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Abstract. The movement of subsurface water is mostly stud-
ied at the pore scale and the Darcian scale, but the field and
regional scales are of much larger societal interest. Volume-
averaging has provided equations at these larger scales, but
the required restrictions rendered them of little practical in-
terest. Others hypothesized a direct connection at hydro-
static equilibrium between the average matric potential of
a subsurface body of water and the average pressure drop
over the menisci in the soil pores. The link between the
volume-averaged potential energy of subsurface water bodies
and large-scale fluxes remains largely unexplored. This pa-
per treats the effect of menisci on the potential energy of the
water behind them in some detail, and discusses some field-
scale effects of pore-scale processes. Then, various pub-
lished expressions for volume-averaged subsurface water po-
tentials are compared. The intrinsic phase average is deemed
the best choice. The hypothesized relationship between aver-
age matric potential and average meniscus curvature is found
to be valid for unit gradient flow instead of hydrostatic equi-
librium. Still, this restriction makes the relationship hold
only for a specific depth range in the unsaturated zone un-
der specific conditions, and certainly not for entire fields or
catchments. In the groundwater, volume-averaged potential
energy is of more use: for linearized, steady flows with flow
lines that are parallel, radially diverging, and radially con-
verging, proofs are derived for proportionality between av-
eraged hydraulic potentials and fluxes towards open water at
a fixed potential. For parallel flow, a simplified but relevant
transient flow case also exhibits this proportionality.
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1 Introduction

In the saturated zone of the subsurface, groundwater fills the
entire pore space. If the solid phase is assumed rigid and
unchanging, the liquid-solid interface is static. The single
fluid flow can be simplified to Darcian flow for most practical
situations, and the continuum approach (Bear and Bachmat,
1991, 14–42 pp.) facilitates the quantitative analysis without
having to resort to pore-scale details. The potential energy
of water has a gravitational and a pressure component which
values and gradients are well defined at the scale of the rep-
resentative elementary volume (Darcian scale).

In the unsaturated zone, the introduction of the gas phase
creates solid-liquid, solid-gas, and liquid-gas interfaces, the
latter of which are mobile (if we assume the solid phase to
be rigid and its architecture time invariant), while the to-
tal area of the other two can vary. Natural conditions often
lead to situations where the liquid phase in an extended area
(a field of several hectares or a catchment of several square
kilometers) is confined behind its solid-liquid and liquid-gas
interfaces, possibly with enclosed pockets of the gas phase
trapped within it. The mobility of the gas-liquid interface
nevertheless allows ample movement of and exchange be-
tween subsurface and atmospheric water through infiltration
and evapotranspiration. Still, the bulk of the gas phase is
above the bulk of the liquid phase, and most of the gas phase
is generally well-connected to the atmosphere. The contin-
uum approach can be applied in the unsaturated zone, and
the potential energies of water (gravitational and matric po-
tential) again are well-defined at the Darcian scale, but phe-
nomena such as hysteresis and sharp wetting fronts in the
unsaturated zone require an understanding of the behavior of
the liquid-gas interfaces.
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Hassanizadeh and Gray (1990) provided a comprehensive
thermodynamic treatment of the interaction between the var-
ious phases, their interfaces, and the contact lines between
the interfaces. Their analysis produces 28 equations and
unknowns, and moves from the pore scale to the Darcian
scale (in the order of several hundreds of pore diameters).
It demonstrates that the generally accepted proportionality
between the curvature of a meniscus and the pressure jump
across it is only valid at equilibrium. Hassanizadeh and
Gray (1990) also offered a modified version of Darcy’s Law
that accounts for the masses and energies of the interfaces in
situations where these move and deform rapidly. Most issues
of societal interest arise at the field and regional scales, but
Hassanizadeh and Gray’s (1990) full analysis is difficult to
carry out beyond the Darcian scale.

A formal volume-averaging over a wider range of scales
was attempted by various authors (e.g., Crapiste et al., 1986;
Quintard and Whitaker, 1988, 1990a, b; Gray, 2002). The
mathematical rigor of this approach required considerable
limitations in the type of problems that could be analyzed
in order to solve the closure problem (see Quintard and
Whitaker, 1988), leading to such requirements as clearly sep-
arated hierarchical spatial scales of heterogeneities and ab-
sence of gravity, which severely hampered the application to
realistic subsurface environments.

The influence of the atmosphere and the vegetation on the
unsaturated zone creates large fluctuations of the matric po-
tential and in the curvature of the menisci. Through this cur-
vature, the configuration of liquid and gas in the pore space
is affected. Thus, large-scale processes such as rainfall and
evapotranspiration from vegetated areas interact with pore-
scale water distribution and meniscus curvatures. Zehe et
al. (2006) were among the first to attempt to quantify and
interpret the potential energy of bodies of subsurface water
at the catchment scale by volume-averaging local Darcian-
scale values. Zehe et al. (2006) only looked at the scale of
the entire integration volume without relating the variations
of the averaged variable within the integration volume to its
volume-average, thereby avoiding the closure problem. They
postulated that the volume-average of the pore water matric
potential in the unsaturated zone should reflect the pressure
drop over the gas-liquid interface averaged over the unsatu-
rated zone of an entire catchment, and thus proposed a very
direct link between two very disparate scales.

Both Hassanizadeh and Gray (1990) and Zehe et al. (2006)
focused more on the status of the liquid phase than on its
movement. De Rooij (2009) used area-averaged flux densi-
ties and hydraulic potentials to investigate scale limitations
to the validity of Darcy’s Law. It is worthwhile investigat-
ing if simple averaging techniques like Zehe et al.’s (2006)
and de Rooij’s (2009) can be expanded to flows beyond the
Darcian scale. In view of Roth’s (2008) finding that pro-
cesses operating on small time scales are difficult to up-
scale, the dynamic behavior of the liquid phase in the unsat-
urated zone makes the saturated zone better suited to explore

the link between averaged potential energies and large-scale
fluxes. For the unsaturated zone, the direct connection be-
tween the mean curvature of the liquid-gas interfaces and the
volume-averaged matric potential as hypothesized by Zehe
et al. (2006) has not been tested yet.

The objectives of this paper address the potential of
straight-forward volume-averaging as used by Zehe et
al. (2006) and de Rooij (2009) for application to realistic
problems in subsurface hydrology. The first objective is
to examine the relationship between the volume-averaged
potential energy of the soil solution and the curvatures of
the gas-liquid interfaces, thereby advancing and refining the
analysis by Zehe et al. (2006). In pursuing the first objective,
the response of the pressure potential to addition or removal
of water will be treated in some detail and some practical
cases of field scale effects of the pore-scale behavior of the
interfaces will be discussed. The second objective is to estab-
lish a proof of principle for a link between large scale fluxes
and average potential energy of the groundwater by investi-
gating simple saturated flow problems.

