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DETERMINATION OF SAMPLE SIZES FOR USE IN 

  CONSTRUCTING CONFIDENCE INTERVALS 

      FOR A BINOMIAL PARAMETER

Manabu Iwasaki* and Noriko Hidaka•õ

ABSTRACT

    This article considers exact and approximate confidence intervals for a binomial 
parameter p. Specifically, we will deal with the problem of determination of sample 
sizes which guarantee the probability that 100(1- a)% confidence intervals for p do 
not include pre-specified constants is greater than 1- 3. It is shown here that the 
coverage probability of confidence intervals is not an increasing function of the sample 
size, which is a consequence of the discreteness of binomial distributions. Illustrative 
numerical examples and some theoretical consideration for such anomalous behavior 
are given. We also briefly treat the case that the initial guess of the true binomial 
parameter is vague.

1. Introduction 

   We will consider a binomial distribution B(n, p) for n independent Bernoulli trials with 
proportion p. Since forming a confidence interval for p is one of the most basic analyses 
in statistical inference, most elementary textbooks deal with this problem in some depth. 
Although this problem seems to be a simple and fundamental one, there still remain issues 
to be discussed carefully. In fact several articles have been published in recent statistical 
journals; see, for example, Agresti and Caffo (2000), Agresti and Coull (1998), Iwasaki and 
Hidaka (2001), Leemis and Trivedi (1996), Newcombe (1998), Sahai and Khurshid (1996), 
Vollset (1993), Wang (2000) and Wardell (1997). These articles mainly concern anomalous 
behavior of actual coverage probabilities of confidence intervals: the coverage probabilities 
are much greater or smaller than the nominal confidence coefficient and are not monotonic 
in proportion p. 

   In this article, we consider confidence intervals from the viewpoint of sample size de-
termination. It is shown here that the larger sample sizes do not necessarily provide better 
results. Let (13L,uiU) be a 100(1- a)% confidence interval for p based on an observed fre-
quency of a random variable X which follows B (n, p). For pre-specified quantities Po and pl 
(0 < Po <P1 < 1), we consider the situation that it is required either the lower confidence 
limit pL is greater than Po or the upper confidence limit pU is less than pl, or both. For 
example, if p is the probability of recovery of a patient in a clinical trial, then a lower bound 
would be placed to specify the minimum required probability of such recovery. On the other
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hand, if p is the probability of occurrence of some adverse event, then an upper bound 
would be more appropriate. Since n - X N B(n, l - p), the upper-bound problem can be 
easily solved from the corresponding lower-bound counterpart. Therefore, in this article, we 
consider the lower-bound problem only. 

   For pre-specified small probabilities a and b, and assuming that an initial guess pg of p 
is true, our aim is to determine appropriate sample sizes which ensure 

                   Pr(po < pL I P = Pg) > 1-3. 

It is well known that a confidence interval consists of parameter values which are not rejected 
by the corresponding statistical test; see, for example, Cox and Hinkley (1974). Specifically, 
if a random variable X follows B(n, p) and x* is an observed value, the p-value (actual 
significance probability) for a one-sided test Ho : p = Po vs. H1 : p > Po is given by 
Pr(x* < X I p = po). A confidence interval for p is the set of Po values for which this p-value 
is greater than a pre-specified significance level. The power under H1 : p = pg > po is 
also defined as Pr(x* < X p = pg). Our objective is to obtain sample sizes such that the 
power of detecting H1 is greater than or equal to 1-,3 when the true parameter value is pg. 
For this reason, the quantity a and 1- ~3 will be also called "significance probability" and 
the "power", respectively, in the subsequent sections. For detailed argument of sample size 
determination for testing, see, for example, Fisher and van Belle (1993) and Fleiss (1981). 

   In Section 2, various formulae of sample-size determination are given, in which we deal 
with three procedures: the exact interval of Clopper and Pearson (1934), the score confidence 
interval ascribed to Wilson (1927), and the Wald-type interval which is frequently referred 
to in elementary textbooks. Section 3 gives numerical examples and relevant theoretical 
consideration. In Section 4, we briefly discuss the case that the initial guess pg of the true p 
is vague. Finally in Section 5, we conclude the article and give practical recommendations 
to practitioners. 

