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Abstract. Human impact on wildfires, a major earth system
component, remains poorly understood. While local studies
have found more fires close to settlements and roads, as-
similated charcoal records and analyses of regional fire pat-
terns from remote-sensing observations point to a decline
in fire frequency with increasing human population. Here,
we present a global analysis using three multi-year satellite-
based burned-area products combined with a parameter esti-
mation and uncertainty analysis with a non-linear model. We
show that at the global scale, the impact of increasing popula-
tion density is mainly to reduce fire frequency. Only for areas
with up to 0.1 people per km2, we find that fire frequency in-
creases by 10 to 20 % relative to its value at no population.
The results are robust against choice of burned-area data set,
and indicate that at only very few places on earth, fire fre-
quency is limited by human ignitions. Applying the results
to historical population estimates results in a moderate but
accelerating decline of global burned area by around 14 %
since 1800, with most of the decline since 1950.

1 Introduction

Wildfires are an important component of the earth system
(Bowman et al., 2009; Harrison et al., 2010) through their
impact on biogeochemical cycles (Arneth et al., 2010), ter-
restrial ecology (Bond, 2008), land surface (Bond-Lamberty
et al., 2007) and atmospheric constituents (Langmann et al.,
2009) and processes (Andreae and Merlet, 2001). Wildfires
require the ignition of sufficient amounts of dry fuel to be

started, and favourable weather conditions and fuel continu-
ity to spread. Humans influence all of these factor directly
or indirectly (Bowman et al., 2011): they are the dominant
source of ignitions except in sparsely populated regions (Ka-
sischke and Turetsky, 2006), influence fuel load by grazing
and other forms of land management (Archibald et al., 2009),
actively suppress fires or impede fires through roads, clear-
ings or sub-urban structures (Syphard et al., 2007).

Regional studies hint at a complex relationship between
fire regime characteristics and human activity. Most of the
published studies relate to fire density (number of fires per
area and time) rather than fire frequency (fractional burned
area per time interval). For example, Di Bella et al. (2006)
found for South America that agriculture suppresses fire den-
sity in arid regions, but enhances it in humid environments.
Syphard et al. (2007) found for California that fire density
was explained well by distance to the wildland–urban in-
terface, and by population density and vegetation type, but
fire frequency only by vegetation type. For Russian boreal
forests, managed forests generally had considerably higher
fire density than remote unmanaged ones (Mollicone et al.,
2006). Given its importance as an earth system variable, this
study aims at investigating exclusively the impact of popu-
lation density on fire frequency at the global scale. Fire fre-
quency is a more relevant quantity than fire density, because
it describes the probability of a point at the earth’s surface
being burnt within a given time interval.

A frequently observed pattern for fire density – as opposed
to fire frequency – is one with few fires at low population
density, a peak at intermediate levels (ca. 20–40 people per
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km2), and a rapid drop above 100 people per km2 (Syphard
et al., 2007, 2009; Archibald et al., 2009, 2010). For fire fre-
quency, however, the picture is much less clear: based on an
analysis of satellite data, Archibald et al. (2009) found that
fractional area burnt decreased for values above ca. 20 peo-
ple per km2 for Southern Hemisphere Africa, but showed
no clear trend for values below. Lehsten et al. (2010) in an
analysis for the entire African continent found that fire fre-
quency generally decreased towards higher population den-
sity if other factors were taken into account. In a regional
analysis for the Valencia province, Pausas and Fernández-
Muñoz (2012) found that an increase in annual area burnt by
at least one order of magnitude since 1940 coincided with
an 80 % decrease in rural population density, and Moreira
et al. (2001) found that reduced grazing activity as a result
of land abandonment can lead to a substantial increase in fire
activity.

Based on fire scars from tree rings and historical popula-
tion data, Guyette et al. (2002) identified distinct historical
phases regarding the way humans impact fire frequency in
a study area of the midwestern United States. Fire frequency
appeared limited by low numbers of human ignitions up to
a population density of 0.64 km−2, then reached an ignition-
saturated plateau where fuel was limiting, and then declined
again for values higher than 3.4 km−2 due to human-caused
landscape fragmentation. The area has many natural barri-
ers to fire spread, and the authors note that for more homo-
geneous landscapes, an ignition–saturated fire regime might
occur at considerably lower human population density.

Most historical fire regimes still exist today somewhere on
earth (Bowman et al., 2011), and therefore global-scale anal-
yses of satellite data of fire activity can be used to identify
distinct patterns of human impacts on fire. Such global-scale
studies based on satellite observations have found a strong
human impact on the seasonality of fire activity (Le Page
et al., 2010).

Because of the complexity of the problem, previous stud-
ies aiming at the impact of human population on fire fre-
quency have either used regression tree analysis (Archibald
et al., 2009), or generalised linear models (Lehsten et al.,
2010), together with satellite-derived burned-area products.
Here, we use a non-linear parameter estimation technique
that combines approaches from global semi-empirical fire
models (Thonicke et al., 2001) with optimisation techniques
that allow the determination of optimal parameter values
with uncertainties (Tarantola, 2005). Non-linear parameter
estimation has been applied at the global scale to hydro-
logical models (Yapo et al., 1998), a semi-empirical model
of ecosystem carbon fluxes (Kaminski et al., 2002), or
a process-based ecosystem model coupled to a model of
land surface hydrology and plant phenology (Kaminski et al.,
2012). Given a suitable mathematical formulation of the pro-
cess under investigation (e.g. of the impact of population
density on fire frequency), the optimised parameter values
with their uncertainty ranges can be used to infer not only

strength and direction of the impact, but also whether the im-
pact of the variable under investigation is significant. Here,
we consider two estimates to be significantly different if their
1 standard-deviation (1-σ ) error ranges do not overlap. As-
suming Gaussian probability distribution, this means that the
probability of the lower estimate to be larger than the higher
estimate is less than 2.5 %, and the test corresponds to a level
of significance of 97.5 %.

The main question addressed in this study is whether sim-
ilar patterns can be found at the global scale as detected in
regional studies: a regime where fire frequency is limited by
human ignitions at the low end of population density, and
a regime of fire suppression by humans with a decrease of fire
frequency towards high population density. A further, related
question is whether the association between global historical
decline of fire frequency and increasing human population as
derived from the charcoal record is consistent with present
spatial patterns of fire frequency and human population den-
sity. We will address these questions based on an analysis of
both observed and modelled spatial patterns of fire frequency
at the global scale, while developing and optimising a model
of fire frequency at annual time steps.

2 Methods

Non-linear parameter estimation ideally uses models that re-
produce the observations with a minimum number of param-
eters to be estimated. We choose a simple formulation for fire
frequency that is based entirely on reliable, globally available
data. We formulate a model based on the assumption that
wildfires require a combination of long and hot dry seasons
and a continuous cover of sufficient amounts of fuel. Fire
frequency is therefore assumed proportional to the product
of two factors, where the first is a function of some quantity
approximating fuel continuity and load, the other a function
of some indicator of fire risk. The functions are formulated
such that the first becomes zero at zero fuel load, the second
when the fire risk is equivalent to zero.

2.1 Model formulation

Unfortunately, no spatially explicit data of fuel load is avail-
able at the global scale and we have to rely on indirect mea-
sures of fuel continuity. Because most fuel is either woody
plant litter or dried grass (Stocks and Kauffman, 1997), it is
co-located with the photosynthesizing vegetation it is derived
from. Because low cover fraction of fuel impedes the spread
of fire, an area with lower vegetation cover fraction but simi-
lar climatic conditions and human impact would be expected
to have lower burned area (Spessa et al., 2005).

With vegetation cover fraction, we refer to the fractional
ground area covered by vegetation, irrespective of whether
the vegetation is active (in a green, photosynthesizing state),
dormant or dead. However, because optical remote-sensing
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techniques only reliably capture vegetation with sufficient
chlorophyll content (Gobron et al., 1997), we use the annual
maximum FAPAR (fraction of vegetation-absorbed photo-
synthetically active radiation, which assumes values between
0 and 1) as an approximate measure of vegetation fractional
cover. In an approximate model where vegetation consists
of dense non-reflecting clumps that are sparsely distributed
among exposed bare ground, FAPAR equals the shaded area
of the ground at direct sunlight, a good approximation for
vertically projected ground cover if the sun is less than 30◦

from zenith. If FAPAR equals zero, no vegetation exists
that can produce flammable plant litter. Because fires can-
not spread on bare ground without fuel, maximum annual
FAPAR = 0 can be assumed to lead to zero fire frequency.
If maximum annual FAPAR approaches 1, vegetation cover
is continuous and we assume that there is also a continuous
ground cover of various fuel types, such as dead plant litter
or dried grass.

