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Abstract. We present an analytical model for assessing the aerodynamic performance of a wind turbine rotor
through a different parametrization of the classical blade element momentum (BEM) model. The model is named
the Radially Independent Actuator Disc (RIAD) model, and it establishes an analytical relationship between the
local thrust loading and the local power, known as the local-thrust coefficient and the local-power coefficient
respectively. The model has a direct physical interpretation, showing the contribution for each of the three losses:
wake rotation loss, tip loss and viscous loss. The gradient for RIAD is found through the use of the complex step
method, and power optimization is used to show how easily the method can be used for rotor optimization.
The main benefit of RIAD is the ease with which it can be applied for rotor optimization and especially load
constraint power optimization as described in Loenbaek et al. (2021). The relationship between the RIAD input
and the rotor chord and twist is established, and it is validated against a BEM solver.

1 Introduction

Wind turbine rotors are with their increasing size subject to
continuous optimization, with the overall objective of reduc-
ing the cost of energy. Such optimizations are very complex
because both the aerodynamic and the structural performance
need to be included in the optimization setup. Combining
both aerodynamics and structural performance has shown
very promising trends indicating that a further cost reduc-
tion is possible; see, e.g., Perez-Moreno et al. (2016), Zahle
et al. (2015) and Bottasso et al. (2012). However, these opti-
mization studies build on existing aerodynamic and aeroelas-
tic tools, include numerous design variables and constraints,
and can be very complex. Thus, it is challenging to make
a very general optimization study to map the design space.
That is the reason for investigating alternative methods and
models to ease the exploration of optimal rotor designs.

The development of aerodynamic models for wind tur-
bines is closely linked to that of propellers and helicopters.
The first theoretical model for predicting the aerodynamic
performance of a rotor was the so-called 1D momentum the-
ory developed by Betz (Betz, 1926) and Joukowsky, which

resulted in the famous maximum power extraction limit of
59.3 % known as the Betz–Joukowsky limit or often just as
the Betz limit (Okulov and van Kuik, 2012). The model as-
sumed constant loading along the rotor radius in the flow di-
rection.

Later Glauert developed the blade element momen-
tum (BEM) theory (Durand and Glauert, 1935; Sørensen,
2016), which is an extension where momentum theory is
used for radially independent stream tubes. It also included
correction models for tip loss and highly loaded rotors. The
model has since then been extended with multiple correction
models to account for yaw misalignment, shear profiles, tur-
bulent inflow, etc.

In this paper, we present an aerodynamic rotor perfor-
mance model which we refer to as the Radially Independent
Actuator Disc (RIAD) model. It establishes a direct analyti-
cal relationship between the local thrust loading and the local
power, which is a useful simplification for rotor optimiza-
tion. The model is equivalent to BEM but reduces the rotor
design space to only two independent variables at each radial
station, i.e., the local-thrust coefficient (CLT) and the glide
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ratio (Cl/Cd) as well as the global tip speed ratio (λ). The
equivalent input for a BEM at each radial station is the de-
sign lift coefficient (Cl), the design drag coefficient (Cd) and
the rotor solidity (σ ) with the same global parameter. Most
BEM formulations do not compute the local power directly,
which is often an important optimization objective. At the
same time, rotor optimization constraints are often formu-
lated in terms of loading. Both the objective and constraints
are outputs from the BEM, and their equations are usually
fairly convoluted. Using RIAD, the local thrust loading (CLT)
is the independent design parameter, and the local power is
computed explicitly through a single equation. It makes it
easy to recast the optimization problem, which generally re-
quires a robust optimization algorithm, into a straightforward
root-finding problem, which makes the optimization faster
and more robust.

The paper starts by presenting the derivation of the RIAD
model, which then leads into computing the gradients for
RIAD. These gradients are used for power optimization,
leading to a simple optimization method. In the end, the re-
lationship between RIAD inputs and blade chord and twist
is then established, and RIAD is validated against a BEM
solver. This is Part 1 of a two-part paper. Part 1 describes
an aerodynamic model for a wind turbine rotor and the use
of the model for power optimization. Part 2 is described in
Loenbaek et al. (2021), where the model is applied for load-
constrained power optimization.

2 The RIAD model

In the following the Radially Independent Actuator
Disc (RIAD) model is presented, which starts by establish-
ing the relationship between global and local parameters for
a wind turbine rotor as well as introducing normalization.
The relationship between the local forces is then established,
leading to an implicit equation for the local power. A set of
approximate closure equations is then used to establish an
explicit equation. The physical interpretation of the different
factors and terms is then presented, and at the end some de-
tails regarding the tip loss factor and the exclusion of drag
from the induced velocity are discussed.

