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Abstract 

Citrus is the main fruit crop in the world and Spain is the 6
th
 producer and the major exporter for 

the fresh fruit market. Seedlessness is one of the most important fruit quality traits for this 

market since consumers do not accept seedy fruits. Recovery of triploid hybrids has become an 

important breeding strategy to develop new seedless citrus varieties and several of them have 

been already released from citrus breeding programs worldwide. Despite the undisputable 

importance of polyploidy in plant species, their genetics are much less well known than those of 

their diploid counterparts. 

Citrus triploid hybrids can be routinely recovered from sexual polyploidization (2x × 2x) or 

interploid crosses (2x × 4x and 4x × 2x). In 2x × 2x sexual crosses, spontaneous triploid hybrids 

arise from the union of an unreduced (2n) megagametophyte with haploid pollen. In the case of 

interploid sexual crosses (2x × 4x and 4x × 2x), triploid hybrids result from the fecundation of a 

diploid gamete arising from the tetraploid parent and a haploid gamete arising from the diploid 

parent. The genetic and phenotypic structures of triploid populations greatly depend on the 

parental heterozygosity restitution (HR) in the diploid gamete at each locus, which is mainly 

affected by the triploid recovery strategy. In 2x × 2x crosses, HR depends on the underlying 

mechanism leading to the unreduced gamete formation, which are genetically equivalent to First 

Division Restitution (FDR) or Second Division Restitution (SDR) mechanisms. Moreover, under 

each restitution mechanism, HR also depends on the locus-centromere genetic distance. In the 

case of interploid crosses, parental heterozygosity restitution from tetraploid parents depends 

on the double reduction frequency.  In citrus, the unreduced gamete formation mechanism is 

still controversial; FDR has been the mechanism proposed for sweet orange, whereas SDR has 

been proposed for clementine. On the other hand, inferring the allelic configurations of genetic 

markers is a main challenge in polyploidy crops to infer genotypic and gametic structures with 

the objective to analyze meiosis and inheritance mechanisms.  

According to this scientific context, the objectives of the thesis where: (i) to develop a new 

approach for allele dosis assignation when using co-dominant markers, (ii) to implement and 

apply methods for the analysis of 2n gametes origin and locate centromeres, and (iii) to take 

advantage of this knowledge to locate a major gene of resistance to Alternaria Brown Spot 

(ABS) which is a major constraint for triploid mandarin breeding.   

For microsatellite (SSR) markers, we have demonstrated that triploid progeny genotyping can 

be successfully performed using the microsatellite allele-counting peak ratio (MAC-PR) method. 

However, SSR analysis remains relatively costly and time consuming compared with actual 

SNP genotyping methods. Moreover, with the increasing availability of EST databases and 

whole genome sequences, SNPs have become the most abundant and powerful polymorphic 

markers that can be selected along the entire genome. In this thesis, a new method based on 

competitive allele-specific PCR has been developed to assign SNP allele dosage in an 

accurate, simple, and cost effective way. Combining the MAC-PR and the new developed SNP 
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genotyping methods offers the possibility to utilize a broad range of molecular markers in 

genotyping triploid genotypes. Both methods have been used in further works included in this 

thesis. 

SDR has been demonstrated as the mechanism underlying unreduced gamete production in 

‘Fortune’ mandarin by genotyping triploid progenies with SSR markers. In addition, a new 

method to locate the centromere, based on the best fit between observed heterozygosity 

restitution within a linkage group and theoretical functions under either partial or no chiasma 

interference hypotheses has been developed and successfully applied. 

To expand the knowledge of the mechanism underlying unreduced gamete formation to other 

citrus genotypes besides clementines and ‘Fortune’ mandarin, a maximum likelihood method 

based on parental heterozygosity restitution of centromeric loci was developed and successfully 

applied in sixteen mandarin cultivars. The new method developed in the study allows inferring 

the restitution mechanism both at population level and even at individual level. Maternal origin 

of 2n gametes was confirmed for all triploid hybrids and SDR was proposed as the restitution 

mechanism for all analyzed progenies. 

The information acquired from the mode of heterozygosity restitution in citrus was useful to 

determine the genetic and phenotypic structures of new triploid populations arising from 

different breeding strategies. We studied these structures for the resistance to Alternaria brown 

spot (ABS), a serious fungal disease producing necrotic lesions on fruits and young leaves in 

susceptible citrus genotypes. In the present work, different approaches were combined taking 

advantage of the particular genetic structures of 2n gametes resulting from SDR to map a 

genome region linked to ABS resistance in triploid citrus progeny. The monolocus dominant 

inheritance of the susceptibility, proposed on the basis of diploid population studies, was 

corroborated in triploid progeny. A 3.3 Mb genomic region linked to ABS resistance was located 

near the centromere on chromosome III, which includes clusters of resistance genes. SSR and 

SNP markers were developed for an efficient early selection of ABS resistant hybrids and they 

are currently used in our breeding program to perform marker assisted selection. 

The knowledge obtained in this thesis on the mechanism of sexual polyploidization and 

inheritance of concrete traits in citrus will allow implementing much more efficient triploid 

breeding programs on the basis of current and future needs. Indeed, applied outcomes of this 

PhD are already routinely used in the IVIA triploid breeding program. 
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Resumen 

Los cítricos son el principal cultivo frutal del mundo, siendo España el sexto productor mundial 

y el primer país exportador para el mercado en fresco. La ausencia de semillas constituye una 

de las características más importantes relacionadas con la calidad de los frutos, no siendo 

aceptados por los consumidores los frutos con semillas. La obtención de híbridos triploides se 

ha convertido en una estrategia importante para desarrollar variedades sin semillas, algunas de 

las cuales ya están disponibles en el mercado. A pesar de la importancia de las plantas 

poliploides, la genética de las mismas es mucho menos conocida que en plantas diploides. 

Los híbridos triploides de cítricos se pueden obtener de forma rutinaria a partir de mecanismos 

de poliploidización sexual (2x × 2x) o mediante cruzamientos interploides (2x × 4x ó 4x × 2x). 

En los cruzamientos 2x × 2x, se producen híbridos triploides espontáneos que proceden de la 

unión de un óvulo no reducido (2n) con polen haploide. En el caso de cruzamientos 

interploides, los híbridos triploides resultan de la fecundación de un gameto diploide procedente 

del parental tetraploide con polen haploide procedente del parental diploide. Las estructuras 

genéticas y fenotípicas de las poblaciones triploides obtenidas dependen en gran medida de la 

restitución de heterocigosidad parental (HR) en el gameto diploide para cada locus, lo que está 

influido principalmente por la estrategia de obtención de estas poblaciones. En cruzamientos 2x 

× 2x, HR depende del mecanismo que da lugar a la formación del gameto no reducido; estos 

mecanismos son genéticamente equivalentes a una restitución en la primera división meiótica 

(FDR) o una restitución en la segunda división meiótica (SDR). Además, para cada mecanismo 

de restitución de heterocigosidad, HR depende a su vez de la distancia genética entre el locus 

considerado y el centrómero. En caso de cruzamientos interploides, la restitución de la 

heterocigosidad del parental tetraploide depende de la frecuencia de doble reducción. En los 

cítricos, existe cierta controversia sobre el mecanismo de formación de gametos no reducidos. 

En el caso de naranjo dulce, el mecanismo propuesto es FDR, mientras que para el clementino 

se ha propuesto SDR. Por otro lado, la asignación de las configuraciones alélicas de 

marcadores genéticos en especies poliploides es esencial para inferir las estructuras 

genotípicas y gaméticas con el objetivo de estudiar los mecanismos de meiosis y herencia. En 

este contexto, los objetivos científicos de la tesis han sido: (i) desarrollar un nuevo método para 

asignar dosis alélicas utilizando marcadores codominantes, (ii) implementar y aplicar nuevas 

estrategias para analizar el origen de los gametos no reducidos y localizar centrómeros y (iii) 

utilizar el conocimiento generado para localizar un gen mayor de resistencia a la mancha 

marrón producida por el hongo Alternaria, que supone actualmente un inconveniente en los 

programas de mejora de mandarino. 

En el caso de marcadores microsatelites (SSRs), se ha demostrado que el genotipado de 

poblaciones triploides puede llevarse a cabo mediante el método microsatellite allele-counting 

peak ratio (MAC-PR). Sin embargo, el empleo de marcadores SSR es relativamente costoso y 

lento, en comparación con los métodos actuales de genotipado de SNP. Además, con la 

creciente disponibilidad de bases de datos procedentes de ESTs y secuenciación completa de 
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genomas, los SNP se han convertido en los marcadores polimórficos más abundantes y 

efectivos que se pueden utilizar. En la presente tesis, se ha desarrollado un método basado en 

PCR competitiva específica de alelos para asignar las dosis alélicas de SNPs de una forma 

precisa, simple y efectiva. La combinación de este nuevo método con el MAC-PR ofrece la 

posibilidad de emplear un gran abanico de marcadores moleculares para el genotipado de 

poblaciones triploides. Ambos métodos se han empleado en los trabajos descritos a lo largo de 

esta tesis. 

Mediante la utilización de marcadores SSR, se ha demostrado que el mecanismo que da lugar 

a la formación de gametos no reducidos en el mandarino ‘Fortune’ es SDR. Además, se ha 

desarrollado y aplicado un nuevo método para localizar centrómeros comparando los datos de 

HR observados dentro de un grupo de ligamiento y funciones teóricas bajo modelos de 

interferencia parcial  y no interferencia. 

Para ampliar el conocimiento sobre los mecanismos de origen de los gametos no reducidos a 

otros genotipos, se ha desarrollado y aplicado un método de máxima similitud basado en la HR 

de marcadores centroméricos. Este nuevo método permite identificar el mecanismo de origen 

tanto a nivel poblacional como a nivel individual. Como resultado, se ha confirmado que SDR 

es el mecanismo de origen de los óvulos diploides en todas las poblaciones de híbridos 

triploides analizadas. 

