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Abstract. Human impact on wildfires, a major earth system started, and favourable weather conditions and fuel continu-
component, remains poorly understood. While local studiesty to spread. Humans influence all of these factor directly
have found more fires close to settlements and roads, asr indirectly (Bowman et al., 2011): they are the dominant
similated charcoal records and analyses of regional fire patsource of ignitions except in sparsely populated regions (Ka-
terns from remote-sensing observations point to a declinesischke and Turetsky, 2006), influence fuel load by grazing
in fire frequency with increasing human population. Here, and other forms of land management (Archibald et al., 2009),
we present a global analysis using three multi-year satelliteactively suppress fires or impede fires through roads, clear-
based burned-area products combined with a parameter esiigs or sub-urban structures (Syphard et al., 2007).
mation and uncertainty analysis with a non-linear model. We Regional studies hint at a complex relationship between
show that at the global scale, the impact of increasing populafire regime characteristics and human activity. Most of the
tion density is mainly to reduce fire frequency. Only for areaspublished studies relate to fire density (humber of fires per
with up to 0.1 people per kfpwe find that fire frequency in- area and time) rather than fire frequency (fractional burned
creases by 10 to 20 % relative to its value at no populationarea per time interval). For example, Di Bella et al. (2006)
The results are robust against choice of burned-area data sdégund for South America that agriculture suppresses fire den-
and indicate that at only very few places on earth, fire fre-sity in arid regions, but enhances it in humid environments.
quency is limited by human ignitions. Applying the results Syphard et al. (2007) found for California that fire density
to historical population estimates results in a moderate butvas explained well by distance to the wildland—urban in-
accelerating decline of global burned area by around 14 %erface, and by population density and vegetation type, but
since 1800, with most of the decline since 1950. fire frequency only by vegetation type. For Russian boreal
forests, managed forests generally had considerably higher
fire density than remote unmanaged ones (Mollicone et al.,
2006). Given its importance as an earth system variable, this
1 Introduction study aims at investigating exclusively the impact of popu-
lation density on fire frequency at the global scale. Fire fre-
Wildfires are an important component of the earth systemgyency is a more relevant quantity than fire density, because
(Bowman et al., 2009; Harrison et al., 2010) through theirjt gescribes the probability of a point at the earth’s surface
impact on biogeochemical cycles (Arneth et al., 2010), ter-peing burnt within a given time interval.
restrial ecology (Bond, 2008), land surface (Bond-Lamberty A frequently observed pattern for fire density — as opposed
etal., 2007) and atmospheric constituents (Langmann et alyg fire frequency — is one with few fires at low population

2009) and processes (Andreae and Merlet, 2001). Wildfiregjensity, a peak at intermediate levels (ca. 20-40 people per
require the ignition of sufficient amounts of dry fuel to be
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km?), and a rapid drop above 100 people perk@yphard  strength and direction of the impact, but also whether the im-
et al., 2007, 2009; Archibald et al., 2009, 2010). For fire fre- pact of the variable under investigation is significant. Here,
quency, however, the picture is much less clear: based on awe consider two estimates to be significantly different if their
analysis of satellite data, Archibald et al. (2009) found that1 standard-deviation (&) error ranges do not overlap. As-
fractional area burnt decreased for values above ca. 20 pecguming Gaussian probability distribution, this means that the
ple per knf for Southern Hemisphere Africa, but showed probability of the lower estimate to be larger than the higher
no clear trend for values below. Lehsten et al. (2010) in anestimate is less than 2.5 %, and the test corresponds to a level
analysis for the entire African continent found that fire fre- of significance of 97.5 %.
quency generally decreased towards higher population den- The main question addressed in this study is whether sim-
sity if other factors were taken into account. In a regionalilar patterns can be found at the global scale as detected in
analysis for the Valencia province, Pausas and Fernandezegional studies: a regime where fire frequency is limited by
Mufioz (2012) found that an increase in annual area burnt bynuman ignitions at the low end of population density, and
at least one order of magnitude since 1940 coincided witha regime of fire suppression by humans with a decrease of fire
an 80 % decrease in rural population density, and Moreirarequency towards high population density. A further, related
et al. (2001) found that reduced grazing activity as a resultquestion is whether the association between global historical
of land abandonment can lead to a substantial increase in firdecline of fire frequency and increasing human population as
activity. derived from the charcoal record is consistent with present
Based on fire scars from tree rings and historical popula-spatial patterns of fire frequency and human population den-
tion data, Guyette et al. (2002) identified distinct historical sity. We will address these questions based on an analysis of
phases regarding the way humans impact fire frequency itboth observed and modelled spatial patterns of fire frequency
a study area of the midwestern United States. Fire frequencwt the global scale, while developing and optimising a model
appeared limited by low numbers of human ignitions up to of fire frequency at annual time steps.
a population density of 0.64 kns, then reached an ignition-
saturated plateau where fuel was limiting, and then declined
again for values higher than 3.4 kfhdue to human-caused 2 Methods
landscape fragmentation. The area has many natural barri-
ers to fire spread, and the authors note that for more homoNon-linear parameter estimation ideally uses models that re-
geneous landscapes, an ignition—saturated fire regime miglgroduce the observations with a minimum number of param-
occur at considerably lower human population density. eters to be estimated. We choose a simple formulation for fire
Most historical fire regimes still exist today somewhere on frequency that is based entirely on reliable, globally available
earth (Bowman et al., 2011), and therefore global-scale analdata. We formulate a model based on the assumption that
yses of satellite data of fire activity can be used to identify wildfires require a combination of long and hot dry seasons
distinct patterns of human impacts on fire. Such global-scaleand a continuous cover of sufficient amounts of fuel. Fire
studies based on satellite observations have found a strongequency is therefore assumed proportional to the product
human impact on the seasonality of fire activity (Le Pageof two factors, where the first is a function of some quantity
etal., 2010). approximating fuel continuity and load, the other a function
Because of the complexity of the problem, previous stud-of some indicator of fire risk. The functions are formulated
ies aiming at the impact of human population on fire fre- such that the first becomes zero at zero fuel load, the second
quency have either used regression tree analysis (Archibal@ihen the fire risk is equivalent to zero.
et al., 2009), or generalised linear models (Lehsten et al.,
2010), together with satellite-derived burned-area products2.1 Model formulation
Here, we use a non-linear parameter estimation technique
that combines approaches from global semi-empirical fireUnfortunately, no spatially explicit data of fuel load is avail-
models (Thonicke et al., 2001) with optimisation techniquesable at the global scale and we have to rely on indirect mea-
that allow the determination of optimal parameter valuessures of fuel continuity. Because most fuel is either woody
with uncertainties (Tarantola, 2005). Non-linear parametermplant litter or dried grass (Stocks and Kauffman, 1997), it is
estimation has been applied at the global scale to hydroeo-located with the photosynthesizing vegetation it is derived
logical models (Yapo et al., 1998), a semi-empirical modelfrom. Because low cover fraction of fuel impedes the spread
of ecosystem carbon fluxes (Kaminski et al., 2002), orof fire, an area with lower vegetation cover fraction but simi-
a process-based ecosystem model coupled to a model dér climatic conditions and human impact would be expected
land surface hydrology and plant phenology (Kaminski et al.,to have lower burned area (Spessa et al., 2005).
2012). Given a suitable mathematical formulation of the pro-  With vegetation cover fraction, we refer to the fractional
cess under investigation (e.g. of the impact of populationground area covered by vegetation, irrespective of whether
density on fire frequency), the optimised parameter valueghe vegetation is active (in a green, photosynthesizing state),
with their uncertainty ranges can be used to infer not onlydormant or dead. However, because optical remote-sensing
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techniques only reliably capture vegetation with sufficient within the year. The fire year is then defined as the period
chlorophyll content (Gobron et al., 1997), we use the annuaktarting the following month. (For example, if January has on
maximum FAPAR (fraction of vegetation-absorbed photo- average the lowest maximum Nesterov index, the fire year is
synthetically active radiation, which assumes values betweenefined as February to January.)
0 and 1) as an approximate measure of vegetation fractional The third factor considered is human population density,
cover. In an approximate model where vegetation consist&nd we choose a formulation that is able to capture many
of dense non-reflecting clumps that are sparsely distributediifferent functional forms with only two parameters, without
among exposed bare ground, FAPAR equals the shaded areay prior assumption about the direction of the impact. We
of the ground at direct sunlight, a good approximation for achieve this by using the logistic function logiy = 1/(1+
vertically projected ground cover if the sun is less thah 30 ¢™*), wherex is a linear function of population density. This
from zenith. If FAPAR equals zero, no vegetation exists formulation allows a wide variety of possible responses, in-
that can produce flammable plant litter. Because fires caneluding linear, exponential, or step-like, both in increasing
not spread on bare ground without fuel, maximum annualor declining direction (see Fig. 1). For example,|if is
FAPAR =0 can be assumed to lead to zero fire frequencysmall for all cases of population densities occurring in the
If maximum annual FAPAR approaches 1, vegetation coverstudy area, we can approximate lagit~ 1/(1+1—x) =~
is continuous and we assume that there is also a continuou/2 + x/4; if x is negative and large enough for all cases,
ground cover of various fuel types, such as dead plant litterwe have logitx) ~ exp(x); and for very larger, logit(x) ap-
or dried grass. proximates a step function changing from 0 fox 0 to 1