2.1 Relationship between global and local coefficients

Starting with the fundamental theorem of calculus the fol-
lowing equation can be created for the global values for thrust
(T ) and power (P ):

T =

R∫
0

∂T

∂r
dr, (1)

P =

R∫
0

∂P

∂r
dr, (2)

where ∂T
∂r

is the thrust loading density and ∂P
∂r

is the power
density.

The classical non-dimensional relations for thrust (CT)
and power (CP) as well as the local equivalent which is intro-
duced as the local-thrust coefficient (CLT) and local-power
coefficient (CLP) are introduced as follows:

T =
1
2
ρ0V

2πR2CT, (3)

P =
1
2
ρ0V

3πR2CP, (4)

∂T

∂r
=

1
2
ρ2πrV 2CLT, (5)

∂P

∂r
=

1
2
ρ2πrV 3CLP. (6)

Combining the equations, the following equations can be
found for CT and CP:

CT = 2

1∫
0

CLTr̃dr̃, (7)

CP = 2

1∫
0

CLPr̃dr̃, (8)

where r̃ is the normalized radius (r̃ = r/R). A diagram of the
relationship between the local and global coefficients can be
seen in Fig. 1.

2.2 Relationship between local coefficients

To establish a relationship between the local coefficients CLT
and CLP, the forces are assumed to be aerodynamic forces
where the lift force is orthogonal to the local flow and where
there is loss from viscous drag in the local flow direction.
The force is assumed to originate from rotating wind turbine
blades with rotational speed ω. The tangential force density
is then given as 1

ωr
∂P
∂r

. Introducing the local lift density ∂L
∂r

and drag density ∂D
∂r

as well as the local flow angle φ, the
following equations can be created:

∂T

∂r
=
∂L

∂r
cosφ, (9)

1
ωr

∂P

∂r
=
∂L

∂r
sinφ−

∂D

∂r
cosφ, (10)
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Figure 1. Diagram of the relationship between local coefficients (CLT, CLP) and global coefficients (CT, CP).

where ∂D/∂r = 0 in Eq. (9) to exclude drag from induction.
Using the common normalization of ∂L/∂r and ∂D/∂r ,

∂L

∂r
=

1
2
ρBcV 2

relCl, (11)

∂D

∂r
=

1
2
ρBcV 2

relCd, (12)

together with Eqs. (5) and (6), the following equations can
be found:

CLT = σ Ṽ
2
relCl cosφ, (13)

CLP

λr̃
= σ Ṽ 2

relCl sinφ− σ Ṽ 2
relCd cosφ, (14)

where σ is the rotor solidity (σ = Bc/2πr) and Ṽrel the nor-
malized relative velocity. A diagram of the airflow and forces
can be seen in Fig. 2.

Combining Eqs. (13) and (14) an equation for CLP can be
found as

CLP

(
CLT, r̃,λ,

Cd

Cl
,φ

)
= λr̃CLT tanφ− λr̃

Cd

Cl
CLT. (15)

This is a general equation for the relationship between the
CLT and CLP, but it is implicit since tanφ depends on CLT.

2.3 Explicit equation for CLP (closure relation between
CLT and tanφ)

The local flow angle φ is given from the induced velocities
(Sørensen, 2016, p. 101, Eq. 7.3) as

tanφ =
1− a

λr̃
(
1+ ap

) , (16)

where a is the axial induction factor and ap is the tangential
induction factor.

Equation (16) introduces two new variables (a, ap). In or-
der to make an explicit equation for tanφ as a function of
CLT two equations relating CLT to a and ap respectively are
needed. These are the closure equations.