La información obtenida anteriormente sobre el mecanismo de origen de los gametos no 

reducidos ha sido utilizada para determinar las estructuras genéticas y fenotípicas de nuevas 

poblaciones triploides obtenidas mediante diferentes estrategias. En este sentido, se han 

analizado estas estructuras para la resistencia a la mancha marrón (ABS), una enfermedad 

fúngica importante en los cítricos que produce lesiones necróticas sobre los frutos y hojas 

jóvenes de los genotipos susceptibles. En la presente tesis, a partir del conocimiento de la 

estructura genética particular proveniente de SDR como mecanismo de origen de los gametos 

no reducidos, se han combinado diferentes estrategias para analizar la resistencia a ABS en 

poblaciones triploides de cítricos. Se ha corroborado en estas poblaciones triploides la herencia 

monolocus dominante propuesta a partir de estudios en poblaciones diploides. Además, se ha 

localizado un región genómica de 3.3 Mb ligada a la resistencia a ABS cerca del centrómero en 

el cromosoma III, en la que se incluyen varios grupos  de genes de resistencia. También se han 

desarrollado marcadores SSR y SNP para realizar una selección temprana de híbridos 

resistentes, los cuales están siendo utilizados actualmente en el programa de mejora del IVIA 

para selección asistida por marcadores. 

El conocimiento generado en esta tesis sobre los mecanismos de poliploidización sexual y la 

herencia de caracteres concretos en cítricos permitirá un desarrollo más eficiente de los 

programas de mejora en base a necesidades actuales y futuras. De hecho, los resultados de 

aplicación práctica obtenidos en esta tesis están siendo utilizados actualmente. 
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Resum 

Els cítrics són el principal conreu fruiter del món, sent Espanya el sisé productor mundial i el 

primer exportador de fruita fresca. L’absència de llavors constitueix actualment una de les 

característiques més importants relacionades amb la qualitat des fruits, no sent acceptables per 

part dels consumidors els fruits amb llavors. L’obtenció de híbrids triploides s’ha convertit en 

una estratègia important per al desenvolupament de varietats sense llavors, algunes de les 

quals estan disponibles al mercat. Però, a pesar de la importància de les espècies poliploides, 

la seua genètica és menys coneguda que en espècies diploides. 

Els híbrids triploides de cítrics es poden obtindre de forma rutinària mitjançant mecanismes de 

poliploidització sexual (2x × 2x) o mitjançant creuaments interploides (2x × 4x ó 4x × 2x). Als 

creuaments 2x × 2x es produeixen híbrids triploides espontanis que procedeixen de la unió d’un 

òvul no reduït (2n) amb pol·len haploide. En el cas de creuaments interploides, els híbrids 

triploides resulten de la fecundació d’una gàmeta diploide procedent del parental tetraploide 

amb pol·len haploide procedent del parental diploide. Les estructures genètiques i fenotípiques 

de les poblacions triploides obtingudes depenen en gran mesura de la restitució d’heterozigosis 

parental (HR) en la gàmeta diploide per a cada locus, el que està influït principalment per 

l’estratègia d’obtenció de les poblacions triploides. Als creuaments 2x × 2x, HR depèn del 

mecanisme que origina la formació de la gàmeta no reduïda; aquestos mecanismes són 

genèticament equivalents a una restitució a la primera divisió meiòtica (FDR) o una restitució a 

la segona divisió meiòtica (SDR). A més, per a cada mecanisme de restitució d’heterozigosis, la 

HR per un locus depèn de la distància genètica entre el locus considerat i el centròmer. En cas 

de creuaments interploides, la restitució d’heterozigosis del parental tetraploide depèn de la 

freqüència de doble reducció. En el cas del cítrics, existeix certa controvèrsia sobre el 

mecanisme d’origen de les gàmetes no reduïdes. En cas de taronger dolç, el mecanisme que 

s’ha proposat es FDR, mentre que per al clementí s’ha proposat SDR. D’un altra banda, 

l’assignació de les configuracions al·lèliques de marcadors genètics en espècies poliploides és 

essencial per a inferir les estructures genotípiques i gamètiques amb l’objecte d’estudiar els 

mecanismes de meiosi i herència. En aquest context, els objectius científics de la present tesi 

doctoral són: (i) desenvolupar un nou mètode per a assignar dosis al·lèliques utilitzant 

marcadors moleculars codominants, (ii) implementar i aplicar noves estratègies per a analitzar 

l’origen de les gàmetes no reduïdes i localitzar centròmers i (iii) utilitzar el coneixement generat 

per a localitzar un gen major de resistència a la taca marró produïda pel fong Alternaria, que 

suposa actualment un inconvenient per als programes de millora de mandarí. 

En el cas de marcadors microsatèl·lits (SSR), s’ha demostrat que el genotipatge de poblacions 

triploides pot realitzar-se mitjançant el métode microsatellite allele-counting peak ratio (MAC-

PR). No obstant això, l’ús de marcadors SSR és relativament costós i lent en comparació als 

actuals mètodes de genotipatge de SNPs. A més, amb la creixent disponibilitat de bases de 

dades procedents d’ESTs i seqüenciació completa de genomes, els SNP s’han convertit en els 

marcadors polimòrfics més abundants i efectius que es poden utilitzar. En la present tesi, s’ha 
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desenvolupat un mètode basat en PCR competitiva específica d’al·lels per a assignar les dosis 

al·lèliques de SNP d’un forma senzilla, precisa i efectiva. La combinació d’aquest nou mètode 

amb el MAC-PR ofereix la possibilitat d’utilitzar un gran nombre de marcadors moleculars per al 

genotipatge de poblacions triploides. Ambdós mètodes s’han emprat en els treballs descrits al 

llarg de la present tesi. 

Mitjançant la utilització de marcadors SSR, s’ha demostrat que el mecanisme d’origen de les 

gàmetes no reduïdes  en el mandarí ‘Fortune’ és SDR. A més, s’ha desenvolupat i aplicat un 

nou mètode per a localitzar centròmers comparant les dades de HR observades dins d’un 

mateix grup de lligament amb funcions teòriques baix models d’interferència parcial i no 

interferència. 

Per a ampliar el coneixement sobre els mecanismes d’origen de les gàmetes no reduïdes a 

altres genotips, s’ha desenvolupat i aplicar un mètode de màxima similitud basat en la HR de 

marcadors centromèrics. Aquest nou mètode permet la identificació del mecanisme d’origen 

tant a nivell poblacional com a nivell individual. Com a resultat, s’ha confirmat que SDR és el 

mecanisme d’origen del òvuls diploides en totes les poblacions d’híbrids triploides analitzats.  

La informació obtinguda sobre aquest mecanisme d’origen ha sigut posteriorment utilitzada per 

a determinar les estructures genètiques i fenotípiques de noves poblacions triploides 

obtingudes mitjançant diferents estratègies. En aquest sentit, s’han analitzat aquestes 

estructures per a la resistència a la taca marró (ABS), una infermetat fúngica importat en els 

cítrics que produeix lesions necròtiques als fruits i fulles joves dels genotips susceptibles. En la 

present tesi, a partir del coneixement de l’estructura particular provinent de SDR com a 

mecanisme d’origen de les gàmetes no reduïdes, s’han combinat diferents estratègies per a 

analitzar la resistència a ABS en poblacions triploides de cítrics. S’ha confirmat en aquestes 

poblacions l’herència monolocus dominant proposada a partir d’estudis sobre poblacions 

diploides. A més, s’ha localitzat una regió genòmica lligada a la resistència a ABS prop del 

centròmer del cromosoma III, on s’han trobat diversos grups de gens de resistència. També 

s’han desenvolupat marcadors SSR i SNPs per a realitzar una selecció primerenca dels híbrids 

resistents, els quals estan sent utilitzats actualment al programa de millora del IVIA per a 

selecció assistida per marcadors.  

El coneixement generat a aquesta tesi sobre el mecanismes de poliploidització sexual i 

l’herència de caràcters concrets en cítrics permetrà un dessenvolupament més eficient dels 

programes de millora en base a les necessitats actuals i futures. De fet, els resultats amb 

aplicació més pràctica obtinguts en aquesta tesi doctoral estan sent utilitzats actualment. 
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1. ECONOMIC IMPORTANCE OF CITRUS 

Citrus is the main fruit crop in Spain and worldwide. Total citrus production was over 128 

million tons with 9.2 million hectares of cultivated surface in 2011. Main producer countries are 

Brazil, China, USA, India, Mexico and Spain (FAO, 2013). 

From the agronomic point of view, four varietal groups can be differentiated: oranges, 

mandarins, lemons/limes and grapefruits. World production is led by oranges, with 70 million 

tons (60%) followed by mandarins, with 24.5 million tons (21%), lemons/limes, with 14 million 

tons (12%) and grapefruits, with 8 million tons (7%) (FAO, 2013, Figure 1). 

 About one third of citrus fruit production is processed, mainly for orange juice production. 

Main countries in juice production are United States and Brazil, which produce more than 85% 

of the world market. Relating to mandarins, more than 90% of world production is destined to 

fresh consumption (USDA, 2013). Mediterranean countries mainly destine their citrus 

production for the fresh fruit market, exporting about 3.3 million tons of mandarins in 2011 

(FAO, 2013). Clementine mandarins and related fruit from Spain and Morocco dominate the 

easy-peelers category (Ladaniya, 2008). 

Spain produced 6.3 million tons in 2011, with a cultivated surface of over 330.000 ha, 

mainly producing oranges (51%) and mandarins (36%) (Figure 1). Spain exports 57% of citrus 

fruit production. The Valencia region is the first Spanish citrus producer with 3.5 million tons and 

a cultivated surface of over 170.000 ha, which represents 56% of total Spanish citrus production 

(MAGRAMA, 2013). Valencia region’s production (Figure 1) is led by mandarins (48%) and 

oranges (46%). Within the mandarin group, 70% of production is based on clementines and 

within the orange group, 81% of production is based on navel oranges (GVA, 2013). 

 

 

 

Figure 1. Proportion of the citrus production by group, worldwide, in Spain and in the Valencia region 

(FAO, 2013; GVA, 2013; MAGRAMA, 2013). 
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2. TAXONOMY, ORIGIN AND DIVERSITY OF CITRUS AND RELATED GENERA 

 

2.1. Taxonomy 

Citrus and related genera are classified within the order Geraniales, suborder Geraniineae 

and family Rutaceae. This family comprises six subfamilies, with the Aurantioideae one 

containing Citrus and related genera. The subfamily Aurantioideae is divided into two tribes, 

Clauseneae y Citreae. Tribe Citreae is also subdivided into three sub tribes, with the Citrinae 

one comprising the true citrus sub tribe group, which includes Eremocitrus, Microcitrus, 

Clymenia, Fortunella, Poncirus and Citrus genera. The commonly grown citrus cultivars and 

rootstocks belong to these last three genera. 

Fortunella is a genus with several species known as kumquats, all being small trees with a 

later flowering time than Citrus species, relatively cold tolerant and resistant to citrus canker and 

Phytophthora spp. They bear small fruits with sweet tasting rind. This genus includes four 

species: Fortunella margarita (Lour.) Swing., F. japonica (Thunb.) Swing., F. polyandra (Ridl.) 

