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SQUARE INTEGRABLE HARMONIC FUNCTIONS
ON PLANE REGIONS

MITSURU NAKAI and LEO SARIO

Let R be a thin horizontal elastic plate clamped along its border. We denote
by Br(z, () the deflection of R at z€R under a point load at (€R, that is, the
biharmonic Green’s function on R with the pole at {. The function is characterized
by A4%Bg(z,{)=2nd, on R, with §, the Dirac measure at ¢, and by the conditions
Br(z, ()=0Pr(z,{)/0n,=0 at the boundary dR of R (e.g., Bergman—Schiffer [1]).
Accordingly, it is customary to assume that the boundary OR of R relative to the
complex plane C is smooth. If R is an arbitrary plane region, a natural procedure is
to define Bg(z,{) for z€ R as the directed limit

1) | g)mﬂn(z, 0

where {Q} is the directed set of regular subregions, i.e., relatively compact subregions
Q of R with smooth boundaries Q. We denote by Oy the family of plane regions
R for which (1) is divergent for some [€R. The purpose of the present paper is to
give a complete characterization of O, as follows:

1°. A plane region R€O, if and only if the complement C—R of R does not
contain any noncollinear triple of points (and hence e.g. C—{0, 1, i}¢ Op!).

2°. If a plane region R¢ Oy, then Pg(z,{)=limg.x fo(z,{) is symmetric and
continuous on RXR, the convergence is uniform on every compact subset of
RXR, and z—Bg(z,{) is biharmonic on R—{.

3°, There exist plane regions R which are “unstable” in the sense that (1) is
divergent for some (z,{)€ RX R but convergent for some other (z, ()€ RXR. Such
unstable regions R are characterized by the existence of a line /(R) such that C—R
is a proper subset of /(R) consisting of at least two points, and (1) is divergent at
e.g., (,0) for any {¢I(R) and convergent at every (z,)€(/(R)XI(R)) N (RXR).

We denote by H,(R) the closed subspace of L,(R) consisting of square integrable
harmonic functions on R. To prove 1°—3°, we shall make essential use of the follow-
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ing results obtained in [3]. Let H(Q) be the class of harmonic functions on Q and
denote by (, ), the inner product in L,(Q). The function Hy(z,{)=4,B0(z,() is
referred to as the B-demsity on Q, characterized by Hy(z,{)+log |z—(|€ H(Q) as
a function of z, and by (Hg(+,{), u)o=0 for every u€H,(2). Then fo(z,{)=
(HQ(' B Z), HQ(' s E)).Q and

Q@ B (z )= Bo(z Ol = |Ho (¢, 2)=Ho(+, 2lr* [Ho (-, )= Ha(+, Dlr

on QX Q for every regular subregion Q" with Qc Q’cR; here | +| is the norm
in Ly(R), and we have set H,(z,{)=0 for (z,{)¢ @X Q. In particular, we have

B) B (D=0 = 1Ho (-, )—Ho(+, DIk = | Ho(+, DIk — 1 Ho(+, Dllk-
Thus the limit (1) exists if and only if
@ lim | Ho(+, OII* =+ <.

This in turn is equivalent to the existence of an Hg(-,{) on R such that Hy(z,{)+
log |z—¢|€H(R) as a function of z and (Hg(-,{), u)=0 for every u€H,(R); in
this case, limg_g [ Hg(+,)—Ho (+,)lg=0 and Bg(z, )=(Hg(-,2), Hg(-, O)k-

We will see that the orthogonal complement H,(R)# of H,(R) in H,(R—{)
is either {0} or RHg(-,{), where R is the field of real numbers. Accordingly, the
essential point is to determine the pairs (R, () of plane regions R and their points
{e R such that dim H,(R—{)=dim H,(R)+1. Thus we are led to study the Hilbert
space H,(R). It is locally bounded and therefore has a reproducing kernel /ig(z, {)
characterized by u({)=(u, hg(-,{))r for every u€H,(R). It is seen that /ig(+, )=
AcHg(+,0) if Hg(-,{) exists (cf. e.g. Garabedian [2]); we will, however, not make
use of this fact in the present work.