There does not exist a general set of model closure equa-
tions, but different approximate closures have been proposed.
The most widely used set is referred to as the Glauert closure,
which is an implicit assumption made for most BEMs. The
closures are given as

CLT = 4a(1− a)F (Ning, 2014, p. 4 Eq. 2), (17)

a(1− a)= λ2r̃2ap
(
1+ ap

)
(Sørensen, 2016, p. 50

Eq. 4.36), (18)

where F is the tip loss factor, which is further described in
Sect. 2.5. For now F ∈]0,1] with F → 0 as r̃→ 1. Combin-
ing Eqs. (17) and (18) with Eq. (16) an explicit equation for
tanφ in terms of CLT can be found. This leads to an explicit
equation for CLP:

CLP

(
CLT, r̃,λ,

Cd

Cl

)
=

1
2

(
1+

√
1−

CLT

F

)
CLT︸ ︷︷ ︸

1D power

·
2λr̃

λr̃ +

√
λ2r̃2+ CLT

F︸ ︷︷ ︸
wake rotation loss

− λr̃
Cd

Cl
CLT︸ ︷︷ ︸

viscous loss

. (19)
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Figure 2. Diagram of the relationship between the airflow and the forces at each span location.

Equation (19) is the main result of this section. It states an
explicit relationship between the local power and the local
loading.

2.4 Physical interpretation and input sensitivity

Equation (19) has a straightforward physical interpretation
which is also highlighted through under-bracing of factors
and terms, with an additional loss coming from the tip loss
factor (F ). A diagram showing the impact of different losses
for a specific input can be seen in Fig. 3.

The 1D power is the classical 1D momentum theory re-
sult by Betz and Joukowsky (Okulov and van Kuik, 2012),
but here it is applied for radially independent stream tubes,
noting the following relation:

1
2

(
1+

√
1−CLT

)
CLT = 4a(1− a)2.

The wake rotation loss is the power loss that originates from
the conservation of angular momentum. When extracting
power from the rotational motion, the force that is rotating
the blades leads to an opposing and equal magnitude force
on the fluid, resulting in the fluid rotating in the wake of the
turbine. Since there needs to be conservation of power, the
potential power that can be extracted is lowered, leading to
wake rotation loss. From Fig. 3 the wake rotation loss is seen
to affect the root region of turbine. This is further investigated
in Fig. 4, where the wake rotation loss factor is plotted as a
function of the local tip speed ratio (λr̃) for different values
of the local loading (CLT).

The effect of changing the local loading is seen to have
a limited effect. From Fig. 4b the wake rotation loss is seen
to be insignificant for λr̃ > 5, which is approximately from
the mid-span and outwards for a modern utility scale turbine
with λ≈ 7–10. From the example in Fig. 3 the wake rotation
loss is seen to have the smallest impact on the global power
with 1CP =−0.01.

The tip loss is the power loss associated with the rotor hav-
ing a finite number of blades and not acting as an actuator
disc with an infinite number of blades. This effect is cap-

tured in the tip loss factor (F ), which is further described in
Sect. 2.5. The tip loss model that is used in this paper cap-
tures the impact on the induced velocities in the rotor plane,
with the additionally induced velocities coming from the vor-
ticity released at the tip of the blade. The most important pa-
rameter for tip loss is the tip speed ratio (λ), with the tip loss
getting smaller with increasing tip speed ratio. From Fig. 3
the tip loss is seen to affect the power at the tip as one might
expect (hub or root loss was not included but easily could
have been).

The viscous loss is simply the loss associated with the vis-
cous drag from the airfoil profile. The viscous loss is found
to be linear in inverse glide ratio (Cd/Cl), loading (CLT) and
local tip speed ratio (λr̃), with a larger value for each of them
leading to a larger loss. In contrast to both wake rotation
loss and tip loss, a larger tip speed ratio is found to result
in larger losses. As a consequence, there will exist an op-
timal tip speed ratio since either extreme (λ→ 0, λ→∞)
will lead to 0 or negative power. This is further discussed in
Sect. 3.3. From Fig. 3 the loss is seen to increase towards
the tip since the local tip speed ratio (λr̃) is increasing. Vis-
cous loss is seen to be the most significant loss of the three,
although it should be noted that a glide ratio of Cl

Cd
= 40 is

a fairly low value for a realistic modern rotor design and is
here chosen to make the loss easily visible for the figure.

2.5 Tip loss factor

The tip loss factor is commonly implemented for BEMs, and
although some different tip correction has been proposed, the
tip loss model by Glauert is a common one to use, and it is
also the one used here. It is given as

F (φ, r̃,λ)=
2
π

cos−1 exp
(
−
B(1/r̃ − 1)

2sinφ

)
(Sørensen, 2016, p. 132 Eq. 8.29), (20)

where B is the number of blades (which for simplicity is set
to three throughout the paper). The Glauert tip loss model
leads to a recursive problem due to the mutual dependence
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Figure 3. Diagram showing a graphical representation of the losses and the mathematical origin. The input is for spanwise constant local
thrust and glide ratio.