Tan. and F. hindsii (Champ.) Swing. Kumquats have been cultivated in China for long time and 

are recently being used as parents in citrus breeding programs. 

Poncirus includes only the Poncirus trifoliata (L.) Raf species. Its use is exclusively as a 

rootstock in some producing areas and as parent in rootstock breeding programs, due to its 

resistance to Citrus Tristeza Virus, citrus nematode (Tylenchulus semipenetrans), Phytophthora 

parasitica and P. citrophthora and its cold tolerance. Its derived hybrids with sweet oranges, 

[`Carrizo´ and `Troyer´ citranges (C. sinensis × P. trifoliata)] are the main rootstocks used in 

Spain; a cross derived from grapefruit and Poncirus (C. paradisi × P. trifoliata) known as 

Citrumelo ‘CPB-4475’ is also used as a rootstock in some citrus producing Spanish areas.  

Botanical classification within the Citrus genus has been a challenge for a long time. The 

most widely accepted taxonomic systems today are those of Swingle (Swingle, 1943; Swingle 

and Reece, 1967) and Tanaka (1977), who recognized 16 and 162 species, respectively.  

Swingle divided the Citrus genus into two subgenus, Papeda and Eucitrus, mainly 

distinguishable by the fruit edibility. Papeda fruits contain essential oil agregates which causes 

sour and unpleasant taste into their juice, whereas Eucitrus fruits contain juice free of essential 

oils with sweet or acid taste. Papeda subgenus includes six species: Citrus ichangensis Swing., 

C. latipes (Swing.) Tan., C. hystrix D.C., C. micrantha Wester, C. celebica Koord. and C. 

macroptera Montr. Eucitrus genus includes ten species: C. medica L., (citron), C. aurantium L. 

(sour orange), C. limon (L.) Burn. f. (lemon), C. aurantifolia (Christm.) Swing. (lime), C. grandis 

(L.) Osb. (pummelo or shadock), C. sinensis (L.) Osb. (sweet orange), C. reticulata Blanco 

(mandarin), C. paradisi Macf. (grapefruit), C. indica Tan. and C. tachibana (Mak.) Tan., with the 

last two species being of less commercial importance. 
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Tanaka divided the Citrus genus into two subgenera, Archicitrus and Metacitrus, including 

162 species. However, in relation to the most commercially important species, differences with 

the Swingle classification mostly affect lemons, limes and mandarins. Tanaka divides limes into 

three species, C. aurantifolia (Christm.) Swing. (Mexican, Galego, Key or West Indian limes), C. 

latifolia Tan. (Bearss, Tahití or Persian limes) and C. limettioides Tan. (Palestine sweet lime).  

 The mandarin group is the main germplasm for citrus breeding. Its classification is 

particularly controversial. Swingle defines only one species (C. reticulata Blanco), (Swingle and 

Reece, 1967), whereas Tanaka includes also C. deliciosa Ten. (Mediterranean or Willowleaf 

mandarin), C. unshiu Marc. (satsumas), C. clementina Hort. ex Tan. (clementines), C. tangerina 

Hort. ex Tan. (Dancy mandarin), C. nobilis Lour. (King mandarin) and other less important 

species (Tanaka, 1977). From an agronomic point of view, Tanaka’s classification is better 

adapted to the characteristics of the different agronomic groups, and it is widely used to 

manage germplasm collections (Krueger and Navarro, 2007). Recent molecular studies 

(García-Lor et al., 2013b) on mandarins reveal that the genomes of most ‘mandarin-like’ 

genotypes are complex admixtures of five parental mandarin groups and even include 

contributions from the other ancestral populations. In the same study, a mitochondrial analysis 

with indel markers revealed four mitotypes in which mandarin and ‘mandarin-like’ genotypes 

were represented. 

 
 

2.2. Origin and distribution of cultivated citrus 

Scora (1975) and Barrett and Rhodes (1976) suggested that there are only three basic true 

species within the subgenus Citrus: C. medica L. (citron), C. reticulata Blanco (mandarin) and C. 

maxima (L.) Osb. (pummelo or shaddock). Recently, this thesis has gained support from various 

biochemical and molecular studies (Herrero et al., 1996; Federici et al., 1998; Nicolosi et al., 

2000; Gulsen and Roose, 2001; Barkley et al., 2006; Li et al., 2010; Penjor et al., 2013), 

suggesting that current citrus groups arise from only four ancestors: citron, mandarin, pummelo 

and C. micrantha Wester (a ‘Papeda’ wild citrus). Other cultivated species within Citrus derive 

from hybridizations between these true species or closely related genera followed, mainly, by 

natural mutations (Gmitter et al., 1992; Davies and Albrigo, 1994; Nicolosi et al., 2000; García-

Lor et al., 2012; Ollitrault et al., 2012b; Uzun and Yesiloglu, 2012; García-Lor et al., 2013b; 

Figure 2). In addition, other groups of cultivars originated from hybridizations between ancestral 

or secondary species are of commercial importance, as tangors (sweet orange × mandarin 

hybrids) and tangelos (mandarin × grapefruit hybrids). 
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Figure 2. Schematic representation of the origin of the main citrus groups. Modified from Ollitrault et al., 

(2012b). 

 

All citrus species and related genera, excluding grapefruit, are thought to have been 

originated in tropical and subtropical regions in Asia and Malaysian archipelago, from where 

they were extended to the other continents (Webber, 1967; Chapot, 1975; Ollitrault and 

Navarro, 2012; Figure 3).  

Citron was the first citrus genotype reported in Spain in the 7
th
 century. It was cultivated in 

the Andalousia region, probably introduced from Italy by the Romans (Zaragoza, 2007).  

Sour orange is a natural hybrid of a mandarin and a pummelo (Li et al., 2010). Sour orange 

was expanded in the 10
th
 century by Arab marketers from India to Iraq, Syria, Palestine, Egypt 

and North Africa, and from there introduced in Spain, Sicilia and Sardinia. Many studies have 

suggested that lemon is likely to be a natural hybrid of a citron and a lime (Scora, 1975; Barrett 

and Rhodes, 1976) or a hybrid of citron and sour orange (Nicolosi et al., 2000; Gulsen and 

Roose, 2001). Lemon is thought to have been introduced in Spain at the same time or little later 

than sour orange. At that time, all these species are reported to be cultivated in south regions in 

Spain (Zaragoza, 2007). 
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Figure 3. Origin and worldwide distribution of citrus. From Ollitrault and Navarro (2012). 

 
 

Nicolosi et al. (2000) proposed that sweet orange was derived from a single cross based on 

equal proportions of alleles from mandarin and pummelo. However, Barkley et al. (2006) and 

Luro et al. (2008) suggested one or more backcrosses with mandarin and, therefore, its genetic 

background is mainly derived from mandarin and a small proportion from pummelo. Sweet 

orange was introduced in Spain four or five centuries later than sour orange, about half 15
th
 

century, by Genovese through their commercial relations with Orient. However, it is known that 

Portuguese greatly contributed to their diffusion around the Iberian Peninsula and Italy, by 

importing seeds of better and sweeter varieties (Zaragoza, 2007).  

Citrus were distributed from the Mediterranean area by three routes: by the Arabs to Africa 

between eleventh and thirteenth centuries; Christopher Columbus introduced them to Haiti in 

1493 and the British and the Dutch introduced them in Capetown in 1654. Due to discovery of 

America and its gradual conquest, occurred the establishment of citrus in Mexico (1518), Brazil 

(1540), Florida (1565), Peru (1609) and Texas (1890). The Portuguese introduced citrus in 

South Africa in 1654. The first settlers brought oranges, lemons and limes from Brazil to 

Australia in 1769. 

Mandarin was the latest citrus species introduced in Spain, by the 19
th
 century. It was 

extended around north areas in the Valencia region since 1845 (Zaragoza, 2007). The highly 

diverse group of mandarin includes numerous species, most of which derive from natural 

intergeneric and intespecific crosses, while others, which are commercially important, derive 

from man-made crosses (Nicolosi, 2007).  
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Grapefruit was probably originated from a pummelo × sweet orange spontaneous 

hybridization in the Barbados Island. It was imported to Spain from California and Florida and 

first reported to be cultivated in Valencia in 1929 (Herrero, 1929). 

 

2.3. The origin of intraspecific diversity 

Most of the cultivars of orange, grapefruit, and lemon are believed to have originated from 

nucellar seedlings or budsports. Barrett and Rhodes (1976) reported variations in orange, 

lemon, grapefruit and lime based on mutations occurred on one ancestor tree. Consequently, 

the amount of genetic diversity within these groups is relatively low, in spite of phenotypic 

differences among varieties. Conversely, mandarins, pummelos, and citrons have higher levels 

of genetic diversity since many of the cultivars have arisen through sexual hybridization.  

Mandarin germplasm was classified as C. reticulata Blanco by Swingle and Reece (1967) 

and Mabberley (1997). On the contrary, Webber (1967) classified mandarin genotypes into four 

different groups: king, satsuma, mandarin, and tangerine. Tanaka (1977) divided mandarins into 

five groups that included 36 species, based on morphological differences in the tree, leaves, 

flowers, and fruits. The mandarin group has high amount of cultivars, some of them originated 

from hybridization and the others derived from mutation. So, in the mandarins from hybrid origin 

there is a clear genetic variation. On the other hand, low level of diversity observed in the 

cultivars occurred by mutation, such as satsuma and clementine groups (Bretó et al., 2001; 

Barkley et al., 2006; Uzun and Yesiloglu, 2012). In the mandarin group germplasm, there are 

many hybrid accessions derived from mandarin × mandarin, mandarin × grapefruit (as tangelo), 

mandarin × orange (as tangor) or mandarin × tangelo. Clementine was classified by Tanaka as 

a Citrus species (C. clementina Hort. ex Tan.); currently, this species is one of the most 

important cultivated mandarins, especially in the Mediterranean countries. 

Sweet orange originated as a natural hybrid between mandarin and pummelo (Barrett and 

Rhodes, 1976; Luro et al., 1994; Fang et al., 1997; Uzun and Yesiloglu, 2012). Recently, 

García-Lor et al. (2012) proposed that both parents of sweet orange have an interspecific origin. 

