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Abstract. The aim of this study is to identify the landslide van der Eeckhaut et al., 2010 (9 variables); Sterlacchini et
predisposing factors’ combination using a bivariate statisti-al., 2011 (9 variables)). Nevertheless, the evaluation of the
cal model that best predicts landslide susceptibility. The bestveight of each landslide predisposing factor within the pre-
model is one that has simultaneously good performance irdictive model through a thorough sensitivity analysis is fre-
terms of suitability and predictive power and has been develquently missing. In addition, the application of statistic bi-
oped using variables that are conditionally independent. Thevariate methods to assess landslide susceptibility assumes
study area is the Santa Marta de Penagwouncil (70 kri) conditional independence (ClI) of the landslide predisposing
located in the Northern Portugal. factors (Bonham-Carter et al., 1989; Agterberg et al., 1993;
In order to identify the best combination of landslide pre- Van Westen, 1993; Agterberg and Cheng, 2002; Thiart et al.,
disposing factors, all possible combinations using up to sevei2003; Thiery et al., 2007). Blahut et al. (2010) pointed out
predisposing factors were performed, which resulted in 120that spatial probabilities are overestimated when conditional
predictions that were assessed with a landside inventory corindependence is not verified.
taining 767 shallow translational slides. The best landslide In this study, the aim is to determine the best combination
susceptibility model was selected according to the model deof landslide predisposing variables using a bivariate statisti-
gree of fitness and on the basis of a conditional independenceal model, based on the assessment of goodness of fit and
criterion. The best model was developed with only threepredictive power, using variables that have a high degree of
landslide predisposing factors (slope angle, inverse wetnessonditional independence. In addition, we assess the num-
index, and land use) and was compared with a model develber of unique conditions within each landslide susceptibility
oped using all seven landslide predisposing factors. model associated to each combination of landslide predis-
Results showed that it is possible to produce a reliablgposing variables. This number should be minimized when
landslide susceptibility model using fewer landslide predis-landslide susceptibility maps are made for land use planning
posing factors, which contributes towards higher conditionaland management in order to avoid the over partitioning of the
independence. study area.

2 Study area
1 Introduction

The study area (Fig. 1) is Santa Marta de Per&guabuncil
Recent developments in GIS software and increasing com¢70 kn?), located in the Northern Portugal. This area is part
puting power allow a substantially high number of indepen- of the Iberian Hercynian Massif where plutonic and meta-
dent variables to be used in empirical, data-driven landslidemorphic rocks are dominant. Geomorphologically, the study
susceptibility models. Recent studies in landslide susceptiarea is located in a transition area between the Portuguese
bility models usually involve over a dozen variables consid- north-western mountains and the Douro Valley (Ferreira,
ered as predisposing factors of slope instability (e.g. Lee efl991). Tectonic deformation explains the vigorous down
al., 2002 (13 variables); Lee and Choi, 2004 (15 variables);cutting of the rivers, deep incised valleys and steep slopes.
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Fig. 1. Location of the study site Santa Marta de Penaguli

The elevation ranges from 70m to 1416 m. The bedrock
of the study area includes mainly contrasting metamorphic
rocks, (e.g. phyllites, metagreywakes, metaquartzitic grey-
wakes and quartzite). These rocks are strongly fractured
and weathered materials are abundant in clay-rich laminate:

Inventory
Cartographic
database

—* Slope Angle

Spatial and Temporal
distribution

rocks, especially in those areas where agricultural terrace
were built for plantations of vineyards. Almost 52 % of the
study area is covered by vineyards. Vineyards dominate ot

Field work and aerial
photo interpretation

Slope Aspect

DEM —
Slope Curvature

Inverse Wetness

south exposed slopes, and have been supported for centuri Index
by man-made terraced structures built with schist stone. Re e
cently, these structures have been replaced by mechanic p—
land embankments which were built with anthrosoils and e on
schist rock. These structures are not supported by wall

which increases slope instability.

— Lithology

Geomorphological
Units

Vectorial Maps
Aerial Photo
Interpretation

Land use

The main landslide triggering factor in the study area
is rainfall (Pereira, 2010). The mean annual precipitation
ranges from 700 mm (at the bottom of fluvial valleys) to
2500 mm (on Ma&io Mountain).

