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Abstract
This paper evaluates six published data fusion strategies for hydrological forecasting based on two contrasting catchments: the River Ouse
and the Upper River Wye. The input level and discharge estimates for each river comprised a mixed set of single model forecasts. Data fusion
was performed using: arithmetic-averaging, a probabilistic method in which the best model from the last time step is used to generate the
current forecast, two different neural network operations and two different soft computing methodologies. The results from this investigation
are compared and contrasted using statistical and graphical evaluation. Each location demonstrated several options and potential advantages
for using data fusion tools to construct superior estimates of hydrological forecast. Fusion operations were better in overall terms in comparison
to their individual modelling counterparts and two clear winners emerged. Indeed, the six different mechanisms on test revealed unequal
aptitudes for fixing different categories of problematic catchment behaviour and, in such cases, the best method(s) were a good deal better
than their closest rival(s). Neural network fusion of differenced data provided the best solution for a stable regime (with neural network
fusion of original data being somewhat similar) — whereas a fuzzified probabilistic mechanism produced a superior output in a more volatile
environment. The need for a data fusion research agenda within the hydrological sciences is discussed and some initial suggestions are
presented.
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Introduction
The application of modern digital technologies and computer
science techniques to catchment modelling is said to have
facilitated a virtual revolution (Singh, 1995). Moreover, the
increased potential for rapid application development has
created an associated plethora of hydrological models that
possess different levels of complexities and sophistication.
Modern software solutions, in consequence, offer a vast and
diverse range of alternative modelling opportunities; these
extend from the application of lumped empirical black-box
estimators, to ultra-complex mechanistic simulators that seek
to replicate distributed processes throughout a catchment.
The downside to this expansion is that each model was
designed to fulfill a particular set of scientific aims, or
management objectives, so that no single model has the
power to provide a superior level of skill across all
catchments or under all circumstances.

For operational purposes — such as real-time flood
forecasting — a particular model will often be selected from
a number of competing solutions. This selection process is
based on an assorted collection of personal preferences, such
as trust and understanding, or the amount of time and effort
that is needed to develop trained and experienced operators.
The cost of the licence for a particular model can also be
crucial since some software packages are expensive whilst
other solutions are to all intents and purposes free of charge.
Each end-user will, in addition, need to consider items such
as: does this model provide an accurate response; is this
model a traditional mechanism based on standard concepts;
to what extent will this model be difficult to learn or to put
into practice; and, last but not least, to what extent does this
model match the available data and particular objective(s)
of the catchment modelling requirement(s). Moreover,
although each forecaster (active output producer) or decision
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maker (passive output consumer) might use a single
substantive model to do the bulk of their work, more often
than not a simpler tool will be used for simultaneous
independent backup and support. The dangers of total
reliance upon a single modelling solution and the serious
repercussions of short-term failure, which arise from the
fact that a single tool cannot provide the best output under
all circumstances, are thus diminished.

Shamseldin et al. (1997) and Xiong et al. (2001)
recognized the existence of operational dualities and
provided theoretical and empirical justification for a multi-
model approach. No single model is perfect and will at best
describe one or more particular stages, phases or
mechanisms of the rainfall-runoff process: so the prudent
amalgamation of several discharge estimates obtained from
different models can be expected to provide a more
comprehensive and accurate representation of catchment
response, in comparison to each individual model that is
used to build a particular combination. It is possible to
perform non-complex combinations, for example to switch
between different single modelling solutions at each time
step (e.g. crisp probabilistic method of See and Openshaw,
2000), to switch between different single modelling
solutions at different levels of discharge (e.g. range-
dependent method of Hu et al., 2001), or to develop error
forecasting mechanisms that can be used for real time output
updating purposes (Serban and Askew, 1991; Shamseldin
and O’Connor, 2001). The alternative to simple switching
or updating is to implement a linear or non-linear weighted
combination: different forecasts obtained from a diverse set
of models can be amalgamated, in some optimal manner,
which seeks to exploit the inherent benefits of each
individual solution. The problem of radical errors should
thus be lessened but, if all models drift, then so too will
their combined response. This concept of combining
forecasts from different models or methods is not original
and applications have been reported in a diverse set of
subjects ranging from management science to weather
forecasting (Clemen, 1989). Moreover, commensurate with
recent technological advances, this area of research has
evolved into a specialist field of activities termed ‘data
fusion’. The scope of applications has also been extended
to include a wealth of alternative operations that stretch from
ocean surveillance and target recognition to legal
enforcement and medical diagnosis (Hall, 1992).

Data fusion
Modern developments in data fusion offer a formal
framework that can be used to perform an alliance of data
through the provision of concepts, methods, means and tools.

The inspiration behind data fusion has two separate, but
not exclusive, objectives:

to produce synergistic gains, and
to obtain information that cannot otherwise be obtained
or obtained with the same qualities.

Fusion is often a mix of recognised procedures (e.g.
statistical inference, neural networks, belief-based methods
or rule-based reasoning (Hall and Llinas, 1997)) that are
applied using either (i) modular strategies in which different
models are developed to perform different modelling
operations and then coupled together or (ii) ensemble
strategies in which different models are developed to
perform similar modelling operations and their outputs
merged, e.g. stacking, boosting or bagging (Sharkey, 1999).
The implementation of fusion operations can involve serial,
parallel or mixed strategies of data and decision
combination. Serial strategies might include items such as:
(i) simple pre-processing or post-processing operations in
which the output from one model is passed into another;
(ii) real-time updating in which observed values are used to
correct simulated values (Shamseldin and O’Connor, 2001);
or (iii) more complex situations, in which additional
variables and the latest observations are used to predict the
local error at a point of interest that is then superimposed
onto a global simulation or output forecast (Babovic et al.,
2001). Parallel strategies include the basic merger of hard
and soft data (McKenna and Poeter, 1995) and the complex
multifaceted amalgamation of simultaneous outputs,
produced using alternative methodologies or rival
mechanisms, in the manner of: (i) estimation and addition
of residuals; (ii) building modular assemblies of expert sub-
units (Zhang and Govindaraju, 2000); (iii) performing
weighted combination of individual forecasters (Shamseldin
et al., 1997); or (iv) bootstrapping operations (Srinivas and
Srinivasan, 2000, 2001). The fusion process is not
constrained and could encompass the amalgamation of
original information to produce an output, or both original
and processed information can be fused together to construct
more useful outputs, which, perforce, includes decision-
making procedures and control related activities. Data fusion
can also be used to perform more complicated feature-based
or decision-based amalgamations, working on an assorted
mix of different sorts of input material to produce a
numerical output, a feature output or a higher-level decision.