Orange cultivars are classified into four groups: common, low acidity, pigmented and navel 

oranges. It is considered that sweet oranges varieties originated by mutation from one ancestor 

tree. So, despite of differences in morphological characters, low level of genetic diversity is 

observed. Nevertheless, pigmented varieties, which accumulate anthocyanin, have a gene 

encoding a transcription factor (Ruby gene) and can be differentiated from other orange groups 

(Butelli et al., 2012). 

Most lemons have highly similar morphological and biochemical characters, and they are 

reported to have originated by mutation from a single parental lemon tree (Gulsen and Roose, 

2001; Luro et al., 2008; Uzun and Yesiloglu, 2012). 
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Grapefruits have a nucellar and mutation origin and genetic variation among common them 

is very low. High level of similarity was found in grapefruit cultivars in various studies (Scora, 

1988; Gmitter et al., 1992; Fang et al., 1997; Moore et al., 2000; Nicolosi et al., 2000).  

 

3. NEEDS IN CITRUS SCION BREEDING  

The modern citrus industry is based on grafted plant, with the scion cultivar budded on a 

rootstock (Khan and Kender, 2007). It allows producing disease free planting material without 

the juvenile phase when coupled with efficient certification schemes (Navarro et al., 1975). 

Moreover, the rootstock is a major component for (i) resistance to soil pathogens such as 

Phytophthora spp and nematodes, (ii) resistance to the Citrus tristeza virus and (iii) for 

adaptation to adverse environmental conditions (salinity, water deficit, calcareous soils, cold…). 

The rootstocks also modulate some characteristics of the scion such as fruit quality, productivity 

or maturing time (Khan and Kender, 2007). However, these last characteristics are mainly 

determined by the scion genotype, as well as tolerance to diseases affecting the crown of the 

tree. 

 

3.1.  General objectives of scion breeding 

In relation with specific market demands and environmental conditions (biotic and abiotic 

constraints), the main goal of breeding may vary between the production areas. However, some 

general trends can be outlined. For juice processing, cultivars with a high percentage of 

pigmented juice and sugar content in their fruits are desirable (Ollitrault et al., 2008). For the 

fresh fruit market, expanding the harvesting period with high quality seedless fruits is currently 

the main objective of scion breeding (Navarro et al., 2005; Recupero et al., 2005; Roose and 

Williams, 2007; Aleza et al., 2010a; Cuenca et al., 2010). Biological mechanisms leading to 

seedlessness and breeding strategies targeting this trait are detailed in paragraph 4. 

The fresh fruit market requests pomological qualities (easy peeling, seedlessness, external 

appearance) and organoleptic qualities (aroma, taste, acidity, sugar). Since the definition of 

organoleptic quality varies with the consumer, citrus breeders must therefore endeavor to 

develop a wide range of varieties likely to meet these diverse needs. Nutritional quality based 

on vitamin C, carotenoid and polyphenol contents are now considered as breeding criteria in 

some projects (Alquézar et al., 2009; Sdiri et al., 2012). 

Resistance to some diseases that cause considerable damage in orchards is also an 

important objective in breeding programs. These include Huanglongbing (ex citrus greening) 

caused by the bacterium Candidatus Liberibacter asiaticus in Asia, South Africa and recently in 

Brazil and Florida; Citrus canker, caused by the bacterium Xanthomonas citri pv. citri, in most 

tropical and subtropical areas; cercosporiosis, caused by the fungus Cercospora aurantia, in 
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Africa; Mal secco, caused by the fungus Phoma tracheiphila, in the Mediterranean Basin for 

lemon, citrus variegated chlorosis, caused by the bacterium Xylella fastidiosa and Sudden 

Death in Brazil (Ollitrault and Navarro, 2012). Alternaria Brown Spot, caused by the fungus 

Alternaria alternata pv. citri, is a major problem for some susceptible mandarin cultivars such as 

‘Fortune’. In Spain, this cultivar has been widely cultivated, but now replaced due to its high 

disease susceptibility (Vicent et al., 2004; Navarro et al., 2005). More details on this disease 

and the potential for resistant cultivar breeding are given in next paragraph 3.2. Ranges of 

varietal susceptibility have been established for several important diseases and tolerant or 

resistant parents are selected in some breeding projects. However, in the case of 

Huanglongbing, no exploitable resistance source has been identified. In this sense, approaches 

involving genetically-modified organisms are being currently exploited (Alquézar et al., 2012). 

 

3.2. Special focus on breeding for Alternaria Brown Spot resistance 

Alternaria Brown Spot (ABS) is a serious fungal disease, which induces necrotic lesions on 

fruits and young leaves, defoliation and fruit drop in susceptible citrus genotypes. ABS is 

caused by the tangerine pathotype of Alternaria alternata (Fr.) Keissl. (Akimitsu et al., 2003). 

The disease was first observed in Australia in 1903 on 'Emperor' mandarin (Pegg, 1966), 

and was further detected in citrus-growing regions in America, the Mediterranean Basin, South 

Africa, Iran and China (Goes et al., 2001; Timmer et al., 2003; Golmohammadi et al., 2006; 

Wang et al., 2010). In Spain, the disease was first detected in 1998 (Vicent et al., 2000) and it is 

currently widespread in most citrus-growing areas. 

Due to the environmental flexibility of the fungus, the disease causes severe epidemics in 

humid areas, as well as in semi-arid regions (Timmer et al., 2003). The pathogen sporulates on 

affected tissues and conidia are disseminated by air currents and rain splash. Warm 

temperatures and prolonged wetness on the tree are required for infection.  

Currently, ABS control is strongly based on the application of fungicides. Sprays must be 

scheduled to protect susceptible organs during the critical periods for infection. Depending on 

the climate of the region and the susceptibility of the cultivar, between 4 and 10 fungicide sprays 

per year are needed to produce symptomless quality fruit for the fresh market (Swart et al., 

1998; Bhatia et al., 2003; Peres and Timmer, 2006; Vicent et al., 2007). Systematic application 

of fungicides for ABS control over years may create environmental problems and public health 

concerns (Vicent et al., 2009). Moreover, and despite of this high number of sprays, disease 

control is not always satisfactory and the production of susceptible cultivars such as 'Fortune' or 

‘Nova’, among others, has declined significantly during recent years in Spain, which are being 

removed or substituted by resistant cultivars (Navarro et al., 2005).  

Due to constraints of the citrus reproductive system (particularly apomixis of many 

genotypes, specific qualities or capacity to produce 2n gametes (see paragraph 5) several ABS-
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susceptible monoembryonic cultivars are being used as parents in many mandarin breeding 

programs, both at diploid and triploid level (Mourao Fo et al., 1996; McCollum, 2007; Aleza et 

al., 2010a, 2010b; Cuenca et al., 2010; Grosser et al., 2010; Aleza et al., 2012c, 2012d; 

Froelicher et al., 2012; Navarro et al., 2012). For example, ‘Fortune’ mandarin has been the 

most used female parent in 2x × 2x triploid breeding programs (Recupero et al., 2005; Navarro 

et al., 2012). It can produce several fold spontaneous triploid genotypes than other cultivars 

used as female parents, such as ‘Fina’ or ‘Moncada’ (Aleza et al., 2010b)  and quality 

transmitted to its progenies have been demonstrated by the newly released varieties (Recupero 

et al., 2005; Aleza et al., 2010a; Cuenca et al., 2010). These programs have also shown that 

resistant triploid hybrids can be obtained when using ‘Fortune’ as female parents. ‘Murcott’ and 

‘Ponkan’ are widely used parents in many diploid breeding programs carried out in Japan or 

Brazil (JinPing et al., 2009; Schinor et al., 2012). Their fruits present good quality and late 

ripening and its segregations are expected to be of major interest in those regions. However, 

they are also ABS susceptible, resulting in the segregation between resistant and susceptible 

hybrids in their progeny. 

Other ABS-susceptible cultivars, such as ‘Minneola’, ‘Nova’, ‘Fairchild’, ‘Fremont’, ‘Page’, 

‘Orlando’, ‘Pixie’, or ‘Daisy’ are also used as parents in diploid and triploid breeding programs 

(Aleza et al., 2012c; Williams, 2012). 

Knowledge about inheritance and segregations of ABS-resistance for different 

hybridizations at diploid and triploid level, and for different strategies to produce triploid hybrids 

would greatly improve the choice of breeding parents and the managing of future hybridizations. 

The tangerine pathotype of A. alternata, which causes ABS in citrus, has a gene cluster 

(ACTT) located in a small (<2.0 Mb) conditionally dispensable chromosome, responsible of 

ACT-toxin I biosynthesis (Ajiro et al., 2010). Another selective toxin, named ACT-toxin II (or 

ACTG-toxin), was also identified by Kono et al. (1986); however, ACT-toxin I (ACT-toxin, 

hereafter) is at least tenfold more toxic to citrus. This host-specific toxin (HST) is released 

during the germination of conidia, rapidly affecting the integrity of plasma membrane of 

susceptible host cells (Kohmoto et al., 1993). 

The mode of action of ACT-toxin is still ambiguous; however, a rapid loss of electrolytes 

from leaf tissues and invaginations in the plasma membranes of cells affected by the toxin 

indicates that its primary action site is likely to be the plasma membrane (Akimitsu et al., 2003). 

Moreover, there are indirect evidences suggesting the presence of toxin receptors in the plasma 

membrane of susceptible citrus genotypes (Tsuge et al., 2012). The damage to host cells 

caused by these toxins is extremely rapid, and the time required for cell death is extremely short 

(Maekawa et al., 1984; Kohmoto et al., 1993; Otani et al., 1995). Due to the rapid effect of the 

ACT-toxin, the incubation period is very short and lesions are visible just one or two days after 

infection was initiated (Canihos et al., 1999). However, although HSTs are highly toxic to host 

plant cells and cause cell death, the establishment of infection by the pathogen is probably 
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caused by a genotype-specific suppression of defence responses rather than the induction of 

cell death (Tsuge et al., 2012). In addition, recent studies indicated that the mitigation of 

reactive oxygen species (ROS) produced by the host plants is essential for pathogenicity (Yang 

and Chung, 2012).  

Several studies have been carried out to determine the resistance or susceptibility to ABS in 

citrus genotypes (Hutton and Mayers, 1988; Goes et al., 2001; Vicent et al., 2004; Dalkilic et al., 

2005; Reis et al., 2007; de Souza et al., 2009). Although there are some discrepancies among 

them, resistance is clear for clementine (C. clementina), ‘Willowleaf’ (C. deliciosa) and satsuma 

(C. unshiu) mandarins. Susceptibility has also been well established for ‘Dancy’ and ‘Fortune’ 

mandarins, ‘Orlando’, ‘Minneola’ and ‘Nova’ tangelos and ‘Murcott’ tangor. Other cultivars such 

as ‘Ellendale’ tangor, and some sweet oranges and grapefruits have been characterized as 

sensitive or resistant depending on the authors. 

