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Abstract. Based on Detrended Fluctuation Analysis (DFA),
we propose a new method – Moving Detrended Fluctua-
tion Analysis (MDFA) – to detect abrupt change in dynamic
structures. Application of this technique shows that this
method may be of use in detecting time-instants of abrupt
change in dynamic structures and we even find that the
MDFA results almost do not depend on length of subseries,
and are less affected by noise.

1 Introduction

Abrupt change detection in meteorological area is a much
studied subject (Alexi et al., 2007; Alley et al., 2003;
Broecker, 2003; Ganopolski, et al., 2002; Rahmstorf, 2003;
Thomas et al., 1988; Wunsch, 2006). It plays a significant
role in improving climate prediction. There are various tra-
ditional methods for approaching climate abrupt change de-
tection such as moving t-test, Cramer Method, Yamamoto
Method (Yamamoto et al., 1985) and Mann-Kendall test
(Mann, 1945; Kendall et al., 1975). These methods have in
common that detection results strongly depend on the length
of subseries, namely analyzed timescales. Using these tra-
ditional approaches, we find the detected time-instants of
abrupt change are extremely different for different lengths
of subseries. There are two types of abrupt change, one is
caused by the change of dynamic equation, and the other
is caused by the change of phase or evolution trend (or fre-
quency) of a system but dynamic equation does not change.
These traditional methods cannot distinguish the two types
of abrupt change. In order to deal with this problem, Pin-
cus (1993, 1995) proposed Approximate Entropy which is
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generally called ApEn for short and could identify dynamic
structure to some extent but still depend on the lengths of
subseries. At the same time, there exists a huge drift for the
ApEn results which means the actual time-instants of abrupt
change don’t overlap with the detected one. Making sure of
characteristics and time-instants of abrupt change is very im-
portant for climate prediction. For that reason, it is essential
to provide a new detection method to exactly solve this prob-
lem.

Previous studies have shown that a large quality of time
series exhibit scaling behaviors (Bunde et al., 2000, 2005;
Cao, 1997, 2003; Jan et al., 2007; Liu et al., 2000; Livina
et al.,2005; Peter et al., 2000), such as daily temperature
records exhibit long-range correlation, which is character-
ized by an infinite correlation time and linked to power-law
behavior of autocorrelation function (Fraedrich et al., 2003),
namely:

C(s) ∼ s−α, 0<α<1. (1)

A power-law relationship betweenC(s) ands indicates scal-
ing with an exponentα. Therefore, based on a scaling tech-
nique, Detrended Fluctuation Analysis (DFA) (Peng et al.,
1993, 1994), we propose a new abrupt change detection
method – Moving Detrended Fluctuation Analysis (MDFA).
It is mainly used to detect abrupt change in dynamic struc-
tures. In this paper, we consider two types of abrupt dynamic
structure change:

1. abrupt parameters change in systems;

2. abrupt change caused by external forcing or interactions
between systems.

The tests on model time series imply that MDFA overcomes
shortcomings of traditional methods and can be used to ex-
actly detect abrupt change in dynamic structures.
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Fig. 1. (a) The IS0 time seriesx(i) (i=1, 1000) of 1000 units,
in which there is no abrupt change in dynamic structure;(b) the
MDFA4 results of IS0, the length of subseries is equal to 200;(c)
same as Fig. 1b, but the length of subseries is equal to 300.

This paper is organized as follows: Sect. 2 describes the
abrupt change detection methodMDFA and the data in tests,
and then we provide the results and discussion in Sect. 3.
Finally, our conclusions are presented.

