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SQUARE INTEGRABLE HARMONIC FUNCTIONS
ON PLANE REGIONS

MITSURU NAKAI and LEO SARIO

Let R be a thin horizontal elastic plate clamped along its border. We denote

by fi^(r,O the deflection of R at z(R under a point load at ((R, that is, the

biharmonic Green's function on R with the pole at (. The function is characterized

by /!pe@,c):2nöe on Å, with ä6 the Dirac measure at(, and by the conditions

§*(r,O:\fr*(z,Ol\n,:O at the boundary ä)R of Å (e'g., Bergman-Schitrer [l]).
Accordingly, it is customary to assume that the boundary å-R of .R relative to the

complex plane C is smooth. If .R is an arbitrary plane region, a natutal procedure is

to define §^(r,O for z€R as the directed limit

(r) 
å,11 fra?,o

where {O} is the directed set of regular subregions, i.e., relatively compact subregions

O of Ä with smooth boundaries åO. We denote by Op the family of plane regions

Ä for which (1) is divergent for some ((lR. The purpose of the present paper is to

give a complete charactenzation of Op as follows:
lo. A plane region R<op if and only if the complement c-R of R does not

contain any noncollinear triple of points (and hence e.g. C-{0, 1, r}qOp!).

20. lf a plane region R{Op, then p^(z,O:limo*n fro@,O is symmetric and

continuous on IRXR, the convergence is uniform on every compact subset of
RX.R, ard z-frn(2, O is biharmonic on R-(.

30. There exist plane regions -R which are "unstable" in the sense that (l) is

divergent for some (2, OeRXn but convergent for some othet (2,()(RXR. Such

unstable regions R are characterized by the existence of a line /(R) such that C-R
is a proper subset of /(R) consisting of at least two points, and (1) is divergent at

e.g., (e,O for any ((/(R) and convergent at every (2,fl€((R)X/(R))n(ÄX,R).
We denote bV är(iR) the closed subspace of Zr(R) consisting of square integrable

harmonic functions on Å. To prove 1o-3o, we shall make essential use of the follow-
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ing results obtained in [3]. Let H(O)be the class of harmonic functions on O and

denote by (, )o the inner product in Lr(A). The function He(z,O:Å,§o@,O is

referred to as the B-density on ,f2, characterized by Hs(z,O+tog lz-(l(H(o) as

a function of z, andby (Ho(,O,u)a:O for every u€Hr(a). Then Bo(z,O:
(H"(., z), Ha(, Q)o and

(2) lfro,@, O- fr"(2, Ol = ll/1o,(. , z)- Ha(. , z)llx. llrlo,( . , O- Ho(. , Oll"

on OX O for every regular subregion O' with Qcd|'cR; here ll . ll" is the norm
in I2(-R), and we have set HoQ,O:g fot (z,O(PXO. In particular, we have

(3) fio,G,0- frn(L O : llHr,(. ,O- H"(., 0llå : Il1lo(., Oilä- lläo(., 0llä.

Thus the limit (1) exists if and only if

(4) 
årni llä"(., 0ll' = + -.

This in turn is equivalent to the existence of an H^(.,0 on R such that H*(z,O*
loglz-(l€H(R) as a function of z and (uo(,0,"):o for every u€Hr(R); in
this case, lime-a llä.(., O-Ha,(, Olln:0 and §o(z,O:(H*(.,2), H^(',O)^.

We will see that the orthogonal complement Hr(R){ of är(Å) in Hr(R-o
is either {0} or Räo(.,$, where R is the field of real numbers. Accordingly, the

essential point is to determine the pairs (Ä, () of plane regions Å and their points

((A such that dim Hz(R-C):dim är(R)+ 1. Thus we are led to study the Hilbert
space Ilr(R). It is locally bounded and therefore has a reproducing kernel h*(r,C)
characterizedby u(O:(u, ho(.,0)n for every u(H2(A). It is seen that hR( ,O:
/EH^(., 0 if äx(. , O exists (cf. e.g. Garabedian [2]); we will, however, not make

use of this fact in the present work.
In nos. 1-5 we study the dimension of ,Hr(,R) and give a complete characteriza-

tion of those plane regions Å for which dim är(R):0. We then proceed to Hr(R-o
and, in nos. 6-7, charucterize those plane regions R fol which dimär(Å-O:
dimär(Ä)+l for euery (€Ä, for some C€R, or for no ((R. For the first case

we study, in nos.8-11, the continuity of I1^(.,0 and the uniformity of the con-

vergence Ho(,O*HÅ., O with respect to (. That assertions 1o-3o follow from
these considerations will be briefly discussed in the final no.12.

