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Abstract. To assess the structural health and remaining useful life of wind turbines within wind farms, the
site-specific structural response and modal parameters of the primary structures are required. In this regard, a
novel inverse-problem-based methodology is proposed here to identify the dynamic quantities of the drivetrain
main shaft, i.e. torsional displacement and coupled stiffness. As a model-based approach, an inverse problem of a
mathematical model concerning the coupled-shaft torsional dynamics with high-frequency SCADA (supervisory
control and data acquisition) measurements as input is solved. It involves Tikhonov regularisation to minimise
the measurement noise and irregularities on the shaft torsional displacement obtained from measured rotor and
generator speed. Subsequently, the regularised torsional displacement along with necessary SCADA measure-
ments is used as an input to the mathematical model, and a model-based system identification method called the
collage method is employed to estimate the coupled torsional stiffness. It is also demonstrated that the estimated
shaft torsional displacement and coupled stiffness can be used to identify the site-specific main-shaft torsional
loads. It is shown that the torsional loads estimated by the proposed methodology is in good agreement with the
aeroelastic simulations of the Vestas V52 wind turbine. Upon successful verification, the proposed methodology
is applied to the V52 turbine to identify the site-specific main-shaft torsional loads and damage-equivalent load.
Since the proposed methodology does not require a design basis or additional measurement sensors, it can be
directly applied to wind turbines within a wind farm that possess high-frequency SCADA measurements.

1 Introduction

Monitoring of wind turbines within wind farms is increas-
ingly becoming very important due to the need to detect
anomalous behaviour, plan inspections or preventive main-
tenance, and compute the remaining useful life of specific
structures. The site-specific structural dynamic quantities
such as structural response and modal parameters could as-
sist in the condition monitoring of wind turbines.

The structural response of the wind turbines is measured
using load instrumentation such as accelerometers (Kouk-
oura et al., 2015; Pahn et al., 2017; Norén-Cosgriff and Kay-
nia, 2021), and an output-based operational modal analysis

(OMA) (Wang et al., 2016) technique is employed for the
identification of the modal parameters. OMA methods can be
broadly classified into two categories: (i) time-domain-based
methods and (ii) frequency-domain-based methods (Zhang
et al., 2010). A recent comprehensive review on various time-
domain- and frequency-domain-based OMA methods can be
found in Zahid et al. (2020). Upon identification of the modal
parameters together with the measured structural response,
an inverse-problem-based technique is employed for the es-
timation of the site-specific loads (Pahn et al., 2017). Alter-
natively, one can use strain-gauge-based load sensors to mea-
sure the site-specific loads directly (IEC 61400-13, 2016).
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The addition of new instrumentation to existing turbines,
such as the installation of strain gauges and accelerometers,
can be costly and also require repetitive calibration and syn-
chronisation of their measurement signals with the turbine
computer. Most wind farm operators also do not possess
the aeroelastic design parameters of their wind turbines and
hence cannot simulate the mechanical loads acting on their
wind turbines. Monitoring turbine primary structures through
existing SCADA-based (supervisory control and data ac-
quisition) measurements can yield a cost-effective solution
and provide valuable information to the wind farm operator.
Usually, such monitoring through SCADA only provides in-
formation on power performance without regarding turbine
structural integrity. Since there are two SCADA signals (i.e.
rotor speed and generator speed) related to torsional oscilla-
tions of the main shaft of wind turbine drivetrains, the same
can be used to quantify the torsional dynamics of the main
shaft.

For this purpose, an inverse-problem-based approach is
developed here to determine the torsional stiffness and re-
sponse of the main shaft of a wind turbine, using exist-
ing high-frequency SCADA measurements such as the rotor
speed and generator speed. This is a cost-effective alternative
approach that is being proposed for the main shaft without
using any additional measurement sensors or an aeroelas-
tic design basis of the wind turbine. The proposed inverse-
problem approach is a model-based approach whereby a
mathematical model concerning the shaft torsional dynam-
ics will be utilised to obtain both the torsional displace-
ment and the coupled torsional stiffness in a continuous
time domain. It involves Tikhonov regularisation (Tikhonov,
1963) for regularising the measurement data and the collage
method (Kunze and Vrscay, 1999) for estimating the tor-
sional stiffness.