In addition to using annual maximum FAPAR, we further
average this value over the length of the study period of sev-
eral years in order to represent an average vegetation frac-
tional cover. We assume that this mean fractional cover is
close to the mean fractional cover of fuel, which is a rea-
sonable assumption since in the absence of fire, the turnover
time of grassy or woody fuel is several years to a few decades
(Weedon et al., 2009). We therefore formulate a model where
fire frequency equals zero at zero long-term average FAPAR,
and then increases in a non-linear fashion with FAPAR in-
creasing towards its maximum value of one.

As the second, climate-related factor, we choose the an-
nual maximum of the Nesterov index computed by the
method of Thonicke et al. (2010), which avoids the use of
climate variables that typically vary strongly with local con-
ditions and are not widely available from meteorological sta-
tion data (e.g. humidity or wind speed). The cumulative index
sums dailyTmax·(Tmax−Tmin+4◦C) for days with less than
3 mm of rainfall, whereTmax andTmin are daily maximum
and minimum temperature, respectively. The daily tempera-
ture range plus 4◦C is an approximate indicator of dryness
because of the strong relationship between the diurnal tem-
perature range and atmospheric humidity. The annual max-
imum of the index a measure of the length of the dry sea-
son under hot conditions. If either precipitation is 3 mm or
higher orTmax−Tmin < 4◦C, the index is set to zero and ac-
cumulation is started anew. The approach is similar to that
used by Thonicke et al. (2001), where length of dry season is
combined with simulated soil moisture. We assume that fire
frequency reaches zero when the maximum Nesterov index
during a given fire year is zero, but increases non-linearly
with increasing annual maximum Nesterov index.

A fire year is here determined in the following way: first,
we compute for each grid cell the multi-year average of the
maximum Nesterov index for months January to December
and choose the month with the lowest value. If the lowest
value occurs more than once, we choose the earliest month

within the year. The fire year is then defined as the period
starting the following month. (For example, if January has on
average the lowest maximum Nesterov index, the fire year is
defined as February to January.)

The third factor considered is human population density,
and we choose a formulation that is able to capture many
different functional forms with only two parameters, without
any prior assumption about the direction of the impact. We
achieve this by using the logistic function logit(x) = 1/(1+

e−x), wherex is a linear function of population density. This
formulation allows a wide variety of possible responses, in-
cluding linear, exponential, or step-like, both in increasing
or declining direction (see Fig. 1). For example, if|x| is
small for all cases of population densities occurring in the
study area, we can approximate logit(x) ≈ 1/(1+ 1− x) ≈

1/2+ x/4; if x is negative and large enough for all cases,
we have logit(x) ≈ exp(x); and for very largex, logit(x) ap-
proximates a step function changing from 0 forx < 0 to 1
for x > 0. Finally, replacingx by −x reverses the direction
of the impact of population density on fire frequency.

The fourth factor considered is the dominant land cover
type within a grid cell. The impact of land cover type on fire
patterns is included through a simple multiplier. Contrary to
the other parameters of the model, which are all global, this
multiplier is differentiated according to the dominant land
cover type.

We thus define the simple global fire model (SIMFIRE) as

fi,t = a(li)F
b
i Nc

i,t logit(d + ePi), (1)

wherefi,t is fire frequency (fractional area burned per year)
for a given pixeli and fire yeart , Ni,t is the annual maxi-
mum Nesterov index,Fi the multi-year average of the annual
maximum of monthly FAPAR, andPi population density in
people per km2. b to e are global model parameters, whilea

is set according to the land cover classli at pixeli.
Whenever the optimised parameterd is small, such that

logit(d + ePi) ≈ exp(d)exp(ePi)

becomes an excellent approximation, only the product
ad(li) = a(li)·exp(d) can be constrained by observations, but
not a(li) andd separately. In those cases, we usead(li) as
a new set of parameters replacinga(li) andd, and Eq. (1)
takes on the form

fi,t = ad(li)F
b
i Nc

i,t exp(ePi). (2)

A summary of the information flow of the fire model is
shown in Fig. 1.

2.2 Data sets

Monthly FAPAR data were taken for the years 2000 to
2010 using a combination of SeaWiFS and MERIS (starting
April 2002) data products (Gobron et al., 2010) with a spatial
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Fig. 1.Schematic representing flows of information (solid lines) for
the model of fire frequency. Square boxes show several examples
for non-linear dependences that are possible depending on choice of
control parameters (dotted lines). Circles represent further complex
(Nesterov Index) or simple (“multiply”) arithmetic operations.

resolution of 0.5◦ by 0.5◦ available from the European Com-
mission Joint Research Centre athttp://fapar.jrc.ec.europa.
eu.

As climate data we use the Max Planck Institute for Bio-
geochemistry WATCH ERA Interim daily global climate
product at 0.5◦ by 0.5◦ resolution for 1999 to 2010, pro-
duced according to the method by Weedon et al. (2011).
The original ERA interim climate data (available from
http://data-portal.ecmwf.int/data/d/interim_full_daily) were
bias corrected applying the method introduced by Piani
et al. (2005), based on a fitted histogram equalisation func-
tion between the “true” and the “biased” data. Herein the fit-
ted probability density functions at each point across time
(expressed as a Gamma-distribution) are transferred to cu-
mulative density functions, which are connected via a trans-
fer function. This method was applied to all variables except
temperature. Temperature at monthly time steps is well rep-
resented by a Gaussian distribution and can be bias corrected
by a linear function, whereas the specific assumptions of the
temperature histogram matching can cause large relative er-
rors, which are addressed in detail in the daily temperature
cycle section of Piani et al. (2005).

Human population density was taken from the latest avail-
able data of HYDE 3.1, related to the year 2005 (Klein-
Goldewijk et al., 2010). This data set has a resolution of one-
sixth of a degree longitude and latitude, and was derived us-
ing Landscan population data with a resolution of 30′′ (Land-
scan, 2006). The data represent presence of humans during

the day rather than place of residence, employing ancillary
data such as the location of roads.

The grid of land cover classesli (Eqs. 1 and 2) is derived
by aggregating the IGBP land cover classes contained in the
0.5◦ by 0.5◦ version of the ISLSCP II MODIS dominant land
cover type product (Friedl et al., 2010). The data set describes
one dominant land cover type for each grid cell, instead of
a mixture of land cover types.

The following classes and aggregations are used by SIM-
FIRE (see Fig. B1):

1. Cropland/urban/natural vegetation mosaic: IGBP
classes 12 (cropland), 13 (urban and built-up land)
and 14 (cropland/natural vegetation mosaic).

2. Needleleaf forest: IGBP classes 1 (evergreen needle-
leaf forest) and 3 (deciduous needleleaf forest).

3. Broadleaf forest: IGBP classes 2 (evergreen broadleaf
forest) and 4 (deciduous broadleaf forest).

4. Mixed forest: IGBP class 5 (mixed forest).

5. Shrubland: IGBP classes 6 (closed shrubland) and 7
(open shrubland), both only if latitude< 50◦ N.

6. Savanna or grassland: IGBP classes 8 (woody sa-
vanna), 9 (savanna) and 10 (grassland).

7. Tundra: IGBP classes 6, 7 and 16 (barren), all only if
latitude≥ 50◦ N.

8. Barren or sparsely vegetated: IGBP class 16, if latitude
< 50◦ N.

Pixels assigned IGBP classes ice (11), unclassified (15) and
permanent wetland (17) were excluded.