21 combinations — 2 variables
35 combinations - 3 variables
35 combinations - 4 variables
21 combinations — 5 variables
7 combinations — 6 variables
1 combination - 7 variables

120 combinations

Prediction
Skill

Validation

Model
Selection

between predisposing
factors

3 Data and methods

Information Value

Assess Model Fit

The methodological flowchart used to select and validate the "
best landslide susceptibility model is shown in Fig. 2. This @ ||
methodology is based on both the assessment of the predi maps

tive capacity and the conditional independence of landslide o pesteran
predisposing factors within landslide predictive models.

Assess Conditional
Independence

Fig. 2. Methodological flowchart used to select the best landslide

3.1 Landslide inventory and landslide predisposing Vi
susceptibility model.

factors

The landslide inventory was produced for the study areavv_ere_validated in the field, t.hus allowing the I.and_slide dis-
between 2005 and 2010, using aerial photo-interpretatiorffiPution map to be very reliable. The landslide inventory
(1/5000 scale) and field work. The boundaries of the Iand-(F_'g' 3a) includes 767 shall_ow translational slides (11 land-
slides were drawn over detailed field maps (1/5000 scale)S!ides per krf). Each landslide has, on average, 136and

later vectorized and stored in a GIS database. All landslidedhe depth of the slip surface typically ranges from 1 to 1.5m.
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b A classification of the main landforms was performed and
mapped by manual delineation based on the interpretation of
a DEM at 1/10000, geological maps and field observations.
This resulted in the identification of eight main geomorpho-
logical classes (Table 1). Six lithologic units were defined
exploring the official geological maps at 1/50 000. The litho-
logical boundaries were rectified by fieldwork where errors
were found in the geological maps. Land use data were ob-

Temporal Partition

—priind . tained from Corine Land Cover (CLC) 2000 at 1/100 000 and
T 7 aerial photo interpretation. Field work for validation pur-

" poses was performed in 2009 on a 1/5000 basis to improve
& s the quality of land use information. Twelve land use classes

were identified (Table 1).

Although a high rainfall gradient was found within the
study area, rainfall was not considered as a predictor for land-
slide spatial distribution. Rainfall is crucial to understand
the temporal activity of landslides but it does not explain the
landslide spatial distribution at the basin scale.

Finally, seven variables were mapped and converted into
a raster format with a 10 m pixel and later reclassified for
modelling purposes.

Random Partition
I voceling Group
Validation group
o 12
 ec—n

Fig. 3. Inventory of shallow translational slides in the study g@a 3.2 Weighting of variables and evaluation of models’
and landslide groups used to validate landslides susceptibility mod- goodness of fit

els, generated with tempor@), spatial(c) and randon{d) parti-
tioning criteria.

The weighting of class variables for landslide susceptibil-
Table 1 summarizes the set of factors considered as thl-{*y evaluation was .made applying the bivariate statistical

main landslide predisposing factors in the study area. Th e::lod gg{lsréformgt]on Vﬁtlge. TQ'Sd ’.“e\‘:.‘Od V\c'jai proi)gggd

digital elevation model (DEM) was used to derive slope an- yd ?g ( 2)082 is well described in Yin and Yan ( )

gle, slope aspect, slope curvature and the inverse wetne! zere ( )- _ . . .

index. The DEM was created from elevation points and For each glass within each landslide pr_edlsposmg the_zme,

10 m contour lines that were initially in vector format. Thus, the Information Value was calculated using the following

the DEM and derivative data were produced with a pixel equation (Yin and Yan, 1988).

size of 10m (100 M), resulting in a raster image contain- Ii=In Si/Ni (1)
ing 684 637 pixels to cover the study area. This pixel size S/N

was considered adequate taking into account the resolution afhere:

the cartographic database. Given that one of the main objec- |i = Information Value of variablei; Si=number of pix-

tives is to choose the best set of variables that control shallovels with landslides (depletion area) of typavithin variable
translational slides, the predisposing factors were not classixi; Ni=number of pixels with variablei; S = number of
fied using a priori information on landslide distribution in pixels with landslides (depletion area) of typeV = number
order to not overestimate the susceptibility scores. of pixels of the study area.