The concerned mathematical model comprised of differ-
ential equations will be solved for the shaft torsional veloc-
ity with high-frequency rotor and generator speed measure-
ments as inputs. Subsequently, the main-shaft torsional dis-
placement is obtained by numerically integrating the shaft
torsional velocity. However, numerical integration is based
on time-marching algorithms, and the lack of initial condi-
tions makes displacement reconstruction an ill-posed prob-
lem (Hong et al., 2008). Since it is an ill-posed problem,
influence of measurement noise will be amplified during
the time-marching procedure, resulting in an erroneous dis-
placement. This inaccurate displacement also leads to dras-
tic errors in the system modal-parameter estimation. Hence,
one needs to go for regularisation techniques to smoothen
the reconstructed displacement. Hansen (2005) discussed
the nature of various ill-posed problems and presented sev-
eral solution methodologies. Though there are many regu-
larisation techniques available, Tikhonov, truncated singu-
lar value decomposition (SVD), and nuclear norm are a few
of the popular techniques (Aarden, 2017). Among all these
regularisation techniques, Tikhonov regularisation has been

widely used in many engineering applications (Ronasi et al.,
2011; Hào and Quyen, 2012; Bangji et al., 2017; Niemi-
nen et al., 2011), and it has been studied extensively in the
field of inverse problems (Hansen, 2005) as well. Further,
digital filters and the frequency domain integration approach
(FDIA) are also widely used techniques in the literature to re-
construct displacements from measured accelerations (Hong
et al., 2008; Brandt and Brincker, 2014; Qihe, 2019; Lee
et al., 2010). However, digital filters such as infinite-impulse-
response (IIR) and finite-impulse-response (FIR) filters have
several drawbacks when reconstructing the low-frequency
dominant displacements as is the case here (Lee et al., 2010).
On the other hand, the FDIA methods are sensitive to the
time interval of the measurements (Lee et al., 2010). It is
shown by Lee et al. (2010) that Tikhonov regularisation is
better suited for low-frequency dominant structures. Hence,
the same has been employed in the present work. Tikhonov
regularisation minimises the error using the least-square cri-
terion and by means of numerical damping; it also minimises
the effect of measurement noise.

Upon obtaining the regularised shaft torsional displace-
ment, the same mathematical model is utilised to obtain
the shaft stiffness. For this purpose, the collage method
– a model-based system identification technique – is used
(Kunze and Vrscay, 1999; Groetsch, 1993). This method has
been successfully applied for the system identification in var-
ious differential-equation-based problems such as boundary
value problems (Kunze et al., 2009), reaction–diffusion prob-
lems (Deng et al., 2008), and elliptic problems (Kunze and
La Torre, 2016). The collage method transforms the system
identification problem into a minimisation problem of a func-
tion of several variables (for example unknown system pa-
rameters), and then the minimisation problem is solved us-
ing a minimisation algorithm called collage coding (Kunze
et al., 2009). Collage coding is a greedy algorithm that at-
tempts to find the approximate solution in a single step with-
out any need for iteration, as is the case for other inverse-
problem-based methods (Deng and Liao, 2009). Further, the
model-based collage method is simple, easy to implement,
and computationally inexpensive as compared to the output-
based OMA methods.

The estimated shaft torsional stiffness and displacement
are further used to identify the site-specific shaft torsional
load. This novel methodology can potentially benefit wind
farm owners, since both the property of the structure in terms
of its stiffness and the structural response and the site-specific
load can be determined without requiring additional sen-
sors or information from the wind turbine manufacturer. The
main-shaft torsional load affects the fatigue performance of
other drivetrain components such as the gearbox and plan-
etary bearings (Dong et al., 2012; Gallego-Calderon and
Natarajan, 2015; Ding et al., 2018). Hence, the same site-
specific torsional load may be used as an input for quantify-
ing the remaining useful life (RUL) (Ziegler et al., 2018) of
the main shaft, the gearbox, and other drivetrain components
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Figure 1. A two mass model of the wind turbine drivetrain.

as well. The estimation of RUL and yearly damage does not
require additional historical weather data and condition mon-
itoring data, as the wind speed and wind direction measure-
ments are available in the SCADA measurements. However,
this is beyond the scope of present work. Further, the pro-
posed approach requires that the sampling frequency of the
SCADA measurement be significantly higher than the dom-
inant frequencies of the drivetrain torsional oscillations (i.e.
1p and 3p rotor excitation frequencies and torsional natural
frequencies, where p is the mean rotor speed). As a result, the
proposed method cannot be used for the turbines that have
measurements in terms of 10 min SCADA statistics.

The rest of the paper is organised as follows: the prob-
lem formulation consisting of Tikhonov regularisation and
the collage method is given in Sect. 2; Sect. 3 presents the
verification of the proposed formulation; and application of
the proposed formulation on measurements is presented in
Sect. 4.