In addition to using annual maximum FAPAR, we further for x > 0. Finally, replacingx by —x reverses the direction
average this value over the length of the study period of sevef the impact of population density on fire frequency.
eral years in order to represent an average vegetation frac- The fourth factor considered is the dominant land cover
tional cover. We assume that this mean fractional cover igype within a grid cell. The impact of land cover type on fire
close to the mean fractional cover of fuel, which is a rea-patterns is included through a simple multiplier. Contrary to
sonable assumption since in the absence of fire, the turnovehe other parameters of the model, which are all global, this
time of grassy or woody fuel is several years to a few decadesultiplier is differentiated according to the dominant land
(Weedon et al., 2009). We therefore formulate a model wherecover type.
fire frequency equals zero at zero long-term average FAPAR, We thus define the simple global fire model (SIMFIRE) as
and then increases in a non-linear fashion with FAPAR in-
creasing towards its maximum value of one. e

As the second, climate-related factor, we choose the anfi.c =a(i)F;'Ni logit(d +eP;), )
nual maximum of the Nesterov index computed by the
method of Thonicke et al. (2010), which avoids the use of
climate variables that typically vary strongly with local con-
ditions and are not widely available from meteorological sta-
tion data (e.g. humidity or wind speed). The cumulative index
sums dailyTmax: (Tmax— Tmin + 4 °C) for days with less than
3mm of rainfall, whereTinax and Tryin are daily maximum
and minimum temperature, respectively. The daily tempera-
ture range plus 4C is an approximate indicator of dryness |ogit(d + ¢ P;) ~ exp(d) exple P;)
because of the strong relationship between the diurnal tem-
perature range and atmospheric humidity. The annual maxbecomes an excellent approximation, only the product
imum of the index a measure of the length of the dry sea-a4(l;) = a(l;)-exp(d) can be constrained by observations, but
son under hot conditions. If either precipitation is 3mm or nota(l;) andd separately. In those cases, we ug€l;) as
higher orTmax— Tmin < 4°C, the index is set to zero and ac- a new set of parameters replaciag;) andd, and Eq. (1)
cumulation is started anew. The approach is similar to thatakes on the form
used by Thonicke et al. (2001), where length of dry season is
combined with simulated soil moisture. We assume that fire/i:
frequency reaches zero when the maximum Nesterov index symmary of the information flow of the fire model is
during a given fire year is zero, but increases non—llnearlyshOWn in Fig. 1.
with increasing annual maximum Nesterov index.

A fire year is here determined in the following way: first, 2.2 Data sets
we compute for each grid cell the multi-year average of the
maximum Nesterov index for months January to DecembeMonthly FAPAR data were taken for the years 2000 to
and choose the month with the lowest value. If the lowest2010 using a combination of SeaWiFS and MERIS (starting
value occurs more than once, we choose the earliest montApril 2002) data products (Gobron et al., 2010) with a spatial

where f; ; is fire frequency (fractional area burned per year)
for a given pixeli and fire year, N;, is the annual maxi-
mum Nesterov indext; the multi-year average of the annual
maximum of monthly FAPAR, an@®; population density in
people per krf. b to e are global model parameters, while

is set according to the land cover cldsat pixel:.

Whenever the optimised parametkis small, such that

i =aq(l;) F} N{  exp(eP;). )
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the day rather than place of residence, employing ancillary
Temperature

— Nostoron data such as the location of roads.
Precipitation OT’ The grid of land cover classés(Eqgs. 1 and 2) is derived

by aggregating the IGBP land cover classes contained in the
= 0.5’ by 0.5 version of the ISLSCP 1l MODIS dominant land
FAPAR cover type product (Friedl et al., 2010). The data set describes
one dominant land cover type for each grid cell, instead of
a mixture of land cover types.

The following classes and aggregations are used by SIM-
FIRE (see Fig. B1):

[

Frequency

Human

Population Density

1. Cropland/urban/natural vegetation mosaic: IGBP
classes 12 (cropland), 13 (urban and built-up land)
and 14 (cropland/natural vegetation mosaic).

A

Land Cover Type

Look-up

Socio-Economic Table 2. Needleleaf forest: IGBP classes 1 (evergreen needle-
Region leaf forest) and 3 (deciduous needleleaf forest).

3. Broadleaf forest: IGBP classes 2 (evergreen broadleaf
forest) and 4 (deciduous broadleaf forest).

parameters

Fig. 1. Schematic representing flows of information (solid lines) for ] ]
the model of fire frequency. Square boxes show several examples 4. Mixed forest: IGBP class 5 (mixed forest).

for non-linear dependences that are possible depending on choice of )
control parameters (dotted lines). Circles represent further complex *- Shrubland: IGBP classes 6 (closed shrubland) and 7

(Nesterov Index) or simple (“multiply”) arithmetic operations. (open shrubland), both only if latitude 50° N.