Figure 4. Significance of wake rotation loss. (a) Wake rotation factor vs. local tip speed ratio (λr̃). The black dashed line is the limit at 1/2.
(b) Difference between the wake rotation factor and the limit at 1/2 vs. local tip speed ratio (λr̃). Note that the y axis is log scale. The red
dashed line is at 99 % of the limit. Note that the solid lines are for different values of CLT. Higher CLT leads to higher wake rotation loss.

between CLT, sinφ and F . It is not possible to find an explicit
equation for F in terms of CLT, but it is possible to find a
iterative scheme that can solve for F . The iterative scheme is
given as

sinφi (CLT, r̃,λ,Fi)=

1+
√

1− CLT
Fi√(

1+
√

1− CLT
Fi

)2
+

(
λr̃ +

√
λ2r̃2+ CLT

Fi

)
2

, (21)

Fi+1 (CLT, r̃,λ,sinφi)=
2
π

cos−1 exp
(
−
B(1/r̃ − 1)

2sinφi

)
, (22)

where an acceptable tolerance for F is reached with at most
30 iterations (|Fi+1−Fi |< 10−9) where a good initial guess
for F would be 1.

The Glauert tip loss model breaks the explicit relationship
between CLT and CLP in Eq. (19), since F needs to be solved
through iterations. An explicit relationship could be obtained
by using the Prandtl tip loss model instead, which is given as

FPrandtl(r̃,λ)=
2
π

cos−1 exp
(
−
B

2

√
1+ λ2 (1− r̃)

)
(Sørensen, 2016, p. 131, Eq. 8.26), (23)

which does not depend on CLT. Using Prandtl’s tip loss
model, the effect on the tip loss is found to be larger com-
pared to Glauert’s tip loss model, but investigating it further
here is outside the scope of this paper.

Although the Prandtl tip loss model is much simpler and
easier to implement, the Glauert model is used throughout
this paper as it is the one used for the BEM validation later
in Sect. 4.2.

2.6 Blade loading without drag in induction

Whether or not to include drag when computing the thrust
loading (including drag in Eq. 13) is still a standing ques-
tion for the derivation of BEM, and excluding drag in the
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derivation here should not be seen as an argument in favor
of this approach but merely as a consequence that makes
the mathematical derivation simpler as well as the resulting
equation for local power (Eq. 19). If drag should be included
for the computation of the induced velocities, it should be
noted that it is not just a matter of including drag in Eq. (13),
as the closure equation in Eq. (18) also needs an additional
λr̃

Cd
Cl

(a+ ap) to be added on the right-hand side if it should
be consistent with the BEM described in Ning (2014).

As a consequence of excluding drag from Eq. (13), there
arises a difference between the forces seen from the blade
and the forces seen by the air, where Eq. (13) is the thrust
force as seen by the air and where Eq. (14) is the tangential
force seen by the blade. Often in optimization it is the thrust
load at the blade that is of interest, and Eq. (24) shows the
relationship between the two local thrust loadings:

CLT,blade

(
CLT, r̃,λ,

Cd

Cl

)

= CLT

1+
Cd

Cl

1+
√

1− CLT
F

λr̃ +

√
λ2r̃2+ CLT

F

 , (24)

where CLT is the local thrust as seen by the air.

3 Gradients for RIAD and power optimization

In this section, a method for computing the gradients for
RIAD is presented. The gradients are then used for power
optimization. First, it is applied for loading optimization for
maximum power, and it is then further extended for optimiza-
tion with respect to tip speed ratio and loading. In the end,
a discussion of how optimization with RIAD fits within the
current state of the art is given.

3.1 Gradients with complex step

The local-power equation (Eq. 19) is an analytical expres-
sion (with some complications for the tip loss factor), and in
principle it is straightforward to compute the gradient for any
of the input variables. But it is tedious and error-prone, and
the tip loss factor makes it fairly complicated. The complex
step method (Martins et al., 2000) is therefore found to be an
easier way to compute the gradients, without any loss of ac-
curacy. It also has the benefit that little additional work needs
to be done when Eq. (19) is implemented to compute the gra-
dients. The conceptual idea behind the complex step method
is fairly simple, and for the sake of making the reader famil-
iar with it, it is summarized here. For a proper description,
the reader is referred to Martins et al. (2000).

