
timo r where two fronts of u or twa fronts of y interact. Integrating
(3.24) ayer tite interval [a,t] we thorefore obtain

•(u(t), v(t)) =$(u(s), y(a)) + 0(1) E(t — a), (3.25)

provmg tite titeorem. Ahí tite remainkg work Ls titus almed at estabUsh-
ing (3.22)-(3.23).

If a E NP, calling o-<,~ tite strengtit of this jurnp as in (2.29), for
i = 1, ...,nono has the oas>’ estimatos

— Ar =0(1).o-0. (3.26)
W~9~—Wfl =0 if r.~7 >0
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Titerefore, writing

_ — ¡CI)W~?~(A?~ — ±0)

— Wr)(A?~ —±~) (3.27)

tite estimate (3.22) ¡s clear.
The proof of (3.23) requires more work. Instead of writing down

ah computations, we will tr>’ to conve>’ tite main ideas witit tho itelp
of a few picturos. Por sil details we refer to [11]. Given two piecewise
constant functions u, y witit compact support, for i = 1,..., ti we can
define the scalar components u,, y1 as in [19],b>’ induction on tite jurxtp
points of u, y. We start by sotting uí(—oc) = 2)~(—oc) = O. Ifa,0 E ¿1(u)
is a jump point of u, titen we Lot u, be constant across a,0 and set

uda,0+) 4 u,(a,0—) — [ejí(a,o+) — qí(a,0—)J.

On tho otiter band, if x0 E ¿1(y) is ajurnp point of y, then we lot u, be

constant across a,0 and set
v¿(x0+) 4 v1(a,0—) + [ejdx0+) —

These doflnitions trivisil>’ impí>’

figure 23

Observe titat, according to the deflixition (3.9), the i-wavos in u and y
which approach q¿(x) are those located within the tbick portions of tho
graphs of u,, v~ in fig. 23. Viceversa, for a given i-wave o-., hocated at

x
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a,.,, the rogions where tite jumps q1(a,) approach o-., are represented b>’
tite sitaded areas in in fig. 24.

figuro 24

Now lot y hayo a waye-froxtt at a,., with strength o-.,, in tite genuinel>’
nonlinear k-th famil>’. To fix tite ideas, assurne titat vi,(a,.,± )> uk(x«).
lix connection wtth titis front, for every i .c ‘e tite functioixal $(u, y)
contains a term of the form (fig. 25)

[ares of tho region betweon tite graphs of u,
and y1, to tite rigitt of a,.,].

figuro 25

By strict ityperbohicit>’, the i-th and k-tit characteristic speeds are
strictl>’ separated, sa>’ Ah — A, =c > 0. lf oacit component u1,v1, t =

Ka

xa
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1,... , ti, were sn exact solution to a scalar consorvation law:

(~» + Fd~)2 = 0, (F = A1)

uncoupled from ahí tite otiter componoxtts, then we would have tite esti-
mate

dA.,,. ~ —ní¡o-.,IIq~~I(± .,— A?~) =—cníjo-.,Ijej~~¡. (3.28)
di

Here A?~ 4 Aduí(a,.,+), v~(x.,+)) is a speed of aix i-shock of strongtit
q~. Li general, the ostimate (3.28) must be supplemented witit coupling
and error terms, whose size is estimated ss

0(1). + ¡qr~¡(¡ej~~! + ¡o-al) +>5 lqY+¡’1 ¡o-.,¡. (3.29)
j~k /

A detailed computation thus yields

E.,1 <0(1). + Iqr~IOqr~¡ + fo-~¡) +>5 a~¡ — cni¡q?~~¡a.,¡i $ ‘e.

ha
(3.30)

Next, according to (3.9) tho functional $(u, y) also contains a term of
tite form

‘ci ¡a.,¡. [area of the region betweeix tite graphs of
11k

and 2)k, to the right of a,.,].

‘e’k

si Kcz

figure 26



188 Alberto Breasan

If the components uk, vi, were exact solutions ofa genulixol>’ nonllnear
scalar conservation law, sa>’

(ui,» + F&(ui,)~ = 0, (Fj = Ah) (3.31)

with Fff =¿ > 0, thon oxte would itave tite estimate

=—‘q¡a.,¡¡q~~¡(±.,— A%~) =—¡ci ja<,l¡ej~fl.