6. Savanna or grassland: IGBP classes 8 (woody sa-
vanna), 9 (savanna) and 10 (grassland).

resolution of 0.5 by 0.5 available from the European Com- /- Tundra: IGBP classes 6, 7 and 16 (barren), all only if
mission Joint Research Centre tetp:/fapar.jrc.ec.europa. latitude> 50° N.
eu

, . . 8. Barren or sparsely vegetated: IGBP class 16, if latitude
As climate data we use the Max Planck Institute for Bio- <50 N.

geochemistry WATCH ERA Interim daily global climate
product at 0.5 by 0.5 resolution for 1999 to 2010, pro- Pixels assigned IGBP classes ice (11), unclassified (15) and
duced according to the method by Weedon et al. (2011)permanent wetland (17) were excluded.
The original ERA interim climate data (available from  We optimise SIMFIRE against three global burned-area
http://data-portal.ecmwf.int/data/d/interim_full_ddilywvere  data sets: GFED3 (Giglio et al., 2010), MODIS MCD45
bias corrected applying the method introduced by Piani(Roy et al., 2008) and L3JRC (Tansey et al., 2008). The
et al. (2005), based on a fitted histogram equalisation funcGFED3 data are already given at a spatial resolution ¢f 0.5
tion between the “true” and the “biased” data. Herein the fit- by 0.5 and with a monthly time step. L3JRC have a Plate-
ted probability density functions at each point across timeCarree projection with approximately 1 km grid spacing at
(expressed as a Gamma-distribution) are transferred to cuthe equator. This data set gives one burn date per pixel and
mulative density functions, which are connected via a trans+epeated annual periods from April to the following March.
fer function. This method was applied to all variables exceptThe data were re-binned into monthly burned area at a res-
temperature. Temperature at monthly time steps is well repolution of 0.5 by 0.5. For MCD45, we use the Geo-TIFF
resented by a Gaussian distribution and can be bias correctadtrsion produced by the University of Maryland (dwép:
by a linear function, whereas the specific assumptions of thé/modis-fire.umd.edu/BA_getdata.hmivhich is given in an
temperature histogram matching can cause large relative eequal-area projection in 24 regional windows with a spa-
rors, which are addressed in detail in the daily temperaturdial resolution of 500 m. The data describe one burn date
cycle section of Piani et al. (2005). per pixel and month and have been derived from the origi-
Human population density was taken from the latest avail-nal MCD45 data by applying temporal filtering as given by
able data of HYDE 3.1, related to the year 2005 (Klein- Roy et al. (2008). The filtering prevents that the same fire is
Goldewijk et al., 2010). This data set has a resolution of one-counted more than once. Similar to the L3JRC product, the
sixth of a degree longitude and latitude, and was derived usdata are re-binned to monthly burned area at @% 0.5
ing Landscan population data with a resolution of 80and- resolution. All data sets are converted from burned area to
scan, 2006). The data represent presence of humans duririije frequency using the land area of each half-degree grid
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cell. We use data from January 2000 until December 201(agricultural waste burning on the results. The number of
(GFED3), April 2000 until November 2010 (MCD45), and grid cells used thus becomes 54 554 (global), 50 728 (up to
April 2000 until March 2007 (L3JRC). The MCD45 data 100), 39676 (up to 10), 27633 (up to 1) and 18434 (up to
product has a gap in June 2001, which was filled with the0.1 inhabitantskm?).
average burned area for June for all other years, separately With four burned-area data sets to optimise against, we
for each grid cell. have a total of 20 optimisations. In addition, we perform
We include an additional burned-area data set in order ta further set of optimisations where we increase the num-
assess the possible impact of small fires on the optimisatiorber of regions for which parameteror a, are differentiated
By “small fires”, we mean fires whose burn scar is too limited from eight (one region per land-cover grouping) to 32. Here,
in spatial extent to be detected by the satellite sensors useldnd-cover groupings 1 (Cropland/urban/natural vegetation
to generate the global data sets, even though they can oftemosaic), 5 (shrubland) and 6 (savanna) were further split into
be detected via thermal anomalies. Randerson et al. (2012)p to nine socio-economic regions (see Appendix B, Figs. B1
have developed a first algorithm to estimate the burned areand B2). This is only done for the global cases (no limit on
caused by those small fires using the ratio of thermal anomapopulation density) and the data sets GFED3, MCD45 and
lies within and outside of detected burn scars. Here, we us&€3JRC, bringing the total number of optimisations to 23.
the 10yr (2001-2010) climatology of burned area by Ran- We estimate the vectat, containing all model parameters,
derson et al. (2012) based on the GFED3 product but alsdy minimising the weighted model-data misfit
including small fires. This product shows a burned area that )
is 36 % higher globally than GFED3. We used the ratio be- 1 Z (fi.i(x) — Diy)

- , 3
GZ(D,',Z)—FG,\ZA ®)

tween the 2001-2010 climatologies of this combined data sel’ (x) = 2
and GFED3 at each grid cell as an adjustment factor which

we apply to the GFED3 data described above. A further capvherei and+ count grid cells and fire years, respectively,
was applied to 0.21 % of cases limiting annual burned areap; , denotes observed fire frequenay,D; ;) the uncertainty
to the area of the entire grid cell. This additional data set isof the data point (observational error) ang the uncertainty

it

denoted “GFED-SF”. attributed to its model (model error). In order to prevent val-
ues below zero, the parametérandc are represented as the
2.3 Optimisation square of the corresponding elementsrofThis results in
_ _ o . the following mappinga (1) = x1, ..., a(k) = x, b=x13+1'
The function f; ;(a, ..., e) is optimised simultaneously for . leiz, d = x¢+3, € = x4, Wherek is the number of re-

all grid cells against one of the four global burned-area datgyions. \We start the optimisations by assuming a constant un-
sets described above. One Ilmltatlt_)n of this approach_ is th%ertainty, so that the minimisation dfoecomes independent
Eq. (1) cannot represent cases with a humped relationshigs thjs value, and we can postpone specification of the model

betweeny and P. Several attempts were made at optimising anq data error. In practice, this amounts to minimising the
a form where the logistic function was applied twice with gjmple model-data misfit

different parameters (i.e. as lo@i{ +e1 P;) - logit(dz +e2 P;)
whereds, e1, d2 andey are control parameters), which would 1 2
have allowed cases with a maﬁmum at in)termediate val- (x) = EZ(ﬁ,,(x) —Di ’) ’ @)
ues. However, this failed consistently because the optimi-
sation was not able to fit both sets of parameters indepenThe minimisation is carried out by a Levenberg—Marquhardt
dently. We deliberately did not introduce any formulation generalised Newton method using an analytic expression for
that would have pre-supposed any humped or peaked shajpgbe model’'s Jacobian matrix (Press et al., 2007). To investi-
of the population function in order to avoid introducing prior gate the dependence of the iterative minimisation procedure
assumptions. Instead, we chose a different method to inen the choice of the starting point, we perform a 20-member
sure that we capture cases of peaked dependences. For eamtisemble of minimisations starting from a randomly selected
burned-area data set, we carry out a series of optimisationpoint in parameter space, but always withndd initialised
where grid cells with a population density above a certainat O to insure the procedure is neutral with respect to the di-
maximum are excluded. This maximum population densityrection of the population effect. If at the minimum, &€Ap
is set to infinity (global case), as well as 100, 10, 1 andand exfid + ¢ Pmax) are both> 10 (wherePnax is the max-
0.1 inhabitantskm?. In case of a human-ignition limited fire  imum of P; over all grid cells included in the optimisation),
regime (Guyette et al. 2002), we expect to find an increaseave replace Eq. (1) by Eq. (2) usiag as a new parameter in-
in fire frequency with population density for cases where thisstead ofz andd, and restart the minimisation from the final
variable is capped at the appropriate order of magnitude.  point (using the dependence qf ona andd) to assure full