In a strict sense, data fusion would involve using data of
different natures that had originated from different sources.
It could, for instance, entail working with various different
sets of data, collected from several different types of sensor,
in association with factual material held as a set of rules
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within a relational database or stored as tabular information
within a spreadsheet. However, fusion can also be performed
on the output from models developed under different
methodologies such as forecasting or simulation, or on the
output from similar models that contain important
differences in terms of structure or input. The goal of
amalgamation is to capture and exploit the strengths of each
individual approach and, through the process of
construction, to build a better final product. This process
can also be used to eliminate, or at least to diminish, the
worst predictions or greatest errors that exist within each
individual single model forecast. The nature of the modelling
inputs and outputs will also influence the decision on an
appropriate algorithm to match the problem situation. If the
inputs and outputs are of a similar form and nature then
some kind of weighted, or non-weighted, mathematical
average could be computed. But the exact same method
cannot be applied to the amalgamation of different types of
information such as in the case of using size and speed to
determine the likelihood that a moving object is a hostile
aircraft.

There is a plethora of different data fusion possibilities
and the associated concept of holistic estimation is still under
development on a worldwide basis. Each implementation
should nevertheless: (i) attempt to capture the full
information content of the component data and (ii)
endeavour to account for the uncertain relationship between
input data and either desired information or end product.
The most popular tools in the data fusion toolbox include:

low-level signal processing procedures e.g. Weighted
Average or Kalman Filter
traditional statistical methodologies e.g. Least Squares
Estimation or Bayesian Inference
decision-making techniques e.g. Case-Based Reasoning
or Dempster-Shafer Belief Model
artificial intelligence technologies e.g. Fuzzy Logic,
Neural Networks or Expert Systems

For a comprehensive discussion on the different
algorithms and strategies involved the reader is referred to
published material: Abidi and Gonzalez (1992); Brooks and
Iyengar (1998); Crowley and Demazeau (1993); Hall and
Llinas (1997); Joshi and Sanderson (1999); Kokar and Kim
(1993); Luo and Kay (1989). The modelling methods that
are addressed in this specific investigation are orientated
towards a consideration of artificial intelligence
technologies. Earlier research indicates that such tools can
provide a fast and cost efficient solution to various complex
hydrological modelling tasks — with particular benefits to
be gained in the construction of time-series forecasters and

in data fusion operations.
Much of the literature on multi-source information fusion

has adopted the tacit assumption that fusion will in all cases
impart a better result since using more information to
establish an answer should help and not hinder (Dasarathy,
2001). However, recent investigations suggest that various
assumed advantages or improvements are not automatic,
such that it is possible to construct a parametric definition
of the benefits domain (Dasarathy, 1996, 1998, 2000). The
question of confidence and trust models is therefore
important; black-box implementation of smart or automated
mechanisms can produce a ‘fear of the unknown’, wherein
the original degree of faith expressed in one or more tried
and tested models, is either lost or swamped during the
fusion process. To address such concerns would require the
formulation and construction of efficient and robust domain-
based measures of fusion performance and fusion
effectiveness — but the development of pertinent metrics
with respect to hydrological modelling is still awaited. This
area of research has in fact received limited attention, relative
to its overall importance, although some attempts at
quantitative estimation of the fusion benefit (or lack thereof)
can be found in other domains of scientific investigation
(Dasarathy and Townsend, 1999; Xydeas and Petrovic,
2000; Ulug and McCullough, 2000). There has also been
an attempt to represent the effectiveness of the fusion process
itself – as opposed to the effectiveness of the fusion operation
in terms of a correct answer. FAME (Fusion Algorithm
Measure of Effectiveness) (Dasarathy, 1999) is the ratio of
the performance of a fusion operation to the theoretical
performance of an ideal fusion model — in which the latter
is a theoretical process that generates the correct response
if at least one of the inputs is correct.

The implementation of fusion mechanisms has also
encountered several operational quandaries since there are
no solid rules to assist in the design and selection of each
critical element: architectures; algorithms; inputs and
outputs. For example is it better to exploit inputs that are
dependent upon each other (cooperation approach); to
develop a more complete model (complement approach);
or to reduce uncertainties (competition approach)? Fusion
can also be a complicated process and the potential gains
must be assessed in terms of working overheads with respect
to time and effort or cost. To perform real time data fusion
will put an additional drain on precious resources and such
costs will be commensurate with the need to develop and
administer more complex modelling solutions. To this deficit
must be added the operational needs and demands of
servicing numerous individual models — which must be
run on a concurrent basis — to generate numerous streams
of redundant output. However, the construction and fusion
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of several dedicated neural network forecasters will still take
a lot less time and effort than the development of a more
complex process-based model. Further related difficulties
arise from the fact that there is at present no upper limit on
the amount of information that should be entered into a
fusion process or established method to determine whether
or not improved access to alternative sources of data would
be advantageous. Erroneous data can also be awkward or
challenging. There is a pressing need to develop improved
methods of conflict resolution, perhaps based on specified
conditional probabilities, that can be used to lessen the
impact of dubious material — since poor input could have
a large influence