(3.32)
Tite decreaso of titis aros is illustrated un fig. 26. lix general, tite estimate
(3.32) must be supplemontod with coupling and error terms, witoso size
15 again estimatod 85 (3.29). A detaila! computation titus >‘ields

E.,,,. =0(1).(e + ¡ejr~Iuq~~¡ + Io-~I) + 3~#~ q7+¡) ¡a.,¡
+ ba~¡)~ (3.33)

Choosing ¿q suificientí>’ large, (3.30) axtd (3.33) togetitor >‘iehd (3.23).

Adifferont estimate is needed un the case witere tite jump un v~ crosses
the graph of ti,, sa>’ v,.(a,.,± ) < u,.(a,.,) c y,.(a,«—). To fix the ideas,
assmne

= ¡t>h(Xo+) — uh(x.,)¡ =!~~(~.,—) — u,.(x.,)l = ¡q%’1. (3.34)

In titis case, tito estimates (3.30) remain valid. lix connection with tite
k-tit fleid, tite functional > contains a term of tite form (fig. 27):

Vk

x
a

figure 27
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A.,,,. 4 [area of the rogion between tite graphs ofui, and y,.], (3.35)

witere tite aboye area includes poiixts botit to tite right and to tite left of
a,.,.

It’ the components u,., vk provided aix exact solution to tite genuinel>’
nonlinear scalar conservation law (3.31), due to genuino nonlixtearity we
would itave

dA.,,,. ¿ ¿
di 2

Indeed, b>’ (3.34),

= ¡q~fl + qn =2¡qfl.

¡ix general, tite estimate (3.36) must be supplemextted with coupling
and error terms, whose size is again estimated as (3.29). A detailed
computation titus >‘ields

>5
j#h

(3.37)
Assuming that the total strength of waves romains suificientí>’ small,

we hayo
¿~ + o-.,¡

hence (3.30) and (3.37) togetiter >‘iold (3.23). For details we again refer
to [11].

4 Uniqueness of solutions
Haviixg prova! that the limits offront traclcing approximationsare unique
and determine a semigroup of salutions, we would like to shaw titat this
semigroup is canonicalí>’ associated with tite s>’stem (2.1). In otiter
words, wheix O c 7), tite semigroup trajector>’ 1 ‘—. $42 is the unique
oixtropy wealc solution to the correspondiixg Cauchy problem. I~br scalar
consorvation haws, a very general uniquonoss axtd stabihit>’ result was
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proved in the fundamental paper of Kruzhhov [17]. ¡ix the case of ti x ti
s>’stems, under sorne mild regularit>’ 85sumptions, results in this diroc-
tion wore recentí>’ obtained ~xt [8, 9,10]. Por sake of charit>’, a completo
set of assumptions is lista! below.

(Al) (Conservation Equationa) Tito function u = u(t, a,) is a woak
solution of the Cauchy problem (2.1)-(2.2), taildng values within
the doman 7) of a somigroup 5. Moro precisel>’, u : [0,TJ k4 7)
is continuous w.r.t. tite L’ distance. Tite initial condition (2.2)

holds, togother witit

II (u’p¿ + f(u)so~) <IxcAL = 0 (4.1)

for ever>’ O’ functioxt <.p with compact support contained inside the
opon strip ]0,T[ xl?.

(A2) (Entropy Condition) Let u have sn approximate jump discan-
tinuit>’ at sorne poiixt (‘-,4) E]0, T[x IR. More precisel>’, lot titere
exists states ir, tÉ e (1 and a speod A E IR such titat, calhing

ifa,<4+A(t—r),tÉ ifx>4+A(t—r), (4.2)

titero holds

~ [+P JI-VP u(t, a,) — U(i, a,) dxdt = 0. (4.3)

Titen, for sorne i e {1, . . .,n}, ono itas tho entrop>’ inequality:

A¿(ir) =A =A4u). (4.4)

(AS) (Tamo Oscillation Condition) Por sorne constants <7, A tite
following itolds. Por ever>’ point a, e JA and ever>’ t, h> O oxte has

¡u(t+h, a,) —u(t, ~)I=C.Tot.Var.{u(t,O; [a,.—Ah,x+AhJ}. (4.5)

(A4) (Bounded Variation Condition) Titere exists 6 >0 sucit that,
for over>’ space-like cune {t = r(a,)} witit ¡dr/dx¡ < 6 a.e., the
funetion a, i— uQ-(a,), a,) itas locail>’ botmded variation.