2 Theory

The three phases and their interactions are simplified accord-
ing to Sposito (1981, 187–190 pp.), which implies that all
phases are uniform in composition and do not mix or react
with one another. Furthermore, we consider an isothermal
system with a rigid solid phase, an inelastic liquid phase, and
a continuous gas phase (no entrapped soil air unless stated
otherwise). The three surface tensions are assumed constant,
and flows are slow enough to make the kinematic energy neg-
ligible. The potential energy of the liquid at any location
is assumed to be fully quantified by its gravitational poten-
tial and its pressure potential (below the phreatic level) or
matric potential (between the soil surface and the phreatic
level). The conventional definitions of these quantities are
used (e.g., Jury et al., 1991, 48–52 pp.). The formal unit for
potential energy is J kg−1 (potential energy per unit mass),
but for clarity the potential energy per unit volume is used
here (J m−3 = Pa). As Sposito (1981, 193–194 pp.) points
out, these definitions are interchangeable, and the potential
should not be considered a true pressure, even if it has the
same dimensions. In the following, the terms “potential” and
“potential energy” refer to the volume-based quantities un-
less stated otherwise. For actual liquid or gas pressures the
term “pressure” is used; potentials expressed in units of pres-
sure carry the qualifier “potential” (e.g., pressure potential).
An important difference is the absolute nature of pressure
(cannot be negative) and the relative nature of the pressure
potential and matric potential, both of which equal zero when
the liquid is at atmospheric pressure.

In view of the simplifying assumptions, the use of
the Laplace-Young Law (e.g., Brutsaert, 2005, 255–257
pp.; Jury et al., 1991, p. 41; Or and Wraith, 2000) is
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permitted to determine the pressure jumps across the liquid-
gas interfaces:

1Plg = γlg

(
1

r1
+

1

r2

)
, (1)

with 1Plg (Pa) the positive pressure jump from the wetting
to the non-wetting phase,γlg (N m−1) the liquid-gas surface
tension, andr1 and r2 (m) the principle radii of curvature
of the interface. Similarly, flow is described by the classical
form of Darcy’s Law. The use of these classical equations
restricts the analysis at this time to problems in which the
energy changes and movements of the interfaces are negli-
gible, i.e., saturated flows or unsaturated flows in which the
liquid-gas interfaces move only slowly. Note that the use of
the conventional form of Darcy’s Law requires this restric-
tion to be met; the restriction thus applies to the vast ma-
jority of modeling efforts and applications published to date.
Processes such as infiltration in dry soils are not amenable to
the analysis presented here. This restriction is in line with
Roth’s (2008) finding that phenomena with small character-
istic times (e.g., infiltration fronts) lend themselves poorly to
upscaling. Furthermore, we will not consider the forces ex-
erted upon the soil solution by the porous matrix, such as Van
der Waals forces and hydrogen bonds (see Or and Wraith,
2000, for more detail), other than through their combined ef-
fect as expressed in the matric potential.

2.1 Hydrostatic pressure potential below a liquid-gas
interface

In soils, the capillary fringe above the phreatic level is de-
fined here as the region where all pores other than macrop-
ores like cracks and biopores are liquid-saturated (except for
possible pockets of enclosed air). Thus, the capillary fringe
extends to the depth where the largest capillary pore empties
and a continuous path of soil gas extends from that pore to
the atmosphere. The elevation of the liquid-gas interface of
that pore, and thus of the top of the capillary fringe is denoted
xlg (m). For a continuous liquid phase below the top of the
capillary fringe in a satiated porous medium, the pressure at
hydrostatic equilibrium is given by:

P(x3)= ρg
(
xlg −x3

)
+Patm±γlg

(
1

r1
+

1

r2

)
, (2)

with x3 (m) the vertical coordinate (positive upwards),P (Pa)
the pressure in the liquid,Patm (Pa) the gas pressure above
xlg, ρ (kg m−3) the density of the liquid phase, andg (m s−2)

the gravitational acceleration. The sign before the last term is
positive for non-wetting liquids (in which case the capillary
fringe does not exist) and negative for wetting liquids. If a
small quantity of water1V (m3) is added or removed and
xlg changes as a result, we have:

1P(x3)

1V
= ρg

1xlg

1V
±γlg

1

1V

(
1

r1
+

1

r2

)
≈ ρgA−1

lg ±γlg
1

1V

(
1

r1
+

1

r2

)
, (3)

whereAlg (m2) is the liquid-occupied horizontal area atxlg.
Thus, the pressure change in the liquid phase is equal to the
change in gravitational potential of the water at the liquid-
gas interface plus its pressure change caused by changes in
the curvature of the interface. The difference-form of Eq. (3)
is generally applicable, even when the adding/removal of
1V involves the sudden emptying or filling of pores, e.g. by
Haynes jumps. Only when the pores are tubular or their
radii change gradually and monotonically, can the differen-
tial form of Eq. (3) can be used. The approximate equality in
Eq. (3) then holds exactly.

From Eqs. (2) and (3) it follows that the pressure at an
arbitrary depth below the top of the capillary fringe can be
manipulated by changingxlg (requiring adding or removing
significant volumes of water), or by changing the curvature
of the interface (which requires only minute volumes of wa-
ter, depending on the pore architecture). An obvious third
method would be to change the pressure in the gas phase
above the column.

The sometimes very substantial changes in the potential
energy of large bodies of liquid caused by adding or remov-
ing small quantities of liquid seem to suggest that energy is
added and dissipated in quantities that are only determined
by the volume of liquid experiencing these changes in ma-
tric/pressure potential, not by the possibly very much smaller
volume of liquid that causes the perturbation. It should be
noted that the perturbation changes the potential energy of
the liquid at the interface, either by a change in the posi-
tion of the interface in the gravitational field (affecting the
gravitational potential), a change in the interface curvature
(affecting the matric/pressure potential), or both. If the liq-
uid below the capillary fringe is enclosed by no-flow bound-
aries, hydrostatic equilibrium after the perturbation can only
be restored if the potential energy of the rest of the liquid fol-
lows suit. Since the location of the liquid is fixed, only the
matric/pressure potential is available to accommodate the re-
quired change. If the soil solution can flow freely, the change
in potential energy will generate a flow that changes the posi-
tion or curvature of the meniscus. This flow will usually be in
the direction that tends to reverse the effect of the initial per-
turbation. In most cases, the liquid displacement necessary
to restore equilibrium is comparable to the liquid volume that
caused the perturbation, for instance by allowing just enough
soil solution to drain from a saturated soil profile to allow the
liquid-gas interface to recede from the soil surface (where the
interface is flat) into the pores just below the soil surface (see
Sect. 3).
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As a practical example, relatively rapid pressure changes
as a result of water extractions can occur in a confined aquifer
with a small phreatic intake area, where the aquifer’s only air-
water interface exists. Such an aquifer can only sustain small
transfers of water to a deeper aquifer before the hydraulic
potential drops to equilibrium with the lower neighbor and
flow ceases. If the aquifer over some extent is artesian, too
many artesian wells may cause the hydraulic head to drop
below the soil surface and the wells will then run dry.

2.2 Menisci in the unsaturated zone

The liquid-gas interface of a body of subsurface water con-
sists of a multitude of menisci with pressure jumps from the
atmosphere to the liquid phase determined by the direction
and magnitude of the curvatures of the interfaces, which in
turn depend on the pore architecture, the various surface ten-
sions, which determine the wetting angle (Koorevaar et al.,
1983, 64–65 pp.), and the detailed liquid-gas configuration
(the degree of wetting of the pore walls and the associated
hydraulic connectivity). If the gas phase is well connected
to the atmosphere, the reservoir providing the gas pressure
effectively consists of the atmosphere of the entire planet.
Thus, the atmospheric pressure is independent of the con-
figuration of the soil solution in the unsaturated zone. The
liquid pressure, on the other hand, has a component that is
determined by the atmosphere: the atmospheric pressure is
passed on to the hydrosphere, but not the other way around.
At the Darcian scale this matters little – changes in the at-
mospheric pressure are simply passed on but mostly do not
affect the configuration of the soil solution and the liquid-gas
interfaces. At the scale of basins that are large enough to
have spatial variations of the air pressure within their area,
the passage of weather fronts and areas of high and low at-
mospheric air pressure can affect flows in larger connected
systems, such as aquifers that are partially phreatic and par-
tially confined.