We also exclude areas with greater than 50 % agricul-convergence.
tural land using data by Ramankutty and Foley (1999) for After optimisation and determination of the model and
the latest year (2005) in order to minimise the impact of data error, we estimate the posterior error covariance matrix

it
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of the model parameters by the inverse Hessian matrix of In the analysis described so far, we use all global burned
J(x). The Hessian is the matrix of the second derivatives ofarea, including areas dominated by agriculture. The aim,
J with respect to the vectar (Tarantola, 2005). This requires however, is to simulate changes in wildfires, not agricultural
prior determination of the model and data errersandoy. waste burning. We, therefore, repeat the exercise in a way
We approximate a uniform model error by the residual mis-that ignores agricultural burning for those 4133 grid cells
fit usingod = @ (xopd)/(n — np), Wherexqpt is the vector of  where the crop fraction is 50% or higher and thus assess
model parameters at the smallest minimum found for the 20a hypothetical situation where those areas experience a wild-
repeated optimisationg, the number of data points enter- fire regime. In order to do so, we replageons by the sim-

ing Eq. (3) (via the sum over andr), andnp the number  ulated fire frequency averaged over all fire years within Jan-
of parametersu — np is the number of degrees of freedom uary 2000 to December 2010 using the parameter vactor
of the optimisation. Becaus@y turns out to be consider- derived from one of the three optimisations for all popula-
ably larger than the uncertainty of the fire frequerayp; ;), tion densities with eight regions. For consistency, we use the
derived from the burned-area data, (Giglio et al., 2010), weoptimisation against the same burned-area data set as the one
carry out the posterior error analysis using the approxima-that we replace. We thus re-construct a hypothetical burned
tion o (D; ;) ~ 0 in Eg. (3). (Only the GFED3 data set con- area without the presence of agriculture.

tains information about observational uncertainty, but we as-

sume that the uncertainty is of similar magnitude for the other

burned-area products.) 3 Results

2.4 Impact of historical population change 3.1 Performance of optimisation

Based on the global sedimentary charcoal record, MarlorFach of our 23 experiments (four observational data sets
et al. (2008) suggest that the earth is currently in a state ofimes five ranges of population density for eight regions plus

low fire frequency as a result of global population growth, three global optimisations for 32 regions) was repeated for
They report a sharp downturn since the later 19th century as20 Starting points of the iterative optimisation procedure.
sociated with the generally negative effects of growing hu-All 460 optimisations converged to a minimum indicated by
man activity and population on fire occurrence since that2 norm of the gradient of the simple model-data misfit (Eq. 4)
time. below 10°3. The smallest minimum was found between 1
In a further application of the results of the parameter esti-and 20 times, depending on the optimisation (see Table 1). In
mation, we use the optimised model's dependence on populd2ne case (GFED3, up to 0.1k, the Hessian matrix of
tion density and apply it to historical population data from the (EQ- 3) was too close to singular to be inverted numerically,
same source (Klein-Goldewijk et al., 2010). With this model @nd the specific case was excluded from further analysis.
application, we substitute results derived from the spatial de- Contrary to the value ob at the minimumey accounts
pendence of fire frequency on population density by atempofor the number of degrees of freedom of the optimisations.
ral dependence. Also, we specifically consider the impact oM €an therefore be used as an indicator for the goodness
population density alone, without the possible influence of a°f fit Of the different optimisations (see Table 1). Comparing
changing climate, keeping all other factors constant. The pur£2Ses with a maximum population density of 0.1 or TRm

pose is to test whether current patterns of population densityVith those using a higher value, we find that the former gen-
and frequency of wildfires are consistent with the hypothe-era”y show better agreement with observations. For these

sis put forward by Marlon et al. (2008). We avoid the use [0W-Population cases, the model fits MCDA45 data best. For
of climate data altogether by basing our analysis on currenfh® cases with maximum population density of 10Knor
observed fire frequency. Assuming thétP; ,) describes the higher, it is L3JRC that _shows the_best model-data agree-
dependence of fire frequency on population density, we comMent. The rather small differencesamy, however, are also

pute fire frequencyf; , for the year at grid celli as: affected by differences in temporal coverage between the
’ burned-area data sets. With more degrees of freedom, the
fit = fi.obsX (Pi.r)/ X (P;.2009), (5) three 32-region optimisations achieve a slightly lower resid-

ual model-data misfit than the three other global cases. The

where fi,ops is current observed fire frequency at grid aell  ontimisations against GFED-SF agree slightly less with the

(taken from each burned-area data set averaged over all avajly,responding observed fire frequency, indicated by a some-
able fire years), an@®; 2005 population density for the year

! 05 PPN what higher value ofy than for example the optimisations
2005 as used during optimisation. against GFED3.

We vary the parameters on whiégh(P; ;) depends within
their uncertainty range using Monte Carlo sampling (10000-3.2 Comparison with observed fire frequency
member ensemble), also taking into account error covariance
of the parameters. In this way, we derive median and 95 %AM\e first consider a comparison between the multi-year
confidence intervals of; ;. mean fire frequency of the optimised model and the same
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Table 1. Summary of optimisations.

Number Burned- Maximum Number  Smallest Norm of Times Model
of area population ofdata  minimum gradient at smallest error
regions  product density points of & optimum  minimum oM
[km~2] (space, time) found
8 GFED3 10508 545540 2492 Blx 1074 3 0.068
100 507 280 2464 38x 1074 13 0.070
10 396 760 1732 32x10°° 2 0.066
1 276330 848 B2x10°° 1 0.055
0.1 184 340 526 X8x 106 1 0.053
MCD45 10508 507 328 2290 24x 1074 2 0.067
100 471186 2257 .86x 1074 2 0.069
10 367216 1451 87x10°° 1 0.063
1 254 684 514 19x10°° 13 0.045
0.1 169642 273 9B0x 10°° 20 0.040
L3JRC 10508 329758 1177 @x 1074 3 0.060
100 306 688 1141 .94x 1074 17 0.061
10 239977 836 B5x 102 1 0.059
1 167098 391 B®1x10°° 1 0.048
0.1 111294 208 #3x 105 19 0.043
GFED-SF 10508 545540 4187 .06<107° 3 0.088
100 507 280 4106 2x1074 4 0.090
10 396 760 3008 1x104 3 0.087
1 276 330 1808 1x10°° 3 0.081
0.1 184340 1300 Bx10°% 16 0.084
32 GFED3 10508 545540 2192 .2x 1074 12 0.063
MCD45 10508 507 328 2007 .30x 1074 2 0.063
L3JRC 10508 329758 1063 .x 1074 2 0.057

burned-area data that was used during optimisation. For thees for the African savannas and grasslands. GFED3 and
global cases, this means comparing a model that uses onlyiICD45 are more similar, but are based largely on the same
11 or 35 parameters against data from 54 554 grid cells (oneriginal satellite data from the MODIS sensor (Giglio et al.,
parametew, for each of the eight or 32 regions plus three 2010). The algorithms used differ, however, which has a vis-
parameter$, ¢, d, because for all global cases, the optimisa- ible impact in some regions, in particular Australia. Here,
tion chose Eq. 2). simulations optimised against MCD45 (Fig. 3b) agree bet-
SIMFIRE with optimised parameters reproduces the mainter with observations from GFED3 (Fig. 2a) than with those
features of global fire distributions (Figs. 2-5): very high val- from MCDA45 themselves (Fig. 3a). It must also be taken
ues in African and Australian savannas and grasslands, ininto account that there can be considerable differences be-
termediate values in grasslands of South America and Centween the global products used here and regional inventories
tral Asia, moderate fire frequency for Mediterranean ecosys{Chang and Song, 2009), in particular for the boreal zone in
tems and the boreal zone, low values for deserts and humidzase of L3JRC (Giglio et al., 2010).
temperate areas of North America, Europe and Asia. In Some model-data differences, however, stand out. One
general, model-data agreement is comparable between thie the region of the North American Great Plains, South-
burned-area data sets used. west US and northern Mexico when using eight regions:
A cross-comparison, where simulated fire frequency of theit consistently shows higher modelled than observed fire
model optimised against one data set is compared to the twérequency, with the exception of the optimisation against
other burned-area data sets, can serve as an independent V&lIFED3 (Fig. 2b) compared to observations from L3JRC
idation of SIMFIRE. The first thing to observe is that the (Fig. 4a). This regional mismatch is considerably improved
different burned-area data sets show some large differenceer the 32-region cases (Fig. 5).
between each other. For example, L3JRC shows much higher Another general difference is that observations are more
values for the boreal zone than the other two, but lower val-“spotty” (i.e. show more spatial variability) than simulations,
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Fig. 2. Observeda) and modelledb) mean fire frequency (17:1) Fig. 4. Observed(a) and modelled mean fire frequency (1—99

for GFED3 burned-area data. Model results are with optimised pap) for L3JRC burned-area data. Model results are with optimised
rameters using GFED3 observations and the standard eight regiongarameters and the standard eight regions.