Previously reported exploration and testing of multi-model
data fusion operations within the hydrological sciences is
limited in number and extent. Earlier research has involved
proof-of-concept assessment and comparison of (i) neural
network and soft computing solutions against (ii) means,
medians and weighted-averages (Shamseldin et al., 1997;
See and Openshaw, 2000; See and Abrahart, 2001; Xiong
et al., 2001). But neural network and soft computing
approaches are at opposite ends of the modelling spectrum
in terms of theoretical underpinnings and substantiation of
end products. Each approach will possess its own specific
set of merits and shortcomings — although in broad terms
the two methodologies do in fact complement one another.
So, if one method is not successful, then the converse
approach might do quite well. Neural network solutions can
be used to provide a non-linear outcome in which nothing
is assumed or enforced, which is of particular benefit when
relationships are difficult to determine, or in situations where
fixed and explicit rules are neither relevant nor desired
attributes of the mechanism to be modelled. Other potential
benefits would include strong ‘fault tolerant’ (model will
still operate in spite of both planned and unplanned errors
or disruptions to the input data set) and ‘graceful
degradation’ (model will continue to operate in problematic
situations at a reduced level of service rather than suffer
total failure) characteristics — such that acceptable solutions
can be developed and run on incomplete, imprecise or noise-
ridden data. Soft computing solutions can be used to provide
a non-linear alliance of linguistic variables; this method thus
offers good opportunities to build upon existing hydrological
insight and understanding, through the encapsulation of
expert opinion and established science, whilst at the same
time providing a transparent solution that can be understood.

There are strong indications in the literature that high-
tech multi-model data fusion can be used to produce
forecasting outputs that are more accurate than (i) individual
models or (ii) simple arithmetic operations and weighted
statistical functions (Shamseldin et al., 1997; Abrahart and

See, 1999; See and Abrahart, 2001; Xiong et al., 2001).
Past investigations also suggest that further research is
needed to provide an improved understanding of the
hydrological benefits that can be obtained from data fusion
operations, for the identification of potential problems or
pitfalls with respect to the implementation of different
reported mechanisms or strategies, and on the outcome of
different data fusion applications in different environments
or under different hydrological conditions (Abrahart and
See, 1999; See and Abrahart, 2001). To address such matters,
this paper draws together six previous data fusion strategies
that were applied to a stable river regime and applies an
identical set of techniques to a smaller and much flashier
catchment. Two fusion benchmarks were first computed
using: (i) arithmetic-averaging to produce a mean; and (ii)
a probabilistic method in which the best model from the
last time step is used to generate the current forecast. Two
neural network fusions and two soft computing fusions were
then developed and compared against the benchmark
products in terms of forecasting skill. The individual tools
that created the multi-model input data are not assessed in
this paper and no claim is made of such items being optimal
solutions for either of the two test catchments. Indeed, there
is little doubt that better models could have been developed
using alternative solutions or more powerful software
packages but, in this instance, the potential benefits of
adopting a multi-model approach are the main concern. For
practical reasons and demonstration purposes, it is also
important to work with single modelling solutions that have
different degrees of imperfection which then provide
associated opportunities for correction or improvement.

Experimental design
HYDROLOGICAL ENVIRONMENT

This analysis of opposing methods and contrasting
catchments is based on a collection of single modelling
solutions that were developed for: (a) Skelton on the River
Ouse in Northern England: this paper draws together and
puts into context two separate reported investigations (See
and Openshaw, 2000; See and Abrahart, 2001) and for (b)
Cefn Brwyn on the Upper River Wye in Central Wales — a
much smaller catchment, with much flashier hydrological
characteristics, that offers a useful comparison for this
assessment of different methods under different
environmental conditions (Fig. 1).

The Ouse catchment of 3286 km2 contains an assorted
mix of urban and rural land uses. This catchment exhibits a
large amount of natural variation, ranging from dissected
uplands in the west that experience substantial precipitation,
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to cultivated lowlands in the east which receive more
equitable rainfall. More detailed physiographic and
hydrographic information can be found in Jarvie et al. (1997)
and Law et al. (1997). Fusion was performed on level
forecasts for the gauging station at Skelton. This station is
located downstream, far from the headwaters, and the river
at this point possesses a stable regime. The adoption of a
six-hour-ahead forecasting horizon with respect to
individual models and data fusion solutions presented a
reasonable challenge to the hydrological modeller. Each set
of single model forecasts used in the fusion operation
comprised a six-hour-ahead prediction for the period 1989–
92. The four individual data streams to be fused comprised
forecasts taken from past reported applications; a hybrid
neural network forecaster [IDV-SK1], a rule-based fuzzy
logic forecaster [IDV-SK2], an autoregressive moving
average time series forecaster [IDV-SK3] and persistence
[IDV-SK4]. Further specifics on the development of each
single model can be found in See and Openshaw (1999,
2000) and See and Abrahart (2001).

The Upper Wye catchment is much smaller and has a
quicker response. This is an upland research basin that
covers an area of some 10.55 km2, elevations range from
350–700 m above sea level, and average annual rainfall is
in the order of 2500 mm. Ground cover comprises grass or
moorland and soil profiles are thin, most of the area being
peat, overlying a podzol or similar type of soil (Knapp, 1970;
Newson, 1976). Fusion was performed on discharge
forecasts for the gauging station at Cefn Brwyn. For this
flashier catchment, the adoption of a one-hour-ahead
forecasting horizon with respect to individual models and
data fusion solutions presented a reasonable challenge to
the hydrological modeller. Each set of single model forecasts
to be used in the fusion operation comprised a one-hour-

ahead prediction for the period 1984–86. The six individual
data streams to be fused were forecasts taken from past
reported applications; neural forecasters developed using
no pruning [IDV-CB1], weight-based pruning [IDV-CB2],
and node-based pruning [IDV-CB3], TOPMODEL forecasts
based on the parameters listed in Quinn and Beven (1993)
[IDV-CB4], an autoregressive moving average time series
forecaster [IDV-CB5] and persistence [IDV-CB6]. Further
specifics on the development of each neural solution can be
found in Abrahart et al. (1999). TOPMODEL predictions
spanned the nine snow-free months, April to December; to
be consistent throughout, the statistical assessment of this
catchment was restricted to a consideration of that period.

DATA FUSION ALGORITHMS

Table 1 lists the single modelling solutions and Table 2 lists
the six different approaches that were used to integrate their
individual forecasts.