In the unsaturated zone, the larger pores are filled with air
(with the soil solution possibly present as a film on the pore
walls), while smaller pores can be entirely filled with soil so-
lution. In very dry soils, the soil solution is predominantly
present in pendular rings around the contact points between
soil particles and possibly in liquid films on the solid parti-
cle surfaces. Soil solution films in dry soil are more strongly
affected by der Waalsforces, H-bonds, and, in diffuse double
layers, electrostatic forces than the solution at larger distance
from the solid phase behind a meniscus in filled capillaries.
Therefore the degree of curvature of their liquid-gas inter-
faces not only depends on the liquid-gas surface tension, but
also on the various forces acting upon the water molecules.
The relationship between pressure and gas-liquid interface
curvatures becomes ambiguous (Iwata et al., 1995, p. 7 and
13).

In saturated small pores and pendular rings, there is little
if any flow (often driven by condensation and evaporation at

the interface). The matric potential in these pockets of soil
solution is entirely governed by the air-water interface. Its
curvature determines the matric potential directly behind the
interface and – through the hydrostatic equilibrium within
the pore or the pendular ring – anywhere else in the pore
or the pendular ring at a sufficient distance from the solid
phase to be unaffected by any forces it exerts on the water
molecules. For a hypothetical pore with a single exit in which
the meniscus is located (Fig. 1), the intrinsic phase average
(Whitaker, 1986, see below) of the matric/pressure potential
when no flow occurs is:

〈ψm〉l =

∞∫
−∞

A(x3)
[(
Pg−Patm±1Plg

)

+ρg
(
x∗

3 −x3
)

] dx3

 ∞∫
−∞

A(x3)dx3

−1

=Pg−Patm±1Plg

+

∞∫
−∞

A(x3)ρg
(
x∗

3 −x3
)
dx3

 ∞∫
−∞

A(x3)dx3

−1

(4)

where〈ψm〉l (Pa) is the intrinsic phase average matric poten-
tial in the pore,x∗

3 (m) is the vertical position of the menis-
cus,A(x3) (m2) is the horizontal liquid-filled cross-section
of the pore atx3, Pg (Pa) is the pressure in the gas phase im-
mediately in front of the interface (often equal toPatm), and
1Plg is given by Eq. (1). For wetting liquids1Plg acquires
a minus sign, for non-wetting liquids a plus sign. It is in-
teresting to note that the liquid pressure behind the interface
affects and even determines the matric/pressure potential ev-
erywhere in the pore, but yet the average matric potential is
determined by both the liquid pressure behind the interface
and the geometry of the pore.

For a pocket of liquid enclosed by multiple liquid-gas
interfaces, the pressure in the surrounding continuous gas
phase will differ much less between the menisci than the
liquid pressure because of the density contrast. In the pore
system the menisci will be located in places where the curva-
tures allowed by the pore geometry and contact angles pro-
duce pressure jumps that vary with position of the menisci
according to:

1Plg(x3) = 1Plg(x
∗

3)±
(
ρ−ρg

)
g
(
x3−x∗

3

)
≈1Plg(x

∗

3)±ρg
(
x3−x∗

3

), (5)

where x∗

3 (m) now is the vertical position of a reference
meniscus for which the pressure jump is known andρg
(kg m−3) is the density of the gas phase (assumed constant
over the vertical extent of the pocket of liquid). The signs of
the second terms are positive for wetting liquids and nega-
tive for non-wetting liquids. Equation (4) still holds for this
case, as long as the liquid is stagnant. Any interface with a
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Fig. 1. A hypothetical liquid-filled pore with a single exit in which
the liquid-gas interface is located at vertical positionx∗

3 . The hor-
izontal liquid-filled cross-sectionA at arbitrary elevationx3 is also
indicated.

known pressure jump can serve as the reference interface that
definesx∗

3.
The pocket of liquid for which Eq. (5) describes the pres-

sure jumps at its interfaces is in principle unlimited in size,
as long as the gas phase is continuous. The body of liquid
can therefore be conceived to be the entire connected body
of subsurface water in a catchment (groundwater and the soil
solution), with the menisci obviously only present between
the soil surface and the top of the capillary fringe. Equa-
tion (5) does not apply to menisci enclosing entrapped air
bubbles because the gas pressure inside these bubbles is not
determined independently from the menisci but the result of
the interplay between the amount of gas, liquid pressure, pore
space architecture, and interfacial tensions.

Particularly in the unsaturated zone (for which it is most
relevant), the assumption of hydrostatic equilibrium will
limit the direct application of Eq. (5) to such large scales.
If the matric potential field is known, Eq. (5) can be general-
ized for non-equilibrium conditions:

1Plg(x)=1Plg(x
∗)−ψm(x)+ψm(x

∗), (6)

wherex (m) is the location vector,ψm (Pa) is the matric
potential, andx∗ (m) denotes the location of the reference
meniscus. (For clarity, only the version for wetting liquids is
given.)

2.3 Averaging potentials

The values of the matric or pressure potential and the grav-
itational potential at a point are well defined, but if one is
interested in the average potential energy of non-zero liq-
uid volumes, these point values need to be volume-integrated

and averaged. Several methods have been applied. Zehe et
al. (2006) used direct volume-averaging:

〈ψ〉V =
1

V

∫
V

ψdV , (7a)

whereψ (Pa) can represent the gravitational, matric/pressure
or hydraulic potential, andV (m3) is the averaging vol-
ume within the porous domain (in the case of Zehe et al.,
2006,V is the subsurface volume of an entire catchment).
Whitaker (1986) only considered the volume of the phase of
interest within the averaging volume and defined the phase
average of the potential as:

〈ψ〉 =
1

V

∫
Vl

ψdV , (7b)

where the integration is only carried out over the volume oc-
cupied by the phase of interest withinV . Since we are inter-
ested here in the liquid phase this volume is denoted byVl
(m3). Whitaker (1986) also defined the intrinsic phase aver-
age, in which the averaging is performed overVl only:

〈ψ〉l =
1

Vl

∫
Vl

ψdV . (7c)

At the pore-scale, where the distributions of the solid, liquid,
and gas phases are known, integration ofψ overVl in Eqs. (8)
and (9) can be achieved by integrating overV while includ-
ing in the integrand an indicator function that assumes the
value of one in locations withinVl and zero elsewhere. The
volumeVl in Eq. (9) equals the volume integral of that indi-
cator function overV . At the field and catchment scales, the
continuum approach (Bear and Bachmat, 1991, 14–42 pp.)
is invoked. In that case, to arrive at the phase average, the
local value ofψ needs to be multiplied by the local volume
fraction occupied by its phase, which is the volumetric water
contentθ for the liquid phase. The resulting expression for
the phase average is:

〈ψ〉 =
1

V

∫
V

θψdV . (7d)