We optimise SIMFIRE against three global burned-area
data sets: GFED3 (Giglio et al., 2010), MODIS MCD45
(Roy et al., 2008) and L3JRC (Tansey et al., 2008). The
GFED3 data are already given at a spatial resolution of 0.5◦

by 0.5◦ and with a monthly time step. L3JRC have a Plate-
Carree projection with approximately 1 km grid spacing at
the equator. This data set gives one burn date per pixel and
repeated annual periods from April to the following March.
The data were re-binned into monthly burned area at a res-
olution of 0.5◦ by 0.5◦. For MCD45, we use the Geo-TIFF
version produced by the University of Maryland (seehttp:
//modis-fire.umd.edu/BA_getdata.html), which is given in an
equal-area projection in 24 regional windows with a spa-
tial resolution of 500 m. The data describe one burn date
per pixel and month and have been derived from the origi-
nal MCD45 data by applying temporal filtering as given by
Roy et al. (2008). The filtering prevents that the same fire is
counted more than once. Similar to the L3JRC product, the
data are re-binned to monthly burned area at 0.5◦ by 0.5◦

resolution. All data sets are converted from burned area to
fire frequency using the land area of each half-degree grid
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cell. We use data from January 2000 until December 2010
(GFED3), April 2000 until November 2010 (MCD45), and
April 2000 until March 2007 (L3JRC). The MCD45 data
product has a gap in June 2001, which was filled with the
average burned area for June for all other years, separately
for each grid cell.

We include an additional burned-area data set in order to
assess the possible impact of small fires on the optimisation.
By “small fires”, we mean fires whose burn scar is too limited
in spatial extent to be detected by the satellite sensors used
to generate the global data sets, even though they can often
be detected via thermal anomalies. Randerson et al. (2012)
have developed a first algorithm to estimate the burned area
caused by those small fires using the ratio of thermal anoma-
lies within and outside of detected burn scars. Here, we use
the 10 yr (2001–2010) climatology of burned area by Ran-
derson et al. (2012) based on the GFED3 product but also
including small fires. This product shows a burned area that
is 36 % higher globally than GFED3. We used the ratio be-
tween the 2001–2010 climatologies of this combined data set
and GFED3 at each grid cell as an adjustment factor which
we apply to the GFED3 data described above. A further cap
was applied to 0.21 % of cases limiting annual burned area
to the area of the entire grid cell. This additional data set is
denoted “GFED-SF”.

2.3 Optimisation

The functionfi,t (a, . . . ,e) is optimised simultaneously for
all grid cells against one of the four global burned-area data
sets described above. One limitation of this approach is that
Eq. (1) cannot represent cases with a humped relationship
betweenf andP . Several attempts were made at optimising
a form where the logistic function was applied twice with
different parameters (i.e. as logit(d1+e1Pi) · logit(d2+e2Pi)

whered1, e1, d2 ande2 are control parameters), which would
have allowed cases with a maximum at intermediate val-
ues. However, this failed consistently because the optimi-
sation was not able to fit both sets of parameters indepen-
dently. We deliberately did not introduce any formulation
that would have pre-supposed any humped or peaked shape
of the population function in order to avoid introducing prior
assumptions. Instead, we chose a different method to in-
sure that we capture cases of peaked dependences. For each
burned-area data set, we carry out a series of optimisations
where grid cells with a population density above a certain
maximum are excluded. This maximum population density
is set to infinity (global case), as well as 100, 10, 1 and
0.1 inhabitantskm−2. In case of a human-ignition limited fire
regime (Guyette et al. 2002), we expect to find an increase
in fire frequency with population density for cases where this
variable is capped at the appropriate order of magnitude.

We also exclude areas with greater than 50 % agricul-
tural land using data by Ramankutty and Foley (1999) for
the latest year (2005) in order to minimise the impact of

agricultural waste burning on the results. The number of
grid cells used thus becomes 54 554 (global), 50 728 (up to
100), 39 676 (up to 10), 27 633 (up to 1) and 18 434 (up to
0.1 inhabitantskm−2).

With four burned-area data sets to optimise against, we
have a total of 20 optimisations. In addition, we perform
a further set of optimisations where we increase the num-
ber of regions for which parametersa or ad are differentiated
from eight (one region per land-cover grouping) to 32. Here,
land-cover groupings 1 (Cropland/urban/natural vegetation
mosaic), 5 (shrubland) and 6 (savanna) were further split into
up to nine socio-economic regions (see Appendix B, Figs. B1
and B2). This is only done for the global cases (no limit on
population density) and the data sets GFED3, MCD45 and
L3JRC, bringing the total number of optimisations to 23.

We estimate the vectorx, containing all model parameters,
by minimising the weighted model-data misfit

J (x) =
1

2

∑
i,t

(
fi,t (x) − Di,t

)2

σ 2(Di,t ) + σ 2
M

, (3)

where i and t count grid cells and fire years, respectively,
Di,t denotes observed fire frequency,σ(Di,t ) the uncertainty
of the data point (observational error) andσM the uncertainty
attributed to its model (model error). In order to prevent val-
ues below zero, the parametersb andc are represented as the
square of the corresponding elements ofx. This results in
the following mapping:a(1) = x1, . . . ,a(k) = xk, b = x2

k+1,
c = x2

k+2, d = xk+3, e = xk+4, wherek is the number of re-
gions. We start the optimisations by assuming a constant un-
certainty, so that the minimisation ofJ becomes independent
of this value, and we can postpone specification of the model
and data error. In practice, this amounts to minimising the
simple model-data misfit

8(x) =
1

2

∑
i,t

(
fi,t (x) − Di,t

)2
, (4)

The minimisation is carried out by a Levenberg–Marquhardt
generalised Newton method using an analytic expression for
the model’s Jacobian matrix (Press et al., 2007). To investi-
gate the dependence of the iterative minimisation procedure
on the choice of the starting point, we perform a 20-member
ensemble of minimisations starting from a randomly selected
point in parameter space, but always withe andd initialised
at 0 to insure the procedure is neutral with respect to the di-
rection of the population effect. If at the minimum, exp(d)

and exp(d + ePmax) are both> 10 (wherePmax is the max-
imum of Pi over all grid cells included in the optimisation),
we replace Eq. (1) by Eq. (2) usingad as a new parameter in-
stead ofa andd, and restart the minimisation from the final
point (using the dependence ofad on a andd) to assure full
convergence.

After optimisation and determination of the model and
data error, we estimate the posterior error covariance matrix
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of the model parameters by the inverse Hessian matrix of
J (x). The Hessian is the matrix of the second derivatives of
J with respect to the vectorx (Tarantola, 2005). This requires
prior determination of the model and data errors,σ andσM .
We approximate a uniform model error by the residual mis-
fit usingσ 2

M = 8(xopt)/(n − np), wherexopt is the vector of
model parameters at the smallest minimum found for the 20
repeated optimisations,n the number of data points enter-
ing Eq. (3) (via the sum overi and t), andnp the number
of parameters.n − np is the number of degrees of freedom
of the optimisation. BecauseσM turns out to be consider-
ably larger than the uncertainty of the fire frequency,σ(Di,t ),
derived from the burned-area data, (Giglio et al., 2010), we
carry out the posterior error analysis using the approxima-
tion σ(Di,t ) ≈ 0 in Eq. (3). (Only the GFED3 data set con-
tains information about observational uncertainty, but we as-
sume that the uncertainty is of similar magnitude for the other
burned-area products.)

2.4 Impact of historical population change

Based on the global sedimentary charcoal record, Marlon
et al. (2008) suggest that the earth is currently in a state of
low fire frequency as a result of global population growth.
They report a sharp downturn since the later 19th century as-
sociated with the generally negative effects of growing hu-
man activity and population on fire occurrence since that
time.

In a further application of the results of the parameter esti-
mation, we use the optimised model’s dependence on popula-
tion density and apply it to historical population data from the
same source (Klein-Goldewijk et al., 2010). With this model
application, we substitute results derived from the spatial de-
pendence of fire frequency on population density by a tempo-
ral dependence. Also, we specifically consider the impact of
population density alone, without the possible influence of a
changing climate, keeping all other factors constant. The pur-
pose is to test whether current patterns of population density
and frequency of wildfires are consistent with the hypothe-
sis put forward by Marlon et al. (2008). We avoid the use
of climate data altogether by basing our analysis on current
observed fire frequency. Assuming thatX(Pi,t ) describes the
dependence of fire frequency on population density, we com-
pute fire frequencyfi,t for the yeart at grid celli as:

fi,t = fi,obsX(Pi,t )/X(Pi,2005), (5)

wherefi,obs is current observed fire frequency at grid celli

(taken from each burned-area data set averaged over all avail-
able fire years), andPi,2005 population density for the year
2005 as used during optimisation.

