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Abstract. We characterize how regional watersheds func-

tion as simple, dynamic systems through a series of hys-

teresis loops using measurements from NASA’s Gravity Re-

covery and Climate Experiment (GRACE) satellites. These

loops illustrate the temporal relationship between runoff and

terrestrial water storage in three regional-scale watersheds

(> 150 000 km2) of the Columbia River Basin, USA and

Canada. The shape and size of the hysteresis loops are con-

trolled by the climate, topography, and geology of the water-

shed. The direction of the hystereses for the GRACE signals

moves in opposite directions from the isolated groundwater

hystereses. The subsurface water (soil moisture and ground-

water) hystereses more closely resemble the storage-runoff

relationship of a soil matrix. While the physical processes

underlying these hystereses are inherently complex, the ver-

tical integration of terrestrial water in the GRACE signal en-

capsulates the processes that govern the non-linear function

of regional-scale watersheds. We use this process-based un-

derstanding to test how GRACE data can be applied prognos-

tically to predict seasonal runoff (mean Nash-Sutcliffe Effi-

ciency of 0.91) and monthly runoff during the low flow/high

demand month of August (mean Nash-Sutcliffe Efficiency of

0.77) in all three watersheds. The global nature of GRACE

data allows this same methodology to be applied in other

regional-scale studies, and could be particularly useful in re-

gions with minimal data and in trans-boundary watersheds.

1 Introduction

At the most fundamental level, watershed processes can be

described as the collection, storage, and release of water

(Black, 1996; McDonnell et al., 2007). The runoff from these

processes is governed by threshold mediated relationships

across scales that result in storage–runoff hystereses (Spence,

2010). These threshold relationships between storage and

runoff (S−R) are not uniform across a watershed, function-

ing as a series of discontinuous processes in soils and hill-

slopes that provide an integrated S−R relationship at the

watershed scale (Spence, 2010). Kirchner (2009) described

the S−R relationship to be non-linear and stated that wa-

tersheds typically function as dynamic systems governed by

their unique climate and geology. These conceptual models

of hydrologic behaviors help provide a process-based under-

standing of watersheds as dynamic environmental systems

(Aspinall, 2010), and identify connections that advance hy-

drologic science and hydrologic prediction (Wagener et al.,

2007).
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At the local scale, in situ instrumentation can quantify

the non-linear relationship between streamflow and water

stored in a watershed as snow, soil moisture, groundwa-

ter and reservoirs (Appleby, 1970; Brutsaert, 2008; Kirch-

ner, 2009; Sayama et al., 2011). These four primary stor-

age components, along with climate, topography, and geol-

ogy govern the fluxes of water through a catchment, and

play an important role in the hysteretic nature of storage

and runoff dynamics (McGlynn and McDonnell, 2003; Mc-

Namara et al., 2011). Knowledge of these processes is fun-

damental to developing an understanding of a watershed’s

hydrologic behavior. However, observations over larger re-

gions can be technically challenging and costly, and in situ

measurements from small basins do not necessarily represent

the complexity inherent to watersheds at more broad scales

(Spence, 2010). This scaling problem limits our understand-

ing to predict regional hydrologic processes, which is often

the practical scale of watershed management (Blöschl, 2001;

Western et al., 2002; Skøien et al., 2003; Peel and Blöschl,

2011; Thompson et al., 2011).

In the absence of broad-scale observations, past hydrolog-

ical studies have typically relied on in situ measurements as

a proxy for regional scale hydrological processes. For exam-

ple, in higher latitude or mountainous regions measurements

of snow water storage have provided a simple metric that has

been used in water resource planning for decades (Cayan,

1996; United States Army Corps of Engineers, 2001), and are

often correlated to streamflow gauged downstream (Dozier,

2011). While informative, this approach can often provide

hydrological forecasts that are misleading, because point-

based measurements do not fully represent the broad-scale

variability of rugged mountain terrain (Dozier, 2011; Nolin,

2012; Webster et al., 2014; Ayala et al., 2014). Similarly,

measurements of soil moisture in the upper 2000 mm of the

soil rely on point-based data that are often distributed at the

regional scale, but do not effectively represent the true vari-

ability of soil moisture across broad geographic areas (West-

ern et al., 2002; Brocca et al., 2010). A complete understand-

ing of groundwater stores and fluxes (deeper than 2000 mm)

at regional scales also remains elusive, despite its increas-

ing importance in water resources management (Wagener et

al., 2007; Gleeson et al., 2012; Famiglietti and Rodell, 2013;

Barthel, 2014). In addition to contributing to runoff, ground-

water serves as an important water resource for consumptive

use (Gleeson et al., 2012).

While local-scale methods have been applied with moder-

ate success in the past, current trends in climate and in con-

sumptive water demand suggest that long-term changes in

hydrological fluxes will have a major impact at broad scales

(Milly et al., 2008). As a result, the supply and demand of

water is also expected to shift, especially at the regional scale

(Wagener et al., 2010; Gleick, 2014a).

Hydrologic models can help address the questions of scale

and bridge the gap between local observations and regional-

scale processes by estimating the primary components of wa-

ter storage (snow, soil moisture, reservoir, and groundwa-

ter) across a larger spatial grid. Regional-scale modeling ap-

proaches are integrated into water resource management op-

erations for navigation, human consumptive use, irrigation,

and hydropower (Payne et al., 2004; Rodell et al., 2004).

Models can also be applied diagnostically to test scientific

hypotheses and provide a better understanding of the phys-

ical processes that govern real world systems, such as the

connections between snowmelt, streamflow, and groundwa-

ter (Beven, 2007, 2010; Moradkhani and Sorooshian, 2008;

Kirchner, 2009; Clark et al., 2011; Capell et al., 2012). De-

spite their utility, developing and validating a model can be

both time consuming and reliant on multiple data inputs,

which even in the most well-instrumented basins provides

sparse geographic coverage (Bales et al., 2006; Zang et al.,

2012). The lack of an integrated measurement of water stor-

age and streamflow has limited regional-scale hydrologic in-

sights to model-based studies (Koster et al., 2010; Mahanama

et al., 2011).

Since 2002, broad-scale measurements of changes in the

amount of water stored across and through the earth have

been available from NASA’s Gravity Recovery and Cli-

mate Experiment (GRACE) satellites (Tapley et al., 2004).

GRACE measures monthly changes in the Earth’s gravita-

tional field that are proportional to regional changes in to-

tal water storage (Wahr et al., 2006). GRACE satellites pro-

vide a monthly record of terrestrial water storage anomalies

(TWSA), which represent the changes in the vertical sum of

water at the Earth’s surface stored in snow, surface, soil and

groundwater. Water losses to runoff and evapotranspiration

are implicit in the GRACE storage signal, which greatly sim-

plifies calculations of changes in terrestrial water storage.

GRACE data, coupled with modeled and measured vari-

ations of water stored in snow, surface reservoirs and soils,

have successfully been decomposed to quantify regional

groundwater changes (Rodell et al., 2009; Famiglietti et al.,

2011; Voss et al., 2013; Castle et al., 2014) and have con-

tributed to improving water balance calculations (Zaitchik et

al., 2008; Li et al., 2012). More recent efforts have quantified

the relationship between regional water storage and specific

streamflow events (Reager and Famiglietti, 2009; Reager et

al., 2014). Riegger and Tourian (2014) coupled GRACE data

using data-driven and model-based approaches to better un-

derstand the relationship between storage and runoff across

climatic zones globally. Their study found that coupled liquid

storage is linear to runoff, and that in climatic regions with

snow and ice the relationship between storage and runoff is

more hysteretic. These novel analyses, which are more di-

agnostic in nature, have provided new insights into regional

watershed hydrology using GRACE measurements as a core

data input. These studies have not explored how topography

and geology can also help describe the S−R relationship of

regional watersheds. Nor did these studies examine the abil-

ity of GRACE measurements to predict seasonal runoff.
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In this paper, we use terrestrial water storage data from

GRACE to better understand the hydrology of regional wa-

tersheds and the relationship between storage and runoff. The

temporal relationships between coincident TWSA and dis-

charge observations at three scales in the Columbia River

Basin (CRB) of western North America are investigated us-

ing climate, topography, and geology as a framing principle

to describe the shape of the storage-streamflow hysteresis.