The intrinsic phase average then becomes:

〈ψ〉l =

∫
V

θψdV∫
V

θdV
. (7e)

Equation (7a) suffers from undefined values ofψ outside
Vl when applied to the pore scale (for which Zehe et al.,
2006, did not intend it to be used). Only whenψ is set to
zero outsideVl does its value there not influence the value
of the volume integral. Equation (7a) then becomes equiv-
alent to the phase average (Eq. 7b), because the indicator
function has the same effect. When applied to the field and
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catchment scale (its intended application), Eq. (7a) weighs
every local value of the potential in the solid-liquid-gas con-
tinuum equally, irrespective of the local water content. As a
consequence, Eq. (7a) does not satisfy Gray’s (2002) addi-
tivity property that ensures that the potential energy is con-
served during the volume averaging, and is therefore not rec-
ommended. The inability of Eq. (7a) to conserve potential
energy can be illustrated by volume-averaging the gravita-
tional potential energy of the water in a vertical soil column
of areaA extending between heights−1x3 to 0. Irrespective
of the water distribution in the column, its average gravita-
tional potential will be calculated as−ρg1x3/2 J m−3, which
obviously is only true if the vertical soil water distribution is
symmetrical around−1x3/2.

The expressions for the phase average (Eq. 7b and d) and
intrinsic phase average (Eq. 7c and e) both satisfy the energy
conservation property, even though the numerical values of
the spatial averages will differ. The phase average expresses
the potential energy as Joule per volume for the entire av-
eraging volumeV , while the intrinsic phase average gives
the potential energy per volume over the smaller volumeVl ,
with its value correspondingly higher. When the respective
averages are multiplied by the volumes for which they hold,
they yield the same numerical value of potential energy in
Joules. Whenψ is uniform overVl , the intrinsic phase av-
erage〈ψ〉l will be equal to the local valueψ , which is an
attractive property that makes the intrinsic phase average the
most representative of the three averages of the conditions in
the phase of interest (Whitaker, 1986).

The above volume integrations are all carried out for po-
tentials expressed as potential energy per volume (Pa), and
therefore weighting by volume is appropriate. For potentials
expressed by mass (J kg−1) or weight (potential head, m), the
weighting needs to be adjusted accordingly. The correspond-
ing expressions for the intrinsic phase averages are given be-
low (compare e.g. Gray, 2002, Eq. 5e). Expressions for the
phase average are analogous. Note that the various expres-
sions are equivalent if the phase density and the gravitational
acceleration are uniform withinV .

〈µ〉l =

∫
V

θρµdV∫
V

θρdV
. (8a)

Here,µ (J kg−1) denotes the potential expressed per unit
mass. When the potential head is used instead, the correct
expression is:

〈H 〉l =

∫
V

θρgHdV∫
V

θρgdV
, (8b)

whereH denotes the hydraulic head (m) and can be replaced
by the matric headh or the gravitational headx3.

3 Illustrative cases and large-scale consequences

3.1 Rapid rise of groundwater levels during rainfall

In fine-textured soils, a fully saturated capillary fringe can
extend over several decimeters abovexp. Above the cap-
illary fringe, the largest pores are filled with air, but most
of the pore space is still filled with soil solution. A small
amount of rainfall suffices to saturate the pore space over a
much larger vertical extent than the equivalent water layer
of the rainfall, andxp as well as the capillary fringe shoot
upward (e.g., Sklash and Farvolden, 1979; Rosenberry and
Winter, 1997; Seibert et al., 2003). For soils withxp only a
few decimeters deeper than the height of the capillary fringe,
most of the pore space below the soil surface is saturated.
As a consequence, the rising capillary fringe may extend to
the soil surface, causing saturation-excess overland flow (see
observations by van der Velde et al., 2010, among others).
The menisci at the soil surface can no longer go up and can
only flatten (Fig. 2). The pressure increase by adding a wa-
ter layer then combines with the reduction of the curvature
of the menisci to makexp rapidly rise to the soil surface,
even though the phreatic level prior to rainfall may have been
decimeters below the soil surface.

Table 1 illustrates the magnitude of this effect for hypo-
thetical hydrophilic soils with capillaries of uniform radius.
The table gives the amount of water needed to let the ma-
tric potential at the soil surface go from the air entry value to
zero, thereby bringing the phreatic level to the soil surface.
The air-entry value is calculated as−1Plg from Eq. (1) for
a zero contact angle between solid and liquid. Under hydro-
static equilibrium, with the soil surface being at the air-entry
value, the phreatic levelxp would be at1Plg/ρgm below the
soil surface. For fine-textured soils, the minute amount of
water needed to bring the phreatic level to the soil surface
is even smaller than for coarse soils (3rd column of Table 1),
yet the matric head jump1Plg/ρg that it causes (2nd column)
is much larger and occurs much faster (4th column). Since
fine-textured soils have the most extensive capillary fringes
(2nd column), their ratio of the rise of the phreatic level and
the thickness of the added water layer that causes the rise is
enormous (last column).

3.2 Shallow infiltration of small amounts of
rainfall/irrigation in dry soil

Small amounts of rainfall or irrigation water on well-sorted,
dry soils not always percolate to the subsoil but instead only
wet the top soil (Youngs, 1958). Raats (1973) explained
this by the difference between the water-entry pressure at the
wetting front and the air-entry pressure at the soil surface.
His explanation can be cast within the framework outlined
above. Incomplete wetting at the wetting front leads to non-
zero contact angles and meniscus radii larger than the pore
radii. The pressure jump1Plg across the liquid-gas interface
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Table 1. Amount of water needed to bring the phreatic level up to the soil surface when initially the capillary fringe extends to the soil
surface, and the time needed to deliver this water during rainfall of moderate intensity. The soils are assumed to have cylindrical pores
of uniform radius. The soil water is 15◦C (with corresponding density and air-water surface tension), and the gravitational acceleration is
9.812 m s−2. For the third column, a porosity of 0.60 is assumed for pores≤0.1 mm, and of 0.40 for larger pores. Note that the last row gives
the limiting radius where the capillary rise equals the pore radius.

Pore radius
(mm)

Height of capillary
fringe (equals the
initial depth of the
phreatic level)
(m)

Equivalent water
layer needed to
raise the phreatic
level to the soil sur-
face (mm)

Time needed during
10 mm h−1 rainfall
(s)

Matric head
increase divided
by the added water
layer

1.00· 10−2 1.499 4.00· 10−3 1.44 3.75· 105

3.00· 10−2 0.500 1.20· 10−2 4.32 4.16· 104

5.00· 10−2 0.300 2.00· 10−2 7.20 1.50· 104

0.100 0.150 4.00· 10−2 14.4 3.75· 103

1.00 1.50· 10−2 0.267 96.0 56.2
3.872 3.872· 10−3 1.03 371 3.75

Fig. 2. A fine-textured soil at hydrostatic equilibrium with differ-
ent phreatic levels. In the left pane the phreatic level is at such a
depth that the capillary fringe exactly reaches the soil surface. The
menisci at the soil surface are curved, but all pores are saturated. In
the right pane, just enough water was added to flatten these menisci.
As a result the phreatic level (where the water is at atmospheric
pressure) moved up to the soil surface.

at wetting front depthF (m) below the soil surface is there-
fore limited (Eq. 1), and the water pressure behind the front
only slightly subatmospheric. For the soil surface to dry,
water-filled pores must empty, and these therefore will be
completely wetted (meniscus radii equal to the pore radii).
The pressure jump across the interface is quite large, and the
water behind the drying front will be at a considerably lower
pressure than the water at the wetting front. For slow-moving
fronts, the water pressure profile within the wetted layer will
be nearly hydrostatic, and Eq. (5) can be applied to the prob-
lem. The pressure difference from the soil water to the at-
mosphere at the soil surface will be1Plg +ρgF . According
to Eq. (1) this pressure difference must be larger than the air
entry pressure difference 2γlg/rm required for air to enter the
soil, with rm the radius of the largest pore throats giving ac-
cess to a continuous pore network that can be invaded by air.
This will only occur if F > (2γlg/rm −1Plg)/ρg: the thick-
ness of the wetted layerF must be larger than the difference
between the matric potential heads at water entry and air en-
try.