We close this introduction by stressing once more that the class O, is not con-

formally invariant and not even invariant under Möbius transformations. In fact,

the regions C-{0, 1,i\qOB and C-{0,1,2)<Op are equivalent by the Möbius

transformation (2,0, l, i):(w, O, 1,2).

1. Suppose u(z) is harmonic in a punctured disk /r(L d:0<lz-(l<p about

a point (eC (Ae flnite complex plane). Then u(z) has the Laurent expansion

;
n:-@[-' los (z -0 + an(z- 0')u(z) - Re
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in /s((, q), with c€R (the field of real numbers) and a,€c. rt is readily seen that
a is square integrable in 1o(l e) (8€(0, q)) if and only if an:O for every nega-
tive n:

(s) u(z):*" [-, bg(z-O+ 
,)oa,1z-q).

Next suppose u(z) is harmonic in a punctured disk /r(-, Q): q<lzl<i-*
about the point - at infinity. Then the Laurent expansion of u(z) is given by

(*\
u(z): Re 

[c 
loS ,*,J_onr-")

in 1o(-, s-) (e-s) where c€R and ao€c. Again it is clear that a is square integrable
if and only if c:an:O for every integer n < 1:

(6) u(z):*" (; o,r-,),

and in this case z is also harmonic at - with rz(-):9.
For convenience we denote by lr(z) the normalized logarithmic pole -log lz-(l

at ((C. The Laurent expansion of /6(z) is

(7) laQ) :n. (-ros ,+ ,; # -')
in År(*,läl). Note that the coefficient of z-L is (.

2. Let ( be the set of m distinct points (i in C (j:L, ...,m) and consider the
region RE:C-e. The matrix

( r I ... 1 )(8) A : A(O: lR" 6, n. f, ... n" f- I

(t',5, tm (r...rm4*)
associated with the region Rg will be instrumental in our reasoning. We shall also
use the column vector , whose components are tr)tz,...,1_ in R. Let s:S($
be the vector space of solution vectors r of the equation At:O where 0 is the trans-
pose of (0' 0' 0)' Then 

dim s(o : m-rank A(e).

with each column vector l we associate hr:)i-rtrlr,. we will show that t-ht
is a linear bijection: ,S-ä2(R;), so that
(9) dimHr(Å) : m-rankA(O.

First we prove that h$Hz(R) if ,€,S. It is clear that h, belongs to I/(Ä6)
andissquareintegrableoversome /a(€i, a) forevery j:1,...,m. By (7)weseethät

h1e):.. [-[ä ,,)rcr,*(Z r,t,)r,+ ) o*,-,)
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whete uo:n-'Zi=reitt. Since ,4r:0, the coefficients of logz and z-a of h,(z)
must vanish and we obtain hr(z):p6(Z7ro"r-'), which by (6) shows that
å, is also square integrable over some Åo(*, Q). Since C-lo(-, q), Zi=r/o((i, Si)
is compact we finally conclude that h,(Hr(R.), that is, t-ht is a well defined

mapping: S*är(Rr). Since {/s_}r=r,...,. is a linearly independent family, we see

that t*4 is a linear injection of ,S into Hz(R).
Next we prove that it is surjective. Choose an arbitrary u€H2(R)- BV (5)

we have

u(z) -

in a certain /r(*,a) (i:1,...,m). This determines the column vector t whose

components are t.,...,t^. Observe that lEr-IE^(H(e -{*,(-}) (j:1,...,m)
and vanishes at -i here 0:C u {-}, the exiended complex plane. Consider the

function

h(z) : u(z)-\' t,(ta,k)-lr^(z)).
i:r

By (6) and the above remark, we see that heH(e -Q), and

h(r) - Re

in a certain /o:((^, Q). We denote by C the boundary of the disk /((^, p,,12): lr-hi=
q^12. Then å is harmonic on e -Z1h,Q^12) and the Gauss theorem assures the

vanishing of the flux of å across C. On the other hand this flux is the sum of

and ["xd(ReZlo a,,o(r-(^)n):0. Therefore Zi=r/j:0 and h$(e). Since

å(-):9, we conclude that h:0 on C, i.e.