In nos. 1—5 we study the dimension of H,(R) and give a complete characteriza-
tion of those plane regions R for which dim H,(R)=0. We then proceed to H,(R—{)
and, in nos. 6—7, characterize those plane regions R for which dim H,(R—{)=
dim H,(R)+1 for every (€R, for some (€R, or for no {€R. For the first case
we study, in nos. 8—11, the continuity of Hg(-,{) and the uniformity of the con-
vergence Ho(+,{)—~Hg(+,({) with respect to {. That assertions 1°—3° follow from
these considerations will be briefly discussed in the final no. 12.

We close this introduction by stressing once more that the class O, is not con-
formally invariant and not even invariant under Md&bius transformations. In fact,
the regions C—{0,1,i}¢0; and C—{0, 1,2}€0,; are equivalent by the M&bius
transformation (z,0,1,7)=(w, 0, 1, 2).

1. Suppose u(z) is harmonic in a punctured disk 4,((, ¢): 0<|z—{|<¢ about
a point {€C (the finite complex plane). Then u(z) has the Laurent expansion

u@ =Re(—clog(z-0+ 3 a1y

n=—oco
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in 4,((, o), with c€R (the field of real numbers) and a,€C. It is readily seen that
u is square integrable in 4,((, @) (¢€(0, 0)) if and only if a,=0 for every nega-
tive n:

© u(z) = Re[~clog (=0 + 3 a,-0).

Next suppose u(z) is harmonic in a punctured disk A,(s, 0): o0<lz]<+oo
about the point < at infinity. Then the Laurent expansion of u(z) is given by

u(z) = Re [c log z+ S’ a,,z‘”)

n=—oo

in 4y(=>, @) (e<¢@) where c€R and a,6C. Againitis clear that uis square integrable
if and only if c¢=a,=0 for every integer n=1:

6) u(z) = Re (éz a,,z‘”],

and in this case u is also harmonic at  with u(e0)=0.
For convenience we denote by /,(z) the normalized logarithmic pole —log |z—{|
at {€C. The Laurent expansion of l,(z) is

) I(z) = Re [-1og ot f-n— z—")
n=1
in 4y(ee, [6]). Note that the coefficient of z~1 is {.

2. Let { be the set of m distinct points { ;in € (j=1, ..., m) and consider the
region R,=C—{. The matrix
1 1 ... 1
®) A=4{) =|Re{; Re{l,...Re{,
Im{; Im¢,...Im¢,

associated with the region R will be instrumental in our reasoning. We shall also
use the column vector ¢ whose components are #,, t,, ..., t, in R Let S=S()
be the vector space of solution vectors ¢ of the equation 4t=0 where 0 is the trans-
pose of (0, 0,0). Then

dim S(¢) = m—rank 4(0).
With each column vector ¢ we associate h,=2;."=1tjl;]_. We will show that t—4,
is a linear bijection: S—H,(R;), so that

©)] dim H,(R;) = m—rank 4 ({).

First we prove that hE€Hy(R,) if t€S. It is clear that A, belongs to H(R,)
and is square integrable over some 4, ({ j» 0j) for every j=1, ..., m. By (7) we see that

h,(z) = Re [~— (]g'ml th log z—i—(jgm; g tj] z*1+n§ O z“"]
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where o,=n"1 Z’}LIC’}-% Since At=0, the coefficients of logz and z7* of 4,(z)
must vanish and we obtain /#,(z)=Re (3 ,,z7"), which by (6) shows that
h, is also square integrable over some Ay(<, @). Since C—4,(=, 0) U > 4¢((;, 0)
is compact we finally conclude that #,€H,(R,), thatis, t—h, is a well defined
mapping: S—H,(R,). Since {l;j}jﬂw’m is a linearly independent family, we see
that ¢—#, is a linear injection of S into H,(R;).