3.3 Relation between large-scale average matric
potential and the average curvature of the menisci

The total volume-averaged hydraulic potential of a body of
water at equilibrium locked in the porous medium behind
gas-liquid interfaces can be calculated from Eq. (4) and the
expression for the pressure-equivalent of its intrinsic phase
average gravitational potential

〈
ψg
〉
l (Pa) (compare de Rooij,

2009):

〈
ψg
〉
l =

∞∫
−∞

A(x3)ρgx3dx3

 ∞∫
−∞

A(x3)dx3

−1

. (9)
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This equation is more general ifA(x3) is interpreted as
the water-filled portion of the horizontal cross-section atx3:
it then applies to any body of subsurface water, stagnant or
mobile. But since Eq. (4) is valid for a single connected
body of stagnant water, the total intrinsic phase averaged hy-
draulic potential〈ψH〉l (Pa) is subject to the more limiting
constraints of Eq. (4). Its expression is:

〈ψH〉l = 〈ψm〉l +
〈
ψg
〉
l =Pg−Patm±1Plg

+

∞∫
−∞

A(x3)ρg
(
x∗

3 −x3
)
dx3

 ∞∫
−∞

A(x3)dx3

−1

+

∞∫
−∞

A(x3)ρgx3dx3

 ∞∫
−∞

A(x3)dx3

−1

=Pg−Patm±1Plg

∞∫
−∞

A(x3)ρgx
∗

3 dx3

 ∞∫
−∞

A(x3)dx3

−1

=Pg−Patm±1Plg +ρgx∗

3 (10)

with +1Plg for hydrophobic soils and−1Plg for hydrophilic
soils.

The inclusion of the water-filled cross-sectionA in the
equations above limits the volume integration to the liquid
phase only. This is a refinement of the volume integration
of Zehe et al. (2006) who integrated over the entire subsur-
face volume, i.e., over the gas, solid, and liquid phases. As
discussed above and in line with Gray (2002), integrating
only over the liquid phase ensures that the upscaling oper-
ation conserves potential energy.

Since hydrostatic equilibrium requires the hydraulic po-
tential to be the same everywhere, the simple expression for
the volume-averaged hydraulic head expressed in the final
result of Eq. (10) is not surprising. But it does point out
that under equilibrium conditions, the gas pressure and in-
terface curvature at any gas-liquid interface, and its vertical
position, suffice to describe the total volume-averaged hy-
draulic potential in a body of subsurface water at equilibrium,
but not its volume-averaged matric/pressure potential〈ψm〉l ,
not even for a water pocket behind a single pore. This is
contrary to Zehe et al.’s (2006) hypothesis that the volume-
averaged capillary pressure should reflect the average pres-
sure drop across the liquid-gas interfaces in the pores at equi-
librium. For multiple-pore systems, the situation becomes
even more troublesome, since the average pressure drop over
the menisci will not only be governed by the matric poten-
tial field (see Eqs. 5 and 6), but also by the distribution of
menisci. Below the top of the capillary fringe, for instance,
the number of menisci drops to zero while a significant por-
tion of the soil water is likely to reside in the capillary fringe;
the other extreme is the dry top layer of coarse soils, where
a meniscus is present at each pendular ring of water that re-
tracted around a contact point of solid grains. A large pop-
ulation of menisci thus represents only a small quantity of

water. The relation between average matric potential and av-
erage meniscus curvature is analyzed in detail for a bundle
of capillary tubes reflecting a soil water characteristic in the
Appendix.

Zehe et al.’s (2006) hypothesis gains credibility under unit
gradient flow conditions. Then, the flow is driven by gravity
only, and the matric potential is uniform. (Such conditions
are unlikely in saturated conditions, and we therefore disre-
gard the pressure potential here.) In this case, the difference
between the matric potential terms in Eq. (6) is zero. The
matric potential determined behind any individual interface
is representative for the entire body of water, and the average
meniscus curvature is obviously equal to each of the indi-
vidual curvatures. This warrants the conclusion that Zehe et
al.’s (2006) hypothesis is correct for unit gradient flow condi-
tions, but not for the equilibrium conditions as stipulated by
the authors.

Zehe et al. (2006) formulated their assertion for a popula-
tion of interfaces and large bodies of water, and for the case
of unit gradient flow that is appropriate: at the pore scale,
and even at the Darcy-scale, unit gradient flow cannot ex-
ist in heterogeneous media because it precludes lateral flows
by assuming horizontal matric potential gradients to be zero.
Thus, the redistribution of water needed to keep the local ver-
tical flux densities equal to the local hydraulic conductivities
(a necessity if the vertical matric potential gradient is to van-
ish) is not allowed. Nevertheless, unit gradient conditions
have been observed in the field at depths sufficient to dampen
out fluctuations in the boundary conditions at the soil sur-
face. At scales slightly larger than the Darcy scale (1 m and
beyond) unit gradient flow can safely be assumed to occur
if conditions are favorable (e.g., Davidson et al., 1969, Re-
ichardt et al., 1998): the lateral matric gradients inevitably
caused by soil heterogeneity often turn out to be relatively
small owing to the dissipative nature of matric potential gra-
dients.

Neither hydrostatic equilibrium nor unit gradient flow is
likely to occur over an entire catchment. But even for smaller
systems (e.g., a field of a few hectares discharging into a
ditch or stream) the required conditions are problematic: hy-
drostatic equilibrium implies there is no precipitation, no
evapotranspiration (and hence to plant growth), no ground-
water recharge or lateral groundwater flow, etc. Under cir-
cumstances with a small downward water flux in the un-
saturated zone and a conductive, sufficiently thick phreatic
aquifer, the lateral groundwater flow necessary to discharge
the groundwater recharge form the unsaturated zone may in-
duce only minor lateral gradients and hardly affect the verti-
cal gradients within the groundwater and the capillary fringe.
Under such circumstances, near-hydrostatic equilibrium con-
ditions may prevail below the top of the capillary fringe, but
there is no obvious relationship between the average poten-
tial in this area and the average curvature of the liquid-gas
interfaces in the depth range above it (the only region where
such interfaces occur).
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Unit gradient flow conditions at least allow water to move,
but only downward. Unlike hydrostatic equilibrium, unit gra-
dient conditions can be found for prolonged periods of time
in the field: arid areas with some rainfall and deep ground-
water tend to develop unit gradient conditions at some depth
below the soil surface. Still, these conditions apply only to
the unsaturated zone below the depth at which the signals of
precipitation and evapotranspiration are fully damped, and
not to the shallow soil or the groundwater. The vertical flux
is typically small. Horizontal groundwater flow is necessary
to carry off the recharge from the unsaturated zone. Below
the top of the capillary fringe, lateral gradients will therefore
be present. For conductive and sufficiently thick aquifers,
this lateral gradient is very small. In that case, within the
groundwater and the capillary fringe, as well as in a poorly
defined region above it, hydrostatic equilibrium might be a
better approximation of the potential field below the depth
range where unit gradient conditions prevail. If the aquifer is
less conductive and/or thin, appreciable lateral gradients may
develop that complicate the potential field.