We vary the parameters on whichX(Pi,t ) depends within
their uncertainty range using Monte Carlo sampling (10 000-
member ensemble), also taking into account error covariance
of the parameters. In this way, we derive median and 95 %
confidence intervals offi,t .

In the analysis described so far, we use all global burned
area, including areas dominated by agriculture. The aim,
however, is to simulate changes in wildfires, not agricultural
waste burning. We, therefore, repeat the exercise in a way
that ignores agricultural burning for those 4133 grid cells
where the crop fraction is 50 % or higher and thus assess
a hypothetical situation where those areas experience a wild-
fire regime. In order to do so, we replacefi,obs by the sim-
ulated fire frequency averaged over all fire years within Jan-
uary 2000 to December 2010 using the parameter vectorx

derived from one of the three optimisations for all popula-
tion densities with eight regions. For consistency, we use the
optimisation against the same burned-area data set as the one
that we replace. We thus re-construct a hypothetical burned
area without the presence of agriculture.

3 Results

3.1 Performance of optimisation

Each of our 23 experiments (four observational data sets
times five ranges of population density for eight regions plus
three global optimisations for 32 regions) was repeated for
20 starting points of the iterative optimisation procedure.
All 460 optimisations converged to a minimum indicated by
a norm of the gradient of the simple model-data misfit (Eq. 4)
below 10−3. The smallest minimum was found between 1
and 20 times, depending on the optimisation (see Table 1). In
one case (GFED3, up to 0.1 km−2), the Hessian matrix ofJ
(Eq. 3) was too close to singular to be inverted numerically,
and the specific case was excluded from further analysis.

Contrary to the value of8 at the minimum,σM accounts
for the number of degrees of freedom of the optimisations.
σM can therefore be used as an indicator for the goodness
of fit of the different optimisations (see Table 1). Comparing
cases with a maximum population density of 0.1 or 1 km−2

with those using a higher value, we find that the former gen-
erally show better agreement with observations. For these
low-population cases, the model fits MCD45 data best. For
the cases with maximum population density of 10 km−2 or
higher, it is L3JRC that shows the best model-data agree-
ment. The rather small differences inσM , however, are also
affected by differences in temporal coverage between the
burned-area data sets. With more degrees of freedom, the
three 32-region optimisations achieve a slightly lower resid-
ual model-data misfit than the three other global cases. The
optimisations against GFED-SF agree slightly less with the
corresponding observed fire frequency, indicated by a some-
what higher value ofσM than for example the optimisations
against GFED3.

3.2 Comparison with observed fire frequency

We first consider a comparison between the multi-year
mean fire frequency of the optimised model and the same
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Table 1.Summary of optimisations.

Number Burned- Maximum Number Smallest Norm of Times Model
of area population of data minimum gradient at smallest error
regions product density pointsn of 8 optimum minimum σM

[km−2] (space, time) found

8 GFED3 10 508 545 540 2492 6.24× 10−4 3 0.068
100 507 280 2464 2.38× 10−4 13 0.070
10 396 760 1732 3.52× 10−5 2 0.066
1 276 330 848 8.32× 10−5 1 0.055

0.1 184 340 526 1.78× 10−6 1 0.053

MCD45 10 508 507 328 2290 2.54× 10−4 2 0.067
100 471 186 2257 3.86× 10−4 2 0.069
10 367 216 1451 8.37× 10−5 1 0.063
1 254 684 514 1.19× 10−5 13 0.045

0.1 169 642 273 1.90× 10−5 20 0.040

L3JRC 10 508 329 758 1177 9.99× 10−4 3 0.060
100 306 688 1141 1.94× 10−4 17 0.061
10 239 977 836 9.35× 10−5 1 0.059
1 167 098 391 5.51× 10−6 1 0.048

0.1 111 294 208 1.43× 10−5 19 0.043

GFED-SF 10 508 545 540 4187 6.0× 10−5 3 0.088
100 507 280 4106 7.2× 10−4 4 0.090
10 396 760 3008 1.1× 10−4 3 0.087
1 276 330 1808 1.1× 10−5 3 0.081

0.1 184 340 1300 1.3× 10−4 16 0.084

32 GFED3 10 508 545 540 2192 2.02× 10−4 12 0.063
MCD45 10 508 507 328 2007 3.50× 10−4 2 0.063
L3JRC 10 508 329 758 1063 2.11× 10−4 2 0.057

burned-area data that was used during optimisation. For the
global cases, this means comparing a model that uses only
11 or 35 parameters against data from 54 554 grid cells (one
parameterad for each of the eight or 32 regions plus three
parametersb, c, d, because for all global cases, the optimisa-
tion chose Eq. 2).

SIMFIRE with optimised parameters reproduces the main
features of global fire distributions (Figs. 2–5): very high val-
ues in African and Australian savannas and grasslands, in-
termediate values in grasslands of South America and Cen-
tral Asia, moderate fire frequency for Mediterranean ecosys-
tems and the boreal zone, low values for deserts and humid-
temperate areas of North America, Europe and Asia. In
general, model-data agreement is comparable between the
burned-area data sets used.

A cross-comparison, where simulated fire frequency of the
model optimised against one data set is compared to the two
other burned-area data sets, can serve as an independent val-
idation of SIMFIRE. The first thing to observe is that the
different burned-area data sets show some large differences
between each other. For example, L3JRC shows much higher
values for the boreal zone than the other two, but lower val-

ues for the African savannas and grasslands. GFED3 and
MCD45 are more similar, but are based largely on the same
original satellite data from the MODIS sensor (Giglio et al.,
2010). The algorithms used differ, however, which has a vis-
ible impact in some regions, in particular Australia. Here,
simulations optimised against MCD45 (Fig. 3b) agree bet-
ter with observations from GFED3 (Fig. 2a) than with those
from MCD45 themselves (Fig. 3a). It must also be taken
into account that there can be considerable differences be-
tween the global products used here and regional inventories
(Chang and Song, 2009), in particular for the boreal zone in
case of L3JRC (Giglio et al., 2010).

Some model-data differences, however, stand out. One
is the region of the North American Great Plains, South-
west US and northern Mexico when using eight regions:
it consistently shows higher modelled than observed fire
frequency, with the exception of the optimisation against
GFED3 (Fig. 2b) compared to observations from L3JRC
(Fig. 4a). This regional mismatch is considerably improved
for the 32-region cases (Fig. 5).

Another general difference is that observations are more
“spotty” (i.e. show more spatial variability) than simulations,
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 1 

Figure 2. Observed (a) and modelled (b) mean fire frequency (1/yr) for GFED3 burned-area 2 

data. Model results are with optimised parameters using GFED3 observations and the 3 

standard 8 regions. Grey areas were excluded. 4 

5 

Fig. 2. Observed (a) and modelled (b) mean fire frequency (1 yr−1) for GFED3 burned-area
data. Model results are with optimised parameters using GFED3 observations and the standard
8 regions. Grey areas were excluded.
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Fig. 2.Observed(a) and modelled(b) mean fire frequency (1 yr−1)
for GFED3 burned-area data. Model results are with optimised pa-
rameters using GFED3 observations and the standard eight regions.
Grey areas were excluded.
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Figure 3: Observed (a) and modelled (b) mean fire frequency (1/yr) for MCD45 burned-area 2 

data. Model results are with optimised parameters and the standard 8 regions. 3 

4 

Fig. 3. Observed (a) and modelled (b) mean fire frequency (1 yr−1) for MCD45 burned-area
data. Model results are with optimised parameters and the standard 8 regions.
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Fig. 3.Observed(a) and modelled(b) mean fire frequency (1 yr−1)
for MCD45 burned-area data. Model results are with optimised pa-
rameters and the standard eight regions.

in particular in the humid tropics, for shrublands, and in the
boreal zone. This feature occurs when observed fire return
time (the inverse of fire frequency) is larger than the length
of the observational period of no more than 10 yr (essentially
all areas shown as blue, green or yellow). Because the opti-
misation is carried out globally, the model tries to fit a mean
fire frequency over large areas in the same land cover cat-
egory and with a similar climate, effectively smoothing out
small-scale features of the observations.
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Figure 4: Observed (a) and modelled mean fire frequency (1/yr) (b) for L3JRC burned-area 2 

data. Model results are with optimised parameters and the standard 8 regions. 3 

4 

Fig. 4. Observed (a) and modelled mean fire frequency (1 yr−1) (b) for L3JRC burned-area
data. Model results are with optimised parameters and the standard 8 regions.
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Fig. 4. Observed(a) and modelled mean fire frequency (1 yr−1)
(b) for L3JRC burned-area data. Model results are with optimised
parameters and the standard eight regions.
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Figure 5. Modelled mean fire frequency with parameters optimized against (a) GFED3, (b) 2 

MCD45 and (c) L3JRC observations, using 32 combined land-cover/socio-economic regions.  3 

4 

Fig. 5.Modelled mean fire frequency with parameters optimized against (a)GFED3, (b) MCD45
and (c) L3JRC observations, using 32 combined land-cover/socio-economic regions.
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Fig. 5. Modelled mean fire frequency with parameters optimised
against(a) GFED3,(b) MCD45 and(c) L3JRC observations, using
32 combined land-cover/socio-economic regions.

