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Abstract. The morphology of deltas is determined by the spatial extent and variability of the geomorphic pro-
cesses that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthro-
pogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns
of sediment transport. Quantifying process patterns can improve our predictive understanding of how different
zones within delta systems will respond to future change. Available remotely sensed imagery can help, but ap-
propriate tools are needed for pattern extraction and analysis. We present a method for extracting information
about the nature and spatial extent of active geomorphic processes across deltas with 10 parameters quantifying
the geometry of each of 1239 islands and the channels around them using machine learning. The method con-
sists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones
based on the 10 morphological metrics extracted from remotely sensed imagery. By applying this method to the
Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification
results show that active fluvial island construction and bar migration processes are limited to relatively narrow
zones along the main Ganges River and Brahmaputra and Meghna corridors, whereas zones in the mature upper
delta plain with smaller fluvial distributary channels stand out as their own morphometric class. The classifica-
tion also shows good correspondence with known gradients in the influence of tidal energy with distinct classes
for islands in the backwater zone and in the purely tidally controlled region of the delta. Islands at the delta
front under the mixed influence of tides, fluvial–estuarine construction, and local wave reworking have their
own characteristic shape and channel configuration. The method is not able to distinguish between islands with
embankments (polders) and natural islands in the nearby mangrove forest (Sundarbans), suggesting that human
modifications have not yet altered the gross geometry of the islands beyond their previous “natural” morphology
or that the input data (time, resolution) used in this study are preventing the identification of a human signature.
These results demonstrate that machine learning and remotely sensed imagery are useful tools for identifying
the spatial patterns of geomorphic processes across delta systems.
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1 Introduction

Deltaic environments are threatened by environmental
change and anthropogenic activity. Predicting the response
of deltas to these future changes requires understanding the
spatial variability of physical processes and their influence
on landscape morphology. The identification of the patterns
of physical processes in deltas is therefore necessary to pre-
dict the resilience of these environments and assure the sus-
tainable use of the environmental services they provide. As
in Hoitink et al. (2020), we define a resilient system as one
that is capable of recovering from extreme events and of
sustaining itself. It has long been established that the mor-
phology of deltaic networks and landforms reflects the phys-
ical processes that created and continuously modified them
(e.g., Galloway, 1975). Although relationships between spe-
cific geomorphic processes, island morphology, and channel
geometry have been analyzed in less complex deltaic systems
(Smart and Moruzzi, 1971; Edmonds et al., 2011), isolating
the effects of individual physical processes on morphology
is challenging in large deltas where multiple processes in-
teract or where the relative influence of each process can
change over time. Here we propose the use of machine learn-
ing techniques to identify the spatial patterns of geomorphic
processes based on the morphology of islands, their internal
drainage networks, and the channels that bound them.

The morphology of deltas is set by interactions and feed-
backs between water and sediment fluxes throughout the sys-
tem (Orton and Reading, 1993; Edmonds and Slingerland,
2010), including the physical processes that transport them
across the landscape (Wright and Coleman, 1972; Galloway,
1975) and the boundary conditions that determine their path-
ways (Orton and Reading, 1993; Syvitski and Saito, 2007).
Many classification schemes have been proposed to quali-
tatively connect the geometry of deltas to geomorphic pro-
cesses. Early work by Wright and Coleman (1972) and Gal-
loway (1975) used the planview geometry of deltas to clas-
sify deltaic systems according to the relative influence of flu-
vial input, tidal currents, and wave energy on their morphol-
ogy. Others have expanded this classification scheme to ac-
count for the effects of sediment grain size (Postma, 1990;
Orton and Reading, 1993; Caldwell and Edmonds, 2014),
sediment cohesion (Edmonds and Slingerland, 2010), and
base level change (Postma, 1990; Dalrymple et al., 1992;
Wolinsky et al., 2010). Common relationships between delta-
scale morphological metrics and key factors that control delta
morphology have been found at a global scale (Syvitski et al.,
2005; Syvitski and Saito, 2007).

The classification of deltas according to their bulk char-
acteristics provides limited information about the geomor-
phic processes that locally modify each element of the sys-
tem (Edmonds et al., 2011). Most deltaic environments dis-
play complex morphologies that result from spatial variabil-
ity in physical processes (Restrepo et al., 2002; Syvitski and
Saito, 2007; Lewin and Ashworth, 2014). Metrics of channel

morphology have been widely used to characterize the influ-
ence of external forcings acting in different parts of a delta.
Fagherazzi et al. (1999) and Rinaldo et al. (1999) found that
scaling relationships and topology of tidal channel networks,
unlike fluvial systems, can vary significantly among tidal
basins due to the influence of multiple physical processes.
In mixed fluvial–tidal systems, an along-channel break in
geometric scaling relationships has been found at the point
where the influence of tides on channel morphology becomes
stronger than the river influence (Sassi et al., 2012; Kästner
et al., 2017).

The processes that dominate delta morphology may
change over time as the delta shape evolves or environmen-
tal conditions change (Correggiari et al., 2005). By looking
at the evolution of channel planform overlap, morphological
metrics have been used to quantify growth (Wolinsky et al.,
2010) and channel network dynamics (Cazanacli et al., 2002;
Liang et al., 2016b) over time. Channel networks can also
preserve information about their evolution; in fluvially dom-
inated deltas, Jerolmack and Swenson (2007) identified dif-
ferences in channel and network morphology for distributary
systems that evolve through mouth–bar deposition and those
formed by avulsions.