The complex step method is based on the observation that
the Taylor series expansion of an analytical function with a
complex step (or perturbation) gives the following (taking
Eq. (19) as an example with a step in CLT):

CLP

(
CLT+ ih, r̃,λ,

Cd

Cl

)
= CLP

(
CLT, r̃,λ,

Cd

Cl

)
+ ih

∂CLP

∂CLT

(
CLT, r̃,λ,

Cd

Cl

)
+O

(
h2
)
, (25)

where i is the complex unit and h the step size. Taking the
imaginary component of Eq. (25) and dividing by the step
size, the approximate gradient can be found as

∂CLP

∂CLT

(
CLT, r̃,λ,

Cd

Cl

)
=

I
[
CLP

(
CLT+ ih, r̃,λ,

Cd
Cl

)]
h

+O
(
h2
)
. (26)

Equation (26) is seen to have some similarity to computing
the gradient through finite difference. But the key difference
is that finite difference requires the difference between two
function evaluations, which leads to a rounding error. For fi-
nite difference there is an optimal step size (h) where the
combination of the truncation error (O(h2)) and the rounding
error is as small as possible. This is not the case for the com-
plex step method, where the rounding error is eliminated by
not computing a difference between two function evaluations
and the step size can be arbitrarily small. Using a step size of
h= 10−9 the truncation error (O(h2)≈ 10−18) is found to be
smaller than machine precision (10−16), and the gradient is
therefore accurate to machine precision. This method applies
to any analytical expression, but special care should be taken
with functions that might lead to undesirable effects for com-
plex numbers like the absolute value function or similar. This
is not of concern for Eq. (19).

3.2 Loading optimization for max power

The problem of maximizing CP with respect to CLT is a clas-
sic problem that will be used here to demonstrate how eas-
ily RIAD can solve this problem. It is thought to show the
strength of using RIAD for optimization as opposed to using
a regular BEM since the solutions is fairly easy to find.

The CP maximizing problem can be stated as

max
CLT

[
CP

(
CLT,λ,

Cd

Cl

)]
, (27)

where the boldface signifies that it is a function/vector chang-
ing with span (r̃). Since the model assumes radial indepen-
dence the maximization can be moved within the integration
for CP (Eq. 8), and the maximization can be used for CLP at
each span location (r̃) independently, which can be stated as

max
CLT

[
CLP

(
CLT, r̃,λ,

Cd

Cl

)]
. (28)

Since Eq. (19) is a smooth function, the optimization prob-
lem can be simplified as finding the root with respect to CLT
for the following equation:
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∂CLP

∂CLT

(
CLT, r̃,λ,

Cd

Cl

)
= 0 for CLT ∈

[
0,

8
9

]
, (29)

⇓

CLP,opt

(
r̃,λ,

Cd

Cl

)
= CLP

(
CLT,opt, r̃,λ,

Cd

Cl

)
, (30)

where ∂CLP
∂CLT

is computed with Eq. (26), and the outcome from
the optimization is the CLT that maximizes CLP, which is
referred to as CLT,opt and CLP,opt respectively. The root for
Eq. (29) can be found with common root solving algorithms
like bisection or Brent’s method, eliminating the need for an
optimizer to solve the problem. It should be noted that to
get the true gradient when including Glauert’s tip loss factor
(described in Sect. 2.5), the complex step should be included
when solving for the tip loss factor (Eqs. 21 and 22); oth-
erwise the effect of the tip loss on the gradient will not be
included.

Applying the optimization with similar input as for Fig. 3(
λ= 7, Cl

Cd
= 40

)
, the resulting CLT,opt and CLP,opt are

shown in Fig. 5. CLT,opt is seen to be mostly affected at the
root and tip of the rotor, compared to the Betz–Joukowsky
optimum. At the root CLT,opt is tending to a value of 3/4 and
at the tip going towards 0. The mid-span is seen to have a
slightly decreasing slope. For CLP,opt the three losses (wake
rotation loss, tip loss, viscous loss) are highlighted as the
shaded region. CLP,opt is seen to have a local maximum at
r̃ = 0.31 from where viscous loss and later tip loss are seen
to grow for increasing r̃ . For decreasing r̃ the wake rotation
loss is seen to increase.