Next we prove that it is surjective. Choose an arbitrary u€ H,(R;). By (5)
we have

u(z) = Re [— tjlog(z—{)+ g a,-,.(Z—Cj)")

in a certain 4,((;, ¢;) (j=1, ..., m). This determines the column vector ¢ whose
components are 1y, ..., ly- Observe that l; =l €H(C— {6, ¢ (G=1,...,m)
and vanishes at o; here C=C U {e}, the extended complex plane. Consxder the
function

m—1
h(z) = u(z2)— Z; tj(l,(2)— 1, (2)).
=
By (6) and the above remark, we see that h€ H(C—(,), and
he =Re(( 3] 1,0+ 3 an—t)
Jj= n=
in a certain 4,((,,, 0,,)- We denote by C the boundary of the disk 4((,,, 0,,/2): |z—{,nl<

0m/2. Then /4 is harmonic on c-4 ({m> 0m/2) and the Gauss theorem assures the
vanishing of the flux of /4 across C. On the other hand this flux is the sum of

(,gmlt"] Cf*‘”;m(z) = 2rrj;m;tj

and [cxd(Re 32 @(z—L,)")=0. Therefore 37 7,=0 and he H(C). Since
h(e)=0, we conclude that #=0 on C, i..

u_m2'1t(l§’ lgm)_z (- 2 ),
In view of 2>7%_,7;=0, we obtain u=#,. Therefore
u(z) = h(z) = Re ([2'"1 c,.tj] 4 f;anz—n]
i= n=
with o,=n"1 3" (7t;. Since u€H,(R), (6) implies that Z, 1 ¢;t;=0. By taking

the real and i 1magmary parts we deduce At=0, thatis t€S. Thus t—»h,: S—H,(R)
is a linear bijection and we have established (9).
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3. Suppose { consists of at least four points. Then, since rank A({)=3 in
any case, we conclude by (9) that dim H,(R)=4—3=1. Next suppose { consists
of three points. Then dim H,(R)=3—rank A({). Although rank A({)=1, the
equality here cannot occur since otherwise we would have (;={,={(; in {. Therefore
rank 4=2 or 3. In the latter case, dim H,(R)=0. In the former case, dim H,(R)=1.
The relation rank A=2 is, in the present situation, equivalent to det 4=0, which
in turn is equivalent to {;, {5, and {; in { being collinear. If { consists of two points
{1, {5, then rank A({)=2 since {;#{,. Therefore dim H,(R)=2-rank A4({)=0.
If { consists of one point, then rank A=1 and again dim H,(R)=0. The case
{=0 (empty) may be treated directly. In this case, in view of (6), any u€ H,(Rp)
must belong to ucH (é) and u(ex)=0. Therefore u=0, that is dim H,(Rgy)=
dim H,(C)=0.

Note that Rc R’ implies Hy(R’)C H,(R). We have proved:

Theorem. The space H,(R) is degenerate, i.e. Hy(R)={0}, if and only if
C—R consists of at most two points or three noncollinear points.

4. In our earlier paper [3] we considered the degenerate class Oy, of Riemannian
manifolds M for which H,(M)={0}. We also considered the class Osp, of those
M which contain a subregion N€Oy, with an exterior point. For plane regions R
we have thus determined the classes Oy, and Ogy, as follows: R€ Oy, if and only
if C—R contains at most two points or three noncollinear points; Ospn,=9.

5. Consider the set {={{{, (s, (s, ..., (), m=3, with the noncollinear points
(=141, (=1, {;=0. We have rank 4=3 and

dim H,(R;) = m—3.
The set R¥=R, with m=3+k for k=0, 1,2, ... satisfies
(10) dim Hy(R®) =k (k=0,1,2, ..., §).

Here N is the countably infinite cardinal number and R®=R,=C-{ with
{={1+14,1,0,{4,(s, ...} closed and all points in ¢ distinct. We still have to prove
(10) for K=§. Let {(m)={1+i,1,0,(,,C;,...,¢,} (m=4,5,...). Observe that
area integrals over Ry are identical with those over any R;,, and a fortiori u—u|R,
is an isometric injection: Hy (R () ~H,(Ry). Therefore dim H, (R;) =dim Hy (Ry () =
m—3 for every m=4,5,.... On the other hand, since L,(R) is separable for any
subregion (and actually for any measurable subset) R of C, dim H,(R)={ as a
closed subspace of L,(R) with dim L,(R)=8&. We thus deduce (10) also for k=§.
In summary:

Theorem. The dimension of H,(R) for any plane region R is at most countably
infinite and there actually exists a plane region R such that the dimension of H,(R)
is an arbitrarily preassigned countable cardinal number.
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6. Let R be a plane region and {€R. Then H,(R) is a closed subspace of
H,(R—{). We denote by H,(R)7 the orthogonal complement of H,(R) in Hy(R—{):