Benchmark methodologies

The first two data fusion strategies were designed to establish
some common standards. Method one [DF1] involved the
simple calculation of an arithmetic mean for each set of
forecasts at each time step. This approach is based on the
assumption that better predictions can be obtained if the
patterns of the residuals in the different models, when
averaged, cancel each other out. Method two [DF2] is a
crisp probabilistic method. This decision-oriented approach
implements a simple rule: the model that performed best at
the last time step is the one that should be chosen to make
the next prediction. For an illustration of the success of this
approach in traffic forecasting see Van der Voort et al.

Fig. 1. Location of the River Ouse and Upper River Wye catchments
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(1996). Tables 3 and 4 list the percentage of the time that
each model produced the best performance on both the
calibration and the validation datasets. IDV-SK1 was the
best overall model at the last time step for Skelton whereas
IDV-CB5 forecasts were optimal at Cefn Brwyn. For both
catchments, persistence was selected on almost one in five
occasions as the best previous modelling solution. This
demonstrates that even the simplest method of prediction
can be useful at certain times and for particular situations.

IDV-CB4 gives the best performance for the smallest
amount of time, which is not at all surprising, since this
model is a quasi-physical simulation tool implemented
without the benefit of real-time updating.

Neural network methodologies

The next two data fusion strategies were two neural network

Table 1. Individual models

Code Model Further particulars

IDV-SK1 Hybrid neural network model See and Openshaw (1999)
IDV-SK2 Fuzzy logic model See and Openshaw (1999)
IDV-SK3 ARMA model See and Openshaw (1999)
IDV-SK4 Persistence
IDV-CB1 Neural network model (standard approach) Abrahart et al. (1999)
IDV-CB2 Neural network model developed using weight-based pruning Abrahart et al. (1999)
IDV-CB3 Neural network model developed using node-based pruning Abrahart et al. (1999)
IDV-CB4 TOPMODEL Quinn and Beven (1993)
IDV-CB5 ARMA model Abrahart and See (2000)

IDV-CB6 Persistence

Table 2. Data fusion strategies

Code Method

DF1 Simple calculation of an arithmetic mean for each set of forecasts.
DF2 Use single best performing individual model from previous time step.
DF3 Neural network amalgamation of individual forecasts based on original data.
DF4 Neural network amalgamation of individual forecasts based on differenced data.
DF5 Fuzzy logic combination of individual forecasts based on current record and

differences in observed record over the last six hours.
DF6 Fuzzy logic combination of individual forecasts based on current record and prediction

error for single modelling solutions at last time step.

Table 3. % of time that a given model is the best performer
at Skelton

Individual Model Calibration Validation

IDV-SK1 36.2 33.6
IDV-SK2 23.5 26.4
IDV-SK3 21.1 22.2
IDV-SK4 19.2 17.8

Table 4.  % of time that a given model is the best performer
at Cefn Brwyn

Individual Model Calibration Validation
1985 1984 1986

IDV-CB1 9.7 4.4 8.1
IDV-CB2 6.6 6.8 6.9
IDV-CB3 5.9 8.1 5.3
IDV-CB4 3.0 1.2 2.7
IDV-CB5 55.3 60.3 60.1
IDV-CB6 19.5 19.2 16.9
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solutions — constructed and computed using the method
described in See and Abrahart (2001). In these experiments
the individual model forecasts at the two river sites were
amalgamated using feed-forward neural networks trained
with the backpropagation algorithm. Two alternative
implementations were undertaken, which differed in terms
of their input and output data. Method three [DF3] used the
absolute values of each original forecast as modelling inputs
to each neural network data fusion operation. The network
was then trained to forecast future river conditions on either
a six-hour or one-hour ahead basis. Method four [DF4] used
differenced data and a context descriptor: the absolute value
of each original forecast at the forecast time step minus the
observed record at the current time step, together with
observed record at the current time step, provided modelling
inputs to each neural network data fusion operation. The
network was then trained to forecast the difference in future
river conditions on either a six-hour or one-hour ahead basis.

For Skelton, located on the River Ouse, the fusion input
data were first split into two sets; Set 1 (Jan 1989 to Jun
1991) (60%) and Set 2 (Jul 1991 to Dec 1992) (40%). Set 1
was used to build the two fusion solutions. Set 2 was held
in reserve and used to provide unseen patterns for model
validation purposes. This pattern of division corresponds
to the traditional proportions used in split-sample cross-
validation methodologies. For Cefn Brwyn, located on the
Upper River Wye, both fusion operations were calibrated
using data for 1985 (April–December). Data for 1984 and
1986 (April–December) were held in reserve to provide
unseen patterns for model validation purposes. This
provided a stringent test since 1984 had a summer drought;
1985 contained a good spread of events; whilst 1986 showed
greater divergence and experienced the biggest floods. Each
neural solution was developed on a one-hidden-layer feed-
forward architecture that had full connection between
adjacent layers. The logistic transfer function was used in
all hidden nodes and output nodes. To address problems
associated with upper–limit and lower–limit saturation, both
input and output data were standardised to an intermediate
range (0.1 to 0.9). Network calibration was performed using
the backpropagation of error algorithm — implemented with
decreasing coefficients of learning and momentum. The
neural networks were trained for 20 000 epochs, with trained
solutions being saved at 500 epoch intervals, such that for
each scenario the best performing network could then be
determined from a quasi-continuous assessment of
validation errors.

Soft computing methodologies

The last two data fusion strategies were two fuzzy modelling

solutions — constructed and computed using the methods
described in See and Openshaw (2000). Each approach is
based on a set of simple IF-THEN rules that are used to
determine which combination of models should be chosen
to make the next forecast based on current conditions and
past model performance. For Skelton, the split between
calibration and validation data was identical to that used in
the two neural network data fusion operations. For Cefn
Brwyn, both fusion operations were calibrated using annual
data for 1985, with annual data for 1984 and 1986 being
held in reserve to provide unseen patterns, for model
validation purposes. It should be noted that this data fusion
operation was performed on full annual data sets — albeit
that the computational decision on which model to select
during the first three months was restricted to input solutions
that were available for the full twelve-month period. For
assessment and comparison against the other modelling
outputs, the numerical results from this operation are
nevertheless reported in terms of the shorter nine-month
period (April-December).