Grey areas were excluded.

001

180°W 90°W 0° 90°E 180°E

Fig. 3. Observeda) and modelledb) mean fire frequency (1 1)
for MCD45 burned-area data. Model results are with optimised pa-
rameters and the standard eight regions.

Q01

in particular in the humid tropics, for shrublands, and in the
boreal zone. This feature occurs when observed fire return 180°W S0 U 9038 180E

time (the inverse of fire frequency) is larger than the IengthFig. 5. Modelled mean fire frequency with parameters optimised

of the observational period of no more than 10yr (essentiallyagainst(a) GFED3,(b) MCD45 and(c) L3JRC observations, using
all areas shown as blue, green or yellow). Because the optiz3 combined land-cover/socio-economic regions.

misation is carried out globally, the model tries to fit a mean

fire frequency over large areas in the same land cover cat-

egory and with a similar climate, effectively smoothing out  opserved and simulated fire frequency including small

small-scale features of the observations. fires are shown for the global case in Appendix C, Fig. C1.
For some regions, there is a marked change in the spatial
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patterns compared to GFED3 (Central Asia, Siberia, Canada ‘ .
with GFED-SF appearing more “spotty” than GFED3. Some 1-/ =
areas have rather large differences (Columbia, Argentina, SE 0.9

Australia), but overall the main difference is a marked in- . yg*
crease in fire frequency across most of the tropics and thes orl

semi-arid mid-latitudes. This is reflected in a higher simu- % |
lated fire frequency in those areas. 206/
é 0.5f
3.3 Optimised parameters |
o ] g ——global ,
The optimised land cover scalar, eitlagl;) or a,;(/;), shows 503 up to 100/km

some patterns that are consistent with the main global dis- > ~upto 10km®

o . . . to 1/km?
tribution of fire frequency previously discussed (Table 2 for o4 _”Mpcg%:;too -
global, 1 and 0.1 km? maximum population density). Those || == L3JRC up t0 0.1/km?
_3 ‘_2 ‘4 0 1 ‘2 3
atterns are also consistent between data sets used for o 100 10 10 N 10 10 e
timisation. Highest values are found for savanna/grassland Population density [1/km?]

and shrubland, and low values for broadleaf forest and tun-
dra. The values for urban/crop/natural vegetation mosaic aré&ig. 6. Effect of human population on fire frequency as a function of

somewhat higher than for broadleaf forest, possibly due tgPopPulation density after optimisation against satellite data for areas.

some remaining presence of agricultural fires. The value for! € result of optimisations for grid cells with up to 0.1 peoplekm

barren/sparsely vegetated is mostly weakly constrained (higlfith'Ck lines) are shown separa‘_[el_y fo_r each burned-area data |_orc_>d-
L uct. Here, only two of three optimisations were successful. Optimi-
uncertainties) due to low burned area. There are also rather

| diff inth imal b GEED ations for up to 1, 10, 100 inhabitantskénor for all population
arge diiterences in the optimal parameters between ensities are shown as ensembles containing optimisations against

and MCD45 on the one hand, and L3JRC on the other. all three burned-area data sets used in the analysis (thin lines, of
) _ _ which dashed lines: median, solid lines: 95% confidence range).
3.4 Impact of population density on fire frequency All functions were normalised to 1 at 0.1 inhabitantskmDashed

vertical lines denote the maximum population density for the differ-

All optimisations with a maximum population density of entoptimisations for better visualisation.
1km~2 or higher against the standard burned-area data sets
yield an exponential decline of fire frequency with popula- . o )
tion, using Eq. (2) with negative values ef(Table 2, see frequ_ency to populano_n.(_jensny is shown as a normalised
Table Al of Appendix A for further cases). Because the de-function where by definition the value at 0.1 kéequals
rived relative uncertainty of is between 1% and 15% (i.e. 1 For maximum values between 1 and 100Kmthe in-
e differs from zero by much more than two standard errors),fe”ed dependence declines earlier than for the global case,
we infer that the negative impact of population density on fire Ut only the result with up to 1 kif shows a significant dif-
frequency is highly significant. Only for the two cases with ference (marked by non-overlapping confidence ranges). The
amaximum of 0.1 km?, e is positive, but with a much larger decline starts earlier when the population density was capped
relative uncertainty. Howevee, is still significantly larger ~ at lower values, but only reaches moderate reductions in fire
than 0, so that in this case we infer a significant positive im-frequency at the maximum allowed value. A considerable de-
pact of population density on fire frequency. The results forcline (> 50 %) is only predicted for values between 40 and
eight regions are similar to those with 32 regions (see Ta-/0inhabitantskm?. _ _
ble A2). The optimisations against GFED-SF all yield an ex-  FOr the cases with up to 0.1inhabitantskmonly two
ponential decline of fire frequency as a function populationOPtimisations were successful. The optimisation against
density, even for the case up to 0.1kfpand in each case, GFED3 did not yield an uncertainty estimate for numerical
the value ofe is less than zero by many standard deviations'€asons because the condition number — i.e. the ratio of the
(see Table A3). highest and lowest eigenvalues — of the Hessian at the mini-

A summary of the impact of human population density Mum was larger than ) For the other two optimisations,
is shown in Fig. 6, differentiated by the maximum popu- the uncertainty of one optimisation is much smaller than the
lation density of each optimisation. All optimisations ex- difference between the two. We therefore show the results
cept those with up to 0.1 inhabitants per kshow a de- of the two optimisations separately (blue and green lines in
cline in fire frequency with increasing population density. Fig. 6). Both show only a moderate decrease in fire frequency
In these cases, Fig. 6 shows the ensemble mean and 95 ¥gwards zero population density for the most sparsely popu-
confidence interval made up of the three optimisations withlated areas, far short of and at much lower values than the
their respective posterior parameter uncertainties. For betfrequently found decrease of fire density. See Appendix D
ter comparison, the displayed sensitivity of simulated fire Fig. D1 for the areas that enter these optimisations.
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Table 2. Optimal parameters and uncertainties for selected cases with eight rfedRalative uncertainties given in brackets.