The slope angle was divided in 7 classes{; 5-10; Whenli is negative, the variablei is not relevant to ex-
10-15; 15-20; 20-25; 25-30; >30°) using class lim-  plain the spatial landslide distribution. Positievalues in-
its indicated in the literature (e.géZere et al., 2004). The dicate a direct relationship between the presence of variable
slope aspect was split into nine classes: the eight major diand slope instability, which increase with the increase of the
rections and a class for flat areas. The total slope curvaturgcore. In Eq. (1)li is not possible to obtain i is zero. In
was calculated using ArcGIS 9.3.1 on a cell-by-cell basis antcsuch casedj was forced to be the first decimal lower than
taking into account a surface composed of @a3window.  the lowesti obtained within the theme (see Table 1).
The obtained results were divided into three classes: con- Total Information Value for g pixel was determined by
cave, straight, and convex. The Inverse Wetness Index is thgyin and Yan, 1988):
ratio of Slope by Specific Catchment Area. A logarithmic Jie Zm Xiili @)
scale was used to define five classes (0; 0—0.0001; 0.0001~ =17/

0.001; 0.001-0.01; 0.01-0.18) that are adjusted to the naturayhere:
breaks of variable distribution. m = number of VariableSin =is either 0 or 1 if the vari-

able is not present or present in the pixetespectively.
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Table 1. Thematic layers and class information values computed with the total set of landslides and the landslide modelling groups obtained
with temporal, spatial, and random partitions. Variable classes more related with landslide distribution are highlighted in bold.

Thematic Layer Information Value
Class

Total landslides Temporal partition Spatial partition Random partition
Slope Angle
>5° —1.522 -1.703 —1.476 —2.630
5°-10° —1.469 —1.545 —1.066 —1.661
10°-15° —0.691 —0.549 —0.468 -0.271
15°-20° —0.136 -0.072 0.043 —0.390
20°-25 0.229 0.213 0.329 0.171
25°-30 0.323 0.294 0.166 0.218
>30° 0.129 0.108 —0.092 0.375
Slope Aspect
Flat —2.254 —2.147 —2.074 —1.200
N -1.239 —1.209 —1.190 —-1.134
NE —0.894 —0.881 —0.933 -1.191
E —0.065 0.034 0.176 —0.418
SE 0.521 0.573 0.595 0.348
S 0.733 0.673 0.754 0.965
Sw 0.367 0.391 0.252 0.522
w —0.453 —0.730 —0.800 —0.558
NW —0.326 -0.357 —0.766 —0.262

Slope curvature

Concave 0.309 0.345 0.303 0.530
Straight —1.480 -1.373 -1.331 —1.593
Convex 0.116 0.081 0.106 —0.061

Inverse Wetness Index

0 -1.511 —1.500 —1.245 —1.616
0 - 0.0001 —0.963 —0.974 —0.496 -1.700
0.0001- 0.001 0.060 0.194 0.161 0.303
0.001-0.01 —0.041 —0.063 —0.051 0.048
0.01-0.18 0.249 0.257 0.217 0.028

Geomorphological Units

Tectonic depression with alluvium fill —2.490 —1.890 —0.720 —2.700
Flat interfluves —2.484 —1.890 -0.720 —2.700
Floodplain -1.822 —1.888 —0.720 —2.697
Incised valleys in schist 0.204 0.206 1.195 -0.721
Quartzite steep slopes —0.027 —0.031 -0.720 0.148
Incised valleys in hard metamorphic rocks —0.028 0.036 0.550 —0.085
Complex slopes in granite —0.218 -0.111 -0.720 0.147
Slopes controlled by the VBr—Régua-Penacova fault 0.542 0.440 -0.718 0.589
Lithology

Conglomerate —0.470 -0.370 —0.990 —0.100
Desejosa Formation 0.049 0.059 0.079 —0.001
Granite —0.468 —0.362 —0.982 —0.095
Alluvium —0.470 —1.163 —0.990 —0.100
Quartzite —0.470 —-0.370 —-0.370 —0.100
Pint&o Formation —0.047 —0.092 —0.126 0.082
Land Use

Agriculture in natural spaces —0.636 —0.589 —1.004 -0.512
Degraded forest. cuts and new plantations —2.825 —-3.229 —2.751 —-3.057
Softwoods forests -0.731 —0.912 —0.146 —0.740
Broadleaves forests —1.566 —1.683 —0.982 —3.060
Mix forests -1.679 —-1.639 —-1.161 —1.790
Bushes -1.731 —1.288 —0.964 —1.048
Groves —2.830 —3.230 —2.760 —3.060
Natural pasture and sparse vegetation —2.830 -3.230 —2.760 —3.060
Discontinuous urban area 0.244 0.351 —2.760 1.053
Vineyard without soil support structures 0.167 —0.008 0.244 0.236
Vineyard in terraces with schist walls 0.682 0.727 0.580 0.655
Vineyard in terraces with land embankments. 0.298 0.207 0.511 0.249
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The Information Value Method was applied to the total
possible combinations among the above mentioned seven
landslide predisposing factors. To this end, 120 landslide
susceptibility models were computed, including 21 models
with 2 variables, 35 models with 3 variables, 35 models with
4 variables, 21 models with 5 variables, 7 models with 6 vari-
ables, and one model with 7 variables.