Method five [DF5] adopted a soft approach in which more
than one individual modelling solution could be
recommended, at each given moment, and to varying
degrees. The resulting forecast at the current time step was
thus a weighted average of one or more single model
recommendations. DF5 used the current level (discharge)
and the change in level (discharge) over the last six hours
as inputs to select an appropriate model(s) and weighting(s)
based on a set of fuzzy membership functions (Figs. 2a and
3a) and fuzzy logic rules (Tables 5 and 6), which had been
determined and optimised using a genetic algorithm,
following the method described in See and Openshaw
(1999). In brief, the rule matrix, together with the parameters
that defined each membership function, were first coded
into digital representations and then assembled together such
that: (i) each individual item comprised one single part of a
string; and (ii) the error in the output forecast could be
minimised. This method offers a distinct advantage over
the crisp probabilistic approach since it is not forced to pick
a single best individual solution.

DF5 rules for Skelton are listed in Table 5. DF5
recommends IDV-SK1 most of the time, but in particular
on the rising limb of the hydrograph at LOW to HIGH levels,
where LOW to HIGH are the fuzzy sets shown in Fig. 2.
IDV-SK1 is also recommended on the falling limb some of
the time. IDV-SK2 is recommended on the rising limb of
the hydrograph at HIGH and VERY HIGH levels but not
under other circumstances, which suggests that it was able
to characterise this portion of the hydrograph better than
the other models. IDV-SK4 is recommended at the peaks,
when there is not much change, or where the water level is
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Fig. 2. Fuzzy input sets for Skelton on the River Ouse: (a) DF5 and (b) DF6

Fig. 3. Fuzzy input sets for Cefn Brwyn on the Upper River Wye: (a) DF5 and (b) DF6
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exhibiting a slight rise. IDV-SK3 is recommended on the
falling limb of the hydrograph and where there is a steep
rise in the water level over the six-hour period.  DF5 rules
for Cefn Brwyn are listed in Table 6. The eleven rules
identified with shaded boxes in the lower left corner did
not fire during the original optimisation process, which was
based on data for 1985, nor with data for 1984, but all rules
fired with data for 1986. This pattern reflects the
hydrological differences between each annual data set. The
other fourteen rules exhibit more widespread application.
IDV-CB4 is recommended on the falling limb when flow is
HIGH, and during periods of LOW to MED, when the
change in flow is >0.005 m2/h. IDV-CB1 and IDV-CB2 are
recommended at other times. IDV-CB5 is recommended
during periods of LOW and SMALL DECREASE. Neither
IDV-CB6 nor IDV-CB3 is recommended in the set of
fourteen rules that fired during the optimisation process.

Method six [DF6] is a fuzzification or generalisation of
the crisp probabilistic approach based on the membership
functions provided in Figs. 2(b) and 3(b). This method used
the current level (discharge) and the forecast error at the
last time step, between the observed record and each single
model output, to make its recommendations. The use of
current level (discharge) data allows for the selection of
specific models, which are best suited to a given set of

conditions, with the potential to produce a more sensitive
forecasting tool. DF6 was also optimised with a genetic
algorithm. The rules reflect: (i) a crisp probabilistic approach
in those situations where it was clear that one model was
superior to the others and (ii) a fuzzy probabilistic approach
when several models were in contention for best performer.
DF6, in the latter situation, can recommend a combination
of models at the current time step, which results in a
weighted average based on the best solution(s) obtained at
the previous time step. In this manner, the arbitrary boundary
associated with choosing only the best model is fuzzified.

DF6 rules were in both cases identical, albeit that two
extra rules were needed at each step, when working with
six as opposed to four input data streams. DF6 rules for
Skelton were listed in See and Openshaw (2000); DF6 rules
for Cefn Brwyn are listed in Table 7. The first fuzzy set, i.e.
LOW-MED, spans the greater part of the hydrographic
domain so the first four rules will fire most of the time. It is
at higher levels of discharge that the remaining rules will
fire, when in most cases the error will also be LARGE.
Moreover, the steep slopes characterise the rapid transition
between the sets HIGH and VERY HIGH, which means
that the weights applied to each of the individual model
forecasts can exhibit substantial variation for small
differences in error. Thus, in consequence, the fusion

Table 6. DF5 rules for Cefn Brwyn [shaded rules did not fire during calibration]

Change in discharge over last six hours
DEC SM-DEC SM-INC +0.003m > 0.005 m

LOW IDV-CB1 IDV-CB5 IDV-CB1 IDV-CB1 IDV-CB4
Current MED IDV-CB4 IDV-CB2 IDV-CB2 IDV-CB1 IDV-CB4
Discharge HIGH IDV-CB4 IDV-CB2 IDV-CB5 IDV-CB1 IDV-CB4

VERY HIGH IDV-CB1 IDV-CB3 IDV-CB1 IDV-CB1 IDV-CB2
PEAK IDV-CB1 - IDV-CB1 IDV-CB4 IDV-CB2

DEC = decreasing : SM-DEC = small decrease : SM-INC = small increase

Table 5. DF5 rules for Skelton

Change in level over last six hours
DEC SM-INC BIG-INC +1m > 1.5m

LOW IDV-SK3 IDV-SK1 - IDV-SK1 IDV-SK1
Current MED IDV-SK1 IDV-SK1 IDV-SK1 IDV-SK1 IDV-SK3
Level HIGH IDV-SK1 IDV-SK1 IDV-SK1 IDV-SK2 -

VERY HIGH IDV-SK3 IDV-SK1 IDV-SK2 IDV-SK2 -
PEAK IDV-SK1 IDV-SK4 IDV-SK4 - -

DEC = decreasing : SM-INC = small increase : BIG-INC = bigger increase
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modelling output is capable of sensitive and effective
responses.