2 Problem formulation

As mentioned in the previous section, the main objective is
to identify the shaft torsional displacement and coupled stiff-
ness from SCADA measurements. This is achieved by solv-
ing the shaft torsional dynamical equations using a suitable
inverse-problem algorithm and the estimated shaft torsional
displacement θ , and torsional stiffness K will be utilised for
the shaft torsional-load estimation. For this purpose, a two-
mass model (refer to Fig. 1) (Boukhezzar et al., 2007; Gir-
sang et al., 2013; Berglind et al., 2015) that governs the main-
shaft torsional dynamics subjected to the rotor and genera-
tor torques T r and T g, respectively, is considered, and the
mathematical model is given by Eqs. (1)–(3). The governing
equations are obtained in an inertial frame of reference and
converted to the low-speed side of the drivetrain by means of
the gear ratio (Boukhezzar et al., 2007). By assuming that the
drivetrain components are in a series representation in terms
of its modal quantities, effective values for the modal quan-

Figure 2. Flowchart depicting the inverse-problem algorithm.

tities are used in the two-mass model (Girsang et al., 2013).

Jrω̇r = T r−Kθ −Cθ̇ , (1)

Jgω̇g =−T g+Kθ +Cθ̇ , (2)

θ̇ = ωr−ωg. (3)

Here, Jr represents the inertia of the rotor; Jg represents the
collective inertias of the high-speed shaft (HSS), the gear-
box, and the generator; ωr and ωg are the rotor and genera-
tor speeds, respectively; K and C are the effective stiffness
and damping of the drivetrain including the main shaft, HSS,
and gearbox; and θ is the torsional displacement of the driv-
etrain. Throughout the article, all vector quantities have been
marked in bold.

Given the modal parameters (Jr,Jg,C, and K) and exter-
nal torques (T r and T g), Eqs. (1)–(3) are solved for ωr,ωg,
and θ , which is known as a forward-problem approach (Pahn,
2013). But given only SCADA measurements, Eqs. (1)–
(3) are solved inversely for θ and modal parameters. The
available SCADA measurements are ωr,ωg,P ,β, and U .
Here, P,β, and U are, respectively, the generator power, the
blade pitch angle, and wind velocity. The proposed inverse-
problem approach consists of Tikhonov regularisation for
regularising the measurement data and the collage method
for estimating the torsional stiffness, and the entire method-
ology is shown as a flowchart in Fig. 2.

In the following, implementation of Tikhonov regularisa-
tion and the collage method on the drivetrain torsional dy-
namics will be discussed in detail.
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Figure 3. Comparison of time integration displacement with actual
displacement. The torsional displacement is in radians.

2.1 Tikhonov regularisation

Given ωr and ωg, θ̇ is obtained by using Eq. (3), and then by
numerically integrating θ̇ , the shaft torsional displacement
(θ ) is obtained. The numerical-integration schemes require
initial conditions as they march on time. However, the ini-
tial conditions are unavailable or inaccurate in practice. The
lack of initial conditions (usually assumed to be 0) on the
displacement are inconsistent with the real values that result
in the phenomenon of baseline shift or drift which causes the
position error to grow with time during the integration (Pahn
et al., 2017). The effect of the lack of initial conditions on
the reconstructed displacement obtained using the time in-
tegration scheme is shown in Fig. 3. As seen in the figure,
the numerical error is multiplicatively increased with time,
which results in a drift in the reconstructed displacement.
As mentioned in the introduction, to minimise the numeri-
cal error due to the lack of initial conditions and to minimise
the effect of measurement noise, a widely used regularisation
technique called Tikhonov regularisation (Tikhonov, 1963) is
employed here.

Implementation of Tikhonov regularisation on the velocity
to obtain the displacement is not readily available in the lit-
erature, and hence the same is presented in Appendix A1 for
the sake of completeness. By following the procedure out-
lined in Appendix A1, the regularised torsional displacement
(θ ) is obtained as

θ =

(
L2

4
+ λ2I

)−1 LLa
˙̃
θ1t

2
. (4)

Here, the matrices L,La, and I are defined in the Ap-
pendix A1; λ is the regularisation parameter; 1t is the
time interval; and ˙̃θ is the torsional velocity obtained from
Eq. (3). The obtained regularised torsional displacement is
compared with the actual displacement in Fig. 4 along with
the numerical-integration result. As seen in Fig. 4, there is

Figure 4. Comparison of the Tikhonov and time integration dis-
placements with actual displacement.

a close match between the result by Tikhonov regularisation
and the actual displacement as compared to the numerical-
integration result.

2.2 Collage method

Upon estimating θ using Tikhonov regularisation, the next
step is to estimate the modal parameters using the col-
lage method (Kunze and Vrscay, 1999; Groetsch, 1993) –
a model-based approach. The mathematical formulation of
the collage method and its implementation are given in Ap-
pendix A2. The rotor equation (Eq. 1) cannot be used for the
parameter estimation, as there is no information about the
rotor torque in the SCADA measurement. Instead, the col-
lage method is employed on the generator equation (Eq. 2)
for estimating the modal parameters, as the generator torque
(T g) can be readily obtained from the SCADA data as T g =

P/ωg. Accordingly, for the target function ωg(t), t ∈ [t0, tn],
the squared L2 collage distance (refer to Appendix A2) for
Eq. (2) becomes

12
=

tn∫
t0

[
Jg[ωg −ωg0 ] +

tn∫
t0

T gdt

−K

tn∫
t0

θdt −C

tn∫
t0

θ̇dt
]2

dt, (5)

where ωg0 is the generator speed at time, t = t0. Modal pa-
rameters will be obtained by minimising Eq. (5) with respect
to Jg,C, and K . Upon obtaining θ using Tikhonov regulari-
sation and K using the collage method, the torsional load is
obtained as Mz =Kθ .