In either case, the presumed conditions can only exist in a
part of the subsurface flow domain. Only in the case of unit
gradient flow does the desired condition appear in the region
which also contains the liquid-gas interfaces. Still, the hy-
pothesis that the average pressure drop over liquid-gas inter-
faces reflects the average potential of all the subsurface wa-
ter in a catchment does not seem tenable. Only in the case of
unit gradient flow does the (uniform) curvature of these inter-
faces reflect the (uniform) matrix potential, but only within
the depth range in which the unit gradient conditions apply.

3.4 Relation between large-scale average hydraulic
potential and saturated flow across groundwater
system boundaries

In the unsaturated zone, the concept of average potential en-
ergy appears to be of limited value: the matric potential can
change rapidly in response to minor changes in the config-
uration of the liquid-gas interfaces without major or lasting
effects on the flow. But in groundwater flows, average poten-
tial energies may still provide a useful tool to describe flows
at a more integrative scale if two criteria are met: the flow
must be confined within a finite volume to be able to compute
the intrinsic phase average of the groundwater body, and the
groundwater body must have a well-defined boundary across
which a flux can be determined. Many classical groundwater
problems for which analytical solutions are available meet
these criteria. For problems that are described by linear dif-
ferential equations, the superposition principle applies. Such
systems can therefore be expected to exhibit a linear rela-
tionship between the intrinsic phase average of the hydraulic
potential and any flux across a system boundary.

To establish a proof of principle, three classical flow prob-
lems with parallel, radially diverging, and radially converg-
ing flow are recast in terms of the intrinsic average hydraulic

Fig. 3. Two of the three groundwater flow cases governed by linear
differential equations, as given in the figure. Figure(A) reflects
parallel flow in cartesian coordinates, Figure(B) depicts radial flow
in cylindrical coordinates. The dashed vertical line at the left of
each figure is the axis of symmetry. AtL, the groundwater body
is in contact with open water. The open water and the aquifers are
bounded below by an impermeable base. Further details are in the
text.

potential and the flow across a system boundary – in line with
the desirability to quantify fluxes at larger-than-Darcy scales
the focus thus is on the flow across system boundaries, rather
than the details of the flow within the system. In the analy-
sis, the hydraulic headH instead of the hydraulic potential
is used to adhere to established convention. The first sys-
tem to be considered is a confined, non-sloping aquifer of
finite thicknessD (m) and widthL (m), and infinite length.
The aquifer has a uniform saturated hydraulic conductivity
K (m d−1) and is recharged from above at constant and uni-
form recharge rateR (m d−1). The horizontal coordinate
x1 (m) runs from 0 toL. At x1 = 0, the aquifer is bounded
by a no-flow boundary; atx1 =L, the aquifer is in contact
with open water with a constant levelH1 above the bottom
of the aquifer (a no-flow boundary), which is also the ref-
erence height where the vertical coordinatex3 is defined to
be zero. The Dupuit assumptions apply (zero vertical gra-
dient inH , recharge instantly divided over the full vertical
cross-section). Note that this flow pattern also approximates
that in a field drained by ditches that are spaced 2L apart and
reach down to the impermeable layer (Fig. 3a). The aquifer
then is phreatic and the vertical saturated extentD(x1) is de-
termined by the local groundwater level:D(x1)=H(x1). In
that case, the difference between the maximum groundwater
level located halfway between the ditches (where symmetry
considerations impose a vertical no-flow boundary) andH1
must be negligible compared toH1: H(0)−H1 �H1, so that
D(x1)≈H1.

This system leads to a parabolicH(x1) relationship:

H(x1)=
R

2KD

(
L2

−x2
1

)
+H1. (11)

For uniform porosityθs, andD assumed constant, the in-
trinsic phase average ofH is:

〈H 〉l =
1

θsDL

L∫
0

θsDHdx1 =
RL2

3KD
+H1. (12)
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During steady state flow, the fluxQ(0) per unit width
(m2 d−1) into the open water is equal to the total recharge
RL. Solving Eq. (12) forRL then gives:

Q(0)=
3KD

L
(〈H 〉l−H1). (13)

This expression is the system-scale equivalent of Darcy’s
Law: it expresses a flux across the system boundary as a
function of the difference in average potential energy of the
water in the systems on either side of the boundary and the
system properties.

In case of a phreatic aquifer, flow towards the ditches
will continue after recharge ceased, until the groundwater
level equalsH1 everywhere. We can hypothetically ex-
tend the steady-state proportionality between the flux across
the boundary and the difference between averaged hydraulic
heads to the non-steady receding phase that commences after
recharge stops at a given timet0 (d). As the groundwater ta-
ble lowers, some water will remain behind in the previously
saturated portion of the soil, and the unsaturated zone above
the receding phreatic level will respond to the changing con-
ditions. The net effect is that the delivery of water to the
ditch will be less than the water stored in the soil volume that
became unsaturated. Thus, the drainable storage at any time
is smaller than the water in the saturated zone aboveH1, and
is simplified asθdL(〈H 〉l −H1). Here,θd can be viewed as
the volume fraction of the initially saturated soil in the field
that will release its water when the groundwater level drops
toH1. For deep groundwater tables and very dry conditions
the theoretical maximum ofθd is θs−θr (the latter being the
residual water content), but normally it will be smaller. Thus,
maintaining the proportionality of Eq. (13) for zero recharge
translates into proportionality between the flux and drainable
storage, which leads to an exponentially decreasing flux:

Q(0,t)=
3KD

L
(〈H 〉l (t0)−H1)exp

[
−3KD

θdL2 (t− t0)

]
(14)

in which the right hand side without the proportionality con-
stant 3KD/L describes the temporal evolution of〈H 〉l −H1.
The value of〈H 〉l(t0) is given by Eq. (12). This linear
reservoir-type behaviour of a drained field was already re-
ported by de Zeeuw and Hellinga (1958). A more rigourous
treatment of non-stationary discharge by Dumm and Glover
can be approximated well by an exponential decay, particu-
larly for prolonged times (Dumm, 1954). So, for this case
of transient flow, the field-scale analysis relying on averaged
hydraulic heads generates results consistent with classical
Darcian approaches.