Empirical results
It is important to consider a number of statistical evaluators
since there is no single definitive measure that can determine
the success of each forecast (Houghton-Carr, 1999; Legates
and McCabe, 1999; Hall, 2001). The input and output data
streams for each data fusion operation are thus compared
using several numerical evaluators: two global goodness-
of-fit statistics (root mean squared error (RMSE) and mean
absolute error of the estimate (MAE)); and two measures
that record the worst possible scenarios (largest positive error
(LPE) and largest negative error (LNE)). These four metrics
are listed in Tables 8 and 9. The requirement to perform a
direct and meaningful numerical comparison between two
different stations that used two different forms of
measurement also necessitated the derivation of non-
dimensional assessment statistics. Nash and Sutcliffe (1970)
efficiencies are for that reason recorded in Table 10. The
best scores in each table are underlined. To provide
qualitative information about the temporal performance of

individual forecasts and about the relative disposition of
modelling errors in each data fusion solution also required
detailed inspection and visual interpretation of hydrographs.
Significant features are illustrated in Figs. 4 to 7.

Discussion
The validation statistics reveal that data fusion inputs from
the single modelling solutions possess different properties
and qualities. The best performing individual forecasters
were (i) IDV-SK1 and IDV-SK3 at Skelton and (ii) IDV-
CB1 and IDV-CB6 at Cefn Brwyn (but not for all metrics).
In terms of data fusion there was no outright winner that
spanned both catchments. The best data fusion solution for
each catchment was in all but one case better than the best
single modelling input; thus the data fusion process is
observed to have provided some forecasting improvements.
Marked differences in global error between the calibration
and validation data sets, were also to some extent equalised
for Cefn Brwyn. Several of the weaker data fusion solutions
were nevertheless observed to be inferior in comparison to
their single modelling counterparts — which implies a loss
of detail or information.

Table 7. Linguistic expression of DF6 rules for Cefn Brwyn

If the current discharge [level] is LOW-MED And
the current error of IDV-CB1 is SMALL then use IDV-CB1
the current error of IDV-CB2 is SMALL then use IDV-CB2
the current error of IDV-CB3 is SMALL then use IDV-CB3
the current error of IDV-CB4 is SMALL then use IDV-CB4
the current error of IDV-CB5 is SMALL then use IDV-CB5
the current error of IDV-CB6 is SMALL then use IDV-CB6

If the current discharge [level] is HIGH And
the current error of IDV-CB1 is SMALL then use IDV-CB1
the current error of IDV-CB2 is SMALL then use IDV-CB2
the current error of IDV-CB3 is SMALL then use IDV-CB3
the current error of IDV-CB4 is SMALL then use IDV-CB4
the current error of IDV-CB5 is SMALL then use IDV-CB5
the current error of IDV-CB6 is SMALL then use IDV-CB6

If the current discharge [level] is VERY HIGH And
the current error of IDV-CB1 is SMALL Or LARGE then use IDV-CB1
the current error of IDV-CB2 is SMALL Or LARGE then use IDV-CB2
the current error of IDV-CB3 is SMALL Or LARGE then use IDV-CB3
the current error of IDV-CB4 is SMALL Or LARGE then use IDV-CB4
the current error of IDV-CB5 is SMALL Or LARGE then use IDV-CB5
the current error of IDV-CB6 is SMALL Or LARGE then use IDV-CB6
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Table 8. Statistical evaluation of modelling inputs and fusion solutions for Skelton

RMSE (m) MAE (m) LPE (m) LNE (m)
CAL 60% VAL 40% CAL 60% VAL 40% CAL 60% VAL 40% CAL 60% VAL 40%

IDV-SK1 0.0517 0.0553 0.0262 0.0268 0.5074 0.5199 -0.8313 -1.4327
IDV-SK2 0.1091 0.1091 0.0454 0.0427 0.7253 0.7798 -1.1355 -1.4210
IDV-SK3 0.0823 0.0794 0.0370 0.0338 0.3755 0.3182 -0.7820 -1.1346
IDV-SK4 0.1650 0.1590 0.0720 0.0657 0.8090 0.6710 -1.5330 -1.7600

DF1 0.0868 0.0860 0.0363 0.0340 0.4634 0.3600 -0.9687 -1.1518
DF2 0.0397 0.0416 0.0162 0.0161 0.4045 0.3558 -0.7864 -1.0204
DF3 0.0111 0.0160 0.0067 0.0067 0.0744 0.5743 -0.1023 -0.6265
DF4 0.0106 0.0146 0.0067 0.0064 0.0841 0.3665 -0.0860 -0.6124
DF5 0.0455 0.0489 0.0217 0.0219 0.4044 0.3668 -0.7451 -1.4327
DF6 0.0382 0.0399 0.0167 0.0171 0.4045 0.3558 -0.7864 -1.0204

Table 9. Statistical evaluation of modelling inputs and fusion solutions for Cefn Brwyn

RMSE (m3 h ×10–3)               MAE (m3 h ×10–3) LPE (m3 h ×10–3) LNE (m3 h ×10–3)
CAL VAL VAL CAL VAL VAL CAL VAL VAL CAL VAL VAL
1985 1984 1986 1985 1984 1986 1985 1984 1986 1985 1984 1986

IDV-CB1 0.0431 0.0611 0.0582 0.0216 0.0348 0.0274 0.9270 1.7400 1.0440 -0.8170 -0.3110 -1.0010
IDV-CB2 0.0514 0.0453 0.0638 0.0238 0.0299 0.0280 1.2800 1.5090 1.1460 -1.0610 -0.2610 -1.1930
IDV-CB3 0.0548 0.0475 0.0705 0.0264 0.0327 0.0321 0.9800 0.9830 1.3830 -1.1260 -0.2830 -1.2720
IDV-CB4 0.1416 0.1518 0.1182 0.0637 0.0556 0.0470 1.7740 4.8500 2.8320 -2.7110 -0.2490 -1.8630
IDV-CB5 0.0658 0.0398 0.0706 0.0159 0.0109 0.0162 1.5650 0.6170 1.3280 -1.3840 -1.0050 -1.1610
IDV-CB6 0.0867 0.0370 0.0975 0.0233 0.0103 0.0245 1.5360 0.3890 1.1810 -1.9140 -0.9830 -1.8580