Observed and simulated fire frequency including small
fires are shown for the global case in Appendix C, Fig. C1.
For some regions, there is a marked change in the spatial
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patterns compared to GFED3 (Central Asia, Siberia, Canada)
with GFED-SF appearing more “spotty” than GFED3. Some
areas have rather large differences (Columbia, Argentina, SE
Australia), but overall the main difference is a marked in-
crease in fire frequency across most of the tropics and the
semi-arid mid-latitudes. This is reflected in a higher simu-
lated fire frequency in those areas.

3.3 Optimised parameters

The optimised land cover scalar, eithera(li) or ad(li), shows
some patterns that are consistent with the main global dis-
tribution of fire frequency previously discussed (Table 2 for
global, 1 and 0.1 km−2 maximum population density). Those
patterns are also consistent between data sets used for op-
timisation. Highest values are found for savanna/grassland
and shrubland, and low values for broadleaf forest and tun-
dra. The values for urban/crop/natural vegetation mosaic are
somewhat higher than for broadleaf forest, possibly due to
some remaining presence of agricultural fires. The value for
barren/sparsely vegetated is mostly weakly constrained (high
uncertainties) due to low burned area. There are also rather
large differences in the optimal parameters between GFED3
and MCD45 on the one hand, and L3JRC on the other.

3.4 Impact of population density on fire frequency

All optimisations with a maximum population density of
1 km−2 or higher against the standard burned-area data sets
yield an exponential decline of fire frequency with popula-
tion, using Eq. (2) with negative values ofe (Table 2, see
Table A1 of Appendix A for further cases). Because the de-
rived relative uncertainty ofe is between 1 % and 15 % (i.e.
e differs from zero by much more than two standard errors),
we infer that the negative impact of population density on fire
frequency is highly significant. Only for the two cases with
a maximum of 0.1 km−2, e is positive, but with a much larger
relative uncertainty. However,e is still significantly larger
than 0, so that in this case we infer a significant positive im-
pact of population density on fire frequency. The results for
eight regions are similar to those with 32 regions (see Ta-
ble A2). The optimisations against GFED-SF all yield an ex-
ponential decline of fire frequency as a function population
density, even for the case up to 0.1 km−2, and in each case,
the value ofe is less than zero by many standard deviations
(see Table A3).

A summary of the impact of human population density
is shown in Fig. 6, differentiated by the maximum popu-
lation density of each optimisation. All optimisations ex-
cept those with up to 0.1 inhabitants per km2 show a de-
cline in fire frequency with increasing population density.
In these cases, Fig. 6 shows the ensemble mean and 95 %
confidence interval made up of the three optimisations with
their respective posterior parameter uncertainties. For bet-
ter comparison, the displayed sensitivity of simulated fire
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Figure 6. Effect of human population on fire frequency as a function of population density 2 

after optimisation against satellite data for areas. The result of optimisations for grid cells 3 

with up to 0.1 people per km2 (thick lines) are shown separately for each burned-area data 4 

product. Here, only two of three optimisations were successful. Optimisations for up to 1, 10, 5 

100 inhabitants/km2 or for all population densities are shown as ensembles containing 6 

optimisations against all three burned-area data sets used in the analysis (thin lines, of which 7 

dashed lines: median, solid lines: 95% confidence range). All functions were normalised to 1 8 

at 0.1 inhabitants/km2. Dashed vertical lines denote the maximum population density for the 9 

different optimisations for better visualisation. 10 

11 

Fig. 6. Effect of human population on fire frequency as a function of population density after
optimisation against satellite data for areas. The result of optimisations for grid cells with up to
0.1 peoplekm−2 (thick lines) are shown separately for each burned-area data product. Here, only
two of three optimisations were successful. Optimisations for up to 1, 10, 100 inhabitantskm−2

or for all population densities are shown as ensembles containing optimisations against all
three burned-area data sets used in the analysis (thin lines, of which dashed lines: median,
solid lines: 95% confidence range). All functions were normalised to 1 at 0.1 inhabitantskm−2.
Dashed vertical lines denote the maximum population density for the different optimisations for
better visualisation.
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Fig. 6.Effect of human population on fire frequency as a function of
population density after optimisation against satellite data for areas.
The result of optimisations for grid cells with up to 0.1 peoplekm−2

(thick lines) are shown separately for each burned-area data prod-
uct. Here, only two of three optimisations were successful. Optimi-
sations for up to 1, 10, 100 inhabitantskm−2 or for all population
densities are shown as ensembles containing optimisations against
all three burned-area data sets used in the analysis (thin lines, of
which dashed lines: median, solid lines: 95 % confidence range).
All functions were normalised to 1 at 0.1 inhabitantskm−2. Dashed
vertical lines denote the maximum population density for the differ-
ent optimisations for better visualisation.

frequency to population density is shown as a normalised
function where by definition the value at 0.1 km−2 equals
1. For maximum values between 1 and 100 km−2, the in-
ferred dependence declines earlier than for the global case,
but only the result with up to 1 km−2 shows a significant dif-
ference (marked by non-overlapping confidence ranges). The
decline starts earlier when the population density was capped
at lower values, but only reaches moderate reductions in fire
frequency at the maximum allowed value. A considerable de-
cline (> 50 %) is only predicted for values between 40 and
70 inhabitantskm−2.

For the cases with up to 0.1 inhabitantskm−2, only two
optimisations were successful. The optimisation against
GFED3 did not yield an uncertainty estimate for numerical
reasons because the condition number – i.e. the ratio of the
highest and lowest eigenvalues – of the Hessian at the mini-
mum was larger than 1015. For the other two optimisations,
the uncertainty of one optimisation is much smaller than the
difference between the two. We therefore show the results
of the two optimisations separately (blue and green lines in
Fig. 6). Both show only a moderate decrease in fire frequency
towards zero population density for the most sparsely popu-
lated areas, far short of and at much lower values than the
frequently found decrease of fire density. See Appendix D
Fig. D1 for the areas that enter these optimisations.
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Table 2.Optimal parameters and uncertainties for selected cases with eight regions∗. Relative uncertainties given in brackets.