2 Method and data

Estimating the autocorrelation functionC(s) from empirical
data is limited to rather small lag s and is affected by obser-
vational noise and nonstationarities such as trends (Maraun
et al., 2004). Therefore, in this paper, we employ DFA, a
scaling analysis method that can deal with seemingly non-
stationary time series, and which provides a simple quanti-
tative parameter – scaling exponent – to describe power law
in time series (Peng et al., 1993, 1994). The relationships
between scaling exponentsα andp are (Bunde et al., 2000,
2005; Maraun et al., 2004):

α=2(1−p). (2)

Different ordersn of DFA (DFA1, DFA2 etc.) differ in the
order of the polynomial used in DFA procedure (Monetti et
al., 2003). Accordingly, different ordern of MDFA proce-
dure can be marked by MDFAn. In order to detect abrupt
change in dynamic structures which exist in time series, we
first choose a subseries to calculate a scaling exponent by
DFA, and then move subseries gradually without changing
the length of subseries, repeat this operation until the end
of the original series. If there is an abrupt change in dy-
namic structure, the scaling exponent will have a very sharp
change in the vicinity of abrupt change. Whereas, if there
is no abrupt change in dynamic structure, the scaling expo-
nent will have a relative tiny change, and this change mainly
caused by an insufficiency of samples size. Based on these
characteristics, we can easily identify time-instants of abrupt
change in dynamic structures. The data in tests come from
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Fig. 2. (a) The IS1 time seriesx(i) (i=1,1000) of 1000 units, in
which there is an abrupt change in dynamic structure whenn=501;
(b) the MDFA4 results of IS1, the length of subseries is equal to
100;(c) same as Fig. 2b, but the length of subseries is equal to 200.

chaos model, such as classical Lorenz model (Lorenz et al.,
1963) or Chen model (Chen et al., 1999), and the data dis-
play scaling character. In this paper, all the lengths of model
time series are 1000 units.

3 Results and discussion

Figure 1a shows a model time series IS0, which is produced
by Lorenz system when Rayleigh parameterR=28.0, and
there is no abrupt dynamic change in IS0. Figure 1b and c
shows the MDFA4 results for the model time series used in
Fig. 1a. When the length of subseries is equal to 200, the
maximum and minimum of scaling exponents is respectively
5.57343, 4.60895 and the variation of scaling exponents is
about 0.96448. When the length increases to 300, the max-
imum and minimum of scaling exponents are respectively
5.14896, 4.55396 and the variation approximately decreases
to 0.595. We use MDFA4 to detect other model time se-
ries which have no abrupt dynamic change, and we find that
the results are similar to that of IS0. The variation of scal-
ing exponents is relatively small, which is a common char-
acter for those model time series without abrupt dynamic
change. Meanwhile, we find that the variation of scaling ex-
ponents decreases with the increase of length of subseries.
Consequently, for those time series without abrupt dynamic
change, it is obvious that fluctuation of scaling exponents
induced by moving subseries mainly due to the shortage of
sample size.

To illustrate parameter change which induces abrupt
change in dynamic structure, we use the model time series
IS1 which is formed by the variablex in Lorenz system
(see Fig. 2a). The previous half in IS1 are produced when
Rayleigh parameterR=29.0, the others are produced when
R=28.0. Obviously, there is an abrupt parameter change in
IS1 whenn=501.

Nonlin. Processes Geophys., 15, 601–606, 2008 www.nonlin-processes-geophys.net/15/601/2008/



W. P. He et al.: A new abrupt change detection method 603

0 200 400 600 800 1000

0.000

0.004

0.008

0.012

0.00

0.01

0.02

0.03

0.04

V
ar

ia
nc

e 
co

nt
rib

ut
io

n

(b)

 Variance contribution
 Average of Variance contribution

L=200

 

n

(a)

 Variance contribution
 Average of Variance contribution

L=100  

 

 

Fig. 3. Variance contributions of scaling exponents.(a) Variance
contributions for detection results of IS1 by using MDFA4, the
length of subseries is equal to 100;(b) same as Fig. 3a, but the
length of subseries is equal to 200.

Figure 2b and c shows the MDFA4 results for the model
time series IS1, respectively. According to the difference of
fluctuation amplitude of scaling exponents, We can easily
find from Fig. 2b that the evolution curve of scaling expo-
nents can be roughly divided into three parts:

1. (100,500);

2. (501,600);

3. (601,1000).