The second case (Fig. 3b) involves radially divergent flow
in a circular aquifer surrounded by open water atH1: an
aquifer in a circular island in a freshwater lake. The lake bot-
tom and the impermeable layer underneath the aquifer are lo-
cated atx3 = 0 m. Invoking the Dupuit assumptions and con-
sidering only steady flows leaves only the radial coordinate

r (m), which runs from 0 toL. Again, we assume the differ-
ence betweenH (0) at the centre of the island andH(L)=H1
to be negligible (D(r)≈H1). The expression of the phreatic
level becomes:

H(r)=
R

4KD

(
L2

−r2
)
+H1. (15)

The intrinsic phase average of the hydraulic head is:

〈H 〉l =
1

θsDπL2

L∫
0

2πrθsDHdr =
RL2

8KD
+H1. (16)

The fluxQ(0) discharging into the lake isπL2R. It can be
expressed as:

Q(0)= 8πKD(〈H 〉l −H1). (17)

Not surprisingly, the radially diverging flow has a consid-
erably larger proportionality constant than the parallel flow
system for realistic values ofL. Interestingly, the radius
of the island does not appear in the constant (compare with
Eq. 13).

Both cases above have a parabolic phreatic level. The third
case is that of a radially converging flow in a circular aquifer
of thicknessD enclosed on the outer rim by a no flow bound-
ary at radiusL. The constant rechargeR flows through the
aquifer towards a fully penetrating well in the center, with ra-
diusrw. The hydraulic head inside the well is maintained at
H1, which is such that the aquifer remains saturated over its
full thickness, even for smallr. In this system, the expression
for the hydraulic head becomes:

H(r)=
RL2

2KD

[
ln
r

rw
−
r2

−r2
w

2L2

]
+H1 (18)

which, for uniform porosity, leads to the intrinsic phase av-
erage:

〈H 〉l =
1

θsDπ
(
L2−r2

w

) L∫
rw

2πrθsDHdr =CR+H1 (19)

with

C=
L2

2
(
L2−r2

w

)
KD

(
L2ln

L

rw
−

3L2

4
−
r4
w

4L2
+r2

w

)
, (20)

which, forrw �L, simplifies to

C≈
L2

2KD

(
ln
L

rw
−

3

4

)
=

L2

8KD

(
4ln

L

rw
−3

)
(21)

(with the right-hand-side included to facilitate comparison
with the expression for diverging flow in Eq. 16). The flux
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−Q(rw) flowing into the well equalsπ (L2
−r2

w)R≈πL2R.
From Eqs. (19) and (21) follows:

−Q(rw) ≈
πL2

C
(〈H 〉l −H1)

≈ 2πKD

(
ln
L

rw
−

3

4

)−1

(〈H 〉l −H1). (22)

In comparison to the proportionality constant for diverg-
ing flow in Eq. (17), this constant is considerably smaller,
reflecting the need for larger gradients to achieve the same
flux (not flux density) during converging flow. This also
demonstrates that the system-scale proportionality constant
comprises properties of the system as well as the flow. In
general, a proportionality constant for a groundwater system
will only be valid for flow patterns similar to that for which
the constant was determined.

This flow-specific nature of the proportionality constants
may also apply to aquifer transmissivities determined from
groundwater and contour lines of the hydraulic head. The
transmissivities could change when the direction of the flow
changes, or when the flow pattern changes, e.g. from paral-
lel flow to radial flow after installation of a drinking water
pumping well.

4 Summary and conclusions

To study the energy status and flow of subsurface water at
scales larger than the Darcian scale, the relationship between
changes in location and curvature of gas-liquid interfaces
in soils and the matric/pressure potential of the water be-
hind those interfaces was examined. The relevance of pore-
scale processes at larger scales was illustrated by the role
of menisci in highly dynamic matric/pressure potential re-
sponses of fine-textured soils to rainfall: one well-known
part of this response is the result of limited available stor-
age in the pore space, another part is caused by extremely
rapid water pressure changes when curved interfaces at the
soil surface are flattened. A detailed analysis of the relation-
ship between the curvature of a single meniscus or a popula-
tion of menisci and the volume-averaged matric potential of a
body of subsurface water did not offer theoretical support for
the direct relationship between average matric potential and
average meniscus curvature at equilibrium that was hypoth-
esized in the literature. However, for strictly gravity-driven
flow, a direct proportionality between average meniscus cur-
vature and average matric potential is plausible. Still, this is
of limited value for practical situations.

Various methods for volume averaging water potentials
were reviewed and the intrinsic phase average deemed the
most appropriate. For saturated conditions, a proof of prin-
ciple was established that demonstrates that for flows that
are governed by linear differential equations, the flux across
a boundary of a hydrological system is proportional to the
difference between the intrinsic phase averaged hydraulic

potentials on either side of the boundary. This can greatly
simplify the description of the interaction of groundwater
bodies with their surrounding elements of the hydrological
cycle: average groundwater levels may suffice to generate
discharge estimates.

Appendix A

Average meniscus curvature and average matric
potential in a bundle of capillary tubes: a direct test of
Zehe et al.’s (2006) hypothesis

The soil water characteristic of a soil can be converted to
a distribution of pore radii through Eq. (1). The pressure
jump can be converted to a matric headh (m) : Plg/ρg =−h.
For cylindrical pores the principle radii are equal:r1 = r2 = r.
Note that the minus sign in the conversion implies that the
soil is hydrophilic. Thus we have:

h= −
2γ

ρg

1

r
= −

a

r
, (A1)

with a (m2) defined by the equation. A convenient closed-
form expression of the soil water characteristic is that of
Brooks and Corey (1964):

θ−θr

θs−θr
=

(
hae

h

)λ
for h ≤hae, (A2)

whereθ is the volumetric water content,θr and θs are its
residual and saturated values, respectively,hae(m) is the soil-
specific air entry value, andλ is a soil-specific constant. Note
that the potentials here are expressed as energy per weight,
giving the dimension length. This clarifies the derivation be-
low.

If haeandλ are given for a particular soil, we can conceive
of a bundle of vertical capillary tubes that has the same wa-
ter characteristic as the soil. Such a schematization allows
to calculate analytically the average matric potential and the
average curvature of the menisci, which permits a direct test
of Zehe et al.’s (2006) hypothesis that the average curvature
of the menisci reflects the average matric potential.

The widest tube of the population would have a radius
of −ah−1

ae . Equation (A2) gives the water remaining in the
soil at a given depth afterh at that depth has been lowered
from zero to its current value, i.e., all pores with ahae-value
larger thanh have already emptied. By inserting Eq. (A1)
into Eq. (A2) we can express the water content as a function
of the pore radius that is about to empty:

θ−θr

θs−θr
=

(
−
hae

a
r

)λ
. (A3)

By calculating the water content for two values ofr we can
find the fraction of the volume occupied by water residing in
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tubes with radii within the range defined by the two values.
Letting this range go to zero gives the derivative:

dθ

dr
= −(θs−θr)

λhae

a

(
−
hae

a
r

)λ−1

. (A4)

If N (m−2) denotes the number of water-filled tubes per
square meter andn (m−3) its derivative dN /dr, Eq. (A4) pro-
vides the number of capillary tubes per square meter with ra-
dius r by noting that dθ /dr is the fraction of the total tube
area occupied by the combined inner area of these tubes, i.e.,
n ·πr2:

n(r) = −(θs−θr)
λhae

πar2

(
−
hae

a
r

)λ−1

= −(θs−θr)
ρgλhae

2γπr2

(
−
ρghae

2γ
r

)λ−1

. (A5)