3.3 Tip speed ratio optimization for maximum power

The loading optimization in Sect. 3.2 required two inputs(
λ, Cl

Cd

)
to maximize CP, but in this section the optimiza-

tion will be extended to also include the tip speed ratio as
an optimization parameter, leaving only the glide ratio as an
input. The optimization problem can be stated as

max
λ,CLT

[
CP

(
CLT,λ,

Cd

Cl

)]
. (31)

Using the same assumption as for the loading optimiza-
tion the optimization for CLT can be solved as described in
Sect. 3.2 assuming that CLT,opt is for a fixed λ. A nested op-
timization can therefore be stated as

max
λ

[
CP

(
CLT,opt,λ,

Cd

Cl

)]
. (32)

The solution to the above optimization problem can be found
by solving

∂CP

∂λ

(
CLT,opt,λ,

Cd

Cl

)
= 0

λ ∈

[
0.2 ·

√(
Cl

Cd

)
min
,

√(
Cl

Cd

)
max

]
, (33)

⇓

CP,opt

(
Cd

Cl

)
= CP

(
CLT,opt,λopt,

Cd

Cl

)
, (34)

where the bounding region is found by observing that λopt
has an approximate proportional behavior of

√
Cl/Cd, and

the limits are simply determined to contain the optimal so-
lution. The outcome from the optimization is the tip speed
ratio that maximizes the power coefficient. They are referred
to as λopt and CP,opt. To compute the gradient of CP, Eq. (8)
is used, and the complex step is applied as follows:

∂CP

∂λ

(
CLT,opt,λ,

Cd

Cl

)

=
1
h
I

2

1∫
0

CLP

(
CLT,opt(r),λ+ ih,

Cd

Cl
(r)
)
r̃dr̃

, (35)

where for practical implementation the problem is dis-
cretized along the span, and the integration can be performed
using the trapezoidal rule. As was the case for loading op-
timization, the problem can be solved by the use of root-
solving algorithms like bisection or Brent’s method.

In Fig. 6 the result of solving the optimization problem
for optimal tip speed ratio with varying spanwise constant
glide ratio is shown. As expected, the optimal tip speed ratio
is seen to increase as the glide ratio increases due to the bal-
ance between the viscous losses (increases with increasing λ)
and wake rotation losses as well as tip losses (decreases with
increasing λ). It is interesting to note the significant impact
of including tip loss on λopt, with the inclusion of tip loss
leading to a larger λopt. Four points along the λopt curve in
Fig. 6 are highlighted, showing diagrams of the local thrust
and local power with the difference to the Betz–Joukowsky
limit shown by the shaded red region.

The associated CP,opt is shown in Fig. 7. The three power
loss contributions are shown as shaded regions, and the vis-
cous loss is seen to be the most significant regardless of the
glide ratio. Tip loss is seen to be the second most significant
loss, at least for Cl

Cd
> 25, which anyway would be a very low

value for a modern utility scale wind turbine. The slope of
CP,opt is seen to become flat for large values of the glide ratio,
and the improvement in CP,opt from Cl

Cd
= 100 to Cl

Cd
= 150 is

1CP,opt = 3.5 %, and that is with a glide ratio improvement
of 1 Cl

Cd
= 50 %.

3.4 Compared to other work

The results of CP maximization presented in Figs. 5–7 are
not in themselves novel results. Similar results have been
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Figure 5. Optimal local thrust (CLT) and optimal local power (CLP) vs. normalized radius (r̃), with λ= 7 and spanwise constant Cl
Cd
= 40

as input.

Figure 6. Optimal tip speed ratio (λopt) vs. spanwise constant glide ratio ( Cl
Cd

) both with and without tip loss included in the optimization.
For the case with tip loss included, five points are highlighted, showing diagrams of the local thrust (CLT) and the local power (CLP).

Figure 7. Optimal power coefficient (CP,opt) vs. spanwise constant
glide ratio ( Cl

Cd
). The same five points as in Fig. 6 are highlighted,

but only the local power (CLP) is shown for the diagrams with the
addition of the point of max local power (CLP,max).

shown by Wilson et al. (1976, Sect. 3.1–2), Manwell et al.
(2010, Sect. 3.9), Sørensen (2016, chap. 5) and Jamieson
(2018, Sect. 1.9). The novelty is the ease with which these
results can be obtained and the extent to which this method
can be applied. In all of the mentioned works, the optimiza-
tion method relies on excluding mechanisms like rotational
effects, drag, or tip loss or an assumption of constant axial
induction to find a solution without the use of an optimizer.
For Wilson et al. (1976), Manwell et al. (2010) and Sørensen
(2016) drag is excluded for the induced velocity as was also
done within this paper. However, the reason to exclude drag
from the induced velocity within this paper is for the deriva-
tion of RIAD to be simpler. Including drag in the induced
velocity will make Eq. (19) more complicated, but the opti-
mization methods presented in Set. 3.2 and 3.3 would still
be applicable. A large part of why RIAD is easy to use and
implement for optimization is the use of the complex step
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method, which is arguably not an invention of RIAD, and it
could as well be applied for a regular BEM, with the same
result, although the optimization would be more convoluted.
RIAD is established on a better BEM parametrization dedi-
cated to optimization when solving load-constrained power
optimizations as is shown in Part 2 of this paper (Loenbaek
et al., 2021).