Para- All population densities Population density≤ 1km−2 Pop. density≤ 0.1km−2

meter GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC MCD45 L3JRC

b 0.905 0.876 0.551 1.334 1.644 0.726 1.971 0.900
(0.4 %) (0.5 %) (0.6 %) (0.8 %) (0.9 %) (0.9 %) (1.1 %) (1.1 %)

c 0.860 0.850 0.384 1.050 1.090 0.721 1.128 0.798
(0.3 %) (0.3 %) (0.3 %) (0.5 %) (0.5 %) (0.7 %) (0.6 %) (0.8 %)

d – – – – – – 1.00 1.84
(20.8 %) (4.8 %)

e −0.0168 −0.0101 −0.0139 −0.2417 −0.2853 −0.0884 12.2 88.8
(0.9 %) (1.1 %) (1.7 %) (3.4 %) (2.9 %) (15.6 %) (24.4 %) (38.6 %)

a(1) 0.110 0.128 0.146 0.318 0.649 0.139 0.900 0.122
(3.6 %) (2.9 %) (1.5 %) (9.3 %) (6.1 %) (6.7 %) (70.5 %) (54.5 %)

a(2) 0.095 0.046 0.137 0.427 0.349 0.318 1.332 0.633
(8.0 %) (15.7 %) (1.8 %) (6.4 %) (11.4 %) (2.3 %) (12.9 %) (3.1 %)

a(3) 0.092 0.062 0.018 0.122 0.094 0.014 0.079 0.014
(3.1 %) (4.4 %) (6.9 %) (5.2 %) (7.6 %) (16.4 %) (22.5 %) (35.0 %)

a(4) 0.127 0.116 0.227 0.438 0.644 0.336 1.225 0.598
(6.9 %) (6.9 %) (1.6 %) (10.2 %) (10.7 %) (2.5 %) (19.2 %) (3.4 %)

a(5) 0.470 0.254 0.194 1.876 2.292 0.352 7.148 0.641
(1.3 %) (1.7 %) (1.7 %) (1.9 %) (2.1 %) (2.4 %) (6.2 %) (3.0 %)

a(6) 0.889 0.809 0.300 2.036 2.765 0.437 5.611 0.660
(0.6 %) (0.6 %) (0.9 %) (1.3 %) (1.4 %) (1.7 %) (6.1 %) (2.2 %)

a(7) 0.059 0.031 0.080 0.227 0.248 0.159 0.637 0.314
(20 %) (37 %) (3 %) (16 %) (24 %) (3 %) (25 %) (4 %)

a(8) 0.113 0.054 0.073 0.891 0.775 0.032 0.241 0.019
(47 %) (82 %) (18 %) (49 %) (121 %) (115 %) (1055 %) (494 %)

∗ a(i) is parametera or, if d is absent,ad for land cover typei: 1 – cropland/urban/natural vegetation mosaic; 2 – needleleaf forest; 3 – broadleaf
forest; 4 – mixed forest; 5 – shrubland; 6 – savanna or grassland; 7 – tundra; 8 – barren or sparsely vegetated.

3.5 Sensitivity to historical population changes

In order to test whether our results are consistent with the
view that increasing human population since the 19th century
has caused a decline in fire frequency, we carry out a tem-
poral extrapolation where we combine observed burned area
from either MCD45 or L3JRC with a normalised population
function as shown in Fig. 6, combining the global case with
that up to 0.1 km−2 (sparse-population case), and keeping all
other influencing factors constant. For the purpose of consis-
tency testing, we also assume that the way population den-
sity is related to human impact on fire frequency remains the
same across time. Grid cells dominated by agricultural fields
were assigned modelled fire frequency, all others observed
values (see Methods). We use

X(Pi,t ) =

{
logit(ds+esPi,t )/logit(ds+0.1es) if Pi,t≤0.1

exp(ea(Pi,t−0.1)) else; (6)

wherei denotes grid cell,t year, andds andes are parameters
for the sparse-population case, andeg for the global case.
From Eq. (6) wie compute the historical fire frequency as
described in Sect. 2.4.

The results show a decline of fire frequency by about 14 %
since 1800 (1−1/1.16= 0.14) as a result of changes in popu-
lation density, with most of the decline happening since 1950
(Fig. 7). There is a small uncertainty range, but a larger dif-
ference between the results with different burned-area data
sets.

A remaining question is how the presence of agricultural
waste burning affects the inferred results. As a test, we re-
peated the computation without replacing observed by mod-
elled fire frequency for predominantly cropland areas. In this
case, the median value of the confidence interval for MCD45
at 1800 changed from 1.137 to 1.124, and for L3JRC also at
1800 from 1.169 to 1.150. This change is much less than the
difference between the results with the two different burned-
area products.

4 Discussion

A useful theoretical framework of fire regimes at vary-
ing stages of human settlement has been developed by
Guyette et al. (2002), where three main regimes were ob-
served: an ignition-limited one at low population density,
an ignition-saturated one where fire frequency peaks, and
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Figure 7. Inferred historical change in global burned area normalized to the 2005 value using 2 

observed burned area and historical human population density. Ranges refer to 95% 3 

confidence interval. 4 
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Fig. 7. Inferred historical change in global burned area normalized to the 2005 value using ob-
served burned area and historical human population density. Ranges refer to 95% confidence
interval.
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Fig. 7. Inferred historical change in global burned area normalised
to the 2005 value using observed burned area and historical human
population density. Ranges refer to 95 % confidence interval.

a fuel-fragmentation regime where human activity starts to
modify the landscape in a way that limits the spread of fire.
Even though we were not able to optimise a peaked function
directly, we can interpret the results with varying maximum
population density in the light of this framework of distinct
fire regimes.

As Guyette et al. (2002) note, their upper limit of
0.67 km−2 for the ignition-limited regime might be unusually
high because their study area was located in a region of Mis-
souri where lightning fires were rare and which was also dis-
sected by numerous steep ridges and streams, thus contain-
ing many natural barriers to fire spread. Below this limit, the
authors found an approximately fourfold increase in fire fre-
quency from lowest to highest recorded population density. If
there had been more lightning ignitions, the lack of ignitions
by humans would have had no impact on fire frequency. In
the absence of natural barriers, much larger fires would have
been able to spread so that very low numbers of ignitions
could have caused substantial values of fire frequency. In ei-
ther case, a human-ignition limited regime would have either
occurred at much lower population density, or not at all be-
cause lightning fire would have been sufficient to create an
ignition-saturated fire regime.

In our global analysis based on spatial instead of tem-
poral patterns, we only find an increase of about 20 % be-
tween the low end of population density and a threshold value
of 0.1 inhabitantskm−2, where the threshold is of a similar
magnitude as that found by Guyette et al. (2002). A possi-
ble explanation for the much lower increase from the low-
est end of population density to the threshold is that only
few fire-affected areas below the inferred average thresh-
old of 0.1 km−2 experience an ignition-limited fire regime.
This may be because lightning ignitions are common, or be-
cause many areas have few natural barriers and very few hu-

man or lightning ignitions are sufficient to create an ignition-
saturated regime. As a consequence, the increase in fire fre-
quency up to 0.1 inhabitantskm−2 is small. Between 0.1
and 10 km−2, the ignition saturated regime dominates, while
above 10 inhabitantskm−2 the dominant regime appears to
be one of fuel-fragmentation. These thresholds are naturally
not fixed values but carry considerable uncertainty and are
merely indicative of the order of magnitude.

Extrapolation of our results back in time yields an estimate
of 14 % for the decline in burned area since 1800, or about the
same since the late 19th century. While Marlon et al. (2008)
do not put any numbers on their observed changes in fire
frequency, inferred changes in biomass-burning emissions
based on carbon-13 isotope measurements from Antarctic
ice cores and mass balance calculations can be used as
a quantitative proxy. Of these, methane isotope data indi-
cate an approximately twofold increase since 1800 (Ferretti
et al., 2005), but carbon monoxide (CO) data a∼ 70 % de-
cline since the late 1800s (Wang et al., 2010). A further
constraint is given by van der Werf et al. (2013), who used
bottom-up calculations and atmospheric transport modelling
to conclude that the strong decline in emissions reported by
Wang et al. (2010) is difficult to reconcile with what we know
about emission sources, and that emissions were likely not
as high during historical periods. From this we conclude that
a moderate decline in fire frequency and emissions as sug-
gested by this study is in general agreement with other stud-
ies.

Most global fire models describe fire as a process that is
explicitly limited by the number of human or lightning igni-
tions (Venevsky et al., 2002; Thonicke et al., 2010; Kloster
et al., 2012; Li et al., 2012). In all four models cited, fire sup-
pression is modelled exclusively via reduction of the num-
ber of ignitions at high human population density. There is
no consideration allowing human population density to influ-
ence the average burned area per fire, and thus – by design –
no possibility of a fire-saturated regime, where the number of
ignitions can increase with no impact on the total area burned
(but an increase in number of fires). However, this study as
others before (Archibald et al., 2009; Lehsten et al., 2010),
demonstrates that fire frequency, which is proportional to
the product of number of ignitions and average burned area
per fire, shows very little tendency to decline when human
population density goes to zero. Instead, most fire-prone re-
gions appear to be either in an ignition-saturated or a fuel-
fragmentation regime. Either the very few humans present in
almost uninhabited areas can cause as much burned area as
humans in moderately populated areas, or lightning strikes
will always fill the void in ignitions if no humans are present.