Approaches used to quantify spatial patterns in geomor-
phic processes have also relied on mathematical descriptions
of the system as a network (Passalacqua, 2017), which is
helpful not only for the analysis of network structure and
dynamics but also for the quantification of connectivity be-
tween channels and islands (Hiatt and Passalacqua, 2015).
For example, Trigg et al. (2012) identified reaches along the
Amazon River that were morphologically distinct and had
mostly separate connectivity networks suggesting spatial dif-
ferences in hydrology. In the Jamuna River in Bangladesh,
Marra et al. (2014) used a central property of the channel net-
work to quantify the importance of individual strands of the
braided river and capture changes in linkages over time. Teje-
dor et al. (2015a, b) developed a quantitative framework for
studying delta channel networks and the propagation of per-
turbations using spectral graph theory (Tejedor et al., 2016).
Spatial variability in the morphology of the channel network
also results in diversity in the geometry of islands in multi-
threaded systems (Meshkova and Carling, 2013), which in
deltas have been quantified with multiple metrics of island
and network morphology (Edmonds et al., 2011), with sta-
tistical analyses (Passalacqua et al., 2013), and in numeri-
cal models under various input conditions, sea level rise, and
subsidence (Liang et al., 2016b, a).

The use of machine learning in earth surface sciences is
rapidly increasing as the volume and complexity of avail-
able data grow (e.g., Rubin, 1992; Jaffe and Rubin, 1996;
Werner, 1999; Murray et al., 2009, 2014; Goldstein et al.,
2019). Machine learning algorithms generalize large sam-
ples of observations to identify and exploit patterns in the
data. These techniques are traditionally divided into super-
vised methods, where the system is trained to identify pat-
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terns based on a set of samples with known labels, and un-
supervised methods, where classes in the dataset have not
been previously identified. Machine learning techniques are
used extensively to address a broad range of problems where
groupings in data are not immediately obvious or where the
ability to predict behavior is required. Valentine and Kalnins
(2016) and Goldstein et al. (2019) present comprehensive
overviews of the use of machine learning in the geosciences.
Applications span a wide range of topics, such as streamflow
modeling and forecasting (Asefa et al., 2006; Rasouli et al.,
2012; Shortridge et al., 2016), runoff modeling (Gudmunds-
son and Seneviratne, 2015), flood risk assessment (Dibike
and Solomatine, 2001; Tehrany et al., 2014; Mojaddadi et al.,
2017), sediment yield variability (Tamene et al., 2006), and
sediment transport (Bhattacharya et al., 2007; Melesse et al.,
2011; Schmelter et al., 2011; Choubin et al., 2018). Particu-
larly relevant to the analysis of river networks is the work on
surface water extraction (Pekel et al., 2016; Donchyts et al.,
2016; Isikdogan et al., 2017a, 2019) and on delta network
extraction (Isikdogan et al., 2018).

In this paper, we propose a two-step unsupervised machine
learning method to analyze spatial patterns in large river
deltas. We apply this method to the Ganges–Brahmaputra–
Meghna Delta (GBMD) and show that by clustering areas of
the distributary system with common morphological charac-
teristics we are able to reliably enhance our understanding of
the physical processes that locally dominate island and chan-
nel morphology across large areas of the delta. While our
previous work highlighted three main regions in the GBMD
(Passalacqua et al., 2013), here we are able to extract more
information on the delta surface network which can be used
to increase the explanatory power of on-the-ground observa-
tions and guide future field work and the selection of rep-
resentative islands for high-resolution numerical modeling
(and even for coastal zone management practices). Addition-
ally, we provide a method for identifying which metrics are
most useful in differentiating process signatures, thus provid-
ing guidance on what properties to measure in other systems.

2 Case study: the Ganges–Brahmaputra–Meghna
Delta

The GBMD covers more than 100 000 km2 of Bangladesh
and eastern India, extending ∼ 400 km from its apex near
the foothills of the Himalayas to the Bay of Bengal (Wil-
son and Goodbred, 2015). The largest subaerial delta in the
world, the GBMD system has been influenced by tectonic,
climate, fluvial, and tidal forcings. Most of Bangladesh is
underlain by alluvial deposits sourced from the uplifting Hi-
malaya orogen and deposited into accommodation space cre-
ated by local subsidence in the basin (Allison, 1998; Allison
et al., 2003; Kuehl et al., 2005). Most of the region lies within
20 m of mean sea level, and local relief is minimal. In the up-
permost delta, the Ganges and Brahmaputra rivers formed a

fan delta that has slopes of ∼ 10−4. The tidal plains, lying at
or near sea level, have lower surface slopes, ∼ 10−5 (Wilson
and Goodbred, 2015).