DF1 0.0513 0.0424 0.0516 0.0188 0.0216 0.0198 0.9110 1.4360 0.8990 -1.4160 -0.1330 -1.0800
DF2 0.0608 0.0462 0.0618 0.0147 0.0089 0.0153 1.5650 1.7400 1.2320 -1.1960 -0.7830 -0.9850
DF3 0.0404 0.0588 0.0551 0.0164 0.0232 0.0200 0.8390 2.4105 1.3806 -0.9208 -0.2209 -1.0038
DF4 0.0372 0.0530 0.0509 0.0146 0.0222 0.0181 0.5111 1.7113 1.6234 -0.7996 -0.3162 -0.9968
DF5 0.0390 0.0491 0.0552 0.0125 0.0164 0.0155 0.6290 1.7400 1.2830 -0.8750 -0.4160 -1.0770
DF6 0.0335 0.0233 0.0368 0.0148 0.0180 0.0163 0.3960 0.2620 1.2320 -1.1260 -0.1820 -0.9850

DF4 was the best performer at Skelton, although both DF2
and DF6 provided a better LPE. DF4 errors were also much
lower than those associated with the initial inputs which
equates to the construction of a value-added solution —
that has better properties or different qualities to the original
material. DF6 was the best performer at Cefn Brwyn,
although DF2 provided a better MAE, and mixed outcomes
were obtained for LPE and LNE. DF6 statistics for this
catchment were similar to those associated with the original
single modelling solutions — hence, fusion has in this
instance produced a limited amount of numerical refinement,
or input tweaking, which amounts to an alternative set of
returns. DF1 (simple averaging) produced a different

outcome at the two stations. It was the poorest of the six
fusion operations at Skelton — but provided reasonable
results, and on two occasions provided the best statistic, for
Cefn Brwyn. The residuals from each individual model in
the latter case have acted to cancel each other out, at least to
some degree, which produced improved results and a
practical working solution. DF2 (crisp probabilistic)
produced similar or identical results to DF6 (fuzzified
probabilistic) at Skelton. This result suggests that the
introduction of fuzziness did not add much to the
conventional probabilistic approach. DF2 produced
dissimilar results to DF6 at Cefn Brwyn. DF6 was in fact
the best overall performer on this occasion and the opposite
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Fig. 4. Skelton: single solution forecasts for a 100 hour validation
event starting 02.00 14 Jan 1992

Fig. 5. Skelton: data fusion forecasts for a 100 hour validation event
starting 02.00 14 Jan 1992

Fig. 6. Cefn Brywn: single modelling solutions for a 35 hour
validation event starting 04.00 17 Nov 1986

Fig. 7. Cefn Brywn: data fusion forecasts for a 35 hour validation
event starting 04.00 17 Nov 1986
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argument can thus be applied to this smaller and flashier
catchment. DF3 and DF4 (neural networks) provided similar
results on both occasions — which suggests that there is
little to be gained from the use of differenced data on either
catchment. DF4 was the best solution at Skelton; DF4 did
better than DF3 at Cefn Brwyn, albeit that neither solution
was on this occasion that good, and DF3 in fact provided
the worst recorded LPE. Table 10 statistics confirm that
neural network fusion provided the best results at Skelton
(DF3 and DF4 possess identical near-perfect scores at four
decimal places) and that the best solution for Cefn Brwyn
is DF6. In terms of hydrological modelling efficiencies -
the best data fusion solution for Skelton is also observed to
be a little bit better than the best data fusion solution for
Cefn Brwyn.

Detailed inspection of hydrograph plots (i) facilitated a
graphical interpretation on the range and nature of
forecasting error related to single modelling and data fusion
solutions and (ii) provided visual confirmation of the
statistical results. Figures 4 and 5 contain exemplar
hydrographs constructed from the validation data set for
Skelton. IDV-SK1 (hybrid neural network forecaster) is seen
to be the best single modelling solution in Fig. 4; the other
single modelling solutions do less well on peaks and troughs
and exhibit substantial problems throughout in the manner
of a lagged response or lateral shift in output. The worst
forecasts in this particular solution are the peaks — that are

Table 10. Nash and Sutcliffe Index (E) for Skelton and Cefn Brwyn

Skelton Cefn Brwyn
CAL 60% VAL 40% CAL (1985) VAL (1984) VAL (1986)

INPUT IDV-SK1 0.9972 0.9947 - - -
DATA IDV-SK2 0.9874 0.9793 - - -
STREAM IDV-SK3 0.9929 0.9890 - - -

IDV-SK4 0.9713 0.9560 - - -
IDV-CB1 - - 0.9855 0.9257 0.9854
IDV-CB2 - - 0.9794 0.9592 0.9825
IDV-CB3 - - 0.9766 0.9551 0.9786
IDV-CB4 - - 0.8439 0.5412 0.9396
IDV-CB5 - - 0.9664 0.9684 0.9785
IDV-CB6 - - 0.9415 0.9728 0.9590

OUTPUT DF1 0.9921 0.9871 0.9795 0.9642 0.9885
DATA DF2 0.9983 0.9970 0.9712 0.9575 0.9835
STREAM DF3 0.9999 0.9996 0.9873 0.9310 0.9869

DF4 0.9999 0.9996 0.9892 0.9441 0.9888
DF5 0.9978 0.9958 0.9882 0.9519 0.9868
DF6 0.9985 0.9972 0.9912 0.9892 0.9942

overpredicted – this being a common problem for neural
network solutions that contain no negative drivers and thus
struggle to mimic the cessation of rainfall. IDV-SK4
(persistence) has the poorest match but even this solution
affords a degree of correctness in terms of numerical maxima
and minima and at the crossover between rising and falling
limbs.