We associate regional and temporal differences in the hys-

tereses with varying watershed dynamics. Finally, we com-

pare the prognostic abilities of GRACE observations with

individual modeled estimates of snow and soil moisture to

predict seasonal streamflow at regional scales.

2 Study area

Our study area is the Columbia River Basin (CRB; 41–53◦ N

and 110–122◦W; Fig. 1). This basin has dry summers and

wet winters. Up to 70 % of annual precipitation falls be-

tween November and March, 50–60 % of which occurs as

snow (Serreze et al., 1999; Nolin et al., 2012). The spring

months (April to June) are also wet, but warmer. Precipitation

during the spring combines with snowmelt to swell rivers

and potentially exacerbate flooding. Snowmelt also serves

as a critical component of the hydrologic cycle, recharging

aquifers and filling streams later in the year. These contri-

butions bridge the temporal disconnect between wet winters

and dry summers when demand is at its peak as farmers, fish,

hydropower and municipal users vie for over-allocated wa-

ter resources (United States Army Corps of Engineers, 2001;

Oregon Water Supply and Conservation Initiative, 2008).

However, concerns with winter surplus and summer scarcity

are not uniform across the CRB, since climate and geology

vary greatly (Nolin, 2012). Two of the study watersheds, the

Upper Columbia (155 000 km2) and the Snake River basin

(182 000 km2), represent distinctly different climatic, topo-

graphic, and geologic provinces of the CRB (described and

illustrated in Fig. 1). The Upper Columbia is wet and is char-

acterized by steep topography of fractured rock and poor

groundwater storage. In contrast, the arid Snake River basin

is bowl-shaped with mountains on three sides. The inte-

rior of the Snake River basin is a broad plain with well-

developed soils underlain by a highly transmissive aquifer

(Whitehead, 1992, Fig. 1). The Columbia River at The Dalles

(614 000 km2) encompasses the Upper Columbia and the

Snake River sub-basins, and its climate and geology are an

integration of the two (Fig. 1). A distinct climatic feature of

the Columbia River at The Dalles is the western slope of the

Cascade Mountains, where over 3000 mm of mean annual

precipitation at higher elevations sustains a considerable sea-

sonal snowpack. The scale of this study was constrained to

watersheds larger than 150 000 km2, the optimal minimum

geographic limit of GRACE data (Yeh et al., 2006; Landerer

and Swenson, 2012).

3 Methods and data

We used 108 months of GRACE and streamflow data over

nine water years (WY; October–September; 2004–2012).

These data comprises positive, neutral, and negative phases

of the El Niño-Southern Oscillation and negative and pos-

itive phases of the Pacific Decadal Oscillation (Feng et al.,

2014; Iizumi et al., 2014). As a result, the data provide

years of above- and below-average precipitation, snowpack,

and streamflow for the region. The three watersheds were

delineated upstream from United States Geological Survey

(USGS) stream gages at 1◦ resolution, which is the reso-

lution of GRACE data. In the CRB, these grid cells repre-

sent a dimension of approximately 80 by 120 km. The Up-

per Columbia consists of the area upstream of the Columbia

River at the International Boundary gage (USGS 12399500),

just downstream of the confluence of the Columbia and Pend-

Oreille Rivers. The Pend-Oreille is a major watershed in the

upper portions of the CRB. The Snake River gage at Weiser

(USGS 13269000) provides gauged streamflow data above

Hell’s Canyon Reservoir, the largest impoundment in the

Snake River basin. The USGS gage at The Dalles (USGS

14105700) provides the most downstream streamflow data

for the CRB. Monthly mean runoff (R; mm) was calculated

for each of the three gages using the USGS streamflow data.

Measurements of TWSA were obtained from the GRACE

RL-05 (Swenson and Wahr, 2006; Landerer and Swenson,

2012) data set from NASA’s Tellus website (http://grace.jpl.

nasa.gov). The errors present in the gridded GRACE data ex-

ist primarily as a result of truncation (i.e., a low number of

harmonics) in the spherical harmonic solution, and smooth-

ing and systematic noise removal (called “de-striping”) that

is applied after GRACE level-2 processing to remove spa-

tially correlated noise (called “stripes”; Swenson and Wahr,

2006). This smoothing tends to smear adjacent signals to-

gether (within the radius of the filtering function), resulting in

smaller signals being lost, and larger signals having a coarser

footprint and a loss of spatial information.

To restore the GRACE signal lost during processing, the

data were scaled using 1◦ Land-Grid Scale Factors produced

by putting a 1◦ land surface model through identical process-

ing (truncation and filtering) as the GRACE solutions, then

measuring the decrease in the signal amplitude at each 1◦

grid. These procedures are described on the Tellus website

and detailed in Landerer and Swenson (2012). Monthly 1◦

GRACE estimates of TWSA, and the associated 1◦ leakage

and measurement errors, were spatially averaged over each

of the three study watersheds following the procedures de-

scribed in the Tellus website.

GRACE represents monthly storage anomalies relative

to an arbitrary record-length mean value, analogous to the

amount of water above or below the long-term mean storage

of a bucket, and should balance with the equation:

1Storage= TWSA=1GW+1SM+1SWE+1RES (1)
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Figure 1. Context map and descriptions of the three study watersheds and the locations of the groundwater wells used in the study.

where all components are at monthly time steps; GW rep-

resents groundwater, SM represents soil moisture (from 0–

2000 mm depth), SWE represents snow water equivalent (the

equivalent depth of water held in snowpack), and RES rep-

resents reservoir storage. The 1 used here represents the

anomaly from the study-period mean, rather than a monthly

change. To isolate monthly groundwater storage anomalies

(1GW=GWSA) in the above equation, 1SM, 1SWE and

1RES estimates were subtracted from the monthly TWSA

data using methods described in Famiglietti et al. (2011).

Similarly, the combined signal of water storage anomalies of

subsurface moisture (TWSAsub), SM and GW, was isolated

by subtracting SWE and RES from TWSA values.

Monthly SM values over the study basins were obtained

from the mean of the North American and Global Land Data

Assimilation Systems (NLDAS at 1/8◦ resolution (Cosgrove

et al., 2003) and GLDAS at 1/4◦ resolution (Rodell et al.,

2004), respectively), and were spatially averaged over the

three study watersheds. Monthly 1 km resolution SWE val-

ues were obtained from the mean of NLDAS and Snow Data

Assimilation System (SNODAS; National Operational Hy-

drologic Remote Sensing Center, 2004) and were spatially

averaged over the three watersheds. SNODAS data were used

in place of the GLDAS data product, which considerably

underestimated SWE in mountainous areas when compared

to point-based measurements. Changes in monthly reservoir

storage were calculated for the five largest reservoirs in the

CRB (see Table A1). Other smaller reservoirs in the CRB

were excluded when it was determined that fluctuations in

their levels were below the detection limits of GRACE.

Like all measurements, estimates of TWSA from GRACE

contain error. For all of the study basins, the range of error is

well below the TWSA signal strength, approximately an or-

der of magnitude below the annual amplitude (200–300 mm)

of the TWSA signal in the CRB. The basin-averaged TWSA

errors (time invariant) for the three study basins are 37 mm

(Upper Columbia), 22 mm (Snake), and 25 mm (The Dalles).