Fluvial processes control the morphology of the eastern
portion of the delta. The Ganges and Brahmaputra rivers are
laden with sediment. Together they transport about 109 t of
sediment per year to the Bay of Bengal and form a broad
and elevated braid plain extending 5–15 km from the present-
day active rivers (Goodbred and Kuehl, 2000; Wilson and
Goodbred, 2015). Bars and channels evolve rapidly within
the braid belts during high discharge events and stabilize
once they are colonized by vegetation, and amalgamate to
form island complexes (Best et al., 2007; Wilson and Good-
bred, 2015). Major avulsions of the Ganges and Brahmapu-
tra rivers occur every 1500–2500 years (Allison et al., 2003;
Pickering et al., 2014; Reitz et al., 2015). Backfilling and un-
derfit meandering streams of the formerly active braid plains
form the central and western portions of the upper deltaic
plains. This region receives minimal fluvial discharge from
the active braid plain to the north and east.

Away from the river-mouth estuary, the tidal plains are
formed by dense networks of funnel-shaped tidal channels
that receive no upstream input of fluvial sediment. Strong
tides, however, generate an onshore flux of suspended sed-
iment originating from the estuary. Population density in
much of the lower tidal delta plain is high, and several is-
lands were embanked for agriculture in the 1960s and 1970s
(Auerbach et al., 2015; Rahman and Salehin, 2013). These
embanked land masses, called “polders”, have drastically re-
duced overbank sedimentation due to natural ebb–flood tidal
cycles and are starved of sediment relative to nearby natu-
ral islands (Auerbach et al., 2015; Wilson et al., 2017). The
construction of embankments for agriculture within the tidal
plain has been shown to contribute to the amplification of
the tidal signal (Pethick and Orford, 2013). The infilling of
small tidal channels in this inhabited region leads to new or
khas land development (Wilson et al., 2017).

The Sundarbans mangrove forest is located to the west and
south of the poldered area. Relatively pristine, and covering
4100 km2 of the western portion of the tidal plains, the Sun-
darbans continue to aggrade through the reworking and set-
tling of tidal sediments. Due to sediment deposition, the ele-
vation of islands in the Sundarbans can exceed the elevation
of the nearby polders by ∼ 1 m (Auerbach et al., 2015).

Climate in the GBMD is subtropical and dominated by the
Southeast Asian monsoon, resulting in strongly seasonal flu-
vial discharges (Islam et al., 1999; Goodbred et al., 2003).
Monsoonal rains between June and September are the pri-
mary source of runoff for the Brahmaputra and Ganges rivers
(Best et al., 2007; Singh, 2007). Approximately 80 % of the
total yearly sediment load is transported due to monsoonal-
driven increases in fluvial discharge (Goodbred and Kuehl,
2000). The southern portion of the delta front is characterized
by wide channels due to the strong diurnal and mesotidal in-
fluence in the region (Goodbred and Kuehl, 2000) (Fig. 1).
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Figure 1. Overview map of the Ganges–Brahmaputra–Meghna Delta. Natural color shows the Landsat 8 OLI/TRS composite image from
December 2018. Indicated on this map are polders (solid white lines), the Sundarbans mangrove forest (dotted white grid), the approximate
dry season tidal limit (solid yellow line), and the dry season backwater extent (dash-dot white line) from mapped data of the Institute of
Water Modelling.

There is a change in tidal magnitudes across the delta front;
in the Meghna Estuary, tidal amplitude exceeds 5 m. Mov-
ing westward across the delta front, mean tidal amplitude de-
creases to 1.9 m (Allison, 1998).

3 Methods

Our goal is to regionalize the study area into zones with
common physical characteristics to differentiate the areas of
influence of various physical processes. Regionalization at-
tempts to aggregate spatial units or observations into clus-
ters based on spatial continuity, as well as attribute similarity
(e.g., Guo, 2008; Duque et al., 2012b; Wu et al., 2013). By
identifying clusters of islands in the GBMD with shared ge-
omorphic characteristics generated by similar physical pro-
cesses, we can extrapolate from local observations to larger
areas of the delta and begin to predict how changes in the ge-
omorphic drivers due to natural and anthropogenic forcings
might affect delta morphology.

Each step in this methodology is explained further in the
following sections: (1) data are first extracted from remotely
sensed imagery, and morphometrics are calculated; (2) met-
rics are normalized, and the correlation between metrics is
addressed with a principal component analysis; (3) island
clusters are identified; and (4) clusters are grouped and or-
dered based on a nested, or hierarchical, clustering scheme.

3.1 Metrics and data used

Borrowing from computer vision (e.g., Dryden et al., 1997)
and previous research in surface processes (e.g., Edmonds
et al., 2011; Passalacqua et al., 2013), we identified a set
of metrics (Fig. 2) that capture the shape of deltaic islands,
their internal drainage networks, and the channels that bound
them. Metrics used to study delta morphology commonly
take a sediment-focused approach (Edmonds et al., 2011)
based on the idea that sediment dispersal across the system
is the primary driver of morphodynamics. To avoid unin-
tentionally encoding geographic information into the feature
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Figure 2. Illustration and definitions of parameters, or metrics, used
in this analysis. For channel width, three values (the minimum, av-
erage, and maximum values) are used, bringing the total number of
parameters to 10.

matrix, we avoided metrics related to the position of islands
in the delta (e.g., distance from delta apex, distributary num-
ber). Similar methods have been used before to characterize
the shape of features such as lakes, icebergs, and streamlined
islands in remote-sensing imagery (Baker and Kochel, 1979;
Komar, 1983; Kehew and Lord, 1986; Vila and Machado,
2004; Frohn et al., 2005; Silva and Bigg, 2005).