2. Formulae for sample sizes 

   The problem of sample size determination can be formulated as follows. First, three 
quantities are to be specified; the confidence coefficient 1- a, the power 1- ;3 and the 
lower bound Po. We also need an initial guess pg of the true binomial parameter, in which 
the subscript g is for "guess". Then, for a particular construction method of 100(1- a)%O 
confidence interval (jL, pU) for p, the required sample size n is determined to meet the 
following requirements. Let Xn be a random variable which has B(n, p) and x(n)* be the 
smallest integer such that x (n) * <X n implies po < PL. The parameters n remind us that 
these quantities are functions of sample size n to be determined. Then, for the value x(n)* 
that satisfies 

           Pr(po <- PL I P = po) = Pr(x(n)* < Xn p = po) <- a / 2, (1) 

which ensures the actual significance level is at most a/2, the sample size n is to be chosen 
to satisfy the power requirement 

           Pr(po < PL I p = pg) = Pr(x(n)* < Xn I p = pg) ~ 1- /3• (2) 

Different calculation methods of the probabilities (1) and (2) give different results as shown 
below.
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Sample Sizes in Constructing Confidence Intervals for a Binomial Parameter

   We will consider here the following three methods to construct confidence interval for a 
binomial parameter p. The first one is an exact interval in the sense that the construction is 
based on exact calculus of binomial probabilities of (1), whereas the others are approximate 
in that they utilize normal approximation to calculation of (1). Although some other meth-
ods have been proposed in the literature these three methods are most frequently referred 
to in statistical books and papers. For some other methods, see Leemis and Trivedi (1996),
Newcombe (1998), Sahai and Khurshid (1996) and Vollset (1993).

1. Exact interval of Clopper and Pearson (1934): This method makes exact calculation of 
the probability (1). For an observed frequency x, the lower limit pL and the upper limit pU 
of the interval are given by the values that satisfy

(3)

and

(4)

respectively. These confidence limits are obtained from the relationship between binomial 
distributions and F distributions. If we denote by Fa,b (a/2) the upper 100a/2% percentile 
of an F distribution with degrees of freedom (a, b), then we have

where k1 = 2(n - x + 1),12 = 2x, and

where 11 = 2(x + 1), 12 = 2(n - x). In this construction method, we have to make clear the 
choice of the confidence coefficient when the observed frequency x is 0 or n. Wang (2000) 
suggests using a instead of a/2 in (3) and (4) from the viewpoint of fiducial inference. On 
the other hand, other authors, Agresti and Coull (1998), Newcombe (1998), Vollset (1993) 
and also the original Clopper and Pearson (1934) use a/2. In this article, even when x = 0 
or n, we will use a/2. See Iwasaki and Hidaka (2001) for relevant discussion. 

2. Score-type approximate interval: This method uses a normal approximation to (1) and 
is obtained from the score test for proportion p. Since this interval first appeared in Wilson 
(1927), it is sometimes called the Wilson method (Agresti and Coull,1998). Since the sample 
proportion p = Xn/n approximately distributes as a normal distribution N(p,p(1- p)/n) 
when n is sufficiently large, we have

where z(a/2) is the upper 100a/2% percentile of N(0,1). The lower and the upper confi-
dence limits are given by solving the equation
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with respect to p. After some calculation we obtain

and

respectively. Although these formulae seem complicated at a first glance, Agresti and Coull 
(1998) pointed out that they can be interpreted as a weighted mixture of p = p and p =1/2 
with weights 1 and z(a/2)2/n. See also Agresti and Caffo (2000). 

3. Wald-type approximate interval: This interval is based on the asymptotic normality of 
the Wald-type statistic (j3 - p)//j3(1 - p) /n. Solving the equation

with respect to p, we obtain the Wald-type interval

(s)

which frequently appears in elementary textbooks.

   Before we obtain required sample sizes for the construction methods above, we first 

give a conventional textbook formula to determine the sample size to meet the required 
conditions. This is based on the Wald-type approximate confidence interval (5). It also uses 
normal approximation in calculating the power (2). The sample-size formula is given by

(6)

cf. Miyahara and Tango (1995), p. 265, (11.4). We shall denote by no the smallest integer 
that satisfies (6). For example, when o = 0.05, 1- /3 = 0.8, po = 0.6 and pg = 0.8, we have 
no = 43. In this case, the power 1- ,3 under each sample size n greater than no is expected 
to be greater than the power of n0. This is true for continuous distributions, and it is the 
reason why we calculate the smallest value n0 only. For discrete cases, however, this is not 
true. Hence, we have to report not only the smallest value but also some other values as 
shown below. 