Figure 5 shows that all data fusion algorithms produced
improvements. DF3 and DF4 (original data and differenced
data neural network fusions) are the two best data fusion
algorithms, with almost identical hydrographs, such that it
is difficult to distinguish between them. Troublesome peak
flow forecasts are still evident but the problem on both
events is much diminished and the temporal lag has to a
large extent been rectified. DF5 and DF6 provide a
generalised solution that follows the general trend of the
input data; peak flow prediction is better but the time lag,
although diminished, is still evident throughout the range
of low to moderate forecasts on each rising limb. There were
strong similarities between the forecasting outputs for IDV-
SK1 [hybrid neural network forecaster] and DF2, DF5 and
DF6. This pattern of replication is understandable, given
that IDV-SK1 was the best single modelling solution, and
that fusion selection mechanisms are designed to acquire a
marked preference for the most efficacious tool. DF1 (simple
average) is comparable to IDV-SK3 (autoregressive moving
average) and has the poorest match. This solution imitated
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the general trend and produced reasonable estimates at the
highest levels of prediction — but it could not correct for
lagged predictions. It was also correct at the crossover
between rising and falling limbs.

Figures 6 and 7 contain exemplar hydrographs constructed
from the second of the two validation data sets for Cefn
Brwyn. The different single modelling solutions offer a
range of options, with errors that span both sides of the
observed data set, and are seen to possess different qualities
that offer different benefits on different occasions. It is thus
difficult, if not impossible, to single out a clear-cut winner.
The main problems associated with the initial predictions
can nevertheless be summarised as late forecasting on rising
limbs, over and underprediction on falling limbs, together
with both over and underprediction of peaks and troughs.
No marked irregularities or common deficiencies such as a
lagged response, or universal bias, could be observed. IDV-
CB6 (persistence) has the poorest match but even this
solution affords a degree of correctness in terms of numerical
maxima and minima and at the crossover between rising
and falling limbs.

Figure 7 shows that all data fusion algorithms generated
improvements. Moreover, with the exception of both peaks,
the solutions exhibit a common movement towards the
construction of a centralised result. DF6 (fuzzification of
the crisp probabilistic approach) generated a close
approximation to the observed data set; it provides an
excellent fit to both major and minor flood events, and
matches all other aspects of the hydrograph in a better
manner than the other five data fusion strategies. DF6
demonstrated particular modelling power on the highest
peak, where it provided a comprehensive forecast that was
much nearer to the observed data than each single modelling
solution and all other fusion mechanisms. Some outputs
appeared to match the original forecasts — whereas others
did not — the latter being indicative of effectual weighted
behaviour. DF1, DF3, DF4 and DF5 all underpredict the
most significant peak, whilst DF2 overpredicts it. DF6 also
provided a similar minor underprediction on the smaller
earlier peak, where it performed better, albeit closer, to the
other data fusion operations. DF1 (simple average) provided
a reasonable solution but was often late and struggled in
difficult situations in which most models misbehaved —
whilst DF2 first overpredicted the biggest peak and then
provided constant underprediction of its falling limb. DF3,
DF4 and DF5 provided similar solutions – such tools
overpredicted the smaller peak, then underpredicted the
bigger peak, which all points to neural network
generalisation dilemmas and a universal failure to provide
effective extrapolation on this complex data set. The lack
of a best single modelling solution — on this occasion — is

thus represented in the various dissimilarities shown between
DF2, DF5 and DF6. The decision making process has been
forced to span a number of multiple objectives, in
competition with one another, to resolve difficult
problematic regions of the hydrographic record where no
clear winners or fast and simple solutions exist.

The difference between these two alternative outcomes is
instructive in terms of automation and incorporated wisdom.
The two black-box neural network data fusion solutions
were the best performers on a stable catchment that needed
a simpler hydrological fix. Inputs could be merged to provide
a universal approximation, in a process that doubtless
benefitted from the incorporation of an available and near-
perfect single modelling solution, which could impart the
bulk of the forecasting information. The fuzzified crisp
probabilistic approach in comparison produced slight
improvements for a stable catchment based on a set of
individual solutions that were both advanced and accurate.
However, given more challenging hydrological problems,
in terms of a flashier catchment and differing validation data
sets — the neural network fusion process was less effective.
Forecasting enhancements were applied to a range of
medium-scale and large-scale flood events; such items were
not well modelled in the original solutions. Forecasting also
included extrapolation to drought conditions (1984) and to
flood events larger than those found in the calibration data
(1986). The weighted neural approximation was, under such
circumstances, handicapped to a solution that, although non-
linear, was too generalised. The situation demanded a data
fusion tool that was at the same time both more powerful
and more flexible in permitted responses and reactions. DF6,
was in consequence, better suited to the calculation of
flashier behaviour. However, it is also possible that this
outcome might be related in part to the original selection of
single modelling solutions, for instance with the inclusion
of a simulation model that can often provide better functional
approximations at the extremities of prediction.

Conclusions
The application of six multi-model data fusion
methodologies for hydrological modelling, using different
sites and different forecasting horizons, has been compared.
Fusion improved levels of output performance and each
location demonstrated various potential options and
advantages in which data fusion could be used to construct
superior levels of hydrological forecast. Fusion operations
were better in overall terms than their individual modelling
counterparts and two clear winners emerged. Indeed, the
six different mechanisms on test revealed unequal aptitudes
for fixing different categories of problematic catchment
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behaviour; in such cases, the best method(s) were
determined to be a good deal better than their closest rival(s).
Neural network fusion of differenced data provided the best
solution for a stable regime (with neural network fusion of
original data being somewhat similar) — whereas a fuzzified
probabilistic mechanism produced superior outputs in a
more volatile environment.

Data fusion is seen to offer a range of fast and inexpensive
methodologies. Such processes can be used to develop better
hydrological forecasts, in which tried and trusted models
and methods can be amalgamated and enhanced in a
straightforward manner. More complex rule-based tools
based on transparent science and accepted wisdom are not
in all cases better. Certain fundamental problems can be
addressed in a simple manner using neural networks; this
suggests that more exploration and testing should be done
on such topics and on other issues related to broader and
smarter methods of automated generalisation. Further
research will also consider alternative methods of data fusion
and cover a wider range of similar or dissimilar gauging
stations and catchments. There is also a pressing need to
establish or delimit the role and potential of such tools and
methods with regard to real time operational forecasting, or
for other related purposes, which require continuous
modelling solutions.
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