Ilyper bollo systems of conservation laws 191

Remarks. Assumption (A2) genorahizes the Lax entrop>’ condition.
Indeed, if (4.2)-(4.3) itold, using (4.1) oxte can prove titat tite states
tu, u and tite spoed A must satisfy tite Hankine-Hugoniot coxtditions.
B>’ (1.18), the speed of tho junip coincides witit aix eigenvalue of tite
averagod matrix A(ir,u+), sa>’ A = A1(ir,tÉ). lix this setting, the
condition (4.4) requires titat the speed of an i-sitoclc be greater than the
i-speed of the state u~ ahead of the shoclc, but smailer tban tite i-speod
of the state ir bohind the shoek. lix the t-a, plane, the i-charactoristic
linos thus flow into the shock curve from both sidos.
The condition (A3) restricts tite oscillation of tite solution. An equiv-
ahent, more intuitivo formulation is the following. For sorne constant A
largor than al] charactoristic speeds, given sn>’ lixterval [a,b] and t > 0,
tite oscihlation ofuon tite triangleA 4 {(a,~¿) : a =t,a+Aa <y
b—Aa}, definod as

Osc{u; A} 4 sup ju(a,p) — tds’,v’)¡,

is bounded b>’ a constant multiple of tite total variation of u(t,.) aix [a,b].
Assumption (A4) simpí>’ requires that, for sorne fixed 6 > 0, tho fuixction
u has bounded variation along al space-hike cunes {t = «~); a, c [a,b] }
withslopo <6 le with

— r(a,j[ = — a,’¡ for alí a,, a,’ E [a,b].

Ono can pravo tbat sil of tho aboye assumptíons are satisfiedby weak
solutions obtained as lirnits of Glimm or wave-front tracking approxirna-
tions. The folhowing result shows that tite entrop>’ weak solution of the
Cauch>’ problern (2.1)-(2.2) Ls unique within the class of functioixs that
satisfy either tite additional regularit>’ condition (A3), or (A4).
Theorem 5. Lfl tite rnap u: [0,7’] ‘— 7) be continuoua (w.r.t. tite L’
distavwe), toidng values in tite domnaiti of tite sern¿group 5 generated by
tite systern (2.1). If (Al), (A2) ancA (A3) ¡¡oid, titen

u(t,.)=Sd¡ foroJl tc[0,T]. (4.6)

Itt particular, tite tuso/e solution that satiajies titese conditione is tmique.
Tite sarne oonclusioti ¡¡oída if tite asaurnption (AS) is replaced by (A4).
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The first pan of Theorem 5 follows from the results un [8],the second
part was prova! in [10].Tho main steps of the proof are givon below.

1. Since u takes values inside tite domain 7) of the sernigroup, tite total
variation of u(t,.) remaixts uniforiní>’ bounda!. Prom the basic equation
(2.1), it follows that u is Lipschitz continuous witit values un L1, narnel>’

ju(t) — u(s)¡¡L1 =L. t — a] (4.7)

for sorne Lipschitz constaixt L. More precisel>’, ifM and A aro constants
suéit that

Tot.Var.(u) =M for al] u E 7),

¡f(w) — f(w’)¡ =A¶W — w’¡ witenover ¡w¡, ¡w’¡ =M,

ss Lipschitz constant un (4.7) oxte can take L 4 AM. As a canse-
quence, u = u(t, a,) can be rogarded as a BV function of tite two vari-
ables t, a,, in the sense that the distributionní derivativos D~u, D

7u are
Radon mensures. B>’ a weIl known structure theorem [14],titere ex-
ists a set .N cJO, T[ xl? of 1-dimensional Hausdorff mensure zero such
titat, at ever>’ point (i-,~)~ K, u either is approximatel>’ coixtinuous
or has sn approximnte juinp discoixtinuit>’. Talcing tho projection of >/
on tite t-axis, we conclude that there exists a set N c [0,7’] of aiea-
sure zero, contaixting tite ondpoints O and 7’, such titat, at ever>’ point
(r,4) 6 [0,7’] x IR with i- ~ K, sotting ir 4 u(r,4—), tÉ 1
tite following proporty holds.