   The sample size based on the exact interval is obtained as follows. We will use the 
relationship between confidence interval and corresponding hypothesis testing, which was 
briefly discussed in Section 1. Let Xe (n) * be the smallest integer that satisfies

(7)
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in which the subscript e stands for "exact". Required sample sizes n should satisfy

(8)

As will be shown numerically in the next section, even if an n satisfies both (7) and (8), n+ 1 
does not always satisfy (8). For example, when a = 0.05,1- /3 = 0.8, Po = 0.6 and pg = 0.8 
as before, the sample sizes n = 45 and 46 satisfy the required conditions, while n = 47 does 
not meet the requirement. In fact, the corresponding power becomes 1- ,3 = 0.783 when 
n = 47. - This seems problematic. 

   The sample size for the score-type interval becomes as follows. The critical value xs (n) * 
is the smallest integer that satisfies

in which the subscript s stands for "score." Although we used a normal approximation to 
evaluate (1), we will make exact calculation of (2). In this case, the required sample size n 
is the integer such that

   The sample size of this method has almost the same property as that of the exact 
method. For example, under the same setting of a = 0.05, 1 - /3 = 0.8, Po = 0.6 and 

pg = 0.8, we see that n = 41 satisfies the required conditions, while n = 42 and 43 do not 
meet the requirement, whose powers are 0.795 and 0.771 respectively. 

   The sample size for the Wald-type interval becomes as follows. In order that Po < PL, 

we should have

from which we have

 - po) > (z(a/2)){j3(1 -

Hence we get a critical value xW (n) * , where the subscript W is for "Wall", which is the 
smallest integer that satisfies

(9)

The required sample size is obtained to satisfy

This easy-to-use method also suffers from the same difficulty as before. Actually when 
a = 0.05,1- /3 = 0.8, po = 0.6 and pg = 0.8, we see that n = 36 and 37 satisfy the required 
conditions, while n = 38 does not meet the requirement, in fact 1-,3 = 0.784. The situation 
is much worse, because many authors have pointed out that the true coverage probability 
of this method can be considerably lower than expected. Therefore, the Wald-type interval 
cannot be recommended to use in practice.
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3. Numerical illustrations and some relevant theory 

   In this section, we will make numerical comparison of the sample sizes calculated by 
the methods of the previous section. The calculation methods as well as the derived sample 
sizes are referred to as "textbook" , "exact" , "score" and "Wall" for short. We let a = 0.05 
and 1- j3 = 0.8, which is one of the most frequent settings in practice. For illustration 
we consider the cases po = 0.6 and 0.9 in detail. The choice po = 0.6 can be a minimum 
requirement in a clinical trial for a new anti-hypertension drug. For sensitivity and specificity 
of diagnostic or screening tests the probability to obtain a correct result should be large, 
and hence po = 0.9 might be required. 

   Table 1 shows the actual significance probabilities a* and the actual power 1- 3* of 
exact confidence intervals for various values of n and pg when a = 0.05 and pe = 0.6. We 
can draw two types of figures from Table 1; one shows the behavior of 1- ,3* in the rows 
and the other shows that in the columns of the table. They are given in Figure 1 (the row 
graph) and Figure 2 (the column graph) for some selected pg and n. 

   We observe in Figure 1 that the power is not an increasing function of n, which means 
that the larger sample size does not always provide higher power. The reason for this 
phenomenon will be given below. In Figure 2 we see that, for any fixed n, the power 1- ~* 
is an increasing function of the initial guess Pg. This fact can be easily shown from the 
relationship between the binomial distribution and the F distribution. It should be noted 
here that the power function of a larger sample does not necessarily lie above the functions 
of smaller sample sizes. In fact, we see in Figure 2 that the power functions lie in the order 
of n = 48, 45, 46, 47 and 44 from the above. 

   Figure 3 shows the same graph as Figure 1 for po = 0.9. In Figure 3 we see much 
worse behavior of the power function. The gaps of the zigzags are large. Actually the gap 
is almost 0.35 between n = 53 and 54. It is frequently recommended to use exact methods 
when the binomial parameter is near 0 or 1, since in such cases the normal approximation 
would not be appropriate. In such cases we have to be aware of this unexpected behavior 
of the power function. 