We obtained the channel network and water surface
mask from orthorectified Landsat Thematic Mapper Mosaics
(Landsat GeoCover TM 1990 edition mosaics; tiles N 45–
20 and N 46–20, 28.5 m resolution) as in Passalacqua et al.
(2013). Typically, the delta is covered by clouds for much of
the monsoonal rainy season so that composite imagery gen-
erally is representative for the dry season state of the delta.
A map of interchannel islands can be derived from the water
surface map as the land masses are bounded by channels. Per-
forming this operation on the GBMD results in 1239 unique
features.

3.2 Feature normalization and principal component
analysis

We normalized metrics by using a logarithmic normalization
to differentiate between islands in the distribution, and we
then scaled them from 0 to 1 (Fig. 3). Because the subset
of metrics selected for this study shows moderate degrees of
correlation (Fig. 4), principal component analysis (PCA) is
used to convert metrics into parameters that are uncorrelated
from one another. PCA is a dimensionality reduction tool that
preserves the variance within the data while eliminating co-
linearity between features. PCA reduces this dimensionality
while preserving 90 % of the variance in the original dataset.

3.3 Spatial clustering

Clustering is an application of machine learning where large
volumes of multi-dimensional data are reduced into groups
of objects with similar properties (Jain et al., 1999; Fisher,
1987). Spatial clustering is a major challenge for geographic
data analysis and increasingly of interest to the machine
learning community (Duque et al., 2012a; Gehlke and Biehl,
1934; Guo, 2008; Openshaw et al., 1979). These algorithms
are appropriate for applications that require spatially contigu-
ous clusters that contain regions as homogeneous as possible
(within each cluster) separated from each other by discrete
boundaries. Examples are the creation of areas for precision
farming (Fleming et al., 2004) and estuarine management ar-
eas (Bação et al., 2005a). Spatial clustering is based on the
idea that objects that are close to each other are more likely
to be similar to one another than to objects that are farther
away (Tobler, 1969).

Self-organizing maps (SOMs) are a type of artificial neu-
ral network that is widely used for visualization and analysis
of high-dimensional nonspatial data (Kohonen, 2001). SOMs
reduce high-dimensional data onto an often 2-dimensional
grid of nodes and map the input data onto the grid while pre-
serving topological relations between samples. As a result,
objects that are close to one another in parameter space are
mapped to nearby nodes on the grid (Kohonen, 2001). While
training the SOM, the algorithm iteratively deforms the grid
to best fit the n-dimensional parameter space. Initially, each
node on the grid takes a random value for each parameter in
the input dataset. In each successive iteration, an SOM calcu-
lates the Euclidean distance in parameter space between each
object in the input dataset and the parameter values for each
unit in the grid and assigns the data point to the closest node,
called best matching unit (BMU). Once all data points are
assigned to a node, the parameter values for nodes in the grid
are updated. With increasing iterations, the match between
input data points and nodes in the grid improves (Haykin and
Principe, 1998).

SOMs have been adapted to solve spatial clustering prob-
lems (Agarwal and Skupin, 2008). The GeoSOM algorithm
adapts self-organizing maps to consider the geographic dis-
tribution of objects when searching for a BMU (Bação et al.,
2005b, 2008). Each node in a GeoSOM grid is in a fixed geo-
graphic location within the spatial extent of the input data. At
each iteration, the algorithm first identifies a subset of nodes
in the grid that are within a given geographic distance of an
object in the input dataset and then searches for a BMU for
that object from only that subset of nodes (Feng et al., 2014).
The relative importance of geographic proximity and input
parameter values for classification is therefore dependent on
a user-defined geographic tolerance (Bação et al., 2004). This
operation results in clusters of data points that are close in
both parameter and geographic space.

We adapted and expanded the implementation of GeoSOM
in the ClusterPy Python library (Duque et al., 2011) to im-
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Figure 3. Map view of metrics after they have been normalized and scaled. Each metric is normalized using a logarithmic normalization and
is shown scaled between 0 and 1.

prove the search for potential BMUs when the size of objects
in the input dataset is comparable to the spacing of the Geo-
SOM grid. In the case of objects much larger than individual
nodes in the grid, limiting the search for candidate BMUs
to those within a certain distance of the object’s centroid is
likely to assign the object to a node that is within the out-
line of the object itself, decreasing the likelihood that a large
object will be clustered with other objects. To better han-
dle datasets with objects of multiple sizes, we modified the
search algorithm to consider as candidates for BMU all nodes
that directly intersect the object as well as their neighboring
nodes, expanding to further neighbors if a higher geographic
tolerance is desired. The resulting algorithm is therefore able
to group large objects with other nearby objects if they are
similar in parameter space.

The number of output neurons in the neural network (the
grid size) affects the quality of the clustering results. A coarse
grid (too few neurons) leads to clusters that are too general
and reduces the ability to find significant differences between
them. A grid that is very fine (too many neurons) overfits the
input data and results in too many clusters that do not gen-
eralize variability in the sample (Park et al., 2004; Cérégh-
ino and Park, 2009). Although there is no established method
for selecting the optimal number of neurons for a particular
classification problem, Vesanto and Alhoniemi (2000) pro-
posed that the number of nodes in an SOM should be 5

√
n,

where n is the number of samples. For this study, the num-
ber of samples is given by the number of islands in the do-
main (n= 1239), suggesting that 176 is the optimal number
of nodes. Given the geographic constraints placed on clusters
by GeoSOM and the differences between the shape of the do-

main and the grid, we selected a larger grid of 40 neurons per
side (200 neurons) as appropriate for this problem.