The model data from LDAS and SNODAS simulations are

driven by in situ measurements, and represents the best avail-

able data for broad scales. We address any structural error

Hydrol. Earth Syst. Sci., 19, 3253–3272, 2015 www.hydrol-earth-syst-sci.net/19/3253/2015/
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Figure 2. Monthly storage anomalies for Runoff, TWSA, and the

subcomponents of terrestrial water for the three watersheds. Stan-

dard errors and error variance for hydrological component are noted

in each sub-figure and represented by the blue shading. All units on

the vertical axes are on the same scale and in mm. Note the different

vertical scales for Runoff and RES. Horizontal axes are in months

and on the same scale.

from an individual model by using an ensemble of outputs.

Calculation of the error in individual terms followed stan-

dard methodologies (Famiglietti et al., 2011), where error in

SM is the mean monthly standard deviation, and standard er-

rors for SWE and RES are 15 % of mean absolute changes.

GWSA and TWSAsub anomaly errors are calculated as the

sum of basin-averaged errors (added as variance) in the in-

dividual terms in each respective calculation (Eq. 1), includ-

ing the error in TWSA (Swenson et al., 2006). The basin-

averaged error variance for GWSA (time invariant) in the

three study basins are 45 mm (Upper Columbia), 26 (Snake),

and 33 mm (The Dalles). For TWSAsub these values are 37

(Upper Columbia), 22 (Snake), and 25 mm (The Dalles). The

individual error components (SM, SWE, RES respectively)

for each basin are Upper Columbia (24, 6, 0.01 mm), Snake

(14, 3, 0.01 mm), and The Dalles (21, 4, 0.01mm). Note that

these error estimates are distributed across an entire regional

watershed and do not represent the error at individual moni-

toring sites. A time series of these values and basin-averaged

errors is provided in Fig. 2.

Based on an approach similar to Reager et al. (2014) and

Riegger and Tourian (2014), we plotted the temporal rela-

tionship between TWSA and R to examine hysteresis rela-

tionships in all three of the study watersheds for each indi-

vidual water year and for the monthly mean across all wa-

ter years. Expanding from the integrated terrestrial compo-

nent of water storage, we also plotted the relationships of

TWSAsub and GWSA with R. We examined the branches

of these hysteresis plots to better understand how the size,

shape, and direction of the hystereses varied across years in

each of the three regional watersheds.

In order to verify groundwater hysteresis, we compared the

GRACE-derived GWSA to groundwater depths from well

measurements at 33 sites throughout the study region (Fig. 1

and Table A2). These data were normalized by their stan-

dard deviation, and the mean of the 33 wells was calculated.

The standard deviation of the GRACE-derived GWSA for

The Dalles was normalized to provide a direct comparison of

GWSA and in situ measurements.

We further hypothesized that because peak SWE accumu-

lation occurs between February and April, that TWSA for

these months could be used to predict R for an individual

month and the cumulative seasonal runoff (Rseason) that oc-

curs after peak SWE accumulation. To test this prognostic

hypothesis we used a two-parameter power function (The

MathWorks, 2013):

Rpredicted = a(TWSAmonth)
b
+ c, (2)

where Rpredicted is runoff for the predicted time interval;

TWSAmonth represents terrestrial water storage for an indi-

vidual month, and a, b, and c are fitted parameters from the

power function.

We tested this relationship for TWSA in February, March

and April to predict Rseason (April–September) and for the in-

dividual months of July (RJuly), August (RAug), and Septem-

ber (RSep); these represent the lower-flow months when de-

mand is near its peak. Additionally, we tested and compared

the modeled-values of SWE from NLDAS and SNODAS and

SM from NLDAS and GLDAS, and the model-derived values

of TWSAsub to predict Rseason and for the individual months

using the same power-function analysis.

Because our data set was constrained to nine water years,

we used a double-pass approach to fit and test the empirical

relationship between S−R. This approach allowed us double

our data inputs for calculating standard hydrologic evaluation

metrics such as Root Mean Square Error (RMSE), standard

Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determi-

nation (R2; Legates and McCabe, 1999; Nash and Sutcliffe,

1970). The 9 years were divided into two sets (Set 1, even

years 2004–2012; Set 2, odd years 2005–2011). The first pass

calculated the power function of S−R to Set 1, and the pa-

rameters were then tested against Set 2. The roles of the data

sets were then reversed and the data sets were again tested

against each other. The empirical model results from Sets 1

and 2 were then combined into a single set of solutions for

www.hydrol-earth-syst-sci.net/19/3253/2015/ Hydrol. Earth Syst. Sci., 19, 3253–3272, 2015
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the model fit and tested against measured values to calculate

RMSE, NSE, and R2. In order to maximize the limited data

inputs, once we tested the two independent sets for model

performance, we combined the input data values into a sin-

gle set for all 9 years to calculate a single power function

curve. The observed data were tested against the simulated

data from the complete, but limited data record. The final

model curve was fit to these data, and the evaluation metrics

include all of the years for each respective data set.

4 Results

4.1 Storage-runoff hysteresis

The filling and emptying of the study basins at the regional-

scale over the course of an individual WY results in a hys-

teretic relationship between storage and runoff (Fig. 3a). The

hysteresis loops begin at the onset of the wet season in Oc-

tober, with TWSA increasing (Figs. 3a, 4a–c) as precipita-

tion is stored as snow and soil moisture. An increase in stor-

age that is not offset by an increase in discharge indicates a

predominance of snow inputs and the freezing of soil water.

The lower branch of the hysteresis plot (storage increase un-

matched by runoff) can be used to estimate cumulative snow

water equivalent and soil moisture in the basin. This is the

water that later contributes to streamflow and groundwater

recharge in the spring.

The hysteresis shifts direction from February–April (in-

flection 1, Fig. 3a), and represents each watershed’s tran-

sition from storage to release. This response is evident

(Figs. 3a, 4a–c, and 5), as each hysteresis loop contains a

vertical branch of the curve during which storage is rela-

tively constant, but streamflow increases rapidly. This timing

also represents the groundwater recharge branch of the loop.

As snow melts and the ground thaws, runoff is generated,

recharge into soils occurs, and basins tend to be at peak stor-

age during this branch. Storage losses and additional precip-

itation inputs during this period are re-organized internally.

A second shift (inflection 2, Fig. 3a) occurs from April-June

when peak TWSA begins to decrease, representing spring

snowmelt and a switch from precipitation that falls primarily

as snow to rain; these combine to contribute to peak R.

Once peak R values are reached, the loop shifts direction

a third time (inflection 3, Fig. 3a), receding on both axes

as contributions from snowmelt diminish while presumably

groundwater sustains streams and provides a source for ir-

rigated agriculture. During this period, the relationship be-

tween TWSA and discharge is more linear, corresponding

to baseflow-driven runoff processes in which each monthly

change in storage causes a proportional change in the gener-

ation of streamflow.

The hysteresis plots of TWSA−R for an individual water

year demonstrate that the timing and quantity of precipita-

tion governs the size of a hysteresis loop for an individual

WY (Figs. 3a, 4a–c, 5). For instance, wet years (e.g., 2008)

have bigger loops, while dry years (e.g., 2005) are more

compressed along both axes. However, the general shape of

the loops is distinct for each basin. Plotting multiple WYs

provides a family of curves for each basin that helps de-

scribe how climate, topography, and geology govern the tim-

ing and magnitude of the relationship between TWSA and R

(Figs. 3a, 5).