   Required sample sizes to meet the conditions for each calculation method are summa-

Table 1: Critical values x*, actual significance probability a* and the power 1- /3 of "exact" 
       intervals for various n and pa when a = 0.05 and po = 0.6
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rized in Table 2 (Po = 0.6) and Table 3 (P0 = 0.9). In each table, the first column shows the 
values of pg. The second column gives the sample sizes calculated by the textbook formula 
(7). The third and the fourth columns show the sample sizes for the exact interval, in which 
the third column "Exact (L)" gives the minimum sample sizes which meet the required con-
ditions, and the forth column "Exact (H)" shows the minimum sample size such that all the 
sample sizes greater than or equal to that value meet the requirement (L stands for "lowest", 
while H stands for "highest"). Then we see that each of the sample sizes n = Exact (H) -1 
does not meet the requirement unless it happens to be Exact (L) . For example, in the row 
"p

g = 0.8" in Table 2, we read Exact(L) = 45 and Exact(H) = 48. This means that the 
minimum required sample size is 45 and that n = 46 and 47 do not meet the requirement. 
We also understand that all the sample sizes n > 48 meet the requirement. This fact can 
be also confirmed from Table 1. The meanings of subsequent columns are the same. 

   It is worth noting that the sample sizes of the Wald interval for the case that Po is very 
close to 1 would give misleading results, since the normal approximation no longer works. If 
n =1 and x =1 then the right-hand side of (9) becomes less than 1, and hence the formula

Fig. 1: The power 1-,3 of "exact" intervals for various n's and three selected pg's when a = 0.05 
       and po = 0.6

Fig. 2: The power 1-~3 of "exact" intervals as the functions of pg for five selected n's when a = 0.05 
       and Po = 0.6
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concludes x* = 1. If Pr(X = 1 p = pg) = pg > 1- ,3, n = 1 is automatically identified 
to be a required sample size. This is of course unrealistic and erroneous. Hence, we have 
to put a restriction for Wald (L) . In Table 3, since the minimum sample size which ensures 
a* <0.025 is 36, we set Wald(L) = 36 as a minimum requirement. 

   Let us consider the reason why the power is not an increasing function of n. We denote 
the probability function of B(n, p) by 

                 p(x; n, p) = Pr(X = x) = nCxpx (1- p)n-X 

where nC~ = n!l{x!(n - x)!} is the binomial coefficient. The lower and upper cumulative

Fig. 3: The power 1- 3 of "exact" intervals for various n's and three selected pg's when = 0.05 
       and po = 0.9

Table 2: Sample sizes for various initial guesses pg when a = 0.05, 1- = 0.8 and po = 0.6
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probabilities are to be denoted by

(10)

and

(11)

respectively. Note that P(x; ri, p) + Q(x; n, p) is not equal to 1 because p(x; n, p) is involved 
in both cumulative probabilities. First we will show a lemma. 

Lemma 1 For the probabilities of B(n, p), it holds 

               x (n+1)pp(x;'rt+1,p) < p(x; n, p) (12) 

and 

            x < (n+ 1)p-1 p(x + 1;n+ lap) >_ p(x; n, p). (13) 

Proof Since

the inequality

Table 3: Sample sizes for various initial guesses pg when c = 0.05,1- ,~ = 0.8 and po = 0.9
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follows if and only if x < (n + 1)p, and hence (12) holds. Similarly for (13), since we have

the inequality

follows if and only if x < (n + 1)p -1, which completes the proof. 0 

The zigzag behavior of the power function shown in Figures 1 and 3 can be deduced from 
the following theorem. 

Theorem 1 For the lower cumulative probability (10) we obtain 

              x < (n+1)p= P(x; n + 1, p) < P(x; n, p) (14) 

and 

            x < (n+1)p-1 = P(x + 1; n + 1, p) > P(x; n, p). (15) 

For the upper cumulative probability (11) we have 

              x > (n+ 1)p = Q(x; n + 1, p) > Q(x; n, p) (16) 

and 

           x > (n+ 1)p-1= Q(x + 1;n+ 1,p) < Q(x; n,p). (17) 

Proof. . Since

and

the inequalities (14) and (17) obviously hold because the inequalities (12) and (13) hold for 
each k and noting that at least one strict inequality hold in the summation. For (15), it 
follows that
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which is positive from (13). Also for (16), we have

which is also shown to be positive from (12), as is required. 0 

   For the exact interval, let Xn have B(rn, p) and if the sample size is n and the critical 
value is x*, then the actual significance probability an* and the actual power 1- /3,n*, in 
which the subscript n denotes the sample size being considered, can be expressed as 

                   an* = Pr(x* <X n I po) = Q(x*; n, po) 

and 

               1-13 n* = Pr(x* < Xn I pg) =1- P(x* -1; n,pg) 

from which we have 

                           13n* = P (x * - 1; n, pg ) 

Since x* is obviously greater than (n + 1)po, from Theorem 1 we have 

                     Q (x*; n + 1, po) >- Q (x*; n, po) 

and 

                   Q(x* + 1;n+ l,po) <- Q(x*; n,po). 