3.4 Hierarchical agglomerative clustering

Hierarchical agglomerative clustering builds nested clusters
starting with treating each observation as a separate cluster.
Iteratively, hierarchical agglomerative clustering then exe-
cutes the following two steps: identify clusters that are clos-
est together and merge the two most similar clusters accord-
ing to a measure of dissimilarity. This process repeats until
all clusters are merged together, creating a classification of
all islands (Fig. 5). The hierarchy of clusters is represented
as a “tree” or dendrogram (Fig. 6). The “root” of the tree is
the unique cluster that gathers all samples, and the “leaves”
are the remaining clusters with only one sample. The most
common metric of dissimilarity between clusters is Ward’s
linkage method. Ward’s method is used to minimize variance
within a hierarchical approach. Variance minimization serves
as a threshold that stops clusters from grouping together. To
enforce the formation of geographically contiguous clusters,
connectivity constraints were imposed on the agglomerative
clustering algorithm so that only adjacent nodes in the Geo-
SOM grid could be merged together. Through this operation,
the delta islands (Fig. 5) can be clustered into their adjacent
groups. The U matrix, or unified distance matrix, illustrates
the number of adjacent islands assigned to each node within
a group (Fig. 7).
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Figure 4. Matrix of correlation values for sets of metrics. Warm colors indicate pairs of metrics that are negatively correlated. Darker warm
colors indicate stronger negative correlation relationships (e.g., the convexity–dry shape factor element). Cool colors indicate pairs of metrics
that are positively correlated, with darker cool colors indicating stronger positive correlations (e.g., the average channel width–maximum
channel width element). Overall, metrics used in this analysis show moderate degrees of correlation. Also shown are the distributions for each
metric (e.g., the area–area element) as well as the scatter plot distribution of the metric relationships (e.g., the area–aspect ratio element).
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Figure 5. Island classification as a result of the hierarchical ag-
glomerative clustering method using a geographic constraint so that
only adjacent islands can be grouped. Each island in the GBMD is
classified into 12 individual clusters. The 12 individual clusters are
further grouped into six main classes using a dendrogram (Fig. 6).
The six main groups include estuarine (purples), tidal (blues), tran-
sitional (pinks), inactive (gray), fluvial (oranges), and other (green).

4 Results

4.1 Metric relationships: feature normalization and
principal component analysis

Normalizing the metrics provides insight into the variability
of spatial parameters across the delta (Fig. 3 shows the plan-
view of the normalized values for all 10 metrics). Greater
variability is observed in some parameters (e.g., aspect ratio,
dry shape factor, and number of outflow channels), whereas
logarithmic normalization reduces spatial variability in oth-
ers (e.g., island area, minimum channel width). Spatial vari-
ance in processes can be seen in these maps. For example,
average channel widths are smaller in the abandoned fluvial
plains but higher in the tidally dominated portion of the delta.
Similarly, the number of outflow channels draining each is-
land is heterogeneous with large numbers in the inactive do-
main of the delta and small numbers in the tidal plain.

As expected, patterns of island and channel morphology
broadly match the distance from major rivers or the shore-
line. The largest islands are found in the central and western
(inactive) portions of the delta, while the smallest are rapidly
changing bars and islands along major rivers. Islands in the
central and western portions of the tidal zone are homoge-
neously small and bound by small rivers, although they form

Figure 6. Dendrogram of classification and heatmap of variables.
Warm colors indicate a high median value of a given parameter rel-
ative to the delta-wide median, whereas cool values indicate a low
cluster median relative to the delta-wide median value.

complexes that are themselves bound by larger tidal chan-
nels. Convexity captures the large-scale roughness of island
silhouettes. Large islands in the central and western portions
of the delta, which formed by the gradual agglomeration of
islands bound by channels, have lower values of convexity.
Small isolated islands in tidal regions and many of those at
the active river mouth have higher values of convexity. High
values of the island aspect ratio follow the major fluvial path-
ways. Small mid-channel bars are frequently elongated as are
the bars that have accreted along the banks. Large islands
forming distributary junctions in the upstream reaches of the
delta also tend to have high aspect ratios, as well as some
islands in the tidal region.
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Figure 7. U matrix. The U matrix (unified distance matrix) visualizes the number of adjacent islands within a node. Larger dots represent a
greater number of islands, as determined by the GeoSOM method. Smaller dots represent a smaller number of islands. The colored outlines
and shaded areas correspond to the six main classes or groups.

The correlation analysis (Fig. 4) suggests that dimensional
metrics that describe the island area show a lesser correlation
to factors that scale with area (e.g., dry shape factor, number
of outflow channels per island, fractal dimension), whereas
those factors are strongly correlated with each other. These
size metrics are inversely correlated with features that repre-
sent the shape of islands (convexity), indicating that island
morphology varies systematically with island area, partic-
ularly for larger islands. The parameters that are most in-
dependent from island area represent the characteristics of
channels that bound each island (minimum, maximum, and
average channel width) or the roughness of the interface be-
tween channels and islands (solidity, aspect ratio).