4.2 Subsurface water (TWSAsub) – runoff hysteresis

The TWSAsub hysteresis curve contracts horizontally when

the snow signal is removed from TWSA values for both the

Upper Columbia and The Dalles (Figs. 3b, 4d–f), which col-

lapses the loops and takes a form similar to a plot-scale hys-

teresis of soil. In the initial stages of the WY, the direction

of the curve changes directions 2–3 times along the TWSA

axis. Similar hysteresis fluctuations have also been docu-

mented at the more local scale as the soil profile moves to-

wards saturation (Penna et al., 2011). Peak TWSAsub occurs

in June, which corresponds to the spring melt of mountain

snowpack and the end of the wet season (Figs. 4d–f). In con-

trast to the near linear relationship between TWSAsub and R

in the Upper Columbia and The Dalles, the Snake River re-

tains a more complex relationship. In this watershed the hys-

teresis curve still retains a loop, but the timing of maximum

TWSAsub is also earlier, reaching its peak during March and

April (Fig. 4e). It is also noteworthy that in the Snake River

the TWSAsub−R hysteresis loop temporally progresses in

the opposite direction, but stays in phase with precipitation

inputs.

4.3 Groundwater-runoff hysteresis

The hysteresis loops describing the temporal relationship be-

tween GWSA and R are equally informative, with one dis-

tinct difference – they temporally progress in opposite di-

rections of the hysteresis loops of TWSA and R (Fig. 3).

For all three watersheds, GWSA decreases from October–

February/March (Fig. 4h–j), which is out of phase with the

onset of the wet season. GWSA does not shift towards posi-

tive gains until early spring and the initial stages of melt be-

fore reaching its maximum in June. From June–September,

GWSA decreases minimally across all years during the

runoff recession limb, indicating groundwater contributions

to streamflow. This decreasing GWSA signal does not stand

out in Fig. 2, as during WY 2011 the GSWA increased from

12.8 in June to 71.2 mm in September due a large snowpack

that melted several months later than normal. This consider-

able anomaly muted the overall GWSA recession from June–

September that is found in all other water years (supplemen-

tary data and the interactive visualizations described subse-

quently).

The 33 point-specific well data located across the CRB

show considerable individual variability throughout a water
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Figure 3. (a–c) Annotated hysteresis curves of terrestrial water storage anomalies (a), the subsurface water storage anomalies (TWSAsub;

b), and groundwater storage anomalies (c) based upon the 9-year mean for the Columbia River at The Dalles. These curves describe the

fluxes of water moving through the watershed.

Figure 4. (a–f) Individual hysteresis curves for the three study

watersheds for TWSA (a–c), TWSAsub (d–f), and GWSA (h–j).

TWSAsub in the Upper Columbia and The Dalles collapses to rep-

resent a shape more commonly associated with the hysteresis of a

soil matrix. The Snake River retains a similar looping shape. The

grey areas in the TWSAsub and GWSA plots provide a visual ref-

erence of the TWSA error variance for each watershed. The low

topography and high storage capacity of the Snake aquifer provides

a consistent groundwater signal, as compared to the limited aquifer

of the Upper Columbia, which fills and drains quickly. Note the dif-

ferent scales on the y axes.

year, and the mean of the normalized standard deviations of

well levels was close to zero for all months. The temporal

variability for the well data provides no discernable correla-

tion with the derived GWSA signal (Fig. A1).

Figure 5. Plots of the hysteresis curves for TWSA in each of the

three study watersheds across all 9 water years. For visual clarity,

each plot contains 3 water years and the 9-year mean. Note the dif-

ferent scales on the y-axes for each basin.

4.4 Individual basin hysteresis plots of TWSA,

TWSAsub, GWSA and R

Of the three study basins, the Upper Columbia is the most

hydrologically active, showing the largest annual range for

TWSA, TWSAsub, GWSA, and R (Fig. 6). The TWS−R

hysteresis loops are more open (Fig. 4), corresponding to the

fluxes of water moving through watershed. When SWE is re-

moved and subsurface water is highlighted, the TWSAsub−R

hysteresis loops collapse horizontally and more closely re-

semble the hystereses associated with soil (Figs. 4d). How-

ever the inter-annual range (WYmax−WYmin) for TWSAsub

in the Upper Columbia is considerably greater than the other

two basins (median range = 234 mm; Fig. 6). As the hys-

teresis reverses directions for GWSA-R, the loops shift to a

more open shape (Figs. 4d), but the inter-annual range re-

mains similar.
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Figure 6. The intra-annual range of TWSA, TWSAsub GWSA, and R for the 9 water years of the study period.

In contrast to the rapid response of the Upper Columbia,

the Snake River receives ∼ 60 % less annual precipitation,

but has an annual TWSA range that is only 22 % less (me-

dian annual range= 192 mm; R =7 mm; Figs. 4, 5, and 6).

However, the TWSA hysteresis loops for the Snake River are

collapsed vertically (Fig. 4b). In the more arid Snake River,

removing the snow signal does not collapse the TWSAsub−R

hysteresis loops (TWSAsub = 89 mm). Similarly, the GWSA

loops suggest that subsurface moisture plays a more promi-

nent role in the Snake River.

The climate, topography, and geology of the Columbia

River at The Dalles are an integration of the Upper Columbia

and Snake River, seen in the shape of the hysteresis loops

(Figs. 4, 5, 6; median annual range TWSA= 195 mm;

R = 27 mm). The period from February–June more closely

resembles the Snake River basin, with gradual increases in

TWSA and sharp increases in R. The slope of the recession

from June–September has the same general shape for The

Dalles as the Upper Columbia (Figs. 4a, c), presumably from

snowmelt-generated runoff.

Interactive visualizations that compliment all of the

hysteresis figures are online at: https://public.tableau.com/

profile/sprolese#!/vizhome/GRACE_hystereses/WSADash.

4.5 Streamflow forecasting

We next present how TWSA was applied prognostically to

predict streamflow. Using the double-pass calibration and

validation approach, TWSAMar provided the best overall pre-

dictive capabilities for Rseason with a mean NSE (NSE) and

mean R2 (R2) of 0.75 and 0.91, respectfully (Fig. 7a, Ta-

ble 1), for all three basins. The Dalles had the highest NSE

and R2, and lowest RMSE values (0.98, 0.98, 6 mm; Table 1).

The results in the Upper Columbia were also robust (0.82,

0.86, 33 mm; Table 1), while the Snake River performed

with less skill (0.46, 0.59, and 14 mm, Table 1). Applying

TWSAApril also provided similar results, but with a lower

degree of skill in predicting R (NSE= 0.57, R2 = 0.69).

TWSAApr provided improved predicted capabilities in the

Upper Columbia (0.87, 0.88, and 28 mm, Table 1), but in-

ferior results in the other two watersheds. TWSAFeb had a

low degree of skill in predicting R in all three watersheds

(Table A3).

TWSAMar and TWSAApril also served as a good predictor

of monthly runoff in July and August for the Upper Columbia
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Figure 7. (a–b) Measurements of terrestrial water storage anoma-

lies in March (TWSAMar) effectively predict the cumulative runoff

for April–September (Rseason; (a) and help describe how these

three regional watersheds function as simple non-linear systems.

TWSAMar also predicts mean runoff for August (RAug; (b) one

of the driest months of the year when demand for water is at its

peak. The hashed lines represent the 95 % confidence intervals. The

box plots to the right of each plot represent the range of R for

the respective watershed from WY’s 1969–2012. Note the semi-log

y axis on (b). For complete results and parameters from the empiri-

cal model please refer to Tables 1, 2, 3, A3, and A4.

and to a lesser degree in The Dalles (Tables 1 and A3). In the

Snake River, TWSA did not serve as a good predictor for R

in an individual month.

Snowpack and soil moisture play a considerable role in the

hydrology of the CRB and are commonly used to help pre-

dict water demand and availability later in the year (Koster et

al., 2010). We compared the capabilities of the modeled snow

(SWE) and soil moisture (SM) products to predict R to the
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Table 1. Comparison of performance metrics using the dual-pass approach to apply GRACE TWSA data, model-derived snow (SWE), and

soil moisture (SM) products in predicting seasonal (Rseason) and August (RAug) runoff by watershed. Average values for the three basins are

also provided. RMSE values are in mm. Complete results can be found in Appendix Table A3.