ACT-toxins were found to be structurally analogous metabolites to those produced by 

Japanese pear (AK-toxins) and strawberry pathotypes (AF-toxins), that are esters of 9,10-

epoxy-8-hydroxy-9-methyl-decatrienoic acid (EDA; Figure 4); (Nakashima et al., 1985; 

Nakatsuka et al., 1986; Kohmoto et al., 1993). Resistance to pear and strawberry pathotypes, 

and also for the apple pathotype, is controlled by a single recessive allele (Kohmoto et al., 1993; 

Tsuge et al., 2012). Inheritance of ABS resistance in citrus has been described as a monogenic 

control (Dalkilic et al., 2005; Gulsen et al., 2010), also controlled by a single recessive allele. 

Therefore, resistant citrus cultivars are considered to be recessive homozygous for this locus, 

whereas susceptible cultivars could be heterozygous or dominant homozygous.  

However, all these resistance/susceptibility evaluations have been conducted on diploid 

genotypes, and data on triploid segregations are still unknown. Moreover, there is no 

information about genetic location of ABS resistance locus or markers strongly linked to it. This 

information should be very useful in order to perform marker-assisted selection in very early 

stages of a breeding program, both at diploid and triploid level, and to identify candidate 

resistance genes. 
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Figure 4. Chemical structures of HSTs produced by Alternaria alternata. AK-toxin I produced by the pear pathotype, 
AF-toxins (I and II) produced by the strawberry pathotype and ACT-toxin I produced by the tangerine pathotype, 
sharing the EDA: 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid. From Tsuge et al. (2012). 
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4. BREEDING FOR SEEDLESS MANDARINS 

 

Seedlessness is one of the most important economic traits relating to fruit quality for fresh-

fruit marketing, and it is also desirable for juice industry because of the unfavourable aromatic 

compounds associated with the presence of seeds in the fruit (Ollitrault et al., 2008). The 

presence of a large number of seeds in citrus fruits greatly decreases consumer acceptability, 

even in fruits with high organoleptic quality (Navarro et al., 2004). Therefore, presence of seeds 

is considered as an obstacle in releasing newly selected high quality mandarins (Vardi et al., 

1996). Development of seedless cultivars has become a major goal in many citrus breeding 

programs around the world (Navarro et al., 2004; Recupero et al., 2005; Ollitrault et al., 2007b; 

Roose and Williams, 2007; Aleza et al., 2010a; Cuenca et al., 2010). 

 

A citrus cultivar is considered to be seedless if it is able to produce normal fruits that contain 

no seeds, aborted seeds, or a significantly reduced number of seeds. Strong sterility or self-

incompatibility coupled with parthenocarpy is necessary for stable seedless fruit production 

(Ollitrault et al., 2008). Parthenocarpy is the ability of a cultivar to produce fruits without 

fertilization. Therefore, parthenocarpy, coupled with a lack of cross- or self-fecundation, can 

yield seedless fruit (Vardi et al., 2008). Some level of parthenocarpy seems to be widely present 

in citrus germplasm, resulting in the production of seedless fruit, even in the absence of 

pollination (Chao, 2005). For this reason, the cultivation of self-incompatible parthenocarpic 

genotypes like clementines in isolated blocks results in seedless fruit production (Vardi et al., 

2008). This implies that, for diversification programs, male and female sterility must be selected, 

particularly for areas such as the Mediterranean Basin, where the main seedless easy peeler 

cultivar is the self-incompatible clementine (Ollitrault et al., 2008). 

 

From a genetic point of view, seedlessness in citrus can be achieved at diploid level 

essentially by managing sterility or self-incompatibility, genetic transformation or mutation 

(spontaneous or induced) of diploid (seedy) elite genotypes. Other widely used option is ploidy 

manipulation, to produce triploid hybrids.  

 

4.1. Seedlessness at the diploid level 

 

4.1.1.  Managing sterility and self-incompatibility 

Various levels of male sterility at diploid level were reported in citrus. Chromosome 

aberrations (Iwamasa, 1966), such as asynapsis, reciprocal translocation, inversion or failure of 

the spindle formation are the most widespread factors of pollen sterility (Nakamura, 1943; 

Raghuvanshi, 1962; Iwamasa and Iwasaki, 1963; Iwamasa, 1966). Other mechanisms of male 

sterility not caused by chromosome aberrations are also known, such as anther abortion or 

early degeneration of pollen mother cells (Osawa, 1912; Frost, 1948; Iwamasa, 1966). To 
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develop new seedless cultivars efficiently, genetic analysis of male sterility has been conducted 

and particularly the analysis of anther abortion observed in ‘satsuma’ mandarins or ‘Encore’ 

mandarin. This male sterility is due to nucleo-cytoplasmic interaction and is probably controlled 

by more than two major nuclear genes (Iwamasa, 1966; Nakano et al., 2001; Yamamoto et al., 

2001). Seedless cultivars with aborted anthers have been released in Japan (Nishiura, 1964; 

Matsumoto et al., 1991)). A recent study reveals that dysfunctional mitochondria seemed to 

cause male sterile phenotype in a cybrid pummelo (Zheng et al., 2012).  

Female sterility is also a very important trait closely related to seedlessness and is a 

heritable characteristic (Yamamoto et al., 2001). Female sterility results from degeneration of 

embryo sac (Osawa, 1912) or abortion of zygote (Nesumi et al., 2001) due to chromosome 

aberrations. 

The gametophytic self-incompatibility found in citrus is a genetically controlled 

phenomenon preventing seed set in self-pollinated plants producing functional gametes. In self-

incompatible accessions, no pollen tubes are found in the ovaries (Ton and Krezdorn, 1967). 

Various accessions including almost all of pummelo, some mandarins and several natural or 

artificial hybrids are self-incompatible. However, many of them produce seedy fruits because of 

their female fertility and cross-pollination (Miwa, 1951; Mustard et al., 1956; Krezdorn and 

Robinson, 1958). 

4.1.2.  Spontaneous mutations and induced mutagenesis 

Spontaneous mutations have played an important role in the development of new 

cultivars, characterized by better fruit colour, longer time periods to fruit maturity, and 

seedlessness. Despite of the very low frequency of spontaneous mutation, the majority of 

clementines, satsumas and oranges cultivars arose from spontaneous mutations (Vardi et al., 

2008). 

Induced mutagenesis can improve characters from the original cultivar, maintaining its 

genetic background (Hearn, 1984; Spiegel-Roy, 1990; Spiegel-Roy and Vardi, 1992; Vardi et 

al., 1996; Shu, 2009). Gamma irradiation (
60

Co) and chemical mutagens are used to induce 

mutations on seeds or buds, producing several times more mutants than the spontaneous 

mutation (Zhang et al., 1988). Traits induced by mutagenesis include plant size, blooming time 

and fruit ripening, fruit colour, alterations in self-compatibility and resistance to pathogens 

(Predieri, 2001). ‘Star Ruby’ was the first citrus commercial cultivar obtained by irradiating seeds 

of ‘Hudson’ grapefruit; later, ‘Rio Red’ grapefruit was obtained by irradiation of ‘Ruby Red’ 

grapefruit (Hensz, 1971). 

Seedlessness is the main goal in the induced mutagenesis of diploid elite cultivars. 

Examples of recently released seedless cultivars, obtained by induced mutation of diploid 

mandarin budwood are: ‘Nulessin’ (from ‘Clemenules’), ‘Mor’ (from ‘Murcott’), ‘Orri’ (from 

‘Orah’), ‘Tango’ (from ‘Nadorcott’), ‘DaisySL’ (from ‘Daisy’), ‘FairchildSL’ (from ‘Fairchild’), 
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‘NovaSL’ (from ‘Nova’), ‘Murta’ (from ‘Murcott’), ‘Moncalina’ (from ‘Moncada’) and ‘Nero’ (from 

‘Clemenules’). 

4.1.3.  Genetic transformation 

Traditional breeding programs have been hampered by the long citrus juvenile phase, 

polyembryony, self-incompatibility and limited knowledge on trait inheritance. Genetic 

engineering provides a fast and effective way to introgress specific genes in plants aiming to 

improve targeted traits. Inducing parthenocarpy by genetic engineering and seed-ablated 

strategy by expressing the cytotoxin gene (Barnase) has been experimented for molecular 

breeding of seedless citrus. (Li et al., 2002; Li et al., 2003) reported the generation of ‘Ponkan’ 

and ‘Valencia’ sweet orange transgenic plants, through Agrobacterium-mediated transformation 

of embryogenic calluses with a chimeric ribonuclease gene (barnase) under the control of an 

anther tapetum-specific promoter (pTA29). Similar approach was developed by (Koltunow et al., 

2000) in Mexican limes for decreasing seed set. However, the commercialization of these 

products is limited by consumers’ reluctance to buy genetically modified foods (Vardi et al., 

2008). 

 

 

4.2. Ploidy manipulation for seedlessness. Recovery of triploid hybrids 

4.2.1. Origin of polyploid citrus 

Polyploidy is a major component of angiosperms evolution (Grant, 1981; Soltis and 

Soltis, 1993; Wendel and Doyle, 2005). Many plant species result from autopolyploidization or 

allopolyploidization events and polyploidization should be considered as the most common of 

the sympatric speciation mechanism (Otto and Whitton, 2000). For a long time, chromosome 

doubling (autopolyploidization) was considered by most authors (Stebbins, 1971) as the major 

mechanism leading to polyploidy. However, Harlan and DeWet (1975) argued that spontaneous 

chromosome doubling must be relatively rare, while polyploidization arising from unreduced 

gametes (allopolyploidization) seems much more frequent. These conclusions are now 

assumed by numerous plant evolutionists (Bretagnolle and Thompson, 1995; Ramsey and 

Schemske, 1998; Ramsey, 2007). 