(1D Hy(R—0) = Hz(R)EBHz(R)é“-

It may happen that H,(R); ={0}. In this case we say that (R, {) is a noneffective
pair. Otherwise we assert that dim H,(R)# =1. In fact, suppose u;, uy€ Hy (R
In view of (5)

u;(z) = Ré (—cj log (z——(,’)-i-n;’ij aj,,(z——C)"]

in a certain 4,((, ¢), where c;€R with ¢;0 (j=1, 2). Therefore c,u; —c,us€ Hy(R)
and we have (u;, couy—ciu)=0 (j=1,2). From these it follows that |lcyu;—
c1u,|%=0, i.e. u; and u, are linearly dependent. We say that (R, () is an effective
pair if it is not noneffective. For an effective pair (R, {) we have seen that H,(R)#
has a single generator:

(12) Hy(R)f = RHg(-,0)

where the generator Hgi(-,{) is so normalized that

(13 Hy(z, 0 = Re (log =0+ 3 ay(z=07).

7. We next discuss the effectiveness of a point { in a given plane region R.
There are three cases:

Case 1. (R, () is a noneffective pair for every (€R.

Case 2. (R,{) is an effective pair for some (€ R, noneffective for some other
{ER.

Case 3. (R, () is an effective pair for every (€R.

We call R a weak, unstable, or strong region according as case 1, 2, 3 occurs.
We remark that for RCR’, if R’ is strong so is R.

Once more we consider R,=C—{ with { the set {{;, ..., {,} of distinct points
in C. Let {€R, be an arbitrary point and let {’={u {{}. Similarly let 4({) and
A(’) be the matrices (8) associated with { and {’. Then by (9) we deduce

(19 dim H,(Ry)# = 1—(rank 4({")—rank A(()),
and conclude that (R, () is effective if and only if
(15) rank 4({) = rank 4({").

Suppose m=3. Recall that rank A({)=2. From this we can easily see that
(15) is valid for every choice of (€R, if and only if rank A({)=3, i.. there are
three noncollinear points in {. If m=1, then { contains at most two points and
therefore H,(R;—{)=H,(Ry)=H,(R;)={0} and a fortiori dim H,(R); =0. In
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the remaining case { contains at least two points and ¢ is collinear. Let / be the
line on which every point of { lies. In this case rank A({)=2. If (€/—{, then
rank A({")=2 and (R, () is effective. If (¢ /, then rank 4({’)=3 and (R, () is
noneffective.

We summarize our observations thus far:

Theorem. A plane region R is strong if and only if C—R contains three non-
collinear points, R is weak if and only if C—R contains at most one point, and R
is unstable if and only if C—R contains at least two points and is a proper subset
of a line.

8. In nos. 8—11 we will concentrate on strong regions R. We recall that they
are characterized by the existence of three noncollinear points {;, {,, {3, in C—R.
The region Ry=C—{(;,{,,{s} is of course strong and by virtue of R,DR we
have H,(R,)C H,(R). For each {€R we consider the function

(16) he 0 = 240L,6) e

where the ¢;=1;({)¢R (j=1, 2, 3) will be later so chosen that A(-,{)€ Hy(R,—{)C
H,(R—{). Let the Laurent expansion of /(-,{) about < be

h(z, ) = Re (_([1=231 tj]—I—l) log z—‘r((j;?;' Cjtj)—l—t:) z‘l—f—'é;oc,,z—n].

In order that A(-,{)€H,(R,—{) it is necessary and sufficient that the t;=t;(0)
(j=1, 2, 3) satisfy the equation

1 1 1) (4 1 ]
a7n Re {; Re (s Re (| |t] = —|Re}.
Im{; Im{ Im ;) \g ImCJ

The determinant of the first matrix is nonzero since {;, {,, {; are not collinear. There-
fore by the Cramer formula the solution vector with components ¢;=1,() (j=1, 2, 3)
in R satisfying (17) is uniquely determined, and continuous (in fact harmonic) with
respect to {. The function /(-,{) in (16) with the #;=¢;({) (j=1, 2, 3) thus deter-
mined by (17) belongs to H,(R,—{)C H;(R—{) and we also have /(z, -)¢ H(R—z).