Upper Columbia

Rseason RAug

TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar

NSE 0.82 0.87 0.46 < 0 0.71 0.70 < 0 < 0

RMSE 33.06 27.62 56.10 > 1000 5.71 5.38 13.08 143.17

R2 0.86 0.88 0.58 0.00 0.71 0.71 0.28 0.05

Snake River

NSE 0.46 0.29 < 0 0.85 < 0 < 0 < 0 < 0

RMSE 14.03 15.71 21.53 7.38 13.59 0.76 0.78 0.72

R2 0.59 0.47 0.08 0.86 0.15 0.08 0.27 0.29

The Dalles

NSE 0.98 0.54 0.24 < 0 0.80 0.29 < 0 < 0

RMSE 6.01 26.50 26.48 122.88 1.86 3.31 18.91 22.10

R2 0.98 0.71 0.39 0.00 0.82 0.71 0.03 0.02

Average

NSE 0.75 0.57 0.35 0.85 0.76 0.50 < 0 < 0

RMSE 17.70 23.28 34.70 65.13 7.05 3.15 10.92 55.33

R2 0.81 0.69 0.35 0.29 0.56 0.50 0.19 0.12

skill of measured GRACE TWSA data (Table 1). In the Up-

per Columbia and The Dalles, TWSAMar predicts seasonal

and monthly runoff (July and August) with considerably

more skill than SWE or SM (Fig. 7, Table 1). In the Snake

River, SMMar has a higher degree of skill than TWSAMar in

predicting Rseason and RAug. SWEMar provided inferior re-

sults in all three watersheds, but with some predictive skill in

the Upper Columbia and The Dalles (NSE of 0.24 and 0.46

respectively, Table 1). In all three watersheds, TWSAsub pro-

vided extremely poor predictions (Tables 1 and A3).

When the results of the empirical model using two inde-

pendent sets of data proved robust for some of the storage

metrics, the observed data were tested against the simulated

data from the complete, but limited data record. The perfor-

mance of the empirical model improved using the complete

data set (Tables 2 and A4), with the same general results.

TWSAMar provided the best model fit for seasonal runoff in

the Upper Columbia (NSE= 0.93, RMSE= 19.8 mm) and

The Dalles (NSE= 0.98, RMSE= 5.7 mm). In the Snake

River, predictive capabilities improved more dramatically

(NSE= 0.83, RMSE= 7.4 mm), but soil moisture still served

as a better predictor of seasonal streamflow (NSE= 0.93,

RMSE= 5.2 mm). Similarly, TWSAMar provided the best

model fit for runoff in August, one of the drier months when

demand is at its peak (Tables 2 and A4).

5 Discussion

5.1 Storage-runoff hysteresis

Decades of data collection and monitoring at individual gage

sites indicate that watersheds collect, store and release water.

Using one integrated measurement from the GRACE satel-

lites, our results show these same processes at the regional

scale in the hysteresis loops of storage (TWSA) and runoff

(R). While hysteretic processes have previously been iden-

tified in local-scale measurements (McDonnell, 2003; McG-

lynn and McDonnell, 2003), only recently has streamflow-

storage hysteresis been identified at the regional scale (Rieg-

ger and Tourian, 2014).

Our work builds on Riegger and Tourian’s (2014) results,

and employs GRACE data to describe how regional water-

sheds function as integrated, non-linear systems governed by

climate, topography, and geology. Climate controls the size

of the hysteresis loops by providing a first-order control on

hydrologic inputs and the storage of solid water, which in

turn governs the ranges of TWSA and R. However, runoff

response to precipitation and snowmelt does not act indepen-

dently from topography and geology (Jefferson et al., 2008;

Tague et al., 2008), which controls how liquid water is stored

and routed through a watershed, even at the regional scale.

The climatic, topographic, and geological characteristics of

each watershed provide an explanation of the S−R relation-

ship that govern the shape and size of its respective hystere-
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Table 2. Comparison of performance metrics from applying all 9 water years of GRACE TWSA data, model-derived snow (SWE), and soil

moisture (SM) products in predicting seasonal (Rseason) and August (RAug) runoff by watershed. Average values for the three basins are

also provided. RMSE values are in mm. R2 values are the same as NSE for this linear regression. Complete results can be found in Appendix

Table A4.

Upper Columbia

Rseason RAug

TWSAMar TWSAApr SWEMar SMMar TWSAMar TWSAApr SWEMar SMMar

NSE 0.93 0.92 0.82 0.03 0.76 0.73 0.56 0.09

RMSE 22.18 23.18 36.19 82.90 6.60 6.90 8.92 12.79

Snake River

NSE 0.83 0.75 0.34 0.93 0.68 0.52 0.62 0.76

RMSE 8.76 10.55 17.23 5.80 0.43 0.52 0.47 0.37

The Dalles

NSE 0.98 0.91 0.67 0.00 0.88 0.91 0.46 0.02

RMSE 6.22 13.00 24.60 42.67 1.55 1.30 3.30 4.40

Average

NSE 0.91 0.86 0.61 0.32 0.77 0.72 0.55 0.29

RMSE 12.39 15.58 26.01 43.79 2.86 2.91 4.23 5.85

Table 3. Parameters from the power function curves in each of the three watersheds using TWSA to predict streamflow. Figure 7 provides

these results visually.

Upper Columbia Snake River The Dalles

TWSAMar TWSAMar TWSAMar TWSAMar TWSAMar TWSAMar

Rseason RAug Rseason RAug Rseason RAug

a 2.12E-10 4.83E-06 5.69E-05 2.26E-04 7.40E-10 3.61E-15

b 4.99 3.41 2.88 1.89 5.25 7.28

c 41.06 273.99 23.97 3.30 124.21 15.54

sis curve. GRACE offers a single, integrated measurement of

changes in water storage through and across a watershed that

can be applied to predict regional streamflow using an empir-

ical model. Where these predictive capabilities succeed and

fail help better describe the climatic, topographic, and geo-

logical characteristics in each watershed.

For example, in the Upper Columbia, steep topography

and wet climate fills subsurface storage quickly before reach-

ing a threshold in April or May. This transition represents the

watershed’s transition from winter storage to spring runoff.

After this watershed-scale threshold is reached, the steep to-

pography moves snowmelt and rain quickly through the ter-

restrial system and into the river channel until cresting in

June (Figs. 4, 5, and 6), followed by declines in TWSA and

R from June-September. These large fluxes of water create

a more open hysteresis loop, expanding non-linearly on both

the horizontal and vertical axes.

The Upper Columbia also has the broadest range of an-

nual TWSAsub and GWSA during the study period (Figs. 5

and 6), despite having limited aquifer capacity. Conceptually,

this demonstrates that the upper limit of storage is greater

than in the Snake River or The Dalles, but that it also loses

the most water. Its minimums at the end of the WY are also

the lowest (median TWSASep =−98 mm; Figs. 5 and 6).

This range across TWSA, TWSAsub, and GWSA supports

the conceptual model that the watershed fills during the wet

season, and is then drained more quickly due to steep topog-

raphy and limited water storage. The predictive capability of

TWSA also strongly suggests that the components and tem-

poral relationships of storage across this watershed are inter-

connected, and that incorporating April snowpack improves

the model results.

In contrast, the arid Snake River basin provides a very

different family of hysteresis curves (Figs. 4, 5) that iden-

tify groundwater and soil moisture as primary components

of watershed function. The curves are compressed verti-

cally (R) as compared to the Upper Columbia, and are

more constrained horizontally (Fig. 6). The onset of spring

melt runoff in February does not deplete TWSA for the

Snake River. Instead, TWSA continues to increase until May,
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when peak runoff occurs. As TWSA decreases to the end

of the water year in September, the median TWSASep mea-

surement (−78 mm) is 20 mm greater than in the Upper

Columbia. This indicates that the lower drainage threshold

of the Snake River watershed is relatively greater than the

Upper Columbia, potentially explained by a less severe to-

pography and higher aquifer capacity.