The goodness of fit of each landslide susceptibility model
was evaluated using a Receiver Operating Curve (ROC
(Swets, 1988) and by computing the Area Under the ROC
Curve (AUC). The ROC curve plots the True Positive
Rate (TPR) versus the False Positive Rate (FPR), where TP!
is the proportion of landslide area that is correctly classified
as susceptible and FPR is the proportion of non-landslide
area classified as susceptible (Fratinni et al., 2010).

3.3 Assessment of conditional independence

The existence of conditional independence among landslids
predisposing factors is a prerequisite of any bivariate statis
tical method. In this work, two tests were performed to the ,
entire dataset to assess conditional independence: the Ove:%
all Conditional Independence (OCI) and the Agterberg andg
Cheng Conditional Independence Test (ACCIT) (Agterbergg
and Cheng, 2002). The ArcSDM toolbox (Sawatzky et al.,
2009) was used to evaluate OCI and ACCIT. The ArcSDM §
tool requires the dependent (landslide) layer to be a poin
shapefile. Therefore, the centroid of each landslide depletior
area was extracted from the original landslide inventory. The
point shapefile representing landslides was cross-tabulate
individually with each landslide predisposing factor. Vari-
able classes were weighted and integrated using the Weigh
of Evidence method (Bonham-Carter, 1994; Bonham-Carte!
etal., 1989, 1990) for the abovementioned 120 landslide pre
disposing factors combinations (results not showed in this
paper) in order to obtain the variables’ combination response
(Post Probability and Post Probability Standard Deviation).
The OCI is the ratio between observed and the expectel
number of training points. Values below 1 usually indicate
conditional dependence among two or more landslide pre:
disposing factors (Bonham-Carter, 1994). The ACCIT is a
statistic test for confidence in which the predicted training
points (') are greater than the observed training poinjs (
and applies a one-tailed test of the null hypothesis such tha
T —n =0 (Agterberg and Cheng, 2002). According to Agter-
berg and Cheng (2002), probability values greater than 95 %.
or 99 % indicate that the hypothesis of conditional indepen-
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indicates that some conditional dependence occurs.
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Conditions(b) and Overall Conditional Independence and Agten-
berg and Cheng Conditional Independence {@dbr the complete

set of landslides’ predisposing factor combinations. The Agtenberg
and Cheng Conditional Independence Test was subtracted from 100
to ease comparison.
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3.4 Selection of the landslide susceptibility model and
evaluation of prediction capacity 0ss

The best landslide susceptibility model was identified con- 3. .. R
sidering simultaneously the model goodness of fit and the § B 2R AR :.: o,
conditional independence of landslide predisposing factorsg LY %
within the model. The chosen landslide susceptibility model § *
obtained with the minimum number of independent variables
was compared with the model based on the entire dataset o °* -
landslide predisposing factors. In order to allow the visual o ¢
comparison between maps, each landslide susceptibility mag o
was divided in 10 classes, each one representing 10 % of the ..
study area.

Additionally, the prediction skill of the selected landslide
susceptibility models was independently assessed. The origrig. 5. Scatter plot between Agterberg and Chen Conditional Inde-
inal landslide dataset was partitioned into two subgroupspendence Test and ROC curve AUC for 120 landslide susceptibil-
(modelling and validation) using temporal, spatial and ran-ity models built using the set of possible combinations of landslide
dom criteria. Therefore, three new landslide susceptibility predisposing factors. Yellow diamond — Model with seven themes;
models were built using the landslide modelling groups. Thefed diamond — Selected model (three themes). The red line marks
model prediction skill was assessed by cross-validating sust-h_e I_|m|t of a_cceptable c_o_n_dltlonal independence among variables
ceptibility results with the landslide validation group. Model within landslide susceptibility models.