9. We next study the continuity of the mapping {—%4(z,{): R—~L,(R). We
can write

h(z0) = Re (f n—la,,@z—n)

in some Ay, 0) with oz,,(C):Zf:l ;O +" (n=2, 3, ...). Suppose {, {;€4(0, 0):
lzl<o (j=1, 2, 3). Then the continuity of {—7;({) implies the existence of a con-
stant K,>0 such that [«,()|=K,0" (n=2,3,...), and we obtain [|i(z,{)|=
K, > ,n"'a"|z]™" on dy(e, o) with g>a. Therefore

(18) 1R (-, Dl sy, oy = V12K, 0%(0 —0).
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Let {,{’€R be contained in 4(0,0), ¢>0d, and A=4(0, 0)—A4(0, ). Then
(e, O)—h(, ONi=1h(-,0)—h(-, )%, which is dominated by the sum of
IhC, )= h(-, O s 12C,O—=h(-, %, and [IAC, ) =h(+, )y, The
first of these three terms is dominated by

[_ 31 [tj(C)—tj(C’)IIllg,.llA(o,a)+Ill;—l;»IIA(om) ’
j=
the second by

n(Qz—éz)(Sélf Ih(z, )—h(z, D)%

and the last by (|2(+, Ollse, e 14(5 ) gy, 00)% Which is not greater than
2nK?c*/(o—0)® by (18). We conclude that

111? sup [h(-,0)—h(-, O)lg = V2rnK,0%/(0—0).

On letting ¢— +< we obtain limy_,[|A(+,)—A(+,{)|g=0.

10. Let wu (z)=h(z,{)—Hg(z,{). Clearly u,€H,(R) and thus the projection
of h(-,0)€Hy,(R-{) on Hy(R)F =RHg(-,() is Hg(-,{). Observe that

[h(e, O—h(-, Ok = 1Hg (-, O)— He(+, )R+ lug—ug >
We have obtained the following

Theorem. On a strong region R
(19) lim | Hy (+, O) = Hx (-, )] = 0.

11. Let R’ and R” be subregions of a strong region R, hence strong regions.
If RRcR”, then Hg.(-,{)—Hpg(-,{) belongs to H,(R’) and is orthogonal to
Hg.(-,0) over R’. Therefore

(20) [Hg-(+, ) —Hg (-, Olk = [Hg- (-, Olife =1 Hg- (-, Oll -

We denote by {Q} the family of regular subregions Q of R, a directed set by inclusion,
and set Hy(z,{)=0 for z€ R— Q. In view of (20), {HHQ(-,C)T?R}M{Q} is an increas-
ing net and {Hq(+,{)}oc(o is @ Cauchy net in L,(R). It is easy to check that the
limit is Hgi(+,{) and

[Hg(+, O)—Ho(-, Ok = [Hr (-, Oik—[1Ha(-, )l-

On any compact subset E of R, both [[Hq(+,0)|k (2DE) and [[Hg(-,{)|% are
continuous (see (19)). Thus the Dini theorem implies:

Theorem. If R is strong, then for any compact subset E of R

@1 lim (sup || Hz(+, {)—Hq(+, Dllz) = 0.

Q2->R (€E
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12. We remark that the biharmonic Green’s function of the disk 4(0, ¢) is
(cf. e.g. Garabedian [2])

22 Baogp(z 0 = [|z Clzlogl o(z C),

o (2=~ o)

on 4(0, ¢)X4(0, ¢). Hence, clearly CcO,. Similarly, the biharmonic Green’s
function of the punctured disk 4,(0, ¢) is (cf. [4], [5])

(23) BAU(O,Q)(Z’ = ﬁA(o g)(Z’ {)—l6ro~ 2ﬁA(O g)(Z 0)54(0,9)(5, 0)|

on 44(0, ¢) X 4,(0, 0). Therefore C—{0}cO,.

In view of the above, relation (4), and the theorem in no. 7, the assertions 1°
and 3° can easily be deduced. By nos. 9 and 10 the first three assertions in 2° are
clear. Since Bg(-,{) is biharmonic on Q—{ and uniformly convergent to Br(-,{)
on every compact subset of R—{, fr(+,{) is also biharmonic on R—{.
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