Para- All population densities Population densityt km—2 Pop. density< 0.1 km—2
meter GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC MCD45 L3JRC
b 0.905 0.876 0.551 1.334 1.644 0.726 1.971 0.900
(0.4%) (0.5%) (0.6 %) (0.8%) (0.9%) (0.9%) (1.1%) (1.1%)
c 0.860 0.850 0.384 1.050 1.090 0.721 1.128 0.798
(0.3%) (0.3%) (0.3%) (0.5%) (0.5%) (0.7 %) (0.6 %) (0.8%)
d - - - - - - 1.00 1.84
(20.8%) (4.8%)
e —0.0168 —-0.0101 -0.0139 —0.2417 —-0.2853 —0.0884 12.2 88.8
(0.9%) (1.1%) (1.7 %) (3.4%) (29%) (15.6%) (24.4 %) (38.6%)
a(1) 0.110 0.128 0.146 0.318 0.649 0.139 0.900 0.122
(3.6%) (2.9%) (1.5%) (9.3%) (6.1%) (6.7 %) (70.5%) (54.5%)
a(2) 0.095 0.046 0.137 0.427 0.349 0.318 1.332 0.633
(8.0%) (15.7%) (1.8%) (6.4%) (11.4%) (2.3%) (12.9%) (3.1%)
a(3) 0.092 0.062 0.018 0.122 0.094 0.014 0.079 0.014
(3.1%) (4.4%) (6.9 %) (5.2%) (7.6%) (16.4%) (22.5%) (35.0%)
a(4) 0.127 0.116 0.227 0.438 0.644 0.336 1.225 0.598
(6.9%) (6.9%) (1.6 %) (10.2%) (10.7%) (2.5%) (19.2%) (3.4%)
a(5) 0.470 0.254 0.194 1.876 2.292 0.352 7.148 0.641
(1.3%) (1.7 %) (1.7 %) (1.9%) (2.1%) (2.4%) (6.2 %) (3.0%)
a(6) 0.889 0.809 0.300 2.036 2.765 0.437 5.611 0.660
(0.6 %) (0.6 %) (0.9%) (1.3%) (1.4 %) (1.7 %) (6.1%) (2.2%)
a(7) 0.059 0.031 0.080 0.227 0.248 0.159 0.637 0.314
(20%) (37 %) (3%) (16 %) (24 %) (3%) (25%) (4 %)
a(8) 0.113 0.054 0.073 0.891 0.775 0.032 0.241 0.019
(47 %) (82 %) (18 %) (49 %) (121%) (115%) (1055 %) (494 %)

* a(i) is parametex or, if d is absentq, for land cover type: 1 — cropland/urban/natural vegetation mosaic; 2 — needleleaf forest; 3 — broadleaf
forest; 4 — mixed forest; 5 — shrubland; 6 — savanna or grassland; 7 — tundra; 8 — barren or sparsely vegetated.

3.5 Sensitivity to historical population changes The results show a decline of fire frequency by about 14 %
since 1800 (+1/1.16 = 0.14) as aresult of changes in popu-
In order to test whether our results are consistent with theation density, with most of the decline happening since 1950
view that increasing human population since the 19th centuryFig. 7). There is a small uncertainty range, but a larger dif-
has caused a decline in fire frequency, we carry out a temference between the results with different burned-area data
poral extrapolation where we combine observed burned aregets.

from either MCD45 or L3JRC with a normalised population A remaining question is how the presence of agricultural
function as shown in Fig. 6, combining the global case withwaste burning affects the inferred results. As a test, we re-
that up to 0.1 km? (sparse-population case), and keeping all peated the computation without replacing observed by mod-
other influencing factors constant. For the purpose of consise|led fire frequency for predominantly cropland areas. In this
tency testing, we also assume that the way population dencase, the median value of the confidence interval for MCD45
sity is related to human impact on fire frequency remains theat 1800 changed from 1.137 to 1.124, and for L3JRC also at
same across time. Grid cells dominated by agricultural fields1800 from 1.169 to 1.150. This change is much less than the
were assigned modelled fire frequency, all others observedifference between the results with the two different burned-
values (see Methods). We use area products.

IOg't(ds‘i‘espl,[)/Iog't(d5+0165)
expleq(P;;—0.1))

if P,,<0.1

else; (6)

X (P = _ _
4 Discussion

where: denotes grid cell, year, andls andes are parameters A yseful theoretical framework of fire regimes at vary-
for the sparse-population case, angdfor the global case. g stages of human settlement has been developed by
From Eq. (6) wie compute the historical fire frequency asGuyette et al. (2002), where three main regimes were ob-
described in Sect. 2.4. served: an ignition-limited one at low population density,
an ignition-saturated one where fire frequency peaks, and
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man or lightning ignitions are sufficient to create an ignition-

— MODIS conf. rangé . . e
12 ~ ~ _MODIS median saturated regime. As a consequence, the increase in fire fre-
T ot anoe quency up to 0.1inhabitantskrf is small. Between 0.1
- - ~ L3JRC median 2 L . . .
S— and 10 knt<, the ignition saturated regime dominates, while
e == above 10inhabitantskn? the dominant regime appears to

be one of fuel-fragmentation. These thresholds are naturally
not fixed values but carry considerable uncertainty and are
merely indicative of the order of magnitude.

Extrapolation of our results back in time yields an estimate
of 14 % for the decline in burned area since 1800, or about the
same since the late 19th century. While Marlon et al. (2008)
do not put any numbers on their observed changes in fire
frequency, inferred changes in biomass-burning emissions
based on carbon-13 isotope measurements from Antarctic
1800 1850 1900 1950 2000 ice cores and mass balance calculations can be used as

Year a quantitative proxy. Of these, methane isotope data indi-

Fig. 7. Inferred historical change in global burned area normalisedc@t€ an approximately twofold increase since 1800 (Ferretti
to the 2005 value using observed burned area and historical huma@t al., 2005), but carbon monoxide (CO) data-&0 % de-
population density. Ranges refer to 95 % confidence interval. cline since the late 1800s (Wang et al., 2010). A further
constraint is given by van der Werf et al. (2013), who used
bottom-up calculations and atmospheric transport modelling
a fuel-fragmentation regime where human activity starts toto conclude that the strong decline in emissions reported by
modify the landscape in a way that limits the spread of fire.Wang et al. (2010) is difficult to reconcile with what we know
Even though we were not able to optimise a peaked functiorabout emission sources, and that emissions were likely not
directly, we can interpret the results with varying maximum as high during historical periods. From this we conclude that
population density in the light of this framework of distinct a moderate decline in fire frequency and emissions as sug-
fire regimes. gested by this study is in general agreement with other stud-
As Guyette et al. (2002) note, their upper limit of ies.
0.67 knm 2 for the ignition-limited regime might be unusually Most global fire models describe fire as a process that is
high because their study area was located in a region of Misexplicitly limited by the number of human or lightning igni-
souri where lightning fires were rare and which was also dis-tions (Venevsky et al., 2002; Thonicke et al., 2010; Kloster
sected by numerous steep ridges and streams, thus contaietal., 2012; Li et al., 2012). In all four models cited, fire sup-
ing many natural barriers to fire spread. Below this limit, the pression is modelled exclusively via reduction of the num-
authors found an approximately fourfold increase in fire fre-ber of ignitions at high human population density. There is
quency from lowest to highest recorded population density. Ifno consideration allowing human population density to influ-
there had been more lightning ignitions, the lack of ignitions ence the average burned area per fire, and thus — by design —
by humans would have had no impact on fire frequency. Inno possibility of a fire-saturated regime, where the number of
the absence of natural barriers, much larger fires would havégnitions can increase with no impact on the total area burned
been able to spread so that very low numbers of ignitiong(but an increase in number of fires). However, this study as
could have caused substantial values of fire frequency. In eiethers before (Archibald et al., 2009; Lehsten et al., 2010),
ther case, a human-ignition limited regime would have eitherdemonstrates that fire frequency, which is proportional to
occurred at much lower population density, or not at all be-the product of number of ignitions and average burned area
cause lightning fire would have been sufficient to create arper fire, shows very little tendency to decline when human
ignition-saturated fire regime. population density goes to zero. Instead, most fire-prone re-
In our global analysis based on spatial instead of tem-gions appear to be either in an ignition-saturated or a fuel-
poral patterns, we only find an increase of about 20 % be{fragmentation regime. Either the very few humans present in
tween the low end of population density and a threshold valuealmost uninhabited areas can cause as much burned area as
of 0.1inhabitantskm?, where the threshold is of a similar humans in moderately populated areas, or lightning strikes
magnitude as that found by Guyette et al. (2002). A possi-will always fill the void in ignitions if no humans are present.
ble explanation for the much lower increase from the low- One explanation for the difference in behaviour between
est end of population density to the threshold is that onlyfire density — with a frequently observed maximum in the
few fire-affected areas below the inferred average threshrange of 10 to 40inhabitantskri — and fire frequency
old of 0.1knT? experience an ignition-limited fire regime. is that fewer humans tend to mean larger fires. Archibald
This may be because lightning ignitions are common, or be-et al. (2010) found by far the largest fires in the most sparsely
cause many areas have few natural barriers and very few hipopulated regions. Long-term observations for Canada show