In the first and third parts, the fluctuation of scaling expo-
nents is stable, additionally fluctuation amplitude is relatively
small and the variation is about 2.96393. As said before,
the relatively small fluctuation amplitude mainly dues to the
shortage of sample size. But in the second part, the fluctua-
tion amplitude of scaling exponents increase apparently and
the variation is about 7.99496. The reason is that MDFA
is very sensitive to the data from different system. In other
words, if subseries are comprised of data coming from differ-
ent dynamic systems, the variation of scaling exponents ap-
parently greater than that of subseries, which are comprised
of data coming from identical dynamic system. Figure 2b
and c shows that MDFA4 can be used to detect the abrupt
dynamic structural change in the model time series IS1.

To exactly give time-instants of abrupt dynamic change
from the MDFA4 results, we need present a quantitative mea-
sure. In view of the sensitivity of MDFA to the data com-
ing from different dynamic systems, in this paper, we esti-
mate the time-instants of abrupt change quantitatively from
the MDFA results according to the variance contribution of
scaling exponents. It should be noted that the average of
scaling exponents in variance contribution procedure is cal-
culated by scaling exponents, the variation of which is rel-
atively smaller. For example, when the length of subseries
is 100, the average of scaling exponents for the model time
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Fig. 4. The time-instants of abrupt dynamic change as a function of
length of subseries for IS1.

series IS1 is calculated by the scaling exponents in the first
and third parts in Fig. 2b. Figure 3a and b presents the results
of variance contribution procedure of scaling exponents, ac-
cording to Fig. 2b and c, respectively. We find that the plots
of variance contribution can distinguish normal fluctuation
amplitudes from abnormal ones. The normal one is mainly
caused by the shortage of sample size, and the abnormal one
is primarily caused by the sensitivity of MDFA to the data
from different system. We define the time-instant of abrupt
change is the point when the first variance contribution is
above the average of variance contribution. Based on this
definition, we find that all the time-instants of abrupt dy-
namic change in IS1 aren=503 when the lengths of subseries
are respectively 100 and 200. Then we use MDFA4 to analy-
sis IS1 for other different lengths of subseries, and the results
have been shown in Fig. 4. It can be seen from Fig. 4 that the
time-instant of abrupt change range from 501 to 506, which
are all very close to the actual time-instant of abrupt change
(n=501). The MDFA results indicate that MDFA can be used
to effectively detect abrupt dynamic change, and hardly de-
pend on the length of subseries. We can get similar results
by using other orders of MDFA.

In this paper, we test the performance of traditional abrupt
change detection methods including Moving t-test, Cramer
method, Mann-Kendall test, Yamamoto method and ApEn,
and compare them with the corresponding MDFA results.
The detection results of Moving t-test, Cramer method and
Mann-Kendall test are summarized in Table 1, and it is very
easy to find that the results of traditional methods highly de-
pend on lengths of subseries. For example, when the length
of subseries is 100, the numbers of abrupt change by using
Moving t-test, Cramer method and Mann-Kendall test are 8,
5, and 5 respectively. But when the length increases to 200,
the number of abrupt change gained from the three traditional
methods becomes 3, 1 and 3 respectively. With the increase
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Fig. 5. Same as Fig. 2, but the time series is IS2.

Table 1. The number of abrupt change in IS1 for different lengths
of subseries by using traditional methods.

Traditional Method Length of subseries 100 200 300

Moving t-test 8 3 1
Cramer Method 5 1 0
Mann-Kendall 5 3 2

of length of subseries, there is a decreasing trend in the num-
bers of abrupt change. The Yamamoto method cannot detect
any abrupt change in IS1. The ApEn results indicate that
the time-instant of abrupt change depends on the length of
subseries, for example, the detected time-instants of abrupt
change aren=181, 392, 487, 530 for the lengthL=100, 200,
300, 400, respectively. It is obvious that the performance of
MDFA is better than that of traditional methods.