4.2 Spatial variability in processes: cluster analysis

From these metric relationships, the ensemble model identi-
fied six dominant groups of islands in the GBMD according
to their morphology and connectivity. Island group names
were selected based on previous work classifying the delta
and field-based knowledge about the processes across the
system: “estuarine” (delta front), “tidal”, “fluvial”, “inac-
tive” (upper delta plain), “transitional”, and “other”. The re-
sults of the cluster analysis indicate spatial variability in pro-
cesses (Fig. 5). The patterns of the clusters fit within the
three groupings presented in previous studies: there is a clus-
ter of similar islands in the upper west (gray, inactive as in
Passalacqua et al., 2013), a cluster in the eastern delta plain
(pinks, transitional or active in Passalacqua et al., 2013), and
tidal plains to the south along the Bay of Bengal (blues and
purples, tidal and estuarine, referred to as tidal in Passalacqua
et al., 2013).

Beyond the three physiographic regions presented in Pas-
salacqua et al. (2013), other island clusters are identified us-
ing this method. Along the upper Ganges River, the bars
formed by fluvial processes create one cluster (orange, flu-

vial), while below the junction with the Brahmaputra, met-
rics are slightly different and create a separate cluster (yel-
low, fluvial). The Meghna Estuary, where the high riverine
discharges interact with the high tidal range (∼ 4 m), also
stands out with its own clusters (blues, tidal; pinks, estuar-
ine). Finally, two large islands in the West Bengal region of
India combine together to form a unique class (green, other).

These spatial groupings (Fig. 5) were clustered based on
a quantitative evaluation of their sameness relative to their
neighbors. Each main cluster is made up of smaller, initial
clusters that share similar parameter values (Fig. 6). By com-
paring cluster mean values to the delta-wide mean values,
patterns emerge. For example, in the estuarine classes, me-
dian values for minimum, average, and maximum channel
widths are much greater than the delta-wide median. The op-
posite is true in the clusters making up the transitional class,
where channel widths are low relative to the delta-wide val-
ues. Island area is also a useful parameter to explore when
looking at similarities within clusters. Inactive cluster values
are above average with large island complexes, whereas flu-
vial clusters are made up of small, and sometimes transient,
bars and islands.

The spread of data within each cluster and the relationship
to the delta-wide metrics also show that some groups have
well-constrained parameters (e.g., convexity in the estuarine
clusters), whereas others are more variable (e.g., number of
outflow channels in the inactive cluster) (Fig. 8). The sim-
ilarity observed across each of the six dominant groupings
provides evidence that the methodology used creates quanti-
tatively similar clusters.

4.3 Feature importance across clusters

Based on the set of metrics analyzed, we were able to identify
distinct morphological classes within the GBMD. In order to
understand which analyzed metric is the most indicative of

https://doi.org/10.5194/esurf-8-809-2020 Earth Surf. Dynam., 8, 809–824, 2020



818 M. Perignon et al.: Distinct morphological zones in fluvial–tidal delta

Figure 8. Violin plots of parameter values for each class. In addi-
tion to the minimum, median, and maximum values of each metric,
the full sample distribution is also shown for each of the six main
classes or groups. For example, the number of outflow channels in
the inactive class has a wide distribution, whereas convexity within
the estuarine classes has a narrower distribution.

Figure 9. Kullback–Leibler divergence between the distribution of
parameter values for islands of each class and all other islands for
each variable. A value greater than 1 indicates that the variable dif-
ferentiates the population of islands in that class from those in other
classes. A value less than 1 shows that the distribution of values
of that variable for that island class is similar to values for other
islands.

the underlying process, we use the Kullback–Leibler (KL)
divergence measure (Kullback and Leibler, 1951). We com-
pute the KL divergence between the probability density func-
tion (PDF) of each delta metric in a particular cluster and
those of all other clusters in the delta. The KL divergence
measures the importance of that particular delta metric for
identifying islands in that cluster; divergence values greater
than 1 indicate that the PDF of a delta metric for a given clus-
ter differentiates it from the other clusters in the delta, while
values less than 1 suggest that the PDF of a delta metric is
similar to the PDF for other clusters in the GBMD.

We find that channel width differentiates the estuarine
class from the rest of the delta, and dry shape factor dif-
ferentiates the inactive island complexes (Fig. 9). The other
class provides the most interesting results for feature impor-
tance where most metrics are significantly different than the
rest of the population, although quantifying the importance
of metrics in this class is challenged by the small number of
islands that belong to it. Differentiating between islands in
the fluvial, tidal, and transitional classes from the rest of the
population is more difficult, but island area shows KL diver-
gence values right above 1 for most of these classes. Islands
in the fluvial-dominated corridors are smallest, followed by
the tidally controlled region, whereas the islands in the tran-
sitional and inactive upper delta plain are distinctly larger.
Dry shape factor, number of outflow channels, and convexity
also contribute to differentiating some of these classes from
the rest of the delta, reflecting an increasing amalgamation
over the delta evolution (Fig. 9).
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5 Discussion

5.1 Island clusters

5.1.1 Estuarine (delta-front) class

Estuarine 1–3 are similar and consist of the islands and
mouth bars at the outlet of the Ganges and Brahmaputra
rivers. These islands are characterized by a wide range of
island sizes and channel widths. Most of the islands in these
classes have poorly developed internal drainage and few out-
let channels and are characterized by high values of solidity
and above-average values of convexity. Below-average val-
ues of dry shape factor and of fractal dimension indicate that
the outline of these islands is not complex. The aspect ra-
tio tends to be above average, indicating that the islands are
elongated.