Diploidy is the general rule in Citrus and its related genera, with a basic chromosome 

number x=9 (Krug, 1943). However, some triploid and tetraploid genotypes have been early 

detected in citrus germplasm or seedlings (Longley, 1925; Lapin, 1937; Iwasaki, 1943). Longley 

(1925) was the first to formally identify a tetraploid wild form, the ‘Hong Kong’ kumquat. Other 

examples of the few natural polyploids found in the germplasm of Aurantioideae are the triploid 

‘Tahiti’ lime, tetraploid strains of Poncirus trifoliata, allotetraploid Clausena excavata, tetraploid 

Clausena harmandiana and hexaploid Glycosmis pentaphylla (Ollitrault et al., 2008). 
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In citrus germplasm, apomictic (nucellar polyembryony) and non-apomictic genotypes 

are found (Cameron and Frost, 1968). Spontaneous autotetraploidization seems to occur 

frequently in apomictic citrus genotypes by chromosome doubling of nucellar tissue (Aleza et 

al., 2011). In non-apomictic genotypes, doubled-diploid plants are not found in the citrus 

germplasm, but can be artificially produced by treatment of micro-grafted shoot-tips or 

embryogenic callus with colchicine and oryzalin to achieve chromosome doubling (Tachikawa et 

al., 1961; Barret, 1974; Gmitter and Ling, 1991; Gmitter et al., 1991; Aleza et al., 2009b). Stable 

tetraploid plants of different mandarins have been developed for use as male and female 

parents in interploid hybridizations (Aleza et al., 2012c, 2012d). 

Somatic hybridization of two diploid genotypes also allows obtaining tetraploid plants 

(Grosser et al., 2010; Grosser and Gmitter, 2011). Tetraploid genotypes arising from 

chromosome doubling, chemical treatments or somatic hybridization are widely used as male 

parents in breeding programs (Aleza et al., 2012c). Also, tetraploid genotypes are currently 

interesting to be used as rootstocks (Saleh et al., 2008; Allario et al., 2011; Dambier et al., 

2011; Grosser and Gmitter, 2011). 

Spontaneous triploidization in citrus has been reported to arise from unreduced 

(2n) gametes (Soost, 1987; Iwamasa et al., 1988; Luro et al., 2004), probably due to the 

abortion of the second meiotic division in the megaspore (Esen et al., 1979; Luro et al., 2004), 

whereas non-reduced pollen seems to be extremely rare in citrus (Esen et al., 1979; Luro et al., 

2004). It appears that most of the spontaneous triploids arising from diploid parents are found in 

small and abnormal seeds (Esen and Soost, 1971, 1973; Geraci et al., 1975; Aleza et al., 

2010b), which are unlikely to germinate without implementation of an embryo rescue procedure. 

Unreduced gametes due to meiotic restitution and/or other variant meiotic events and resultant 

polyploidy have been documented in many plant species (Dewitte et al., 2012; Singh et al., 

2012). 

4.2.2.  Methods for triploid breeding 

Obtaining triploid hybrids has become an important breeding strategy to develop new 

seedless citrus commercial varieties (Starrantino, 1992; Navarro et al., 2004; Ollitrault et al., 

2008). Indeed, many triploid varieties have been released from citrus breeding programs 

worldwide, including ‘Oroblanco’ and ‘Melogold’ grapefruits (C. grandis × C. paradisi) (Cameron 

and Bernett, 1978; Soost, 1987), and ‘Winola’ (Spiegel-Roy and Vardi, 1992). More recently, 

‘Shasta Gold®’, ‘Tahoe Gold®’ and ‘Yosemite Gold®’ triploid mandarins were released by the 

USA program in California (Roose et al., 2002); ‘Tacle’, ‘Clara’, ‘Mandared’, ‘Mandalate’ and 

other triploid mandarins were released by the Italian program (Recupero et al., 2005) and 

‘Garbí’ (Aleza et al., 2010a) and ‘Safor’ mandarins (Cuenca et al., 2010) were released by the 

Spanish program. 
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Triploid genotypes have generally been considered to be an evolutionary dead-end 

because they have very low fertility and tend to produce aneuploid gametes, due to problems of 

chromosome pairing during meiosis (Otto and Whitton, 2000; Ollitrault et al., 2008). Cytogenetic 

studies have shown that during meiosis of citrus triploid hybrids, trivalent, bivalent and univalent 

associations are formed (Cameron and Frost, 1968), producing sterile gametes. Moreover, the 

abortion of megasporogenesis during the period between the first division of embryo-sac and 

the fecundated egg-cell is common (Fatta Del Bosco et al., 1992). For this reason, citrus triploid 

plants are generally sterile, although they can occasionally produce fruits with very few seeds. 

Triploid hybrids have been produced by sexual hybridizations of 2x × 2x, 2x × 4x and 4x 

× 2x, endosperm culture (Wang and Chang, 1978; Gmitter et al., 1990) or by diploid + haploid 

somatic hybridizations (Kobayashi et al., 1995; Ollitrault et al., 1996b). In citrus germplasm, 

apomictic (polyembryonic) and non-apomictic (monoembryonic) genotypes can be found (Frost 

and Soost, 1968). The majority of citrus genotypes are apomictic, with the exception of all 

citrons (C. medica), pummelos (C. grandis), clementines (C. clementina) and some mandarins. 

One of the major limitations of any sexual hybridization strategy in citrus is that it is extremely 

difficult to use apomictic cultivars as female parents to produce large progeny and 

monoembryonic genotypes have to be used as female parents. Concerning polyembryonic 

cultivars, (Wakana et al., 1981) showed that triploid zygotic embryos should be found with 

diploid nucellar embryos in small seeds. However, the practical possibility to select these triploid 

embryos is limited greatly by the polyembryony (Geraci et al., 1977; Wakana et al., 1981). To 

avoid this problem, Geraci et al. (1977) proposed a very early rescue of zygotic embryos from 

immature fruits, but it seems that selection of triploids from polyembryonic seedlings has not 

found real applications in citrus breeding.  

 

Sexual polyploidization (2x × 2x crosses): In this case, spontaneous triploid hybrids 

arise from the union of a 2n megagametophyte with haploid pollen (Cameron and Frost, 1968; 

Esen and Soost, 1971, 1973; Geraci et al., 1975; Ollitrault et al., 1996a; Luro et al., 2004; Chen 

et al., 2008a; Aleza et al., 2010b). The recovery of triploid citrus hybrids arising from unreduced 

(2n) megagametophytes produced by diploid plants was described in the 1970s (Esen and 

Soost, 1971, 1973). Cytogenetic studies (Esen and Soost, 1971) showed that triploid embryos 

are associated with pentaploid endosperm, indicating that triploid hybrids result from the 

fertilization of unreduced ovules by normal haploid pollen. Moreover, this ratio between the 

ploidy level of embryos and endosperm is responsible for seed size reduction. The frequency of 

such events is generally low (Cameron and Frost, 1968; Esen and Soost, 1971; Geraci et al., 

1975) and extensive breeding programs based on this type of hybridization require very 

effective methodologies for embryo rescue and ploidy evaluation of large progenies. The 

mechanisms that lead to unreduced gamete formation and their genetic consequences are 

explained at point 5.1 of this introduction.  
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Interploid crosses (2x × 4x and 4x × 2x): Interploid crosses have been used by 

breeders to obtain triploid hybrids. Triploid plants recovered from interploid crosses result from 

the fecundation of a diploid gamete arising from the tetraploid parent and a haploid gamete 

arising from the other parent. Taking advantage of the spontaneous chromosome doubling in 

apomictic genotypes, most of the early triploid breeding projects were based in the use of these 

spontaneous tetraploid genotypes as male parents (2x × 4x hybridization; Cameron and Frost, 

1968; Esen et al., 1978; Oiyama et al., 1981; Starrantino and Recupero, 1981; Aleza et al., 

2012c). More recently, the recovery of tetraploid monoembryonic genotypes (Aleza et al., 

2009b) allowed developing the 4x × 2x strategy at large scale (Aleza et al., 2012d).  

Segregation and recombination of tetraploids is complex (Wu et al., 2001a, 2001b). 

Indeed, it depends on (i) preferential pairing between homeologous chromosomes that defines 

the proportion of bivalent and multivalent formation (Wu et al., 2001b) and (ii) double reduction 

frequency in case of tetravalent formation (Mather, 1936).  More details on tetraploid meiosis 

and resulting structure of diploid gametes are given in paragraph 5.2.  

Involvement of somatic hybridization in triploid breeding: Somatic hybridization via 

protoplast fusion is an approach that has been used in the creation of triploids and novel 

tetraploid germplasm for improving rootstock and scion varieties (Raza et al., 2003; Ollitrault et 

al., 2007a). The first somatic hybrid of citrus was produced by Ohgawara et al. (1985) and 

numerous inter and intrageneric somatic hybrids have been produced until now (Grosser and 

Gmitter, 1990; Louzada et al., 1992; Louzada et al., 1993; Ollitrault et al., 1995; Grosser et al., 

2000; Mendes et al., 2001; Grosser et al., 2010; Dambier et al., 2011; Grosser and Gmitter, 

2011). Somatic hybridization could be used to produce quality tetraploid breeding parents that 

can be used in a conventional interploid breeding program to generate seedless triploids or to 

produce them directly by haploid + diploid protoplast fusion (Ollitrault et al., 1996b; Guo et al., 

2000). However, a successful somatic hybridization program requires a complete and long-term 

effort, and mainly, this last approach have failed to have a major impact on crop development 

because of difficulties in protoplast isolation, culture and plant regeneration in many elite crop 

genotypes, small availability of haploid parents and the elevated ploidy levels resulting when 

somatic hybrid plants could be produced (Grosser et al., 2000; Grosser and Gmitter, 2011). 

Endosperm culture: This technique could be a tool to overcome the barriers of sexual 

hybridization that results from nucellar embryony and can theoretically be applied to all 

germplasm with female fertility. Successful regeneration of triploid plantlets has been reported 

by Wang and Chang (1978) and Gmitter et al. (1990). However, the step of shoot or embryos 

regeneration from endosperm calli appears a critical step (Jaskani et al., 1996) that practically 

limits greatly the application of this technique for breeding purpose. Indeed, it appears difficult to 

obtain large recombining populations to apply efficient field selection.   
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5. MECHANISMS OF SEXUAL POLYPLOIDIZATION AND GENETIC STRUCTURES OF 

TRIPLOID POPULATIONS 

 

5.1. Mechanisms of unreduced gamete formation (2x × 2x crosses) 

Although polyploids can originate by an increase of chromosome number either during 

somatic growth or during meiosis, the major route is now considered to be via the formation of 

unreduced (2n) gametes (Harlan and DeWet, 1975). The formation of 2n gametes occurs in 

several plant species and can give rise to triploids that can serve as a bridge to the 

establishment of an even set of chromosomes in subsequent generations (Henry et al., 2005). 