Rr [- t,tos(z-(i)+ åain(z-(,)")

((ä',)',*(') + åo*.(z - 
(*)")

(å,4 
of 

xctta*,(z): zn § t,

m-L / m-l \

Ätit;,-[-,4 ")

*.. ((ä e,,,) z-L + åo.,-,)

u ='"t'tiU6,-1e,,):j:L

In view of Z;:tt j:0, we obtain tt:ht. Therefore

u(z) - ht!) -

with dn:n-L Zf:r(iti. Since uQHz(R), (6) implies
the real and imaginary parts we deduce At-0, that is

is a linear bijection and we have established (9).

t,
>m

that Z;:r(iti- 0. By taking
,€ ,S. Thus t *ht: ,S -- Hz(A)
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3. Suppose ( consists of at least four points. Then, since rank A($=3 in
any case, we conclude bV (9) that dim H2(R)>4-3:1. Next suppose ( consists

of three points. Then dimär(Ä):3-rankA($. Although rankl(Q>I, the
equality here cannot occur since otherwise we would have (r:(r-(, in €.Therefore
rank A:2 or 3. In the latter case, dim är(R) :0. In the former case, dim är(Å): 1.

The relation rankA:2 is, in the present situation, equivalent to detl:0, which
in turn is equivalent to (r, (2, and (, in ( being collinear. If ( consists of two points
(r,(r, then rank A(O:2 since (r*6. Therefore dimär(Å):2-rank A(():0.
If ( consists of one point, then rankA:l and again dimHr(A):O. The case

(:0 (empty) may be treated directly. In this case, in view of (6), any u€Hr(Rr)
must belong to u(H(ö) and z(-):0. Therefore u=0, that is dimflr(Rr):
dim är(C):0.

Note that RclR' implies Hr(R')c.Hr(R). We have proved:

Theorem. The space Hr(R) is degenerate, i.e. är(R):{O}, tf and only if
C-R consists of at most two points or three noncollinear points.

4. In our earlier paper [3] we considered the degenerate class Or, of Riemannian
manifolds M for which Hr(M):{O}. We also considered the class O"r, of those
M which contain a subregion N(Ou, with an exterior point. For plane regions R
we have thus determined the classes Ourand Oruras follows: R€Ou, if and only
if C-)R contains at most two points or three noncollinear points; Osn,:$.

5. Consider the set e:{h,Cr,(r,...,(^), m=3, with the noncollinear points
(1:lti, (z:1, (8,:0. We have rank A:3 and

dimär(Ås): nt-3.

The set R(k):Rr with m:3*k fot k:0, 1,2,... satisfies

dim Hr(R{x\ - k (k - 0, l, 2, ... , §).(10)

Here s is the countably infinite cardinal number and Å(§):Äg:C-( with
E:{l-1i,1,0,(r,G,...) closed and all points in ( distinct. We still have to prove
(10) for K:§. Let'((m):{l+i, 1, O,(n,(u,...,C*\ (m:4,5,...). Observe that
area integrals over År are identical with those over any Å61,; and a fortiori u*ulRr
isanisometricinjection: H2(Rs61)*Hz(Äs).Thereforedimär(,Rr)=dimäz(Rr(,)):
m-3 for ayer! m:4,5,.... On the other hand, since Zr(R) is separable for any
subregion (and actually for any measurable subset).R of C, dimär(R)=§ as a
closed subspace of Ir(Ä) with dimZ2(.1R):§. We thus deduce (10) also for k:§.
In summary:

Theorem. The dimension of Hr(R) for any plane region R is at most countably
infinite and there actually exists a plane region R such that the dimension of Hr(R)
is an arbitrarily preassigned countable cardinal number.
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6. Let R be a plane region and (€R. Then är(R) is a closed subspace of
H,(R-O. We denote bV Ar(n)* the orthogonal complement of rlr(R) in Hr(R-O:

H|(R-O - Hz(A) @Hz(R)*

It may happen that Hr(R){: {0}. In this case we say that (R, O is a nonffictiue
pair. Otherwise we assert that dim Hr(R)t:l. In fact, suppose u1,u2€Hz{R){.
In view of (5)

uik) - Re

in a certain /r(C, q), where c;(R with ct+O (j : t, Z). Therefore crur- crur(Hr(R)
and we have (ui,c2u1-crur):0 (i:1,2). From these it follows that llcrur-
qurllz*:O, i.e. u1 and u, are linearly dependent. We say that (R, O is an ffictiue
pair if it is not noneffective. For an effective pair (Ä, () we have seen that Hr(R)t
has a single generator:

Hr(R)t - RHn(., o(t2)

(l:;

7. We next
There are three

[-', los (z-.O+ åo,.(z-.O')

R. [-tos 
(z-0 + ] o,Q-q') .

where the generator H*(. ,O is so normalized that

H*(', O :

, discuss the effectiveness of a point ( in a given plane region A.

CASES :

(14)

and conclude that

(1 5)

Case l. (.R,0 is a noneffective pair for every (€R.

Case2. (,R,0 is an effective pair for some (€R, noneffective for some other

6€R'

Case 3. (Ä, O is an effective pair for every (€,R.

We call R a weak, unstable, ot strong region according as case l, 2, 3 occurs.

We remark that for .RcÄ', if R' is strong so is R.

Once more we consider Re:C -( with ( the set {(r, ...,(-} of distinct points

in C.Let (€rRs be an arbitrary point and let €':eu{(}. Similarly let A(g and

A((') be the matrices (8) associated with ( and ('. Then by (9) we deduce

(lRE, O is effective if and only ii
rank A(O - rank A(e').

Suppose la>3. Recall that rank A(O>2. From this we can easily see that
(15) is valid for every choice of ((Ar if and only if rankA(O:3, i.e. there are

tlree noncollinear points in (. If m=1, then (' contains at most two points and

therefore H2(Rg-O: Hr(RE):Hz(Äs): {0} and a fortiori dim är(R),4 :0. In



h(,, O :tå t i6)r,,(4)* t {z)

t j:t j(O€R (i:1,2,3) will be later so chosen that
Let the Laurent expansion of h(.,O about oo be

h (2, o: * (- ((E,,) *,) bg z i((7t,,,1 * e),-, + 2 o,,-.).

In order that h(.,()(H2(Ro-() it is necessary and sufficient that the ti:ti(o
(i:1,2,3) satisfy the equation
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the remaining case ( contains at least two points and § is collinear. Let / be the
line on which every point of ( lies. In this case runk A(g:2. If C!-e, then
runkA(l'):2 and 1nr,0 is effective. If (§1, then rank A(('):3 and (Rg,O is
noneffective.

We summarize our observations thus far;

Theorem. A plane region Ris strong if and only if C-R contains three non-
collinear points, R is weak if and only f C-R contains at most one point, and R
is unstable if and only if C-R contains at least two points and is a proper subset
of a line.

8. In nos. 8-11 we will concentrate on strong regions R. We recall that they
are characterized by the existence of three noncollinear points (r, (r, er, in C-Ä.
The region Ro:C- {(r,(r,(r} is of course strong and by virtue of .Rr:R we
have är(Å)cHr(R). For each ((R we consider the function

(r6)

where the
Hr(R-O.

h(., Oe Hr(Ro-0c

9. We next study the continuity of the mapping C*h(z,O: R*L,(R). We
can write

(* \
h(2, .i): *. [,ä n-ru,(Oz-")

in some /o(*, Q) with a,16;: Zi=rt,@ei*( (n:2,3, ...). Suppose (,(,(/ (0, o):
lzl=o (i:1,2,3). Then the continuity of (-tr(O impties the existence of a con-
stant Ko=O such that la"(Ol=K"o" (n:2,3,...), and we obtain lh(2,()l=
K"Z7=rn-ro"lzl-n on Ao(*,o) with q>o. Therefore

(17) [*J,, *J;, *Je.l [i;l : - [,.:,l
[l* 6, tn ;, rm 6uJ [rrJ [r", d

The determinant of the first matrix is nonzero since (, , (r, (, arc not collinear. There-
fore by the Cramer formula the solution vector with components t j:t j(C) (j:1,2,3)
in R satisfying (17) is uniquely determined, and continuous (in fact harmonic) with
respect to (. The function h(.,O in (16) with the ti:ti(O (j:1,2,3) thus deter-
nrined by (17) belongs to Hz(Ro-OcHr(R-O and we also have h(2, .)€H(R-z).