Estuarine 4 is also composed of the islands at the mouth
of rivers along the Bay of Bengal. On average, these islands
are larger than other active delta-front islands. This class
specifically has low minimum channel widths but high max-
imum and average channel widths because many of these
islands are part of larger amalgamated landmasses between
tidal channels that are bisected by small channels. These is-
lands often have complex internal drainage networks and a
large number of small outlet channels. The values of solid-
ity are close to the overall average, while convexity values
are usually below average. Higher values of dry shape factor
and fractal dimension than other delta-front islands are due
to the high sinuosity of the small channels bisecting the is-
land complexes. The values of aspect ratio tend to be below
average, indicating that these islands have a more “stubby”
shape. In a report of the Bengal Survey of 1915, these is-
lands were already characterized as unusually “blunt faced”
due to the strong ocean influence (Hirst, 1916) and perhaps
waves reworking their ocean-facing edges.

5.1.2 Tidal class

Islands in the tidal class are located inland with respect to
those in the estuarine class. Tidal islands in the western por-
tion of the delta are classified as Tidal 1, while those in the
central portion of the delta are classified as Tidal 2. Tidal 1
islands are larger than average, and their outlines are com-
plex with high dry shape factors and fractal dimensions, but
they have below-average values of solidity and convexity.
Islands in the Tidal 1 class also have well-developed in-
ternal drainage networks and large numbers of outlet chan-
nels. Tidal 2 islands are generally smaller and show a range
of morphological characteristics around the average for the
delta. The two groups of islands classified as tidal are the
most similar classes of islands within the delta.

5.1.3 Fluvial class

Islands in the fluvial class are the smallest of the delta. The
most upstream fluvial islands are part of subclass Fluvial 2,
characterized by small areas, high aspect ratios, and an elon-
gated shape attributed to the dominance of unidirectional
flow. These islands show above-average values of solidity
and convexity and low values of fractal dimension, indicating
that their outlines are simple and the channels around them
are not highly sinuous. The minimum width of the channels
that bound these islands is above average, while the max-
imum and average channel widths are low, suggesting that
most channels in this region are of similar size.

Islands in the Fluvial 1 class are found from the conflu-
ence of the Ganges with the Brahmaputra to downstream of
the Meghna River. These small to medium islands are highly
elongated and have average outline complexities. The chan-
nels in this region are uniformly wide. Most of these islands
are mid-channel bars or islands formed by channel cutoffs of
distributary channels branching south from the Ganges River
between the junctions with the Brahmaputra and Meghna
rivers.

5.1.4 Transitional class

Islands in the Transitional 1 class are located within the
known backwater zone, i.e., the upstream zone in which river
flow is affected by hydrodynamic processes of the Bengal
Basin. These islands are large and have many outlet channels
and high dry shape factors. Channels in this zone are gener-
ally narrow and sinuous with above-average fractal dimen-
sion. These islands have very low values of convexity and
average to below-average values of solidity. Islands in the
Transitional 2 class are scattered diagonally between the es-
tuary of the Hooghly River to the west and the junction with
the Brahmaputra River to the east, intermixing with other is-
land classes. These islands show varied morphology but are
uniformly bound by narrow channels. These two subclasses
of islands are most similar to one another, and together they
are most similar to islands in the tidal class.

5.1.5 Inactive (upper delta plain) class

The inactive upper delta plain region contains the largest is-
lands in the delta. These islands have well-developed inter-
nal drainage networks with a high number of outlet channels.
The fractal dimension of their outlines is high, reflecting the
high sinuosity of the channels bounding islands. Their dry
shape factors are also large, indicating that the island out-
lines are complex. This region spans the northern half of
the delta bounded by the Hooghly and Ganges rivers. While
many channels in this region are narrow, the channels that
bound the islands of this class are of average width. These
islands are also characterized by very low values of solidity
and convexity due to their irregular shapes, while the aspect
ratio varies across the group.
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5.1.6 Other class

Two large islands in the West Bengal region of India form the
class other. These are morphologically similar to islands in
the inactive upper delta plain region but show lower values of
solidity and higher channel widths. When channel building is
restricted because of impoundment and reduced mobility of
channels, large nearest-edge distances and island sizes are
usually observed (Syvitski and Saito, 2007; Edmonds et al.,
2011).

5.2 Metrics importance and applicability of the approach
to other systems

The classification presented in this work does not substan-
tially differ from previous work (Passalacqua et al., 2013)
and known zonations of this area (Alam, 1996) in terms of
main behaviors, but a higher level of detail emerges from the
analysis here proposed. This additional information allows
us to capture spatial differences even among islands subject
to similar processes (e.g., the tidal and backwater zone tran-
sitional) and to characterize the full probability distribution
functions of delta morphological metrics for each class. This
information can be helpful for validating numerical modeling
results (Angamuthu et al., 2018) in terms of correspondence
between the morphology of simulated deltas and real ones.