Model time series IS2 is composed of two parts: the clas-
sical Lorenz model (Lorenz et al., 1963) and the periodic
forcing Lorenz model, which is as follows:

dx

dt
=−σx+σy+A cos(wt)

dy

dt
=Rx−y−xz

dz

dt
=xy−bz (3)

A is the forcing strength, we get 0.005 here,A cos(wt) is
the forcing term.W is the frequency of periodic forcing, we
get 0.02 here. Parametersσ, b are 10.0 and 8/3, respectively.
R is Rayleigh number, which is equal to 28.0. Figure 5a
shows the evolution curve of the model time series IS2, and
the first 500 data are produced by the variablex in classic
Lorenz equations, the others are produced by the variablex

in Eqs. (1). Figure 5b and c show the MDFA4 results for
different lengths of subseries. Based on variance contribu-
tion procedure (Figs. omit), we find that the time-instant of
abrupt change isn=504, which is very close to the actual
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Fig. 6. Same as Fig. 2, but the time series is IS3.

time-instant of abrupt change. The model time series IS2
is very smooth, and so it is usually difficult to find out the
time-instant of abrupt dynamic change. But we can easily
and exactly detect the time-instant of abrupt change through
MDFA4.

Climate system includes various kinds of subsystems.
There exists coupling between different climate systems,
sometimes it is strong and sometimes it is weak. A coupling
can be ignored when its coupling strength is weak, however,
it cannot be ignored when its coupling strength is strong.
The strong interactions between subsystems may induce the
evolution of climate system to an exceptional state, such
as floods, drought, extreme high temperature etc. We now
consider a simple binary model and its strong interactions
between subsystems have caused abrupt dynamic change.
This model is composed of Lorenz model and Chen system
(Lorenz et al., 1963; Chen et al., 1999), the coupling binary
model can be written as:

dx1

dt
= − σx1 + σy1+E(x1−x2)

dy1

dt
=r1x1−y1−x1z1

dz1

dt
=x1y1−b1z1

dx2

dt
= − ax2+ay2+w2−E(x1−x2)

dy2

dt
=dx2+cy2−x2z2

dz2

dt
=x2y2−b2z2

dw

dt
=y2z2−r2w (4)

x1, y1, z1 are three variables of Lorenz model, respec-
tively, and x2, y2, z2, w are four variables of Chen sys-
tem. E(x1−x2) is the coupling term. The two subsystems
can achieve interactions through coupling between variable
x1 and x2. E is the coupling strength, which represents
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the strength of interactions between two subsystems. When
E→0, there is no interactions. But the interactions cannot
be ignored with the increase of coupling strengthE, and
the evolution of subsystem will depart the unperturbed state,
which directly induce abrupt change in dynamic structure.
Other parameters in Lorenz model are same as that in Eq. (1).
In Chen system, parametera is 35,d is 7,c is 12,b2 is 3, and
r2 is 0.08, respectively.

In the model time series IS3, the first 500 data have been
created by the variablex in the classical Lorenz model, and
the second 500 data have been created by the variablex1 in
the coupling model (Eq. 2). The coupling strengthE be-
tween the two subsystems is 0.001 in this test. The evolution
curve of the model time series IS3 has been shown in Fig. 6a.
Similar to IS1, We can easily find that the evolution curve of
scaling exponents can be roughly divided into three differ-
ent parts based on different fluctuation amplitudes. Then we
use variance contribution procedure to analyze scaling expo-
nents in Fig. 6b and c, and find that the time-instants of abrupt
change are respectivelyn=503 and 504. And then we stud-
ied the effect of noise on MDFA because noise is inevitable
in observational data. Figure 7 shows the MDFA results for
IS1 under different Signal Noise Ratio (SNR), and we find
that noise has an impact on the MDFA results, especially for
strong noises, but MDFA has a perfect capability to resist
the effect of noise. The MDFA results of analogous tests on
noise for IS2 and IS3 are similar to that for IS1.

4 Conclusions

We present a new method-MDFA for detection of abrupt
change in dynamic structures. The tests on different model
time series indicate that this new method can be able to ef-
fectively detect abrupt dynamic change. What’s more, the
MDFA results are almost independent of length of subseries
and have a perfect capability to resist the effect of noise.
The MDFA results are observably better than that of tradition
methods because detection results of traditional methods ev-
idently depend on lengths of subseries analyzed. The MDFA
provides a reliable approach to estimate time-instants of
abrupt dynamic change and overcomes the drawback of tra-
ditional ones which cannot effectively detect abrupt change
in dynamic structures. Based on this, this new method must
be applied in the future widely.
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