The TWSAsub hysteresis curves in the Snake River retain

a similar shape to the TWSA signal. While they reverse di-

rection they do stay temporally connected to the onset of the

wet season in October, indicating that subsurface moisture

is a central control on the filling of the watershed through

May. The capabilities of SM to empirically predict R better

than TWSA further highlight the importance of subsurface

water in this watershed. The intra-annual range of GWSA in

the Snake River is also more limited than in the more hy-

drologically responsive Upper Columbia. This more limited

range of data supports the conceptual model of a watershed

that retains comparatively more winter precipitation in soils

and aquifers throughout the spring season, and that sustains

flow later in the year and until the onset of melt the following

winter.

The greater Columbia River Basin upstream from The

Dalles integrates the climatic, topographic, and geologic

characteristics of the Snake River and Upper Columbia as

well as other areas within the CRB. The western slope

of the Cascades (Fig. 1), which is outside of the Upper

Columbia, accumulates up to several meters of SWE each

winter. Due east of the Cascades, a broad basalt plain that

provides aquifer storage helps dampen the snowmelt pulse in

the spring. The hysteresis loops for The Dalles reflect these

combined characteristics.

Storage at The Dalles increases along the horizontal axis

(TWSA) until peak storage is reached in March or April

(Figs. 3, 4, and 5). This TWSA threshold of approxi-

mately 100 mm responds with an increase in R that con-

tinues through June. In July, the hysteresis begins to re-

cede along both axes closing out the loop. GWSA has the

most limited range, potentially explained by the extensive

basalt aquifer moderating the relationship between storage

and runoff. In The Dalles, TWSASep has a median value of

−88 mm (Fig. 6), between the lower drainage thresholds of

the Upper Columbia and Snake River watersheds; indicating

an integration of the contributing climate, topography, and

geology.

5.2 Distinguishing the difference between TWSAsub

and GWSA

Conceptually TWSAsub represents changes in the amount

of water stored as soil moisture and groundwater, where as

GWSA represents water changes greater than 2000 mm be-

low the soil surface. The goals of evaluating these metrics

were to see if monthly changes in soil moisture were linked

to changes in groundwater storage, and the role of snowpack

in the S−R relationship.

The TWSAsub hysteresis curves in the Upper Columbia

and The Dalles collapse into a more linear relationship that

is more commonly associated with the S−R relationship of

a soil matrix (Fig. 3 and 4). These stand in contrast to the

Snake River where the TWSAsub−R hystereses retain a loop,

indicating a more complex relationship between storage and

runoff. The hydrological processes that create these differ-

ences warrant investigation, but lie outside the scope of this

study.

Although the annual fluctuations of SM are similar in

all three basins (Fig. 2), its impact in the Upper Columbia

is more pronounced. This watershed has poor groundwater

storage, and relies on soils to provide seasonal storage of rain

and snowmelt. In the Upper Columbia once the SM signal is

removed, the intra-annual range of GWSA shifts to consid-

erably lower values (Fig. 6). Shifts of similar magnitudes in

GWSA are not found in the Snake River and The Dalles.

These watersheds have excellent groundwater storage and

are less reliant on soils to provide seasonal storage of rain

and snowmelt. Fluctuations in reservoir levels are minimal

with regards to the water fluxes in this region, and have min-

imal impact on calculations of GWSA.

The GWSA−R hystereses are represented by loops that

show an out-of-phase relationship between precipitation and

groundwater recharge from the start of the wet season in Oc-

tober until February or March. The TWSAsub and GWSA

hysteresis plots demonstrate that in the Upper Columbia and

The Dalles changes in monthly soil moisture are not always

temporally aligned with GWSA. This can be explained by

the physical reality that soil moisture and groundwater are

not always interconnected, and that there is not a fixed depth

(i.e., 2000 mm) that separates the two components of water

storage.

GRACE-derived calculations of GWSA also provide in-

sights into the hydrological processes governing groundwa-

ter recharge and depletion, as evidenced in the GWSA hys-

teresis loops. The GWSA−R curves show an out-of-phase

relationship between precipitation and groundwater recharge

from the start of the wet season in October until February or

March.

This response in all of the GWSA−R hystereses sug-

gests that even at the watershed scale groundwater recharge

requires soils and geologic materials to fill to a cer-

tain moisture threshold and for the onset of snowmelt

(Figs. 3a, 4a–c, 5, and web-based interactive visualiza-

tions https://public.tableau.com/profile/sprolese#!/vizhome/

GRACE_hystereses/WSADash). This also suggests that

snowmelt inputs to groundwater are considerable. In the

CRB this is critical as current climate trends are projected

to reduce snowpack accumulation and exacerbate melt in the

region (Wu et al., 2012; Rupp et al., 2013; Sproles et al.,

2013).
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Additionally, our analysis identifies summer as the time of

peak groundwater storage in all three regional watersheds.

This finding is of value for groundwater management and

policy decisions, as peak groundwater levels in June corre-

spond to the timing of groundwater pump tests that are used

to develop groundwater withdrawal regulations (Jarvis, 2011,

2014). Our data suggest that groundwater pump tests should

not be limited to an individual month, and should also in-

clude periods of reduced storage particularly during the win-

ter months. The inclusion of multiple pump tests throughout

the year could be particularly relevant as the population and

water demand is projected to increase in the region.

The point-specific well data are not conclusive and show

considerable variability with no consistent pattern regarding

the timing of recharge and peak groundwater levels. This is

presumably a function of how site characteristics (i.e., usage,

depth, location, elevation) are extremely variable across a re-

gion. Rather than excluding these results or selecting indi-

vidual wells that match GRACE data, we discuss the results

from all 33 wells to help demonstrate the high variability that

exists from well to well, and that measurements of ground-

water changes at a fixed location do not represent watershed-

scale characteristics (Jarvis, 2011, 2014). The disconnect be-

tween sites also highlights the concept brought forward by

Spence (2010), that storage is not uniform across a water-

shed, and functions as a series of discontinuous processes at

the watershed scale.

5.3 Applying the S − R relationship as a predictive tool

We applied these climatic, topographic, and geologic insights

to develop and test the hypothesis that spring TWSA could

predict R later in the year, based on two observations: first,

the shapes of the hysteresis curves for each basin are simi-

lar (Figs. 4a–c, 5), but vary by magnitude of annual TWSA.

Second, peak TWSA occurs before the peak runoff. We show

that the integrated GRACE signal is a good baseline mea-

surement to empirically predict seasonal streamflow across a

range of water years with regards to precipitation and stream-

flow. In essence, our data suggest that the water stored across

and through the Columbia River Basin in March describes

the water available for the remainder of the water year.

In the CRB and in the northwestern United States, peak

snowpack occurs in March or April, and is commonly used as

a metric for predicting spring runoff. Despite the importance

of snowpack to the hydrologic cycle of the region, measure-

ments of TWSAMar from GRACE provide a better prediction

of Rseason, RJuly, and RAug than model-derived estimates of

snowpack. GRACE TWSAMar also provided a better predic-

tion for runoff than soil moisture, except for the Snake River

watershed. There SMMar provided a better indicator of runoff

for the rest of the year. TWSAFeb provided inferior predic-

tive capacity, as the annual maximum TWSA values have not

been reached.