(P) Either u+ = ir, un whicit case (4.2)-(4.3) hold with A arbitrar>’.
Or else ~¿+# ir, un which caso (4.2)-(4.3) hoid for sorno particular
A El!?. ¡ix this second case, for sorne i E {1,.. .,n} the Ranlciixe-
Hugoniot equations and the Lax eixtropy condition hold:

A¿(ir, u~) . (tÉ — ir) = f(u~) — f(ir),

2. The identity (4.6) will be proved b>’ means of the error estimate:

f
2’f ________________

¡¡u(T) — Sil4O) ¡IL’ =U
0 lim mf Iu(t + it) — Shu(t) ‘IL’ (4.9)}it
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vaUd for ever>’ Lipscbitz continuous rnap u: [0,7’] ‘—* 7). Observe that
tite integrand un (4.9) can be ixtterproted as sn instantaneous error rute.
As shown Lix flg. 28, the distance IIu(T) — BTU(O) ¡¡Li is bounded by

the length of tho path t ~ Sr,,_u(t). ¡u turn, titis lengtit is obtaina! by
iixtegratingthe instantaixeous error rato, magnified by a factor L. Indeed

¡13 u(t + h) —3 u(t)¡¡ < L. ju(t + h) — S,,u(t)¡¡.
T—(t+h) T—t —

For a detailed proof of (4.8), seo [4,5].

uCP

u(t+b)

We will establisit (4.6) b>’ sitowing that tite integrand on tite
itand sido of (4.9) vanishos at eacit time t ~ K. Because of tite
speed of propagation, it actunil>’ suifices to show that, for eacit t
e > O and ever>’ interval [a,b], thore itolds

~fi + h, a,) — (S,.u(t))(x)I dx = 0(1).

right
finito

(4.10)

3. Lot u = u(t, a,) be as Lix Titeorem 5. Lix tite folhowing, for aix>’ given
point (7-, ~), we denoto by UW = uU the solution of the Riomann prob-
lem

if a,>¿,
it’ a,<$

u(O)
figuro 28

W~ + f(w)2 = 0, wQr, a,) = { Y ~$‘~ (4.11)
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B>’ the property (P), apnrt from tite trivial case whore u+ = ir, this
solution consists of a single ontrop>’ admissiblo sitock. Tite function W
providos a goad approximation to tite solution u in a forward neigitbor-
hood of the point (7-, 4). Moro precisel>’, using tite Lipschitz contixtuit>’
(4.7), ono can prove that

i fC+hA

for ever>’ A > O and ever>’ (>r, 4) with r ~

4. Next, for a given point (r,4) we denote b>’ Ub = U¿’,.¿) tite solution
of tite linear s>’stern witit constant coefficients

Wj + Ato1 = 0, w(1-, a,) = u(r, a,), (4.13)

witere Á 4 A(uQr, 4)). As un tite provious stop, wo need to ostirnate the
difforonce betweon u and u% un a forward noigitboritood of tho poiixt
(i-, 4). Considor aix>’ opon interval ]a, b[ containing the point 4 and flx
a speed A strictl>’ largor titan tite absoluto values of all characteristic
speeds. Por t > r define tite opon intervais

J(t) 4 ]a + (t — r)A, b —(1— r)X[ (4.14)

and tite region

r@) 4 {(a,x); a E [r, fl, a, E J(s)}. (4.15)

With the above notation wo claim that, for evory Y =r,

/~‘> u(r’, a,) — U~(r’, a,) dx = 0(1) . sup ¡u(t, a,) — «r, 4)¡Ctz)cr(ro

Tot.Var.{u(t, ); J(t)} di. (4.16)

To derive (4.16), cail A1, L~, f~ respectivel>’ tite i-tit eigonvalues and loft
axtd right eigenvectors of tite matrix A. Solving (4.13) wo find

L~. U~’(r’, a,) = lj U
1’(r,a, — (r’ — r)Yq) t~. u(7-, x —(7-’— dV>.
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Now fix aix>’ 4’,
E1(4’, 4”)

4” E J(r’) and consider the quantity

4 u. (u(r’ a,) U
6(r’, x)) da,=u.t (u(r’, a,) u(r, a, — (Y — r)Aí)) dx. (4.17)

Since u satisfies the conservation oquation (2.1) ovor the domain

£44 {(t,z); tc [r, r’], 4’+ @ —rjA
1 =a, =4”+ (t—r’)A1},

tite difforonce between the integral of u at the top and at tho bottom of
tite domain D¿ is moasured b>’ tite inflow from tito left sido minus tite
outfiow from tite rigitt sido (fig. 29).

II

5~u
t a b

figuro 29

From (4.17) it titus fohlows
¡r’ () 5.yt 4’ + (t — r’)AJ) <It (4.18)

— jr ¡~. ((f(u) — X1u)(t, 4” + (t — r’)Aí)) di.