2.2.1 Application of the collage method

To test the applicability and efficiency of the collage method
for the wind turbine drivetrain system, a verification study is
undertaken by comparing the main-shaft torsional stiffness

Wind Energ. Sci., 6, 1401–1412, 2021 https://doi.org/10.5194/wes-6-1401-2021



W. D. Remigius and A. Natarajan: Identification of wind turbine main-shaft torsional loads 1405

Table 1. Comparison of estimated K with design K for a turbine
variant where only the main shaft is flexible.

Wind turbine Design K Estimated K %
(Nm/rad) (Nm/rad) error

DTU 10 MW 2.317× 109 2.1785× 109 5.98
Vestas V52 – – 6.98

obtained using the collage method with its design value for
two different wind turbines. This is done for the following
two wind turbines, (i) DTU (Technical University of Den-
mark) 10 MW (Bak et al., 2013) and (ii) Vestas-V52 (Vestas,
2020). For facilitating a comparison of the main-shaft tor-
sional response alone, the rigid variant of the turbine is cho-
sen, and this implies that the rotor and tower are rigid and that
the main shaft alone is considered to be flexible. By perform-
ing aeroelastic simulations on these turbines, the shaft tor-
sional displacement θ is obtained. Throughout the article, the
aeroelastic simulation is performed using the DTU in-house
tool called HAWC2 (Larsen and Hansen, 2007). HAWC2
(Horizontal Axis Wind turbine simulation Code 2nd genera-
tion) is used for calculating the wind turbine aeroelastic loads
and responses in the time domain. It uses multibody formu-
lation to model the structure, models based on blade element
momentum (BEM) theory for modelling the wind effects,
and hydrodynamic models for modelling the hydro-effects
(in the case of offshore turbines) on the structure. Control of
the turbine is performed through the dynamic link libraries
(DLLs). Using the main-shaft torsional-load time series ob-
tained from HAWC2 and by minimising Eq. (5) concern-
ing the modal parameters, K,C, and Jg are obtained. Since
for the estimation of shaft torsional load, only K is needed
among all the modal parameters, the same is compared with
the design values. The estimated shaft stiffness and the stiff-
ness from the aeroelastic model of the DTU 10 MW turbine
along with percentage error are tabulated in Table 1. Only the
percentage error is given for the Vestas V52 turbine in Ta-
ble 1. As seen in the table, the estimated torsional-stiffness
values match well with the design values. If the torsional dis-
placement (θ ) is known, then the determination of torsional
stiffness (K) from Eq. (5) is readily feasible as explained.
However in practice, the shaft torsional displacement is un-
known, and therefore the collage equations may not be di-
rectly used to determine the shaft stiffness. In the follow-
ing, the entire proposed methodology will be verified with
the aeroelastic simulation results of the Vestas V52 turbine.

3 Verification of the method on V52 turbine
simulations

Aeroelastic simulations are performed for the Vestas V52 tur-
bine corresponding to the design load case (DLC 1.2) (IEC
61400-1, 2019) in HAWC2. The DLC 1.2 was run with

Figure 5. Estimated λ for each mean wind speed.

18 10 min load simulations (three yaw directions: 0◦± 10◦,
and six turbulent wind seeds) for each mean wind speed rang-
ing from 4 to 26 m/s in the interval of 2 m/s, which results in a
total of 216 simulations. Each simulation uses 10 min normal
wind turbulence inflow with a sampling frequency of 50 Hz.
From these 216 simulations, the inputs (ωr,ωg, and T g) for
the proposed methods are obtained, and by following the pro-
cedure depicted in Fig. 2, the torsional loads are obtained,
and the same is compared with the simulation results. From
the simulated ωr and ωg, the torsional velocity θ̇ is obtained
using Eq. (3), and then the corresponding θ for each simula-
tion is obtained by using Tikhonov regularisation (Eq. 4). By
assuming that the same level of numerical noise (noise due
to a lack of initial conditions) presents in all the simulations
of a particular mean wind speed, the optimal λ parameter for
regularisation (refer to Appendix A1) is estimated only once
per mean wind speed. The estimated regularisation parame-
ter (λ) for each mean wind speed is presented in Fig. 5. As
seen in the figure, a higher value of λ at higher wind speeds
indicates that more numerical damping is needed to suppress
the numerical noise.