These results are promising with regards to using GRACE

as a predictive tool for water resources in both wet and dry

years. Our limited data record represents a wide-range of

conditions with regards to climate and streamflow, which is

captured in our empirical models and is shown in the box

plots to the right of Figs. 7a–b. These same results also indi-

cate that R is insensitive to TWSAMar values below 100 mm

in the Upper Columbia and at The Dalles and below 85 mm in

the Snake River watershed. This limitation is not the empiri-

cal model, which works well, but that the basins have a lim-

ited response (i.e., Rseason in the Snake River only changes

about 60 mm, from around 20 to 85 mm). Given these re-

sponses the model works, and provides a lower threshold that

describes with some certainty the amount of runoff that will

be available for operations for the remainder of the year.

We recognize that all three of these regional watersheds

are managed through a series of dams and reservoirs that cre-

ate an altered runoff signal. Water resources managers use

point-specific and model-based estimates of water storage in

the region to optimize their operations for the water year. Ad-

ditionally, in the fertile plains of the Snake River and lower

CRB, broad-scale agriculture relies on both ground- and sur-

face water for irrigation. Water withdrawals would be im-

plicit in the TWSA signal and reduce R. However, a more

detailed analysis of withdrawals lies outside the scope of this

study.

Regardless of the length of record or anthropogenic influ-

ence, climate, topography, and geology still provide the first-

order controls on water storage that are found in the hystere-

sis loops. GRACE encapsulates these hydrologic processes

through measurements of TWSA. The hysteresis loops ex-

pand and contract accordingly during wet and dry years, as

the intra-annual relationship between TWSA and Q repre-

sents the fluxes of water into and out of the watershed. De-

spite intra-annual differences, a family of hysteresis curves

can describe each of the sub-regional watersheds. The pred-

icative capability using TWSA, the vertical sum of water, as

compared to snowpack and soil moisture further highlights

the integrated nature of water storage in regional hydrol-

ogy. These predictive capabilities highlight the potential of

GRACE to improve upon seasonal forecast predictions and

regional hydrological models.

5.4 GRACE as an analysis tool for regional watersheds

Where previous approaches to modeling watershed behav-

ior have focused on separate storage compartments, new ap-

proaches should include the magnitude and direction of hys-

teresis (Spence, 2010). This integrated approach would pro-

vide new ways forward to classify watersheds not only by

runoff, but also on the first-order controls that govern the

non-linear hydrological processes.

Even though GRACE is somewhat of a blunt instrument

with regards to temporal (monthly) and spatial (1◦) resolu-

tion, this emerging technology provides a new dimension to
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regional watershed analysis by providing an integrated mea-

surement of water stored across and through the Earth. These

measurements continue to prove their value in retrospective

analysis of regional hydrology (Rodell et al., 2009; Castle et

al., 2014). However, the hysteresis loops presented by Rieg-

ger and Tourian (2014) and further developed in this pa-

per demonstrate the ability of GRACE data to help develop

a process-based understanding of how regional watersheds

function as simple, dynamic systems. As the temporal record

of GRACE continues to increase, its value as both a diag-

nostic and predictive tool will continue to grow. In the mean

time, these data have value in augmenting existing manage-

ment strategies.

Perhaps one of the most important facets of GRACE data

is that it does not distinguish political boundaries. It is not

linked to a specific in situ monitoring agency with lim-

ited data access and has the capacity to bridge sparse and

inconsistent on-the-ground hydrologic monitoring networks

that exist in many regions of the world. Previous GRACE-

based analysis has shown its value in highlighting negative

trends in terrestrial water storage in trans-boundary water-

sheds (Voss et al., 2013; Castle et al., 2014), and result-

ing regional conflict exacerbated by water shortages (Gleick,

2014b). GRACE provides an objective measurement of a re-

gion’s water resources that can provide valuable insights into

potential shortages or surpluses of water resources, and sim-

ple empirical predictions of seasonal and monthly runoff that

are easily deployable in places with limited data.

6 Conclusions

We have shown how GRACE-based measurements of TWSA

distill the complexity of regional hydrology into a simple,

dynamic system. TWSA and derived estimates of GWSA re-

veal hysteretic behavior for regional watersheds, which is

more commonly associated with hydrologic measurements

at local scales. While the magnitude of the hysteresis curves

vary across years, they retain the same general shape that

is unique to each watershed. We demonstrated the utility of

these hysteresis curves by showing how the complete TWSA

record during March and April can be used to empirically

predict R for the remainder for the water year (TWSAMar,

mean NSE= 0.91) and during the drier summer months

(TWSAMar, mean NSE for July= 0.76, August= 0.72; Ta-

bles 1 and 2).

Because GRACE TWSA can augment prediction, man-

agers could start to interpret each year’s hysteresis curve for

the upcoming spring and summer, providing greater clarity

and validation for model-based forecasts presently used by

water resource managers. Our results demonstrate a way for-

ward, expanding GRACE from a diagnostic tool, into a con-

ceptual model and predictive resource.

Although this study focused on the CRB, which has a rich

data record, GRACE data are available at a global scale and

could be readily applied in areas with a paucity of data to

understand how watersheds function and to improve stream-

flow forecasting capabilities. GRACE does not discern po-

litical boundaries and provides an integrated approach to un-

derstanding international watersheds (Voss et al., 2013). This

resource could serve as a valuable tool for managers in fore-

casting surplus and scarcity, and in developing strategies that

include changes in supply and demand due to human con-

sumptive needs and current climate trends (Wagener et al.,

2010; Gleick, 2014a).
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Appendix A

Table A1. The reservoirs used in the GRACE analysis.

Reservoir Name Operating Agency Normal Operating

Capacity (m3)

Grand Coulee US Department of Interior 1.16× 1010

Libby US Army Corps of Engineers 7.17× 109

Hungry Horse US Department of Interior 4.28× 109

Dworsha US Army Corps of Engineers 4.26× 109

American Falls US Department of Interior 2.10× 109

Table A2. The groundwater wells used in the analysis that compares GRACE-derived groundwater with location-specific wells. USGS is the

United States Geological Survey and IDWR is the Idaho Department of Water Resources.

Well Number Operating Agency

434400121275801 USGS

442242121405501 USGS

452855119064701 USGS

453239119031501 USGS

453845121191401 USGS

453937121215801 USGS

453944121211301 USGS

454013121225901 USGS

454027121212501 USGS

454040121222901 USGS

454047121203701 USGS

454100119164801 USGS

454416119212801 USGS

455418118333001 USGS

461518114090802 USGS

463750114033001 USGS

465520114074001 USGS

470049113035401 USGS

470946114013201 USGS

473442118162201 USGS

474011117072901 USGS

474251114385201 USGS

475439116503401 USGS

480519114091001 USGS

480621115244901 USGS

02S20E-01ACC2 IDWR

07S06E-29BBA1 IDWR

08S06E-03BDC1 IDWR

07S06E-34BCA1 IDWR

09S14E-03BAA1 IDWR

08S14E-16CBB1 IDWR

05S31E-27ABA1 IDWR

07N38E-23DBA1 IDWR
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Table A3. Comparison of performance metrics using the dual-pass approach to apply GRACE TWSA, model-derived snow (SWE), soil

moisture (SM), and subsurface (TWSAsub) data in predicting seasonal (Rseason) and August (RAug) runoff by watershed. RMSE values are

in mm.