Global burned area relative to 2005
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that lightning-caused fires had on average 2.4 times higher Based on the assumption that all main fire regimes that
burned area than human-caused fires (Stocks et al., 2002)ave occurred historically still exist on earth (Bowman et al.,
(based on lightning causing 85 % of burned area and 70%2011), we have used a sensitivity analysis to infer that the
of fires). The presence of humans in sparsely to moderatelgurrent observed patterns of fire frequency and human popu-
populated regions (up to ca. 10 inhabitantsiywas found  lation are consistent with the view that the dominant cause of
to cause an increase in fire number and a corresponding dehe observed decline in global fire activity since industrialisa-
crease in fire size (Syphard et al., 2007, 2009; Archibaldtion was the further expansion of human populations, as op-
etal., 2010). posed to an earlier increase in fire activity presumably caused
This, and the ubiquitous presence of lightning-caused firedy changes in climate (Marlon et al., 2008). We must note,
in unpopulated areas (Stocks et al., 2002) suggest that at tHeowever, that this kind of space-for-time substitution has its
global scale, a human-ignition limited fire regime (Guyette limitations. Low population density in some areas today may
et al., 2002; Bowman et al., 2011) is rare or untypical. Forbe the result of land abandonment and the fire regime in such
the purpose of global modelling of fire, this suggests thatcases not comparable to the pre-industrial situation preceding
a reasonable approach would be to assume that the spatipopulation expansion. Also, phases of intensive land clearing
temporal density of ignitions is always sufficient to start tend to occur in tropical forests today, but in temperate forests
enough fires to burn the available fuel at some time (e.gduring the previous centuries (Mouillot and Field, 2005).
Thonicke et al., 2001), and fuel availability, climate factors Nevertheless, our results indicate a general consistency be-
and passive or active fire suppression by humans are the priween the historical decline in fire frequency since the late
mary drivers of fire frequency. Alternatively, more mecha- 19th century and present patterns of fire regimes. They do
nistic models should not only consider the impact of humansnot show, however, an increase prior to this period, which
on the density of successful ignitions, but also on fire spreadis also consistent with the view that this increase was caused
possibly by describing fire as a process with multiple limiting by climate change. Because the inferred impact of population
factors (such as fuel availability, fuel moisture, fuel connect-density is small compared to the large historical changes in
edness and ignitions). Even though explicit models of igni- population density, we can expect that future climate change
tions and human fire suppression can successfully reproduceill have a major impact on fire frequency, even with further
global patterns of fire frequency (Li et al., 2012), we do not substantial changes in human population.
find empirical evidence that representing the processes sepa- A remaining issue is that SIMFIRE with eight regions
rately is necessary in a global model. overestimates fire frequency in a number of regions, such as
A possible issue with the present analysis is that thethe shrublands and grasslands of the western US and north-
burn scars of the smallest fires cannot currently be detectediestern Mexico (Figs. 2—4). A possibility is that land man-
with the medium-resolution satellite sensors used to creatagement in those land cover types differs substantially be-
currently available global burned-area data sets (Randersotween major regions. Differentiating some land cover classes
etal., 2012). If humans have the tendency to decrease the sid®/ socio-economic region improves model-data agreement
of fires, then these global data sets might miss burned area isubstantially. However, the simple approach chosen here for
particular areas with higher population density. This effectthe global scale necessarily cannot capture many of the com-
would be expected to counteract the derived negative relaplex interactions between socio-economic factors and fire ac-
tionship between the two when the small fires are includedtivity. Determination of parameters of a more complex model
In fact, the inferred parameter when optimising against that is able to capture some of those processes in more de-
GFED-SF is consistently lower compared to the GFED3 op-tail remains a significant challenge. Nonetheless, we find that
timisation (Table 2 and Appendix A, Table A3). The dif- even for the 32-region case, parameteemains highly sig-
ference decreases when the optimisation was constrained tuficantly below zero, leading to the same conclusion that the
lower and lower population densities and reverses for a limitdominant influence of humans on the global scale is to sup-
of LinhabitantknT2. This is in line with the assumption that press fires.
the difference ire is caused by higher fire density (smaller  The optimisation presented here was designed in a way
fires) caused by more humans. However, the effect is noto capture only the explicit effect of human population den-
pronounced enough to reverse the generally negative impadity on fire frequency (Eq. 1 or 2), all other factors remain-
of population density on fire frequency because the inferredng equal. However, humans also influence vegetation cover
value ofe is still highly significantly below zero. It is also (represented by FAPAR), creating an implicit dependence.
interesting to note that for the case with the sparsest popuwe tried to minimise the impact of the implicit dependence
lation density and GFED-SF, the inferred relationship is still on the results by excluding predominantly agricultural areas
negative (but there is no result for GFED3). However, sincewhere human impact of FAPAR is expected to be largest.
the data by Randerson et al (2012) are produced by an indiHowever, we also find that the results for a maximum den-
rect method and carry a considerable degree of uncertaintyity of 1 inhabitantkm?, where human impact is expected
we will use only the optimisations against the standard globako be minimal, are qualitatively similar to those that include
data sets for the remaining discussion. areas with much higher population densities, including the
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Table Al. Optimal parameters and uncertainties for further cases with eight régiRekative uncertainties given in brackets.

Para-  Population density 100knT 2 Population density 10 km—2
meter GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC
b 0.907 0.879 0.563 0.947 0.924 0.599
(05%) (05%) (0.6%) (05%) (0.6%) (0.7%)
c 0.863 0.851 0.392 1.000 0.976 0.447
03%) (03%)  (0.3%) 04%) (04%)  (0.4%)
d — — — — — —
e —-0.0179 -0.0112 -0.0163 —0.0467 —-0.0117 -0.0168
09%) (12%) (L.6%) (1.6%) (6.0%) (6.9%)
a(l) 0.110 0.126 0.149 0.143 0.143 0.151
(B.8%) (31%) (L.6%) 4.1%) (35%) (2.1%)
a@ 0096 0047  (14.3%) 0145 0064  0.177
83%) (162%) 0.019 (7.7%) (151%) (2.0%)
a(3) 0.093 0.062 0.018 0.113 0.070 0.017
(B2%) (46%) (7.2%) (B4%) (49%) (9.6%)
a(4) 0.128 0.117 0.235 0.177 0.145 0.272
(72%) (72%) (L.6%) (7.6%) (75%) (L.8%)
a(b) 0.477 0.260 0.202 0.643 0.344 0.237
1.3%) (1.8%) (L7%) (15%) (1.9%) (2.0%)
a(6) 0.899 0.822 0.312 1.042 0.876 0.342
07%) (0.7%) (LO%) 08%) (0.9%) (L.2%)
a(7) 0.060 0.032 0.084 0.095 0.049 0.105
@1%) (38%) (3%) (19%) (34%)  (3%)
a(8) 0.116 0.056 0.078 0.179 0.089 0.080
48%)  (85%)  (19%) 45%)  (74%)  (24%)

* a(i) is parametex or, if d is absentq, for land cover type.

global cases. If, however, simulations with minimal indirect cause of the multitude of negative impacts from human activ-
dependence of population density on fire frequency yieldsties. Also, models aimed at simulating future fire risk should

qualitatively the same results as those where such indirediake into account both climate and demographic variables.
effects must be present, we must conclude that those indi¥hile the exact mechanisms still need to be explored, such
rect dependencies are unlikely to have a major impact on thenodels should allow for the existence of ignition-saturated
results. fire regimes.