One explanation for the difference in behaviour between
fire density – with a frequently observed maximum in the
range of 10 to 40 inhabitantskm−2 – and fire frequency
is that fewer humans tend to mean larger fires. Archibald
et al. (2010) found by far the largest fires in the most sparsely
populated regions. Long-term observations for Canada show
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that lightning-caused fires had on average 2.4 times higher
burned area than human-caused fires (Stocks et al., 2002)
(based on lightning causing 85 % of burned area and 70 %
of fires). The presence of humans in sparsely to moderately
populated regions (up to ca. 10 inhabitantskm−2) was found
to cause an increase in fire number and a corresponding de-
crease in fire size (Syphard et al., 2007, 2009; Archibald
et al., 2010).

This, and the ubiquitous presence of lightning-caused fires
in unpopulated areas (Stocks et al., 2002) suggest that at the
global scale, a human-ignition limited fire regime (Guyette
et al., 2002; Bowman et al., 2011) is rare or untypical. For
the purpose of global modelling of fire, this suggests that
a reasonable approach would be to assume that the spatio-
temporal density of ignitions is always sufficient to start
enough fires to burn the available fuel at some time (e.g.
Thonicke et al., 2001), and fuel availability, climate factors
and passive or active fire suppression by humans are the pri-
mary drivers of fire frequency. Alternatively, more mecha-
nistic models should not only consider the impact of humans
on the density of successful ignitions, but also on fire spread,
possibly by describing fire as a process with multiple limiting
factors (such as fuel availability, fuel moisture, fuel connect-
edness and ignitions). Even though explicit models of igni-
tions and human fire suppression can successfully reproduce
global patterns of fire frequency (Li et al., 2012), we do not
find empirical evidence that representing the processes sepa-
rately is necessary in a global model.

A possible issue with the present analysis is that the
burn scars of the smallest fires cannot currently be detected
with the medium-resolution satellite sensors used to create
currently available global burned-area data sets (Randerson
et al., 2012). If humans have the tendency to decrease the size
of fires, then these global data sets might miss burned area in
particular areas with higher population density. This effect
would be expected to counteract the derived negative rela-
tionship between the two when the small fires are included.
In fact, the inferred parametere when optimising against
GFED-SF is consistently lower compared to the GFED3 op-
timisation (Table 2 and Appendix A, Table A3). The dif-
ference decreases when the optimisation was constrained to
lower and lower population densities and reverses for a limit
of 1 inhabitantkm−2. This is in line with the assumption that
the difference ine is caused by higher fire density (smaller
fires) caused by more humans. However, the effect is not
pronounced enough to reverse the generally negative impact
of population density on fire frequency because the inferred
value ofe is still highly significantly below zero. It is also
interesting to note that for the case with the sparsest popu-
lation density and GFED-SF, the inferred relationship is still
negative (but there is no result for GFED3). However, since
the data by Randerson et al (2012) are produced by an indi-
rect method and carry a considerable degree of uncertainty,
we will use only the optimisations against the standard global
data sets for the remaining discussion.

Based on the assumption that all main fire regimes that
have occurred historically still exist on earth (Bowman et al.,
2011), we have used a sensitivity analysis to infer that the
current observed patterns of fire frequency and human popu-
lation are consistent with the view that the dominant cause of
the observed decline in global fire activity since industrialisa-
tion was the further expansion of human populations, as op-
posed to an earlier increase in fire activity presumably caused
by changes in climate (Marlon et al., 2008). We must note,
however, that this kind of space-for-time substitution has its
limitations. Low population density in some areas today may
be the result of land abandonment and the fire regime in such
cases not comparable to the pre-industrial situation preceding
population expansion. Also, phases of intensive land clearing
tend to occur in tropical forests today, but in temperate forests
during the previous centuries (Mouillot and Field, 2005).
Nevertheless, our results indicate a general consistency be-
tween the historical decline in fire frequency since the late
19th century and present patterns of fire regimes. They do
not show, however, an increase prior to this period, which
is also consistent with the view that this increase was caused
by climate change. Because the inferred impact of population
density is small compared to the large historical changes in
population density, we can expect that future climate change
will have a major impact on fire frequency, even with further
substantial changes in human population.

A remaining issue is that SIMFIRE with eight regions
overestimates fire frequency in a number of regions, such as
the shrublands and grasslands of the western US and north-
western Mexico (Figs. 2–4). A possibility is that land man-
agement in those land cover types differs substantially be-
tween major regions. Differentiating some land cover classes
by socio-economic region improves model-data agreement
substantially. However, the simple approach chosen here for
the global scale necessarily cannot capture many of the com-
plex interactions between socio-economic factors and fire ac-
tivity. Determination of parameters of a more complex model
that is able to capture some of those processes in more de-
tail remains a significant challenge. Nonetheless, we find that
even for the 32-region case, parametere remains highly sig-
nificantly below zero, leading to the same conclusion that the
dominant influence of humans on the global scale is to sup-
press fires.

The optimisation presented here was designed in a way
to capture only the explicit effect of human population den-
sity on fire frequency (Eq. 1 or 2), all other factors remain-
ing equal. However, humans also influence vegetation cover
(represented by FAPAR), creating an implicit dependence.
We tried to minimise the impact of the implicit dependence
on the results by excluding predominantly agricultural areas
where human impact of FAPAR is expected to be largest.
However, we also find that the results for a maximum den-
sity of 1 inhabitantkm−2, where human impact is expected
to be minimal, are qualitatively similar to those that include
areas with much higher population densities, including the
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Table A1. Optimal parameters and uncertainties for further cases with eight regions∗. Relative uncertainties given in brackets.

Para- Population density≤ 100km−2 Population density≤ 10km−2

meter GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC

b 0.907 0.879 0.563 0.947 0.924 0.599
(0.5 %) (0.5 %) (0.6 %) (0.5 %) (0.6 %) (0.7 %)

c 0.863 0.851 0.392 1.000 0.976 0.447
(0.3 %) (0.3 %) (0.3 %) (0.4 %) (0.4 %) (0.4 %)

d – – – – – –

e −0.0179 −0.0112 −0.0163 −0.0467 −0.0117 −0.0168
(0.9 %) (1.2 %) (1.6 %) (1.6 %) (6.0 %) (6.9 %)

a(1) 0.110 0.126 0.149 0.143 0.143 0.151
(3.8 %) (3.1 %) (1.6 %) (4.1 %) (3.5 %) (2.1 %)

a(2) 0.096 0.047 (14.3 %) 0.145 0.064 0.177
(8.3 %) (16.2 %) 0.019 (7.7 %) (15.1 %) (2.0 %)

a(3) 0.093 0.062 0.018 0.113 0.070 0.017
(3.2 %) (4.6 %) (7.2 %) (3.4 %) (4.9 %) (9.6 %)

a(4) 0.128 0.117 0.235 0.177 0.145 0.272
(7.2 %) (7.2 %) (1.6 %) (7.6 %) (7.5 %) (1.8 %)

a(5) 0.477 0.260 0.202 0.643 0.344 0.237
(1.3 %) (1.8 %) (1.7 %) (1.5 %) (1.9 %) (2.0 %)

a(6) 0.899 0.822 0.312 1.042 0.876 0.342
(0.7 %) (0.7 %) (1.0 %) (0.8 %) (0.9 %) (1.2 %)

a(7) 0.060 0.032 0.084 0.095 0.049 0.105
(21 %) (38 %) (3 %) (19 %) (34 %) (3 %)

a(8) 0.116 0.056 0.078 0.179 0.089 0.080
(48 %) (85 %) (19 %) (45 %) (74 %) (24 %)

∗ a(i) is parametera or, if d is absent,ad for land cover typei.

global cases. If, however, simulations with minimal indirect
dependence of population density on fire frequency yields
qualitatively the same results as those where such indirect
effects must be present, we must conclude that those indi-
rect dependencies are unlikely to have a major impact on the
results.