( 18) llh( ", Oll oo1*,o.y = /m K"orl(a - o).



Let (,C'(R be contained in /(0,o), Q>o, and A:Z(0,p,\-A(O,o). Then

llh(-,O-h(.,l'')ll'^=llh(.,0-h(.,C)ll''c, which is dominated by the sum of

llh(' ,0- h(' ,C)ll'r<o,,',, llh(' ,0-h(' ,()ll'n, and llh(',O-h(' ,()ll'ro<*,0t. The

first of these three terms is dominated by

(-" 
\2

t å V i «l -t; (O I ll /s,ll rro.,, + llt a - I a'll dp,,t),
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the second by

" 
@' - å') 

§lpn 
lh (2, O - h (2, O1)',

and the last by (lllr(.,Ollr.1-,ny*llh(.,()lloo<*,0)', which is not greater than

2nKloal@-r)' by (18). We conclude that

lim sup llh(. ,O-h(., (')ll* = 1/2nx,o'1(e-o).
(,*(

On letting Q**- we obtain lima,-6llh(.,O-h(.,(')lln:g.

10. Let ua@):h(z,C)-H^(2,0. Clearly uE€Hr(R) and thus the projection

ot h(',Oe rur1a-q) on flr(,R)ra:Rä*(', O is ä*(', O. Observe that

llh(.,O-h(. ,()ll,^: ll1{"( . ,O-H^(., Ollä+ llua.-uyll,.

We have obtained the following

Theorem. On a strong region R

(19) |,;l llr^f . , O- Ho(., (')ll : o.

11. Let R' and R" be subregions of a strong region Ä, hence strong regions.

lf R'cR", then ä^"(.,C)-H^,(.,O belongs to II,(R') and is orthogonal to
H^,(.,O over R'. Therefore

(20) ilä""(.,0-Hn,(,()llä, : llH^"(.,()llå,-llä^.(.,011å,.

We denote bV {O} the family of regular subregions O of Å, a directed set by inclusion,

and set Hs(z,O:Q for z(R-Q. In view of (20), {llHn(., Oln}oe rrr is an increas-

ing net and {ä"(.,O}oerot is a Cauchy net in Zr(R). It is easl'to check that the

limit is H*(-,O and

ll1{^(., O- Hn(', 0ll1 : li}1^(., Oili- iiH"(., Olli.

On any compact subset.E of R, both llä"(.,Ollä (O=E) and llfl^(.,$llft are

continuous (see (19)). Thus the Dini theorem implies:

Theorem. If R is strong, then for any compqct subset E of R

(21) å* (;U 1111"( . , O- Ha(' , 0ll*) : 0.
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(cf.

(22)

12. We renark that the biharmonic Green's function of the disk / (0, g) is
e.g. Garabedian l2))

rop,o1(z,o : # ll,-er"rlffil.+04,- e\ta,- n)]

on /(0, dY.Å(O, Ai). Hence, clearly C€Op. Similarly, the biharmonic Green's

function of the punctured disk /o(0, s) is (cf. [4], [5])

(23) §roe,d(2, O : §o<o,ot(r, O-l6nQ-' §r<o,nt?, 0)Ble,d(L 0)l

on /o(0, q)X/o(0, q). Therefore C-{0}€Op.
In view of the above, relation (4), and the theorem in no. 7, the assertions 1o

and 3o can easily be deduced. By nos. 9 and 10 the first three assertions in 20 are

clear. Since fro(,0 is biharmonic on Q-( and uniformly convergentto §*(.,o
on every compact subset of JR-(, §*(.,() is also biharmonic on .rR-(.
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