If the required power is greater than 0.5, which is a condition which should be achieved in 
practice, x* is less than (n + 1)pg. Hence, we have 

                    P(x* -1;m+ l,pg) <_ P(x* - l; n,pg) 

and 

                   P(x*; n + l,pg) > P(x* -1; n,pg). 

The above results provide a proof of the findings in our numerical illustration. If the critical 
value becomes x* + 1 under n + 1 then both the actual significance probability a* and the 
power 1- /3* decrease, that is 

              an+1* = Q(x* + 1;n+ l,po) c Q(x*; n,po) _ an* 

and 

         1- /n+1* =1- P(x*; n + 1,pg) <-1- P(x* -1; n,pg) =1- 1n*.
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However, if the critical value still remains x* even under n + 1 then cti* and 1- /* will both 
increase, i.e. 

                an+l* ` Q(x*; n + 1,p0) ~ Q(x*; n,p0) = ~n* 

and 

   1_/3n+1* = 1 - P(x* - li n + 1,pg) ~ 1 - P(x* - li n,pg) = 1_/3*.                                                            n

We actually observe in Table 1 that when the sample size n increases the actual signif-
icance probability c * and the power 1- behave similarly, that is, when & increases the 
power 1- ,Q* also increases, and vice versa. The same behavior of the power in "score" and "Wall" can be exemplified in the same way. 

4. Vague initial guess 

   In the previous sections we have developed our argument under the assumption that 
we have a concrete initial guess pg . This might be, however, unrealistic in practice in that 
our prior knowledge for pg is sometimes vague. Then we have to take into account such 
vagueness in our sample size determination. An attempt for dealing with such vagueness 
is given in this section. We will focus on the exact interval only in this section. The other 
types of intervals can be treated similarly. 

   We first specify by ourselves or ask the researcher to specify an interval (c, d) in which 
the true p probably lies from present subject-matter knowledge. Then the most obvious 
method to give appropriate sample sizes is as follows. For a specified interval (c, d), we 
calculate Exact(L) under c and also give Exact(H) under d for recommended sample sizes. 
These sample sizes usually form an interval. From this interval we will choose an appropriate 
sample size. For example, when c = 0.05,1- ,Q = 0.8 and po = 0.6, if the specified interval 
is (0.78, 0.8) then the recommended sample sizes are between 48 (Exact(H) under 0.8) and 
54 (Exact (L) under 0.78). 

   We see that the interval (48, 54) above seems wider than expected even under such 
precise specification of (0.78, 0.8). This is a consequence of the fact that the required 
sample size is very sensitive to the specification of pg unless pg is far from po. 

5. Conclusion 

   For the problem of sample size determination, we have seen that the discreteness of 
binomial distributions causes a serious difficulty. It is necessary to report not only the 
minimum sample size but also all the sample sizes that satisfy the required conditions. Since 
the sample size n + 1 does not always provide better result than n, the term "minimum" 
should be used with some caution. 

   It is worth noting that employment of the minimum required sample size, n* say, would 
be dangerous because the gap of the power between n* -1 and n* is larger than expected 
as is observed in Table 1 (p0 = 0.6) and Table 3 (p0 = 0.9). Table 3 also indicates that the 
situation becomes worse if the binomial probability is near 1 (or also near 0). We observe 
in these figures that if one observation happens to be lost for some reason, then the power 
may considerably decrease. It is also observed that even if one more observation happens 
to be obtained, the power does not necessarily increase. In fact, the sample size of n* + 1 
is not a clever choice because the power is mostly less than n* . Then, how should we
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choose an appropriate sample size? What information should be provided to practitioners 
in determining the correct sample size? 

   One possible and realistic solution is to show the graphs such as Figures 1 and 2. These 
graphs contain all the relevant information to be provided in sample size determination. 
Nowadays, such figures can be easily drawn by using a PC. In order to determine an appro-
priate sample size we should consider many things, some of which are non-statistical issue 
such as cost, deadline and feasibility of the study. For determining an appropriate sample 
size, we have to take into account such non-statistical things and also the statistical concepts 
such as the probable value of true p and the power to exclude the required lower bound as 
well. 

Added to the proof 

   During the reviewing process of the present paper, three articles, Brown, Cai and 
DasGupta (2001), Cesana, Reina and Marubini (2001) and Henderson and Meyer (2001) 
came to the authors' attention. These articles deal with issues closely related to our paper. 
In particular, a review article Brown et al. (2001) and subsequent discussions are very helpful 
to understand the background of our paper. 
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