Unreduced gametes most commonly arise through meiotic defects and the so-called 

meiotic nuclear restitution was described for the first time by Rosenberg (1927). Meiosis is a 

specialized cell division that is essential for sexual reproduction. It involves a single round of 

DNA replication followed by two rounds of chromosome division to produce cells with half the 

chromosome number of the mother cell. During meiotic prophase I, the meiosis-specific events 

of pairing and recombination between homologous chromosomes occur. These processes are 

important not only for generating genetic variability in the offspring but also for establishing the 

attachments between chromosomes required for the subsequent divisions (Brownfield and 

Kohler, 2011). In the first meiotic division, the homologous chromosomes are separated in what 

is referred to as a reductional division. Second meiotic division resembles mitosis in that it 

involves the separation of sister chromatids and is referred to as an equational division. 

Mechanisms underlying meiotic restitution are still unclear, although more attention has 

been placed on this complex meiotic process in recent years (Cai and Xu, 2007). Several 

meiotic aberrations related to spindle formation, spindle function and cytokinesis lead to 

unreduced gamete formation in plants. Up to seven major mechanisms of 2n gamete formation 

have been cytogenetically characterized: premeiotic doubling; first-division restitution (FDR); 

chromosome replication during the meiotic interphase; second-division restitution (SDR); 

postmeiotic doubling; indeterminate meiotic restitution and apospory (Peloquin et al., 1989; Lim 

et al., 2001; Dewitte et al., 2012). However, FDR and SDR are considered the predominant 

mechanisms of 2n gamete formation (Bretagnolle and Thompson, 1995; Tavoletti et al., 1996; 

Cai and Xu, 2007). Failure of the first (FDR) or second division (SDR) leads to the formation of 

restitution nuclei with unreduced chromosomes. If the first meiotic division fails at anaphase I, 

all the chromosomes stay on the equatorial plate to form one restitution nucleus with the same 

chromosome number as the mother cell at the first division, which usually undergoes normal 

second meiotic division. This failure is characterized by an equational division of the entire 

chromosome complement (as in mitosis) and the formation of two nuclei with unreduced 

chromosome number. In case of SDR, the first meiotic division proceeds normally, but the 

second division fails at anaphase II, resulting in two nuclei with unreduced chromosomes (Cai 

and Xu, 2007). Therefore, a FDR 2n gamete contains non-sister chromatids, while a SDR 2n 

gamete contains two sister chromatids [(Tang and Luo, 2002); Figure 5] 
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Figure 5. Genetic constitution of unreduced gametes resuting from FDR and SDR mechanisms. From 
Barba-Gonzalez et al. (2008). 

 

From the cytogenetic point of view, several mechanisms lead to FDR or SDR-unreduced 

gamete formation. Semi-heterotypic division (Rosenberg, 1927), mitotised-meiosis (Stebbins, 

1932; 1950), pseudohomoeotypic division (Gustafsson, 1935), aberrant cytokinesis (Ramanna, 

1974), parallel spindle (Mok and Peloquin, 1975) and fused spindle (Ramanna, 1979) produce 

FDR 2n-gametes (Ramanna, 1979; Peloquin et al., 1989; Vorsa and Rowland, 1997). In the 

same way, mechanisms genetically equivalent to SDR, known as premature cytokinesis 1 and 2 

(Mok and Peloquin, 1975) have been reported (Veilleux, 1985; Bretagnolle and Thompson, 

1995).  

In addition to that, other mechanisms have been described leading to unreduced gametes 

genetically different than those coming from SDR or FDR. Lim et al. (2001) described the 

Indeterminate meiotic restitution (IMR) as a novel type of meiotic nuclear restitution mechanism, 

in which numerically disproportionate numbers of chromosomes occur due to a restitution 

mechanism which cannot be categorized as either FDR or SDR. In this case, although the 2n-

gamete can have the euploid number, each set has not contributed the same number (Dewitte 

et al., 2012). Premeiotic (chromosome doubling before meiosis) and postmeiotic (chromosome 

doubling after meiosis) restitution and cytomixis have also been proposed as possible 

mechanisms for the production of 2n gametes (Bastiaanssen et al., 1998). 
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The identification of the mechanisms behind the formation of 2n gametes is complex. 

However, the use of cytological techniques (genomic in situ hybridization-GISH or fluorescent in 

situ hybridization-FISH) or marker analysis on polyploid progeny may provide accurate or 

additional information on these mechanisms (Lim et al., 2001; Crespel and Gudin, 2003; 

Dewitte et al., 2012). Molecular cytological approaches have been successfully used in the case 

of allopolyploids, where the constituent genomes can be clearly discriminated. This includes the 

unequivocal identification of not only genomes and individual alien chromosomes but also 

recombinant segments in the sexual polyploid progenies. Through DNA in situ hybridization, 

genomes of allopolyploids can be more critically assigned and intergenomic translocations and 

recombination events can be detected (Takahashi et al., 1997; Karlov et al., 1999; Lim et al., 

2001; Ramanna and Jacobsen, 2003; Barba-Gonzalez et al., 2005). However, although both 

GISH and FISH are powerful tools for parental genome analysis, few studies in citrus have been 

reported, partly because citrus chromosomes are very small and indistinguishable (Barba-

Gonzalez et al., 2005; Jaskani et al., 2007). In contrast, molecular marker analysis has proved 

as a very useful tool to estimate the heterozygosity transmission through the diploid gametes to 

polyploid progenies and, therefore, to identify the mechanism underlying unreduced gamete 

formation (Barone et al., 1995; Vorsa and Rowland, 1997; Bastiaanssen et al., 1998; Barcaccia 

et al., 2003; Luro et al., 2004; Chen et al., 2008a; Hayashi et al., 2009). 

Although production of 2n gametes is highly affected by environmental factors (De Storme 

and Geelen, 2013), several heritability assays show that the rate of 2n gamete production is 

under a strong genetic control and is often determined by a few loci (Ramsey and Schemske, 

1998; Barcaccia et al., 2003; de Storme and Geelen, 2011). Mok and Peloquin (1975) and Qu 

et al. (1995) suggested that four recessive genes determined the 2n gamete formation in 

potatoes. Zhang et al. (2000; 2007) indicated that a single major recessive gene determined the 

2n gamete formation in Chinese cabbage, and it is tightly linked to a centromere. Recent 

research on Arabidopsis thaliana has led to many advances in elucidating the molecular 

mechanisms underlying unreduced gamete formation, as well as the first genes in which 

mutations result in the production of viable 2n gametes (Brownfield and Kohler, 2011). D'Erfurth 

et al. (2008) were the first to successfully isolate and characterize the Arabidopsis thaliana 

Parallel Spindle1 (AtPS1) gene involved in 2n gamete production due to an abnormal 

orientation of spindles at meiosis II. Mutations in Arabidopsis DYAD/SWITCH1 and maize 

AGO104 and AM1 induce a complete loss of meiosis I, and consequently convert the meiotic 

cell cycle into a mitotic one (D'Erfurth et al., 2009). De Storme and Geelen (2011) observed and 

characterized another unreduced gamete producer mutant called jason. Mutants of two other 

genes (OSD1/GIG1 and TAM/CYCA2;1) were shown to omit the second meiotic division in both 

male and female sporogenesis at high frequency resulting in the formation of highly 

homozygous 2n pollen and egg cells (d'Erfurth et al., 2009). 
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5.1.1.  Heterozygosity restitution in the unreduced gametes and centromere 

mapping 

The genetic structures of 2n gametes depend on their origin mechanisms and are very 

different for SDR and FDR. Such origin particularly affects the transmission of the parental 

heterozygosity in relation to the distance to the centromere. With FDR, the non-sister 

chromatids transmit the parental heterozygosity from the centromere to the first crossover point. 

With SDR the two sister chromatids are homozygous between the centromere and the first 

crossover point. It results in that the SDR 2n gametes have lower levels of heterozygosity than 

the FDR ones (Bretagnolle and Thompson, 1995). 

The heterozygosity transmitted through 2n gametes can be estimated by analysis of the 

progeny with molecular markers. Several reports on Solanum spp. indicate that FDR gametes 

transmit 70-80% of the parental heterozygosity, whereas SDR gametes transmit about 30-40% 

(Douches and Quiros, 1988; Werner and Peloquin, 1990, 1991; Barone et al., 1995). Such 

values were also reported in other crops: roses, ryegrass, Begonia and Vaccinium darrowi 

(Vorsa and Rowland, 1997; Crespel and Gudin, 2003; Chen, 2007; Dewitte et al., 2012). In 

general, FDR is more than twice as effective in transmitting heterozygosity as SDR (Peloquin et 

al., 2008). 

For both FDR and SDR mechanisms, the rate of parental heterozygosity transmission 

(H) is a function of the rate of single crossing over (Co) between the centromere and the 

considered locus (Zhao and Speed, 1996). From the centromere to the telomere, it varies 

between 0 and 100% for SDR (H=Co) and from 100 to 50% for FDR (H=1-1/2Co), with the 

hypothesis that single chiasma frequency between the centromere and the locus vary between 

0 for centromeric locus and 100% for telomeric ones (Park et al., 2007). Such model assumes a 

complete chromosome arm interference (a first crossing over in chromosome arm totally 

prohibits the occurrence of a second one). Such assumption has been verified from half tetrad 

analysis (HTA) of some plants such as potatoes (Park et al., 2007) and animals such as salmon 

(Lindner et al., 2000). However, numerous cases of incomplete chromosome interference have 

been described both in plants and animals (Broman et al., 2002; Copenhaver et al., 2002; Esch 

and Weber, 2002; Saintenac et al., 2009; Giraut et al., 2011). Under no interference, H varies 

between 1 and 2/3 for FDR and from 0 to 2/3 for SDR, from the centromere to the telomere 

(Figure 6).  
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Figure 6. Theoretical curves of heterozygosity restitution as function of genetic distance to the centromere 

for FDR and SDR without chiasma interference and total interference models. 

 

Conversely, the relation between the heterozygosity restitution at a locus and the 

distance of this locus to the centromere allow mapping centromere in linkage groups. The 

centromere is a specialized domain in most eukaryotic chromosomes that ensures delivery of 

one copy of each chromosome to each daughter cell during cell division by the mechanisms of 

kinetochore nucleation, spindle attachment, and sister chromatid cohesion. 