4 From RIAD to rotor blade planform

Section 2.3 presented the connection between inputs, such as
local thrust, tip speed ratio and glide ratio, for rotor power
performance, and Sect. 3.2 and 3.3 presented the power op-
timization. But the presented methods only contain informa-
tion about the loading and power at the actuator disc, where
this section establishes the connection between the RIAD in-
puts and the blade planform, such as blade chord and twist.
The blade planform is then used as an input for a BEM solver
to validate that RIAD and BEM are equivalent formulations.

4.1 Equations for chord and twist

An equation for chord can be found from Eq. (13) while ap-
plying the closure equations (Eqs. 17 and 18) for cosφ, re-
sulting in the following:

c (CLT, r̃,λ,Cl,R,B)=
8πr̃RCLT

BCl

1

λr̃ +

√
λ2r̃2+ CLT

F

1√(
1+

√
1− CLT

F

)2

+

(
λr̃ +

√
λ2r̃2+ CLT

F

)2
. (36)

To compute the chord it is seen that additional inputs are re-
quired, such as lift coefficient (Cl), the number of blades (B)
and rotor radius (R).

An equation for twist can be found in much the same way
by using Eq. (16) for tanφ and applying the closure equa-
tions. Combining it with φ = α+θtwist+θpitch, the following
equation for the twist can be found:

θtwist (CLT, r̃,λ)=tan−1

 1+
√

1− CLT
F

λr̃ +

√
λ2r̃2+ CLT

F


︸ ︷︷ ︸

φ

−α− θpitch. (37)

4.2 Validation with BEM

To show that RIAD is an equivalent formulation of the BEM
equations, a planform design is created through Eqs. (36)
and (37) and evaluated with a BEM solver. The BEM solver
used for the validation is CCBlade (Ning, 2014).

Running CCBlade requires an airfoil polar (Cl, Cd vs. α),
and to keep it as simple as possible a single airfoil polar is

used all along the blade span. The airfoil is taken to be FFA-
W3-301 (Bjorck, 1990) with the aerodynamic data from Bak
et al. (2013) (Re = 10× 106). The design point for the polar
was for simplicity taken as the angle of attack with maximum
glide ratio, resulting in the following:

Cl

Cd
= 92, (38)

α = 10.6◦, (39)
Cl = 1.52. (40)

Running the optimization for λopt as described in Sect. 3.3
gave λopt = 8.4, which is the tip speed ratio used for the de-
sign. To give the design some real dimensions, a rotor radius
of R = 50 m is used.

The resulting planform design can be seen in Fig. 8. Using
the planform design as input for CCBlade as well as the other
inputs, the resulting local thrust and local power were found
from CCBlade. A comparison between RIAD and CCBlade
can be seen in Fig. 9. Figure 9a shows the values for CLT and
CLP for both the solvers. Figure 9b shows the difference be-
tween RIAD and CCBlade for both CLT and CLP using a log
scale on the y axis, both as a function of the normalized ra-
dius. In the root region the two methods are seen to agree to
machine precision but with an error that is growing towards
the tip and reaching a difference of 10−4 (which is still three
significant digits). The growing error is found to disappear
if tip loss is excluded (agrees to machine precision), and the
difference is also seen to disappear if the drag is included for
the induction as well as including the tip loss. The difference
is therefore attributed to some small implementation differ-
ence regarding the tip loss, but as the difference is anyway
insignificant, the difference is not investigated any further.
It should be noted that for the comparison with CCBlade,
it is CLT,blade that is used, where CLT,blade was discussed in
Sect. 2.6.