Since the displacement is reconstructed from the veloc-
ity, a dynamic quantity, the reconstructed displacement will
have a mean of zero, and this displacement component is re-
ferred to as a dynamic component of the displacement (θdyn).
However, the torsional displacement will have a contribution
from the static load, and the displacement due to the static
load is referred to as a static component of the displace-
ment (θ stat) (i.e. the mean value of the displacement). The
dynamic component of the displacement oscillates about the
static component of the displacement. The regularised θdyn
for two representative mean wind speeds is compared with
the dynamic component of simulated torsional displacement
in Fig. 6. By removing the static displacement from the sim-
ulated displacement, the resulting dynamic component can
be compared with the regularised θdyn as shown in Fig. 6. As
seen in the figure, the regularised θdyn matches well with the
simulated dynamic displacement for most of the time except
for the peak amplitudes.
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Figure 6. Comparison of regularised θdyn with the results from aeroelastic simulation. WSP: mean wind speed.

Upon ensuring the correctness of θdyn, the collage method
can be employed forK estimation using the results of all 216
simulations. Since only θdyn is available, Eq. (5) is modified
to have the dynamic components alone for the estimation of
K as

12
=

tn∫
t0

[
Jg[ωg−ωg0 ] +

tn∫
t0

(T g−T gmean )dt

−K

tn∫
t0

θdyndt −C

tn∫
t0

θ̇dt
]2

dt. (6)

By minimising Eq. (6), K will be obtained for all 216 simu-
lations. Owing to uncertainty associated with θdyn estimation
along with the collage method, three skewed distributions
for K can be determined at different mean wind speeds. For
these distributions, the mode is a more stable estimate of the
central tendency, as it is least biased by outliers (Hedges and
Shah, 2003). The mean of modes of the resulting probabil-
ity density functions (PDFs) provides the resultant estimate
of K . The relative error between the estimated K value ob-
tained by taking the mean of modes and the design value of
the turbine is 12.06 %. At this point, it is important to re-
member that since the inputs are from the HAWC2 aeroelas-
tic simulation which does not account for gearbox dynamics,
the estimated stiffness value only has the contributions from
the rotor and the main shaft. As a result, the estimated K is
the resultant torsional stiffness of the main shaft including
the blade edgewise stiffness contribution.

Even though the dynamic component of the displacement
is sufficient enough for K estimation as explained above, the
mean value (i.e. the static component) of the displacement
has a significant effect on the fatigue damage (Veldkamp,
2006). Hence, it is important to estimate the same, and this is
obtained by solving the static problem of the drivetrain. Con-
sidering the static equilibrium of Eq. (1) with all parameters
expressed on the low-speed side is as follows:

Kθ stat = T rmean =
T gmean

ηgen
. (7)

Here, ηgen is the generator efficiency, which is 94.4 % for the
V52 turbine. As an alternative, one can use the overall effi-

ciency of the wind turbine as well for the sake of complete-
ness. However, the use of different efficiencies will not sig-
nificantly affect the outcome. From Eq. (7), θ stat is obtained
as

θ stat =
T gmean

Kηgen
. (8)

Finally, the static and dynamic components are superimposed
to get the actual displacement (θ ). This actual displacement
will then be used to estimate the site-specific main-shaft tor-
sional load as shown by Eq. (9).

Mz =Kθ =K(θ stat+ θdyn) (9)

At this stage, the estimated torsional loads can be compared
with the simulated torsional loads. The comparison of the
torsional loads for two representative mean wind speeds is
shown in Fig. (7). As seen in Fig. (7), all the important
aspects of the time-series variation and the dominant fre-
quency dynamics (low-frequency components – up to first
three peaks) are captured quite well in the estimated torsional
load. The computational time for identifying the regularisa-
tion parameter for each mean wind speed is about 40 min in
real time, and the stiffness estimation for the 10 min simula-
tion takes 14 s in real time. The above computations are per-
formed on a single node of the high-performance computing
cluster of DTU. The cluster has 320 nodes in total, with each
node consisting of two Intel Xeon E5-2680 v2 processors,
and each processor consists of 10 cores running at 2.8 GHz.
If the wind farm is of same type of turbine, then it is sufficient
to estimate the stiffness for one of the turbines. However, the
shaft torsional displacement needs to be estimated for all the
turbines.