results were compared through ROC curves plotting TPR and ) o )
FPR. range of values in susceptibility models built from two to

five landslide predisposing factors. In comparison, all mod-
els built using six or seven variables have low values of con-
4 Results and discussion ditional independence in both tests (lower than 10 % for any
combination of variables).
Table 1 summarises the Information Values obtained with Figure 5 is a scatter diagram of the Area Under the ROC
the total set of shallow translational slides and with landslideCurve and ACCIT for the 120 landslide susceptibility mod-
sub-sets corresponding to different partition criteria. els. As expected, the model built with all seven variables

Information Values computed with the total set of land- (yellow diamond) has the highest AUC (0.804), but the AC-
slides (Table 1) were integrated and 120 landslide susceptiCIT equals zero. This indicates that despite the goodness of
bility models were produced using all possible combinationsfit of this model being high, the set of variables used to de-
of landslide predisposing factors (Table 2). For each land-velop the model has a high degree of conditional dependence.
slide susceptibility model the ROC curve and the correspond-
ing AUC were computed, as well as the number of unique Following the Agterberg and Cheng (2002) indication, the
terrain conditions and two tests of conditional independencdandslide susceptibility models with 1-(ACCIT/100) below
(OCl and ACCIT). 0.5 have some conditional dependence and should be rejected

Figure 4 shows the range values of Area Under the ROGf the test resultis at least below 0.05. In the present study, we
Curve, Terrain Unique Conditions and OCI and ACCIT testsreject models with 1-(ACCIT/100) below 0.4 (vertical line in
according to the number of landslide predisposing factorsFig. 5). Accordingly, the red diamond in Fig. 5 is the selected
for each predictive model. The AUC tends to increase withlandslide susceptibility model. This model (model 70 in Ta-
the increasing number of landslide predisposing factors, alble 2) simultaneously maximizes the AUC (0.751) and min-
though such increment is not linear. The best AUC (0.804)imizes the number of variables used (three variables: slope
was obtained using all seven variables. As expected, the avangle + land use + Inverse Wetness Index). Slope angle per-
erage number of unique conditions increases almost expoforms quite well as it is simultaneously highly spatially cor-
nentially with the increasing number of predisposing factors.related with landslide distribution and has good conditional
The unigue conditions number ranges from a minimum ofindependence relative to other variables. Land use correlates
12 in a model with two variables (curvature + lithology) to a well with landslides and the co-variance between the Inverse
maximum of 8094 in the model built with seven variables. Wetness Index and other variables is low.

The ACCIT results were subtracted from 100 to ease com- Figure 6 shows the shallow translational slides suscep-
parison with OCI (Fig. 4). The average conditional inde- tibility map built with the selected model (Fig. 6a). For
pendence decreases consistently for both tests with the incomparison, the map developed using all seven variables is
creasing number of landslide predisposing factors used iralso shown (Fig. 6b). Each landslide susceptibility map was
the model. Generally, conditional independence has a largelassified in 10 classes, each one covering 10 % of the study

0.6

Area Under the

0 01 02 03 04 05 06 07 08 09
1-(ACCIT/100)
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Table 2. Summary table of landslide susceptibility models constructed with different landslide predisposing factors’ combinations. Landslide
predisposing factors: 1 — Land Use; 2 — Aspect; 3 — Geomorphological Units; 4 — Curvature; 5 — Slope Angle; 6 — Inverse Wetness Index;
7 —Lithology. The gray horizontal bar highlights the selected model.

Model # predisposing Landside #Unique ROC curve Overall Conditional Agterberg and Cheng

# factorsin  predisposing Conditions AUC Independence  Conditional Independence
the model factors OClI (%) Test ACCIT (%)

1 7 1+2+3+4+5+6+7 8094 0.804 0 100

2 6 1+2+3+5+6+7 6439 0.786 0 100

3 6 1+2+3+4+5+7 6093 0.779 0 100

9 5 1+2+3+5+6 5209 0.788 0 100

10 5 1+2+3+5+7 3629 0.786 0 100

30 4 1+2+3+5 2284 0.787 0 100

31 4 1+2+3+6 1704 0.781 0 100

65 3 1+42+5 583 0.781 0 100

66 3 1+2+3 455 0.776 0 100

70 3 1+5+6 360 0.751 98.5 50.7

100 2 1+2 98 0.761 8.8 95.6

101 2 1+5 75 0.745 75.9 62

120 2 4+7 12 0.507 96.2 48.1

Table 3. Overlap degree of the spatial distribution of susceptibility classes between the two shallow translational slides susceptibility maps.
The grey boxes highlight the same decile and the deciles immediately adjacent.