5 Conclusion

A rotor performance model called the Radially Independent
Actuator Disc (RIAD) model was presented. It is a differ-
ent parametrization of the blade element momentum (BEM)
equations which is found to be better for wind turbine op-
timization. The model relates the local rotor power output
(local-power coefficient – CLP) to the local rotor loading
input (local-thrust coefficient – CLT) at a given radial sta-
tion (r̃). The model is a simple equation, shown in Eq. (19),
from which different physical effects can easily be inter-
preted, such as wake rotation loss, tip loss and viscous loss.

A method to compute gradients for RIAD was presented,
through the use of the complex step method, which allows us
to compute the gradient to machine precision with minimum
additional work required.

The gradients were used for classical power coefficient
(CP) maximization, which was first applied for loading opti-
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Figure 8. (a) Blade chord and (b) blade twist both as a function of radius. The number of blades is assumed to be B = 3.

Figure 9. (a) Local thrust (CLT) and local power (CLP) for RIAD (line) and CCBlade (dots). (b) The difference between the two methods
for local thrust (1CLT) and local power (1CLP). The difference is seen to increase towards the tip, but the agreement is still within three
significant digits and is therefore thought to be insignificant. The difference is likely a small implementation difference within tip loss
modeling.

mization (CLT along the span) for a given tip speed ratio and
glide ratio. The optimization was then extended for the com-
bined optimization of the tip speed ratio and loading, leading
to a nested optimization for CP which only requires the glide
ratio along the span as an input. Using a spanwise constant
glide ratio it was shown that viscous loss is the most signif-
icant loss, regardless of the value of the glide ratio. The op-
timization results by themselves have been done before, but
the novel development is the ease with which the optimal re-
sult can be achieved and the extent to which the method can
be applied. But the real strength of using RIAD for optimiza-
tion is for load constraint rotor optimization as described in
Part 2 (Loenbaek et al., 2021).

The relationship between local thrust along the span and
the blade chord and twist was presented, and they were used
to create the input for validation with a BEM solver (Ning,
2014). The difference between the two methods was found
to agree to three significant digits with a likely small imple-
mentation difference for the tip loss modeling. In this way,
it was shown that RIAD and BEM are equivalent, with the
difference being the parametrization.
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Appendix A: Nomenclature

A1 Rotor local variables

Table A1. Variables that are scalars at a given radius location (r). Boldface variables indicate a function or vector changing with radius.

Symbol Description Unit

x Boldface local variables symbolize a function or vector changing with the rotor radius (r) –
r Rotor radius variable [0, R] m
∂T
∂r

Thrust loading density N m−1

∂P
∂r

Power loading density W m−1

1
ωr

∂P
∂r

Tangential loading density N m−1

∂L
∂r

Lift loading density N m−1

∂D
∂r

Drag loading density N m−1

r̃ Normalized rotor radius variable (r̃ = r
R

) –
CLT Local-thrust coefficient (normalized ∂T /∂r – taken as the loading seen by the air) –
CLT,blade Local-thrust coefficient as seen by the blade (including drag) –
CLT,opt Local-thrust coefficient that maximizes CLP for a given λ and Cl

Cd
–

CLP Local-power coefficient (normalized ∂P/∂r) –
CLP,opt Optimal local-power coefficient for given λ and Cl

Cd
–

a Axial induction factor –
ap Tangential induction factor –
Cl Lift coefficient –
Cd Drag coefficient –
Cl
Cd

Airfoil glide ratio –
Cd
Cl

Inverse airfoil glide ratio –
c Blade chord m
σ Rotor solidity σ = Bc

2πr –
F Tip loss factor (described in Sect. 2.5) –
φ Flow angle at the rotor plane (see Fig. 2) ◦

Vrel Relative wind speed Vrel =

√
(V (1− a))2+

(
ωr
(
1− ap

))2 m s−1

Ṽrel Relative wind speed Ṽrel =

√
(1− a)2+ λ2r̃2

(
1− ap

)2 –
α Airfoil angle of attack ◦

θtwist Blade twist ◦
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A2 Rotor global variables

Table A2. Variables that are scalars for the whole rotor.

Symbol Description Unit

R Rotor radius m
T Rotor thrust N
P Rotor power W
V Free stream wind speed m s−1

θpitch Blade pitch angle ◦

ω Rotor rotational speed s−1

CT Rotor thrust coefficient –
CP Rotor power coefficient –
CP,opt Rotor power coefficient with λopt and CLT,opt –

λ Rotor tip speed ratio
(
λ= ωR

V

)
–

λopt Rotor tip speed ratio that maximized CP for a given Cl
Cd

–
B Number of blades –
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