Upon estimating the torsional load, the torsional damage-
equivalent load (DEL) at each mean wind speed is calculated
using the following equation:

DEL=
(

1
Nref

Nsim∑
i=1

(
1
Nsim

) kn∑
k=1

Ni,kS
m
i,k(0)

Tsim

) 1
m

, (10)

where Tsim is the duration of the load case, Nsim is the num-
ber of simulations at each mean wind speed, kn is the to-
tal number of load cycles in a given time series, Ni,k are
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Figure 7. Comparison of reconstructed time series and power spectral density (PSD) of the torsional load for two different mean wind
speeds.

the number of cycles at load amplitude Si,k(σ ) determined
with rain flow counting, and m is the Wöhler exponent. The
zero-mean load amplitude is obtained as Si,k(0)= Si,k(σ )+
MSm (Veldkamp, 2006), where Sm is the mean load and
M is the mean stress sensitivity. The turbine shaft is made
up of cast iron, and Veldkamp (2006) has reported that for
such material, the mean stress correction factor is M = 0.19.
The Wöhler exponent for the cast iron of m= 6 (Veldkamp,
2006) is used in the present study. When Nref in Eq. (10)
equals the component’s lifetime in seconds, the DEL has
the frequency of 1 Hz. The computed torsional DEL using
Eq. (10) for DLC 1.2 is compared with the simulated DEL
and is shown in Fig. (8). For most of the mean wind speeds,
the estimated DEL is in good agreement with the simulated
DEL, and the absolute error between these two at each mean
wind speed ranges from 4 % to 12 %. Higher error at higher
mean wind speeds is due to the fact that the peak ampli-
tudes in θdyn are not captured well using Tikhonov regular-
isation. The fact that the peak amplitudes are not captured
in the reconstructed torsional displacements is typical for
Tikhonov regularisation, as there is a slight mismatch in the
frequency spectra between the actual and reconstructed tor-
sional oscillations (Lee et al., 2010). Another reason could
be due to the fact that the pitch angle influences the main-
shaft torsional oscillation through the rotor torque and the
rotor speed. However, the controller is maintaining a con-
stant rotational speed beyond the rated wind speed; hence
the instantaneous changes in the pitch angle are not propa-
gated through the rotor speed to the main-shaft oscillations.
All these effects, in addition to the uncertainty in K estima-
tion, may have resulted in a maximum error of 12 % in the
estimated DEL.

Figure 8. Comparison of the predicted DEL with the DEL com-
puted from aeroelastic simulations over all mean wind speeds.

4 Application on V52 turbine measurements

Upon verifying the proposed method, the drivetrain main-
shaft torsional loads are estimated from the SCADA mea-
surements without any need for the aeroelastic model.
SCADA measurements taken during January 2019 for the
Vestas V52 850 kW research turbine installed at the DTU
Risø site is utilised for this purpose. The measurement data
consist of 4459 10 min recorded cases with 50 Hz sampling
frequency. Generator torque is used as one of the SCADA
signals instead of the generator speed for this part of the
study, and the generator speed is obtained from the generator
power and generator torque (on the low-speed side) SCADA
signals as ωg = P/T g. Further, the measurement data corre-
spond to normal operation and are filtered based on the con-
ditions given in Table 2 that result in 627 cases. It is impor-
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Figure 9. Regularised θdyn for two mean wind speeds.

Figure 10. Identified torsional loads (Mz) for two mean wind speeds.

Figure 11. Estimated torsional DEL from SCADA measurements
of the Vestas V52 turbine.

Table 2. Normal operation filter conditions.

Minimum rotor speed 1.7 rad/s
Minimum power 100 W
Minimum wind speed 4 m/s
Wind direction 280–320◦

tant to note that based on the site sector assessment, the V52
turbine is in wake-free condition between 280 and 320◦ wind
directions.

Using the rotor speed and generator speed, θdyn is cal-
culated using the Tikhonov regularisation method, and the
obtained θdyn for two representative mean wind speeds are
shown in Fig. 9.

The regularisation parameter is obtained for each mean
wind speed measurement using the L-curve criterion and the
obtained values not presented here for the sake of brevity.
Subsequently, by applying the collage method on Eq. (6)
for all 627 cases, the K values are estimated for each load
case, and then the resultantK value is obtained by taking the
mean of modes of the resulting PDF as described in the pre-
vious section. At this point, it is important to remember that
the inputs are from measurement; hence the estimated K is
a collective stiffness that has a contribution from all drive-
train components including the gearbox. With the estimated
K value, θ stat is calculated for each load case using Eq. (8),
and then the torsional load is obtained from Eq. (9). The cal-
culated torsional loads for two representative wind speeds are
shown in Fig. 10a and b.