To ostimate the quantity in (4.18), considor tite states

u’(t) 4 u(t, 4’ + (t — r’)A¿), u”(t) 4 u(t, 4” + (t — r’)A¿), 42 4 u(r, O.
We titen hayo

= ¡. [Df(ii).(u”—u’)—X1(u”—u’)]+¿~ A .(u”—u’),
(4.19)

whore t is the avoraged rnatrix

A4 J~ [DAau” + (1 — s)u’) — Df(i74] da.
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Since tite first term on the rigitt itand sido of (4.19) vanishes, we thus
obtain

k~ (f(u”) — f(u’) — A¿(u” — u’))
= 0(1). u”—u’¡ (lu”—úI+ ¡u’—ii¡),
= 0(1). Tot.Var.{u(zj; [4’+ (t — r’).Sq, 4” + (t — i-’)Aí]} ‘~“‘

SUP(É,í)Er(r¿) ¡u(t, a,) — u(r, 4fl.
lix turn, (4.20) >‘ields

¡E1(4’, «o¡ = 0(1) suPQ7)Er(~~) ¡u(t, x) — u(r, ¿)¡f~ Tot.Var.{«t, ~);[4’+ (t — r’)
5
4, 4” + (t — r’)Á¿]} di.

(4.21)

Since tite estimate (4.21) holds for all i = 1, ... , ti and ahí 4’, 4” E J(r>j,
it implies (4.16).
5. Givon r ~ K, e> O and a .c b, using eithor oxte of tite assumptions
(A3) or (A4) wo can cover a neighborhood of tite Lixterval [a,6] with
finitely man>’ points ~ and opon intervais 1, 4Jc~,, b~[ such titat the
following conditions itold (fig. 30).
(i) Eacit point a, is containod un at most twa of tite opon intervais ¡.
(u) Tho total variation of u(r,.) on each 1, is <e.
(iii) For sorne Y > ~ calling 4~ 4 (a~ + 6)12 and

t+b
ir

figure 30

titero holds
sup Iu(t, x) — u(7-, 4)I <E.

(t.r)er~

Pi 4 {(t,x);

a a 1:~~ b
j ¡

(4.22)
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6. We now coxtstruct a function U = U(t, x) whicit coincides witit tA(r,¿í)
near each point (r, ¿í) and with U~ in a forward neighborhood ofeach<r,Cj)

t U~,.e)(i, a,) if la, — ~ =(t — r)A,
U(i, al?> 4 U~rcj)(t~

By (4.12) and (4.16), titis funetion U providos a goad approximation of
u, for times 1 = r + h witit h > O small. Indoed, recalhing (4.22) and the
proport>’ (i) of tite covoring, we hayo

hirnsup ~jjju(r+h~ x)—U(r+h, ~ dx

=>5]im sup k JW u(r + h, a,) — Uk)(r + h, x)j <¡a,2

+ z limsup~ jb,—hA u(r + it, x) — (4r,ci>(r + h, ~)I<¡a,
aj+hX

=0+ Hm sup fO(1). >5 ~ Tot.Var.{u(t); 1,1 dt}

<hm sup 0(1). ~ j2 . Tot.Var.{u(t); IR} dt}
1.

(4.23)

7. We now observe that the somigroup trajector>’ v(t,.) 4 $41 is also sn
entropy woaksolution to the Cauch>’ problem (2.1)-(2.2), and satisfies alí
tite assumptions (A1)—(A3). In particular, tite total variation of v(i,.)
remains uniformly boundod, axtd its oscillation on eacit domain 12(t) of
tite form (4.15) is bounded 1,>’

sup jy(t, a,) — vt¿r,¿)¡ = 0(1) . Tot.Vnr.{v(r); Ja, ~41~ (4.24)
(t,x)Er(r’)

As a consequence, wo can repoat tite ostimato (4.23) witit y in tito role
of u and obtain

Hm sup ~ fi v(r + it, a,) — U(r + h, a,4 dx = 0(1). e. (4.25)
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Togetiter, (4.23) and (4.25) impí>’ (4.10). Sinco e > O and tho interval
[a,b] were arbitrary, this achioves tite proof of Titeorern 5.
Aknowledgment. Tite present worlc was supporta! by tite Europoan
TMR Contract ERB F’MRX CT9G 0033 on Hyporbolic Systems of Con-
servation Laws.
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