TWSA SM SWE TWSAsub

Feb Mar Apr Feb Mar Apr Feb Mar Apr Feb Mar Apr

U
p

p
er

C
o

lu
m

b
ia

NSE < 0 0.82 0.87 < 0 < 0 < 0 < 0 0.46 < 0 < 0 < 0 < 0

Rseason RMSE 84 33 28 > 1000 > 1000 134 110 56 309 > 1000 > 1000 354

R2 0.43 0.86 0.88 0.01 0.00 0.07 0.23 0.58 0.27 0.15 0.02 0.02

NSE < 0 0.90 0.84 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0

RJuly RMSE 32 7 8 > 1000 71 56 28 25 108 > 1000 > 1000 123

R2 0.19 0.93 0.92 0.01 0.00 0.00 0.32 0.45 0.24 0.05 0.01 0.01

NSE < 0 0.71 0.70 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0

RAug RMSE 228 6 5 > 1000 143 32 12 13 51 > 1000 > 1000 30

R2 0.19 0.71 0.71 0.07 0.05 0.30 0.25 0.28 0.12 0.18 0.11 0.01

NSE < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0

RSept RMSE 2 21 104 4 28 10 > 1000 3 50 20 587 6

R2 0.12 0.06 0.12 0.09 0.24 0.20 0.04 0.07 0.04 0.04 0.02 0.03

TWSA SM SWE TWSAsub

Feb Mar Apr Feb Mar Apr Feb Mar Apr Feb Mar Apr

S
n

ak
e

R
iv

er

NSE < 0 0.46 0.29 0.58 0.85 < 0 < 0 < 0 0.09 < 0 < 0 < 0

Rseason RMSE 258 14 16 12 7 52 5 22 8 > 1000 108 474

R2 0.21 0.59 0.47 0.64 0.86 0.29 0.00 0.08 0.13 0.04 0.11 0.01

NSE < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0

RJuly RMSE 23 3 2 2 2 40 1 2 1 99 > 1000 35

R2 0.00 0.05 0.01 0.01 0.09 0.11 0.15 0.00 0.04 0.00 0.06 0.02

NSE < 0 < 0 −0.70 < 0 < 0 < 0 < 0 < 0 0.65 < 0 < 0 < 0

RAug RMSE 11 13.59 0.76 1 1 2 0 1 1 > 1000 > 1000 474

R2 0.05 0.15 0.08 0.06 0.29 0.10 0.00 0.27 0.67 0.04 0.11 0.01

NSE < 0 < 0 −0.94 < 0 < 0 < 0 < 0 < 0 0.03 < 0 < 0 < 0

RSept RMSE 16 1 1 1 1 1 0 1 0 140 8 435

R2 0.01 0.04 0.03 0.07 0.15 0.11 0.03 0.00 0.11 0.00 0.00 0.01

TWSA SM SWE TWSAsub

Feb Mar Apr Feb Mar Apr Feb Mar Apr Feb Mar Apr

T
h

e
D

al
le

s

NSE < 0 0.98 0.54 < 0 < 0 < 0 < 0 0.24 0.14 < 0 < 0 < 0

Rseason RMSE 84 61 27 267 122 363 > 1000 26 26 13 5231 737

R2 0.20 0.98 0.71 0.01 0.00 0.02 0.13 0.39 0.29 0.02 0.00 0.00

NSE < 0 0.86 < 0 < 0 < 0 < 0 < 0 0.28 < 0 < 0 < 0 < 0

RJuly RMSE 19 3 10 > 1000 16 80 > 1000 4 6 4 4 311

R2 0.05 0.86 0.64 0.00 0.00 0.02 0.03 0.30 0.10 0.00 0.00 0.00

NSE < 0 0.80 0.29 < 0 < 0 < 0 < 0 < 0 0.05 < 0 < 0 < 0

RAug RMSE 9 2 3 > 1000 22 16 > 1000 19 2 2 1

R2 0.04 0.82 0.71 0.04 0.02 0.00 0.02 0.03 0.12 0.00 0.00 0.12

NSE < 0 0.41 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 0.05 < 0

RSept RMSE 5 1 3 756 3 7 1 5× 109 7× 1010 6 1 2

R2 0.00 0.42 0.28 0.03 0.01 0.03 0.06 0.02 0.02 0.22 0.06 0.14
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Table A4. Comparison of performance metrics from applying all 9 water years of GRACE TWSA, model-derived snow (SWE), soil moisture

(SM), and subsurface (TWSAsub) data in predicting seasonal (Rseason) and August (RAug) runoff by watershed. RMSE values are in mm.

R2 values are the same as NSE for this linear regression.

TWSA SM SWE TWSAsub

Feb Mar Apr Feb Mar Apr Feb Mar Apr Feb Mar Apr

U
p

p
er

C
o

lu
m

b
ia

Rseason NSE 0.84 0.93 0.92 0.01 0.03 0.33 0.63 0.82 0.62 0.15 0.22 0.22

RMSE 28.62 19.81 20.72 8.38 14.30 36.80 37.78 30.27 37.85 28.22 32.50 32.50

RJuly NSE 0.75 0.95 0.96 0.01 0.00 0.18 0.53 0.79 0.60 0.05 0.22 0.22

RMSE 10.38 5.00 4.74 2.16 1.34 9.10 11.95 9.80 11.73 5.38 9.86 9.86

RAug NSE 0.62 0.76 0.73 0.07 0.09 0.44 0.37 0.56 0.34 0.18 0.11 0.23

RMSE 6.02 5.31 5.48 3.12 3.50 6.15 6.00 6.16 5.87 4.80 3.95 5.22

RSept NSE 0.20 0.07 0.13 0.31 0.28 0.40 0.04 0.04 0.10 0.39 0.15 0.51

RMSE 1.60 1.05 1.32 1.85 1.80 1.96 0.80 0.80 1.22 1.95 1.42 2.00

TWSA SM SWE TWSAsub

Feb Mar Apr Feb Mar Apr Feb Mar Apr Feb Mar Apr

S
n

ak
e

R
iv

er

Rseason NSE 0.39 0.83 0.75 0.84 0.93 0.91 0.09 0.34 0.60 0.35 0.39 0.42

RMSE 9.59 7.39 8.48 7.15 5.16 5.64 5.60 9.37 9.65 9.39 9.63 9.71

RJuly NSE 0.07 0.43 0.43 0.41 0.63 0.51 0.09 0.21 0.70 0.05 0.19 0.23

RMSE 0.41 0.80 0.80 0.79 0.78 0.81 0.46 0.66 0.74 0.34 0.63 0.68

RAug NSE 0.35 0.68 0.52 0.56 0.76 0.61 0.24 0.62 0.91 0.13 0.09 0.12

RMSE 0.34 0.33 0.35 0.35 0.30 0.34 0.30 0.34 0.21 0.24 0.20 0.22

RSept NSE 0.18 0.53 0.58 0.60 0.88 0.66 0.08 0.30 0.91 0.16 0.18 0.18

RMSE 0.34 0.44 0.44 0.43 0.29 0.42 0.25 0.41 0.25 0.32 0.34 0.34

TWSA SM SWE TWSA.sub

Feb Mar Apr Feb Mar Apr Feb Mar Apr Feb Mar Apr

T
h

e
D

al
le

s

Rseason NSE 0.48 0.98 0.91 0.00 0.01 0.22 0.21 0.67 0.65 0.19 0.23 0.27

RMSE 19.82 5.70 11.43 2.10 3.59 16.53 16.06 18.65 18.95 15.43 16.74 17.61

RJuly NSE 0.27 0.89 0.89 0.04 0.03 0.09 0.07 0.52 0.51 0.20 0.38 0.40

RMSE 4.05 2.90 2.87 1.73 1.52 2.64 2.27 4.55 4.55 3.66 4.43 4.47

RAug NSE 0.29 0.88 0.91 0.04 0.02 0.24 0.05 0.45 0.42 0.34 0.44 0.49

RMSE 1.89 1.34 1.22 0.77 0.65 1.78 0.88 2.07 2.05 1.96 2.06 2.08

RSept NSE 0.20 0.57 0.53 0.03 0.03 0.13 0.02 0.29 0.34 0.37 0.15 0.35

RMSE 0.75 0.94 0.94 0.34 0.31 0.63 0.28 0.86 0.90 0.92 0.67 0.90
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Figure A1. The normalized GRACE-derived groundwater anomaly

compared to normalized well data over the study period. The grey

lines in the background are the 33 individual wells, and the hashed

line represents the mean of these wells. While some wells match the

general GRACE-derived GWSA, variability across wells creates a

muted mean signal.
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