5 Conclusions

We present the first global analysis showing that the pre-
dominant effect of increasing population is to reduce fire fre-
quency, except for extremely sparsely populated areas, where
the effect is only slightly positive. Posterior uncertainty anal-
ysis and variation of remotely sensed burned area data both
indicate that the results are robust. Our findings suggest that
– at least to first order – wildfire should be considered a pro-
cess that is not limited by ignitions, but rather as one that
is profoundly modified by humans through active land man-
agement, such a deliberate burning, active fire suppression,
or landscape fragmentation. Overwhelmingly, these activities
appear to reduce rather than enhance fire frequency.

This has consequences for the way we perceive the prob-
lem of landscape fires. For example, future climate change
does not necessarily need to lead to increased fire risk be-

cause of the multitude of negative impacts from human activ-
ities. Also, models aimed at simulating future fire risk should
take into account both climate and demographic variables.
While the exact mechanisms still need to be explored, such
models should allow for the existence of ignition-saturated
fire regimes.

Appendix A

Optimal parameters for additional cases

See Tables A1 and A2. The case with 32 regions (Table A2)
is defined by a combination of the standard eight land cover
classes (Fig. B1), three of which were differentiated by the
nine socio-economic regions shown in Fig. B2.
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Table A2. Optimal parameters and uncertainties for the case with 32 regions.

Parameter Land cover GFED3 MCD45 L3JRC

b 0.916 0.790 0.520
(0.5 %) (0.5 %) (0.7 %)

c 0.488 0.448 0.222
(0.3 %) (0.3 %) (0.4 %)

d – – –

e −0.0170 −0.0117 −0.0178
(0.8 %) (0.9 %) (1.4 %)

a∗ Needleleaf 0.045 0.019 0.088
forest (7.6 %) (13.8 %) (2.1 %)

Broadleaf 0.049 0.028 0.013
forest (3.4 %) (4.9 %) (6.9 %)

Mixed 0.062 0.052 0.146
forest (6.6 %) (6.2 %) (1.9 %)

Barren or 0.019 0.008 0.046
sparsely (20.6 %) (38.2 %) (3.1 %)
vegetated

Tundra 0.089 0.032 0.058
(49.3 %) (84.8 %) (18.4 %)

∗ a denotes parametera or ad , if d is absent.

Table A2. Continued for parametera.

Cropland/urban/natural
vegetation mosaic Shrubland Savanna or grassland

Region GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC

SSA 0.391 0.298 0.200 0.321 0.133 0.076 1.061 0.870 0.373
(6 %) (6 %) (7 %) (2 %) (4 %) (4 %) (1 %) (1 %) (1 %)

MENA 0.111 0.135 0.162 0.061 0.050 0.078 0.028 0.040 0.092
(31 %) (17 %) (11 %) (50 %) (39 %) (15 %) (93 %) (44 %) (12 %)

FSU 0.026 0.047 0.093 0.020 0.042 0.049 0.119 0.084 0.053
(48 %) (18 %) (6 %) (190 %) (65 %) (34 %) (27 %) (28 %) (29 %)

EUR 0.093 0.164 0.359 0.152 0.105 0.100 0.545 0.359 0.293
(9 %) (4 %) (2 %) (16 %) (16 %) (9 %) (2 %) (2 %) (2 %)

EAS 0.071 0.073 0.477 0.015 0.008 0.127 0.190 0.115 0.172
(58 %) (34 %) (4 %) (247 %) (311 %) (8 %) (9 %) (10 %) (4 %)

SSEA 0.484 0.254 0.052 0.011 0.022 0.064 0.287 0.237 0.041
(4 %) (5 %) (22 %) (426 %) (138 %) (25 %) (5 %) (5 %) (24 %)

AUS 0.020 0.081 0.040 0.877 0.382 0.221 0.808 0.552 0.263
(53 %) (10 %) (13 %) (1 %) (2 %) (2 %) (1 %) (1 %) (2 %)

NOA 0.015 0.016 0.088 0.047 0.023 0.117 0.065 0.037 0.076
(70 %) (49 %) (5 %) (26 %) (39 %) (4 %) (11 %) (15 %) (4 %)

LAC 0.079 0.070 0.049 0.058 0.042 0.267 0.182 0.139 0.077
(5 %) (4 %) (5 %) (12 %) (12 %) (2 %) (2 %) (2 %) (2 %)
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Table A3. Optimal parameters and uncertainties for the optimisations against GFED-SF.

Para- Maximum population density in peoplekm2

meter None 100 10 1 0.1

b 0.932 0.933 0.941 1.043 1.028
(0.3 %) (0.3 %) (0.3 %) (0.3 %) (0.4 %)

c 0.916 0.917 0.979 1.017 1.007
(0.3 %) (0.2 %) (0.2 %) (0.3 %) (0.3 %)

d – – – – –

e −0.0102 −0.0116 −0.0387 −0.5107 −1.920
(1.2 %) (1.2 %) (2.1 %) (2.1 %) (7.3 %)

a(1) 0.120 0.120 0.141 0.259 0.023
(4 %) (4 %) (5 %) (14 %) (789 %)

a(2) 0.058 0.059 0.075 0.170 0.130
(15 %) (16 %) (17 %) (15 %) (28 %)

a(3) 0.112 0.113 0.123 0.103 0.054
(3 %) (3 %) (4,%) (8 %) (23 %)

a(4) 0.118 0.120 0.138 0.142 0.088
(8 %) (9 %) (11 %) (30 %) (69 %)

a(5) 0.644 0.659 0.884 1.876 2.104
(1.2 %) (1.2 %) (1.4 %) (1.8 %) (2.1 %)

a(6) 0.982 0.996 1.100 1.807 1.721
(0.6 %) (0.6 %) (0.8 %) (1.3 %) (1.5 %)

a(7) 0.064 0.064 0.095 0.162 0.133
(22 %) (22 %) (21 %) (19 %) (24 %)

a(8) 0.159 0.166 0.260 0.303 0.187
(34 %) (35 %) (32 %) (92 %) (201 %)

∗ a(i) is parametera or, if d is absent,ad for land cover typei.
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Figure B1. Land cover classes used for the standard optimizations. Regions that were 2 

excluded from the optimisation are shown in grey. 3 
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Fig. B1. Land cover classes used for the standard optimizations. Regions that were excluded
from the optimisation are shown in grey.
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Fig. B1.Land cover classes used for the standard optimisations. Re-
gions that were excluded from the optimisation are shown in grey.
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Figure B2. Definition of socio-economic regions: North America (NOA), Latin America and 2 

Caribbean (LAC), Europe excluding former Soviet Union (EUR), former Soviet Union 3 

(FSU), Middle East and North Africa (MENA), Sub-Saharan Africa (SSA), East Asia (EAS), 4 
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Fig. B2. Definition of socio-economic regions: North America (NOA), Latin America and
Caribbean (LAC), Europe excluding former Soviet Union (EUR), former Soviet Union (FSU),
Middle East and North Africa (MENA), Sub-Saharan Africa (SSA), East Asia (EAS), South and
South-East Asia (SSEA), Australia, New Zealand and Pacific Islands (AUS).
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Fig. B2. Definition of socio-economic regions: North America
(NOA), Latin America and Caribbean (LAC), Europe excluding for-
mer Soviet Union (EUR), former Soviet Union (FSU), Middle East
and North Africa (MENA), Sub-Saharan Africa (SSA), East Asia
(EAS), South and Southeast Asia (SSEA), Australia, New Zealand
and Pacific Islands (AUS).
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Fig. C1. Observed (a) and modelled (b) mean fire frequency (1 yr−1) for GFED-SF burned-
area data. Model results are with optimised parameters using GFED-SF observations and the
standard 8 regions, all population densities. Grey areas were excluded.
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Fig. C1. Observed(a) and modelled(b) mean fire frequency
(1 yr−1) for GFED-SF burned-area data. Model results are with op-
timised parameters using GFED-SF observations and the standard
eight regions, all population densities. Grey areas were excluded.
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Fig. D1. Modelled mean fire frequency with parameters optimised against (a) MODIS, (b)
L3JRC and (b) GFED-SF observations for areas with up to 0.1 inhabitantskm−2.
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Fig. D1. Modelled mean fire frequency with parameters optimised
against(a) MODIS, (b) L3JRC and(b) GFED-SF observations for
areas with up to 0.1 inhabitantskm−2.
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