Our classification distinguishes between islands experi-
encing a full spectrum of fluvial–tidal energy. The islands
throughout the main corridors of the Ganges and the com-
bined Ganges–Brahmaputra rivers stand out as having unique
geometric characteristics. Interestingly, the islands upstream
and downstream of the main river confluence are slightly dif-
ferent morphometrically, suggesting that the relative propor-
tion of bed load material (higher in the Brahmaputra River)
or differences in bulk grain size could play a role in setting
the bar and island shapes. Along the full gradient of tidal
energy impact, islands fall in different classes: tidal islands
that represent the dry season tidal flow extent, islands in the
transitional backwater zone, and islands in the inactive up-
per delta plain that never experience tides are all morphome-
trically distinct. Islands at the delta front are morphometri-
cally unique, too, partly due to the lack of internal drainage
and partly due to their bounding wide channels (the classic
tidal funnel shape) perhaps because wave and tidal currents
rework the immediate coastline into a blunt, stubby island
shape.

Additionally our analysis provides information on which
metric is most helpful at characterizing a given process.
Channel width, island area, and dry shape factor are iden-
tified as important metrics across most of the clusters, indi-
cating how the island boundary and the complexity of island
shape can be related to processes. Notably, the main fluvial
corridors of these large rivers have smaller islands than the
more inactive upper delta plain, testifying to the process of
amalgamation over the evolution and progradation of a delta

system. This same trend is apparent for the tidally domi-
nated zone as well, where nearshore tidal islands are (still)
smaller and the more inland tidal zone has larger agglomer-
ates. Which metrics are most effective at capturing the signa-
ture of geomorphic processes is an open question (Edmonds
et al., 2011; Liang et al., 2016b); our analysis results provide
guidance on what to measure and the relative importance of
these metrics in a delta as large and heterogeneous as the
GBMD.

Perhaps the most surprising result of our work is the lack
of a distinct signature of human intervention on the com-
puted delta metrics. The anthropogenic modifications in the
polder zone of the GBMD are known to have amplified tides
and prevented floodplain sedimentation (Pethick and Orford,
2013; Auerbach et al., 2015), yet these modifications are not
detectable in our analysis as the machine learning techniques
do not identify the polders as a separate class. This result can
be due to a variety of factors. First, the mosaic used as input
imagery is from the 1990s, and, while polders at that point
had been in place for three decades (since the 1960s), their
signature may not be visible yet. Additionally, the resolu-
tion may be too coarse to detect human modifications which
could act at subgrid scale with respect to the Landsat imagery
used here. We computed the delta metrics on the features as
extracted from the imagery; the embankments are not visi-
ble, and the island boundary and properties as extracted may
appear more natural than they actually are. Furthermore, em-
bankments are usually built to follow the natural edges and
contours of the islands; in a way, embankments “freeze” is-
land geometry in place. Other metrics such as the number of
outlet channels have been affected by human modifications in
a visible way but have not yet modified the PDF of the met-
ric such that it is distinguishable from the PDF of the natural
islands. The formation of new khas land and the siltation of
channels in the inland tidal zone (Wilson et al., 2017; Jarriel
et al., 2020) are thought to be related to poldering and thus
human-induced modification of the tidal prism, but our clus-
ter analysis also shows how infill of the channel network and
amalgamation of young islands over time is an ongoing mor-
phological change with maturation of the delta plain. Repeat-
ing this analysis on time series imagery of the GBMD with
tools capable of quantifying change (Jarriel et al., 2019) pro-
vides additional information and points to the polder region
as an area of change over the last 3 decades (Jarriel et al.,
2020). These changes may have not yet impacted the over-
all classification presented in this work; the question of what
disturbance size affects the system as a whole is an important
one which is yet to be addressed.

The approach here proposed would be applicable to any
system provided that the island and channel sample is large
enough to yield robust statistics and the application of a
machine learning approach. The actual number of islands
needed will also depend on the strength of the geomorphic
signature (signal) versus the delta’s heterogeneity (noise).
This signal-to-noise ratio may also influence the applicabil-
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ity of our method to the classification of islands from many
deltas to identify similarities and process signatures across
systems rather than within one system only, as in the analy-
sis we performed.

Because of the difficulty in extracting delta networks and
the manual labor involved, studies up to now have analyzed
metrics only in small systems or have focused on bulk met-
rics that do not capture how the characteristics of the delta
may vary spatially and temporally. We expect that further
development in automatic approaches for delta network ex-
traction (Isikdogan et al., 2017b, 2018) and for the analysis
of network change over time (Jarriel et al., 2019) will enable
similar analyses at the global scale and over time. Hierar-
chical clustering of delta islands according to their common
characteristics can also allow the identification of areas of
the landscape that would be affected by different forecasted
scenarios of future environmental conditions.

6 Conclusions

In this work, we presented a machine learning approach for
the analysis of river deltas based on remotely sensed imagery.
The approach relies on a set of delta metrics and their statis-
tical distributions to identify similarities among clusters of
islands. The approach identifies six major zones within the
delta that can be related to the processes acting on the sys-
tem. The method does not distinguish between polders and
natural islands, suggesting that at the resolution of Landsat
imagery human modifications have not yet left an imprint
on island morphology. The approach here proposed is ap-
plicable to any delta with a large enough number of islands
to compute statistical distributions and provides information
relevant to the validation of numerical models and to under-
standing which delta metrics carry the most information on a
given process.
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