After estimating the torsional loads for all 627 cases, the
identified loads are grouped according to the mean wind
speeds ranging from 6 to 22 m/s which are subdivided into
nine wind speed bins of 2 m/s width each. Subsequently, the
torsional DEL is calculated for each mean wind speed using
Eq. (10), and the same is shown in Fig. 11. It is important to
note that the DEL given in Fig. 8 (simulation) is the design
load and that the DEL given in Fig. 11 is the site-specific
load. The difference between these two can give an estimate
about the remaining torsional fatigue life of the main shaft
under normal operating conditions (Ziegler et al., 2018). Fur-
ther, the estimated main-shaft torsional DEL may be used to
quantify the RUL of the drivetrain (Pagitsch et al., 2020).
However, this is beyond the scope of the current work. It
is also feasible to reconstruct the torsional-load time series,
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which may be used an input to gearbox design tools to pre-
dict the loading within the gearbox.

5 Summary

A novel inverse-problem-based approach is developed for es-
timating the main-shaft torsional displacement and stiffness
by using high-frequency SCADA measurements. A mathe-
matical model describing the coupled-shaft torsional dynam-
ics is used for this purpose. Numerical errors and the effect of
measurement noise on the torsional displacement reconstruc-
tion are minimised through the Tikhonov regularisation tech-
nique. Subsequently, the collage method is used to estimate
the main-shaft coupled torsional stiffness. The estimated
main-shaft quantities are then used to identify the main-shaft
site-specific torsional load. The proposed formulation is suc-
cessfully verified for the main-shaft torsional loads with the
aeroelastic simulation of the Vestas V52 turbine. Upon ver-
ification, the methodology is extended to identify the site-
specific main-shaft torsional loads of the same turbine by us-
ing SCADA measurements. For this purpose, the measure-
ment data from the DTU Risø site are utilised, and the mea-
surement data are filtered and calibrated for the turbine nor-
mal operation. Using the identified torsional loads, the tor-
sional DEL is obtained. Depending on the prior information
about the stiffness value, one can either use the entire pro-
posed methodology or follow the torsional displacement es-
timation part of the proposed methodology for the torsional-
load identification. Since the site-specific SCADA measure-
ments are used in the analysis, the obtained loads can give
a better estimate of the remaining fatigue life of drivetrain
components. Monitoring the estimated loads can help in in-
spection planning and scheduling maintenance activities. As
the proposed methodology does not require any design ba-
sis or an aeroelastic design basis, it can be used for wind
turbines that possess high-frequency SCADA measurements
for the estimation of the main-shaft torsional load and DEL.

Appendix A

A1 Displacement reconstruction using Tikhonov
regularisation

By definition, the velocity θ̇ is expressed as

θ̇ (t)=
dθ
dt
≈
˙̃
θ (t), (A1)

where ˙̃θ (t) is the velocity obtained from Eq. (3) which can
be considered a measured velocity. As explained in Sect. 2.1,
the lack of initial conditions in addition to the measurement
noise leads to erroneous displacement. In order to minimise
the error between the actual and measured velocities in the
least-square sense, the following minimisation problem has

to be solved:

Min 5E(θ )=
1
2

tn∫
t0

(θ̇ (t)− ˙̃θ (t))2dt. (A2)

Here, θ̇ is the calculated velocity. In other words, Eq. (A2)
gives a measure of how well the actual velocity approxi-
mates the measured velocity. By means of the trapezoidal
rule, Eq. (A2) is discretised as follows (Hong et al., 2008):

5E(θ )≈ ‖La(θ̇ − ˙̃θ )‖221t, (A3)

where 1t is the time interval of the discretisation and La is
the diagonal weighing matrix of order (N + 1) as

La =


1/
√

2
1

. . .

1
1/
√

2

 . (A4)

Here, N is the number of data points in θ , and for a
10 min simulation with 50 Hz sampling frequency N be-
comes 30 000. Further, the calculated velocity θ̇ is discretised
by the central-difference rule and written in matrix form as

1
1t

Lcθ = θ̇ , (A5)

where the central-difference matrix Lc of size (N+1)×(N+
3) and the displacement vector θ of size (N +3) are given as

Lc =


1 0 1 . . .

−1 0 1
. . .

−1 0 1
. . . −1 0 1

 , θ =

θ−1
θ0
...

θn
θn+1

 . (A6)

In the finite-difference discretisation of Eq. (A6), some de-
fined nodes are located outside of the domain considered (i.e.
domain here is time, t ∈ [t0, tn] satisfying t0 ≤ t ≤ tn). These
nodes defined by time steps i =−1 and i = n+ 1 are ficti-
tious. These nodes are dummy nodes that are used in solv-
ing the differential equations by the finite-difference method
(Lapidus and Pinder, 2011). Substitution of Eq. (A5) into
Eq. (A3) leads to

Min 5E(θ )≈
1
2

∥∥∥∥ 1
21t

LaLcθ −La
˙̃
θ

∥∥∥∥2

2
1t

=
1
2

∥∥∥∥1
2

Lθ −La
˙̃
θ1t

∥∥∥∥2

2

1
1t
, (A7)

where L= LaLc. This minimisation problem is regularised
for solution boundedness with a parameter λ and given as