Selected model (built with 3 variables)

Class 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
0-10% 48.4 28.7 6.1 5.5 25 0.9 0.3 0.1 0.1 0.0
10-20% 24.9 28.7 22.9 8.0 6.9 3.8 1.1 0.4 0.2 0.2
20-30% 10.9 18.6 24.4 25.4 5.9 46 3.0 1.8 1.0 0.5
30-40% 5.1 13.2 22.9 24.1 18.7 7.6 3.1 2.0 1.4 1.4
Model built 40-50% 0.5 9.3 18.2 18.7 18.7 16.8 8.8 3.2 2.7 1.6
with 7 variables 50-60% 0.2 1.3 4.9 145 218 15.4 14.1 12.4 8.5 47
60-70% 0.8 0.1 0.4 2.9 20. 210 15.5 15.0 14.3 135
70-80% 1.2 0.0 0.0 0.4 47 19. 22.6 20.0 18.3 14.8
80-90% 2.2 0.0 0.0 0.0 0.5 8.6 21, 26.7 24.4 21.1
90100 % 5.9 0.0 0.0 0.0 0.1 1.7 10.3 18 29.0 42.2

area. Although the number of unique terrain conditions isvariable models assign high-susceptibility to the same areas,
very different (360 in map A and 8094 in map B) the spatial which means that three variables are sufficient to identify
distribution of susceptibility is very similar. the most susceptible areas to shallow translational slides. As
A d tabl duced t | the d usual in any data-driven landslide susceptibility assessment,
correspondence table was produced o analyse he OGpeo o are some landslides occurring in areas with low pre-
gree of overlap of the spatial distribution O.f sysceptlblllty dicted susceptibility, in both maps A and B. This is explained
betwelier; the twof mapls (TgbLe_ 3;]) hResuIts T:mate that th%y the limitations of the available landslide predisposing fac-
o;/_ekr_a dggree 0 ka?rt?/\? IS I? ' oweolve;]r_,l t erel a;% (jomﬁors to reproduce the complete slope instability system.
Striking difierences between classes. st only 2o 0 Finally, the prediction skill of the selected landslide sus-
area matches exactly the same decile class, 65% is in thgeptibility model was evaluated by computing new ROC
same dgcﬂe or the deciles |mmed|§1tely adjacgnt. |_!OW'curves based on the partitioning of landslide inventory us-
ever, th!s overlap over three glasses is systematically hlgheirng temporal, spatial and random criteria. The same proce-
in the first four deciles (ranging from 68% to 84 %) than dure was applied to the seven-variable model for comparison
in the following four deciles (ranging from 52 % to 60 %). purposes
The implication of this finding is that the three- and seven- '
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Fig. 7. ROC curves of the selected landslide susceptibility model
and of the model based on seven variables. Landslide groups used
for model validation where obtained using temporal, spatial, and
random criteria for landslide database partition.

The landslide modelling groups were used to reassess In-
formation Values (Table 1) and to build new landslide predic-
tion models. Landslide validation groups were crossed with
these models to obtain the ROC curves and corresponding
AUC shown in Fig. 7. The AUC of the three-variable model
is only slightly lower than the one obtained with the seven-
variable model when the temporal partition is used (0.723
and 0.776, respectively). Indeed, the validation results using
spatial and random partitions of the inventory show that the
predictive capacity of the three-variable model is higher than

The temporal partition of landslide inventory uses the yearthe seven-variable model. This difference is remarkably no-
2002 as a threshold to identify the landslide modelling grouptorious if the spatial partition is used (0.743 vs. 0.652) but
(prior to 2002 there are 611 landslides, which is equivalentless so with the random partition (0.743 vs. 0.732).
to an unstable area of 94 20@yand the landslide validation ~ Overall, the validation results show that the predictive ca-
group (after 2001 there are 156 cases corresponding to apacity of the three-variable model is either very similar or
unstable area of 10 600°n(Fig. 3b). The difference in size better than the model developed using all seven variables.
of the modelling and validation groups is a consequence of
the occurrence of over 80 % of shallow translational slides in
a single event in 2001.

A spatial partition of the landslide inventory was also
performed, in which the spatial occurrence was split into
West (modelling group) and East (validation group) as
shown in Fig. 3c. Modelling and validation groups include
380 cases (unstable are®8 400 n?) and 387 cases (unsta-
ble area= 46 400 n?), respectively.