In a bundle of capillary tubes with its lower end submerged
in a water reservoir (mimicking the groundwater), all tubes
will contain water, with the level rising toa/r above the
water level (Eq. A1). Equation (A5) then gives the num-
ber of menisci per square meter with curvature 2/r (m−1).
The average curvature of the menisci in the entire bundle of
tubes can then be found by deriving the distribution func-
tion of 2/r from Eq. (A5). By changing variables to make
y = 2/r (thereby lettingy (m−1) denote the meniscus curva-
ture), Eq. (A5) can be written as:

n(y)= −(θs−θr)
ρgλhaey

2

8γπ

(
−
ρghae

γy

)λ−1

. (A6)

Note that the minimum curvature is−ρghae/γ and be-
longs to the largest capillary, emptying athae. The curvatures
in tubes that are water filled over their entire length (where
h=−xp if we setx3 equal to zero at the soil surface) are ig-
nored, since they represent water pockets in fine pores behind
larger pores with menisci represented by the larger capillar-
ies. The arithmetic mean of the curvature〈y〉a (m−1) then
is:

〈y〉a=

−(θs−θr)
ρgλhae

8γπ

−ρgxp/γ∫
−ρghae/γ

y3
(
−
ρghae
γ
y−1

)λ−1
dy

−(θs−θr)
ρgλhae

8γπ

−ρgxp/γ∫
−ρghae/γ

y2
(
−
ρghae
γ
y−1

)λ−1
dy

, (A7)

which reduces to:

〈y〉a =

−ρgxp/γ∫
−ρghae/γ

y3
(
−
ρghae
γ
y−1

)λ−1
dy

−ρgxp/γ∫
−ρghae/γ

y2
(
−
ρghae
γ
y−1

)λ−1
dy

=

[
y4

3−λ

(
−
ρghae
γ
y−1

)λ−1
]−ρgxp/γ

−ρghae/γ[
y3

2−λ

(
−
ρghae
γ
y−1

)λ−1
]−ρgxp/γ

−ρghae/γ

(A8)

to give

〈y〉a= −

(
ρg

γ

)(
2−λ

3−λ

)(
x5−λ

p −h5−λ
ae

x4−λ
p −h4−λ

ae

)
. (A9)

The radius of a meniscus in a fully wetted cylindrical cap-
illary corresponding to this curvature would be 2

/
〈y〉a. The

matric head of water just behind this meniscus is:

h
(
〈y〉a

)
= −

(
2−λ

3−λ

)(
x5−λ

p −h5−λ
ae

x4−λ
p −h4−λ

ae

)
. (A10)

We can also calculate the average matric head of all the
water in the population of tubes. For a tube of radiusr, the
water rises to 2γ /ρgr m abovexp, and the tube therefore con-
tains 2πrγ /ρgm3 of water. The total volume of water per
square meter that is stored in tubes in which the water rises
to 2γ /ρgr m abovexp is n(r) ·2πrγ /ρg, and that volume of
water has an average matric head of−γ /ρgr m. The overall
average matric head equals the weighted average of these av-
erage matric heads for allr, with the weighting factor being
the amount of water residing in tubes of radiusr. The tubes
that are so narrow that they are filled with water all the way
to the soil surface all have an average matric head of−xp/2.
The largest of these tubes has radius−2γ /ρgxp.

The average matric head of the population of tubes smaller
than this is:

〈h1〉a=

−2γ /ρgxp∫
−2γ /ρghae

n(r)
2πγ r
ρg

−γ
ρgr

dr

−2γ /ρgxp∫
−2γ /ρghae

n(r)
2πγ r
ρg

dr

. (A11)

With Eq. (A5) this results in:

〈h1〉a = −
γ

ρg

−2γ /ρgxp∫
−2γ /ρghae

r−2
(
−
ρghae

2γ r
)λ−1

dr

−2γ /ρgxp∫
−2γ /ρghae

r−1
(
−
ρghae

2γ r
)λ−1

dr

= −
γ

ρg

λ−1

λ−2

[(
−
ρghae

2γ r
)λ−1

r−1
]−2γ /ρgxp

−2γ /ρghae[(
−
ρghae

2γ r
)λ−1

]−2γ /ρgxp

−2γ /ρghae

, (A12)

which gives:

〈h1〉a=

[
xp(λ−1)

2(λ−2)

] 1−

(
hae
xp

)2−λ

1−

(
hae
xp

)1−λ
. (A13)

This average matric head relates to a volume of water
present in those tubes in a 1 m2 area that are not entirely
filled over their full length−xp. This water volume is given
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by the denominator of Eq. (A11). The remaining portion of
the water resides in the capillaries that are filled with water
up to the soil surface. The volume of water per square me-
ter of soil stored in these capillaries with radii between 0 and
−2γ /ρgxp is:

−2γ /ρgxp∫
0

−xpπr
2n(r)dr =

ρgλhae(θs−θr)xp

2γ

−2γ /ρgxp∫
0

(
−
ρghae

2γ
r

)λ−1

dr

= −(θs−θr)xp

(
hae

xp

)λ
. (A14)

To arrive at the overall average matric head〈h〉a (m), the
average matric head for the partially filled tubes〈h1〉a and
that for the full tubes (−xp/2) have to be averaged, weighted
by their respective portions of the total water they represent:

〈h〉a =

[
−
xp(λ−1)

2(λ−2)

] 1−

(
hae
xp

)2−λ

1−

(
hae
xp

)1−λ

(θs−θr)

(
λhae

λ−1

)[(
hae

xp

)λ−1

−1

]

+
x2

p

2
(θs−θr)

(
hae

xp

)λ
, (A15)

which can be rearranged to give:

〈h〉a=
xp(θs−θr)

2

{(
λhae

λ−2

)(
hae

xp

)λ−1
[(

hae

xp

)2−λ

−1

]

+ xp

(
hae

xp

)λ}
. (A16)

Clearly, Eqs. (A10) and (A16) are unequal, and for the case
of a soil simplified to a bundle of capillary tubes, the ma-
tric potential derived from the mean curvature of the menisci
does not represent the volume-averaged matric potential of
the water above the groundwater table if the water is at hy-
drostatic equilibrium with a fixed groundwater table.

One may wonder if the analysis above would not give
completely different results if the vertical capillaries were
connected and could exchange water. This can be tentatively
assessed by Fig. A1. Only when a horizontal throat connects
a filled capillary to an empty one does it create an extra in-
terface. The right-hand side figure represents a throat that
is wider than one of the capillaries it connects, which would
create an interface that is less curved than it could have been
in that capillary. This situation does not seem probable in
much more complex natural pore networks. The extra inter-
face in the connecting throat in the left hand side of the figure

Fig. A1. Hypothetical distributions of liquid, gas, and liquid-gas
interfaces for a simple system of vertical capillaries connected by
horizontal throats. The lower end of the vertical capillaries is in
contact with open water at a constant level (not drawn).

would not occur in a bundle of isolated capillaries. Still, the
population of throats in the natural pore space would hold
water at low matric potentials and thus be visible in the wa-
ter retention curve. Since the radii of the bundles are chosen
such that they collectively represent the entire pore space, the
interfaces present in these narrow throats are represented by
tubes with small radii in the bundle model.

The capillary bundle representation would probably not
change very dramatically if the vertical capillaries were con-
nected by throats, since only those throats that happen to
connect two capillaries at an elevation where precisely one
of them is water-filled would add an interface. Nevertheless,
it remains doubtful that the bundle model accurately repre-
sents the total number of interfaces in a soil, even if it does
accurately reproduce the soil water characteristic.
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