Min 5E(θ )≈
1
2

∥∥∥∥1
2

Lθ −La
˙̃
θ1t

∥∥∥∥2

2
+
λ2

2
‖θ‖22. (A8)
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The above minimisation problem is known as Tikhonov regu-
larisation, and λ is referred to as the regularisation parameter.
Minimising Eq. (A8) as

d5E
dθ
=

1
2

(
L2θ

2
−LLa

˙̃
θ1t

)
+ λ2θ = 0 (A9)

yields the following quadratic equation in θ :

θ =

(
L2

4
+ λ2I

)−1 LLa
˙̃
θ1t

2
, (A10)

where I is the identity matrix of order (N + 3).
The choice of regularisation parameter (λ) plays a crucial

role in getting an optimal fit for the solution. Based on knowl-
edge about measurement errors, Hansen (2005) proposed two
classes for the estimation of λ:

– methods based on knowledge of measurement errors

– methods that do not require details about measurement
errors.

In the present scenario, the information regarding the mea-
surement error is unknown; hence class two is used for the
current study. In class two, there are three widely used meth-
ods (Nieminen et al., 2011): (i) the quasi-optimality criterion,
(ii) generalised gross validation (GCV), and (iii) the L-curve
method. Compared to the GCV method, the other two meth-
ods give a better estimate of λ (Gao et al., 2016). Further,
for larger problems, the quasi-optimality method is compu-
tationally more expensive than the L-curve method. Owing
to this fact, the L-curve method is used here for estimating λ.
In the L-curve method, the optimal λ is the one which gives
the maximum curvature in the L-curve between the norm of
the regularised solution α(λ)= ‖θ reg‖2 and the norm of the

residual β(λ)=
∥∥∥∥ 1

2 Lθ −La
˙̃
θ1t

∥∥∥∥
2
, and the curvature of the

L-curve is given by (Nieminen et al., 2011)

κ(λ)=
α̈β̇ − β̈α̇

[α̇2+ β̇2]3/2
. (A11)

Substituting the optimal λ obtained by finding the maximum
curvature of Eq. (A11) and ˙̃θ (t) obtained from Eq. (3) in
Eq. (A10), the regularised torsional displacement (θ ) is ob-
tained.

A2 Modal-parameter estimation using the collage
method

For a given initial-value problem (IVP),

x(t)= f (x, t),x(0)= x0, (A12)

that admits a target solution x(t), the associated Picard inte-
gral operator T is given by

(Tu)(t)= x0+

tn∫
t0

f (u(s), s)ds. (A13)

The assumptions regarding the parameter estimation prob-
lem using the collage method are listed as follows (Deng and
Liao, 2009):

1. x(t) ∈ [t0, tn] is a bounded solution, where t0 and tn are
positive constants satisfying t0 < tn.

2. f (u,x, t,γ1, · · ·,γm) is continuous, where γi, i =

1, · · ·,m are the unknown modal parameters.

3. The exact solution x(t) of Eq. (A12) uniquely exists.

Here, the unique solution of the considered IVP is given by
the fixed point ū(t) of this Picard operator (Kunze et al.,
2004). Accordingly, the collage distance becomes (x−Tx),
and then the optimal solution is the one which minimises the
squared L2 collage distance (here, L2 is 2 norm or square
norm of a function). Also, unlike the conventional inverse
problem which minimises the approximate error d(x− x̄),
the collage method minimises the collage distance d(x,Tx),
which is a useful change, as one cannot find x̄ for a general
T (Kunze et al., 2004). Further, the optimality of the collage
distance minimisation is ensured as shown by Kunze et al.
(2004). Accordingly, the L2 collage distance has the form

1=

( tn∫
t0

(x(t)− (Tx)(t))2dt
) 1

2
. (A14)

Minimising the squared L2 collage distance yields a station-
arity condition, d12

dγm
= 0, that results in a set of simultaneous

linear equations as a function of unknown modal parameters
(γm). The modal parameters are then obtained by solving that
set of linear equations.

Code availability. The code regarding the mathe-
matical models developed in the article can be ac-
cessed at https://github.com/dheelibun/Estimation-of-main-
shaft-torsional-modal-parameters-from-high-frequency-
SCADA#readme (last access: 4 November 2021) and
https://doi.org/10.5281/zenodo.5643220 (Remigius, 2021).

The open-source DTU 10 MW wind turbine aeroelastic
model can be accessed at https://rwt.windenergy.dtu.dk/dtu10mw/
dtu-10mw-rwt (last access: 4 November 2021; Zahle, 2018).

Data availability. Vestas V52 wind turbine SCADA data and its
other parameters are not publicly available. However, Vestas v52
SCADA data can be requested by signing a non-disclosure agree-
ment.
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