5 Conclusions
Appendix A

We present the first global analysis showing that the pre- N
dominant effect of increasing population is to reduce fire fre- OPtimal parameters for additional cases

quency, except for extremely sparsely populated areas, where . )
the effect is only slightly positive. Posterior uncertainty anal- S€€ Tables Al and A2. The case with 32 regions (Table A2)

ysis and variation of remotely sensed burned area data botl$ defined by a combination of the standard eight land cover
indicate that the results are robust. Our findings suggest thatlasses (Fig. B1), three of which were differentiated by the
— at least to first order — wildfire should be considered a pro-Nine socio-economic regions shown in Fig. B2.
cess that is not limited by ignitions, but rather as one that
is profoundly modified by humans through active land man-
agement, such a deliberate burning, active fire suppression,
or landscape fragmentation. Overwhelmingly, these activities
appear to reduce rather than enhance fire frequency.
This has consequences for the way we perceive the prob-
lem of landscape fires. For example, future climate change
does not necessarily need to lead to increased fire risk be-
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Table A2. Optimal parameters and uncertainties for the case with 32 regions.

Parameter Land cover GFED3 MCD45 L3JRC

b 0.916 0.790 0.520
(0.5%) (0.5%) (0.7 %)
c 0.488 0.448 0.222
(0.3%) (0.3%) (0.4%)
d — — —
e —0.0170 -0.0117 -0.0178
(0.8%) (0.9%) (1.4 %)
a* Needleleaf 0.045 0.019 0.088
forest (7.6%) (13.8%) (2.1%)
Broadleaf 0.049 0.028 0.013
forest (3.4%) (4.9%) (6.9%)
Mixed 0.062 0.052 0.146
forest (6.6 %) (6.2 %) (1.9%)

Barren or 0.019 0.008 0.046
sparsely (20.6%) (38.2%) (3.1%)
vegetated

Tundra 0.089 0.032 0.058
(49.3%) (84.8%) (18.4%)

* a denotes parameteror ay, if d is absent.

Table A2. Continued for parameter.

Cropland/urban/natural

vegetation mosaic Shrubland Savanna or grassland
Region GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC GFED3 MCD45 L3JRC
SSA 0.391 0.298 0.200 0.321 0.133 0.076 1.061 0.870 0.373
(6%) 6%)  (7%) (2%) (4%)  (4%) (1%) 1%)  (1%)
MENA  0.111 0.135 0.162 0.061 0.050 0.078 0.028 0.040 0.092
(B31%) (17%) (11%) (50%) (39%) (15%) (93%) (44%) (12%)
FSU 0.026 0.047 0.093 0.020 0.042 0.049 0.119 0.084 0.053
(48%) (18%)  (6%) (190%) (65%) (34%) (27%) (28%) (29%)
EUR 0.093 0.164 0.359 0.152 0.105 0.100 0.545 0.359 0.293
(9%) (4%) (2%) (16 %) (16 %) (9%) (2%) (2%) (2%)
EAS 0.071 0.073 0.477 0.015 0.008 0.127 0.190 0.115 0.172
(58%) (34%) (4%) (247%) (311%) (8%) (9%) (10%) (4%)
SSEA 0.484 0.254 0.052 0.011 0.022 0.064 0.287 0.237 0.041
(4%) 5%  (22%) (426%) (138%) (25%) (5%) 5%) (24%)
AUS 0.020 0.081 0.040 0.877 0.382 0.221 0.808 0.552 0.263
(53 %) (10%) (13%) (1%) (2%) (2%) (1%) (1%) (2%)
NOA 0.015 0.016 0.088 0.047 0.023 0.117 0.065 0.037 0.076
(70%)  (49%) (5%) (26%) (39%) (4%) (11%) (15%) (4%)
LAC 0.079 0.070 0.049 0.058 0.042 0.267 0.182 0.139 0.077
(5%) (4 %) (5%) (12%) (12%) (2%) (2%) (2 %) (2 %)
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Table A3. Optimal parameters and uncertainties for the optimisations against GFED-SF.

Para- Maximum population density in people?km

meter None 100 10 1 0.1

b 0.932 0.933 0.941 1.043 1.028
(0.3%) (0.3%) (0.3%) (0.3%) (0.4 %)

c 0.916 0.917 0.979 1.017 1.007
(0.3%) (0.2%) (0.2%) (0.3%) (0.3%)

d — — — — _

e —-0.0102 -0.0116 -0.0387 -0.5107 -1.920

12%) (1.2%) (21%) (2.1%) (7.3%)

a(l) 0.120 0.120 0.141 0.259  0.023
(4%) (4%) (5%)  (14%) (789%)

a() 0.058 0.059 0.075 0.170  0.130
(15%)  (16%) (17%) (15%) (28%)

a(3) 0.112 0.113 0.123 0.103  0.054
(3%) (3%) (4,%) (8%)  (23%)

a(4) 0.118 0.120 0.138 0.142  0.088
(8 %) Q%)  (11%) (30%)  (69%)

a(5) 0.644 0.659 0.884 1.876  2.104

(12%) (1.2%) (1.4%) (1.8%) (2.1%)

a(6) 0.982 0.996 1.100 1.807 1721

(0.6%) (0.6%) (0.8%) (1.3%) (1.5%)

a(?) 0.064 0.064 0.095 0.162  0.133
(22%)  (22%)  (21%) (19%) (24%)

a(8) 0.159 0.166 0.260 0.303  0.187

(34%)  (35%)  (32%)  (92%) (201%)

* a(i) is parameten or, if d is absentq, for land cover type.

Appendix B

90°Nr T
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45°5 - . Wi

45°S- & 180°W 90°W 0° 90°E 180°E
180°W 90°W 0° 90°E 180°E Fig. B2. Definition of socio-economic regions: North America

(NOA), Latin America and Caribbean (LAC), Europe excluding for-
mer Soviet Union (EUR), former Soviet Union (FSU), Middle East
Savanna or Grassland and North Africa (MENA), Sub-Saharan Africa (SSA), East Asia
Tundra (EAS), South and Southeast Asia (SSEA), Australia, New Zealand
and Pacific Islands (AUS).

. Cropland/urban/natural vegetation mosaic Shrubland

. Needleleaf forest

Broadleaf forest

Izl Mixed forest

HEE -

Barren or Sparsely Vegetated

Fig. B1.Land cover classes used for the standard optimisations. Re-
gions that were excluded from the optimisation are shown in grey.
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