The landslide inventory was also partitioned according
to a random criterion (Fig. 3d). The landslide modelling
group included 383 cases (unstable ardi 900 nt) and
the landslide validation group included 384 cases (unstabl
area=51900n%).

e
- ~
To% a0 A
a0 Lt
I 50% - 100% Low Km
[ <hallow transiational siides

i

Fig. 6. Shallow translational slides susceptibility map of Santa
Marta de Penagéb. (a) Selected mode(p) model built with seven
variables.

5 Conclusions

All possible combinations of up to seven variables related

to landslide predisposing factors were modelled in this

study, resulting in the quantitative comparison of 120 mod-

els. Model suitability tends to increase in a non-linear way

with the increasing number of landslide predisposing fac-

tors, whilst the number of unique conditions of the model

increases exponentially. Conditional Independence, on the
contrary, decreases with the number of variables to the point
$hat all models built with six or seven themes variables had
to be rejected when tested for Conditional Independence.
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The best landslide susceptibility model was selectedBonham-Carter, G. F.: Geographic Information System for Geosci-
on the basis of a threshold of 60% for the Agterberg entists: Modelling with GIS, Pergamon Press, Oxford, 1994.
and Cheng Conditional Independence Test (Agterberg an@onham-Carter, G. F., Agterberg, F. P., and Wright, D. F.: Weights
Cheng, 2002). Therefore, the best model proved to be built ©f evidence modeliing: a new approach to mapping mineral po-
with only three landslide predisposing variables (slope angle tential, in: Statistical Applications in Earth Scnences,_ edited by:
+ Inverse Wetness Index + land use) which obtained an Area ﬁf(tgs;% %ng'wzndl?fnlhszmiggger' G. F., Geological Survey
Under the. ROC Curve. of 0.751 (less 0.053 than model de'Bonham-(:arter, G. F.,, Agterberg, F. P., and Wright, D. F.: Statis-
veloped W_'th Seve_n variables). Slope angle controls the shear tical pattern integration for mineral exploration, in: Computer
forces acting on hillslopes and the Inverse Wetness Index re- appjications in resource Estimation: Prediction and Assessment
flects the decisive role that water infiltration in soils has on  for Metals and Petroleum, edited by: Gaal, G. and Merriam, D.
the development of shallow slides. Furthermore, the land use F., Pergamon Press, Oxford, 1-21, 1990.
variable exhibits the highest spatial relationship with land- Ferreira, A. B.: Neotectonics in Northern Portugal: a geomorpho-
slide distribution, which concentrates in vineyard areas, thus logical approach, Z. Geomorphologie N. F., 82, 73-85, 1991.
reflecting the human interference on slope instability in theFratinni, P., Crosta, G., and Carrara, A.: Techniques for evaluating
study area. In comparison, lithology is substantially less im- the performance of landslide susceptibility models, Eng. Geol,,
portant as a factor for the occurrence of landslides because 111, 62-72, 2(_)10'_ _ . _ )
most of these (75 %) were located in a single lithological unit “¢&: S- and Choi, J.. Landslide susceptibility mapping using GIS

. . L, . and the weight-of-evidence model, Int. J. Geogr. Inf. Sci., 18,
(the Desejosa Formation, Table 1), which is present in 73 % 789-814. 2004
of this territory. . o . . Lee, S., Choi, J., and Min, K.: Landslide susceptibility analysis

_The r_nod_el of spatlal_ d'Str'b_Ut'on Of Ia_r!dsllde s_usceptl- and verification using the Bayesian probability model, Environ.
bility built with three vanabl_es is not S|gn|f|cantly different  Geol., 43, 120-131, 2002.
from the model produced with seven variables. Therefore, itberaira ‘s - Landslide hazard assessment in the North of Portugal,
was sho_vv_n that it is p0_55|ble to produce a _rellable !ands_llde PhD in Physical Geography, Oporto University, 2010 (in Por-
susceptibility mp_del using onI.y. a fevy landslide predisposing tuguese).
fa_lctors and fulfilling the conditional independence hypothe—Sawatzky, D. L., Raines, G. L., Bonham-Carter, G. F., and Looney,
SIS C. G.: Spatial Data Modeller (SDM): ArcMAP 9.3 geoprocess-
ing tools for spatial data modelling using weights of evidence,
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