Half-tetrad analysis (HTA) has been used in several plant and animal species for 

centromere mapping. HTA is an approach comparable to tetrad analysis, although based on 

only two chromatids from a single meiosis. These two chromatids remain together due to 

omission of the first (FDR) or the second (SDR) meiotic division, resulting in numerically 

unreduced gametes (Douches and Quiros, 1988; Kauffman et al., 1995; Lindner et al., 2000; 

Okagaki et al., 2008). HTA could be used without a previous genetic map of the markers and 

can be applied with a predefined order of markers (Tavoletti et al., 1996) or without any 

previous information about marker position (Da et al., 1995). However, many models of HTA are 

based on the hypothesis of complete interference, which not always occurs. Indeed, pattern of 

heterozygosity restitution along the chromosome may vary between the different models of 

chiasma interference assumed (Zhao and Speed, 1998a). Therefore, a method which allows 

comparing a large range of partial interference model functions is suitable.  

Once centromere is mapped, molecular markers close to it could be identified 

(Mendiburu and Peloquin, 1979) and, therefore, the mode of 2n gamete formation could be 

determined through analysis of the segregating marker in the progeny. 
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5.1.2.  Mechanisms of unreduced gamete formation in citrus 

Cytogenetic studies showed that triploid embryos are associated with pentaploid 

endosperm, indicating that triploid hybrids result from the fertilization of unreduced ovules by 

normal haploid pollen (Esen and Soost, 1971). Esen et al. (1979) proposed that 2n eggs result 

from the abortion of the second meiotic division in the megaspore (SDR) in citrus. This 

hypothesis has been corroborated for clementine (Citrus clementina Hort. ex Tan.) by molecular 

marker analysis (Luro et al., 2004). However, Chen et al., (2008a) proposed that 2n eggs of 

sweet orange (C. sinensis (L.) Osb.) resulted from first meiotic division restitution (FDR). It is, 

therefore, important to shed light on the mechanism underlying 2n gamete formation in a wide 

range of citrus genotypes used as female parents in 2x × 2x triploid breeding programs. 

 

5.2. Diploid gametes from tetraploid parents (interploid crosses) 

There is a basic distinction between autopolyploids and allopolyploids, both having multiple 

sets of chromosomes. Autopolyploids result from a variation of ploidy within a single species, so 

chromosomes are of the same type and have the same origin. Allopolyploids refer to the 

association of two differentiated genomes, through the process of hybridization and subsequent 

chromosome doubling, so both the type and the origin of chromosome are different (Gallais, 

2003). Allopolyploids are generally considered to be much more prevalent in nature than are 

autopolyploids but, as detected from a growing number of genetic analyses, autopolyploids 

should be more common than previously assumed (Soltis and Soltis, 2000). An immediate 

consequence of polyploidy is the change in gametic and segregation frequencies (Comai, 

2003). 

In allopolyploids, identical or at least fully homologous genomes occur in pairs, but different 

pairs of a genome have a strong pairing barrier (Sybenga, 1996). Because only homologous 

chromosomes pair, allopolyploids strictly exhibit bivalent formation (two chromosomes pair) at 

meiosis and undergo disomic inheritance for each locus (Gallais, 2003). 

For autopolyploids, all the chromosomes are homologous and have equal opportunities to 

pair at meiosis. Since pairing can start at different chromosomal sites, homologous 

chromosomes may switch partners, leading to multivalent formation (more than two 

chromosomes pair) and a type of inheritance called polysomic (Jackson and Jackson, 1996; 

Sybenga, 1996; Hauber et al., 1999). Heterozygosity transmission from an autotetraploid to its 

diploid gamete depends on the double reduction frequency, defined as the probability of two 

sister chromatids occurring in the same gamete (Marsden et al., 1987). Although segregation 

patterns depend on the frequency of crossing over between the centromere and a given loci, 

and therefore, they are expected to vary with the position of the locus on the chromosome, little 

empirical information concerning the frequency of double reduction is available (Gallais, 2003). 

This frequency assumes maximum values of 0 (random chromosome segregation), 1/7 (with 
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pure random chromatid segregation), and 1/6 (with maximum equational segregation; (Muller, 

1914; Mather, 1936). The average rate of parental heterozygosity restitution is 2/3 in case of 

random segregation, while it will be only 5/9 in case of maximum chomatid equational 

segregation. 

It appears that many tetraploids have not systematic disomic or tetrasomic inheritance, but 

display intermediary inheritance (Danzmann and Bogart, 1983; Marsden et al., 1987; Jackson 

and Jackson, 1996). Indeed, allo- and autotetraploids (with disomic and tetrasomic inheritance, 

respectively) are the extremes of a range (Figure 7). In cases where parents are divergent but 

have retained enough homology to prevent exclusive preferential pairing, inheritance patterns 

intermediate between di- and tetrasomic can be expected (Stift et al., 2008). For example, in 

citrus Kamiri et al. (2011) showed that a somatic hybrid between lemon and mandarin had an 

intermediate inheritance with preferential tetrasomic tendency, while an intergeneric somatic 

hybrid between Poncirus and mandarin displayed an intermediary inheritance with preferential 

disomic tendency (Kamiri et al., 2012). 

 

 

Figure 7. Meiotic arrangements and gametic output in diploids, autotetraploids and allotetraploids. A 

diploid heterozygote Aa produces two types of gamete in equal proportion (P). An autotetraploid with 
genotype AAaa produces, under the model of random chromosome segregation three types of gamete. An 
allotetraploid with genotype AaAa produces four types of gamete. From Comai (2003). 
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6. MOLECULAR RESOURCES FOR CITRUS GENETICS AND BREEDING 

 

6.1. Molecular markers and genetic maps in citrus 

Molecular markers are specific fragments of DNA that can be identified within the whole 

genome and are transmitted by the standard laws of inheritance from one generation to the 

next. The development of molecular markers based on DNA sequences has provided a useful 

tool for enlarging the knowledge of inheritance of economically important characters. A wide 

variety of DNA-based markers have been developed, both PCR-based and non-PCR-based 

(Agarwal et al., 2008). 

Since isozymes markers (Torres et al., 1978; 1982; Roose, 1988), several kinds of nuclear 

markers have been used for citrus genetic studies such as Random Amplified Polymorphic DNA 

[RAPDs; (Luro et al., 1994)], Sequence Characterized Amplified Regions [SCARs; (Nicolosi et 

al., 2000)], Restriction Fragment Length Polymorphism [RFLPs; (Federici et al., 1998)], 

Intersimple sequence repeat [ISSRs, (Fang et al., 1997)], Amplified Fragment Length 

Polymorphism (AFLPs; (Liang et al., 2007; Pang et al., 2007) and Cleaved Amplified 

Polymorphic Sequences (CAPs) from ESTs (Lotfy et al., 2003). Single-stranded conformational 

polymorphism (SSCP) analysis has been used for cytoplasm characterization (Olivares-Fuster 

et al., 2007). In the last 10 years, a limited number of Simple Sequence Repeat (SSRs) have 

been derived from genomic libraries (Kijas et al., 1997; Barkley et al., 2006; Froelicher et al., 

2008): 56 SSRs were obtained from the Genbank citrus EST data (Chen et al., 2006) and more 

than 200 SSR markers have been developed (Luro et al., 2008) from the 1,600 microsatellite 

sequences from 37,000 ESTs characterized by Terol et al. (2007). The same group identified 

more than 7,600 SSRs from BAC end sequencing (Terol et al., 2008) that have been used to 

develop SSR markers allowing direct anchoring of the genetic and physical maps (Ollitrault et 

al., 2012a). In addition to genetic mapping, SSRs have been used for the analysis of genetic 

diversity (Luro et al., 2001; Barkley et al., 2006; García-Lor et al., 2013b), characterization of 

somatic hybrids, discrimination between zygotic and nucellar seedlings (Ruiz et al., 2000; Ruiz 

and Asins, 2003), control of the origin of plants obtained by induced gynogenesis (Froelicher et 

al., 2007), molecular characterization of triploid cultivars (Aleza et al., 2010a; Cuenca et al., 

2010) and the analysis of the origin of unreduced gametes (Luro et al., 2004; Chen et al., 

2008a). 

More recently, the availability of large set of sequencing data has opened the way for 

insertion-deletion (InDel) and single nucleotide polymorphism (SNP) marker development 

(García-Lor et al., 2012; Ollitrault et al., 2012, 2012b; García-Lor et al., 2013b). 

A very important outbreak for efficient use of molecular markers in genetics and breeding is 

the availability of genetically mapped codominant markers anchored with the physical 

sequence. Such citrus reference map was established recently for clementine (Ollitrault et al., 

2012a). Despite the heterogeneous dispersion of markers, this medium density reference map 
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(961 markers for 1084.1 cM) constitutes a good framework for further marker-trait association 

studies, and it has been used to enable the chromosome assembly of the reference whole 

genome citrus sequence (Wu et al., 2013). 

 

6.2. Specific challenge for polyploid species genotyping 

Despite the undisputable importance of polyploid plant species, the genetics of these plant 

species are less well known than those of their diploid counterparts, which is especially evident 

in research fields as DNA analysis (Esselink et al., 2004). Indeed, the estimation of molecular 

marker allele copy number has long been considered a challenge for polyploid species with 

polysomic inheritance, while it is essential to assign the allelic configuration for different types of 

heterozygotes for accurate population genetic studies. In segregating polyploid progenies, the 

population genetic structure can provide relevant information about the underlying meiosis 

mechanisms that take place in the formation of these progenies, which also greatly affect 

character segregation (Hutten et al., 1993; Tai and DeJong, 1997; Douches and Maas, 1998; 

Barcaccia et al., 2003; Brownfield and Kohler, 2011). Moreover, allelic dosage can affect gene 

expression and phenotype. Therefore, the determination of allelic dosages is particularly 

important for marker/trait association studies (De Jong et al., 2003; Sjoling et al., 2005). 

However, there is a major problem to define which allele(s) occur in more than one copy when 

the number of displayed DNA alleles in a sample is less than the possible maximum number for 

that ploidy level in species with polysomic inheritance, such as SNP markers, which are mostly 

biallelic. For a triploid plant with two detected alleles, two heterozygous configurations are 

possible (2:1 or 1:2); for a tetraploid plant, three different allelic configurations are possible (3:1, 

2:2 or 1:3). With higher ploidy levels, the number of possible allelic configurations becomes 

even larger (Esselink et al., 2004). 

Several techniques have been used to estimate allele dosage in polyploids, such as the 

useful MAC-PR method (Esselink et al., 2004) for SSR markers; however, SSR analysis 

remains relatively costly and time consuming compared with present SNP genotyping methods. 

Moreover, with the increasing availability of EST databases and whole genome sequences, 

SNPs have become the most abundant and powerful polymorphic markers that can be selected 

along the entire genome (Edwards and Batley, 2010). 

Techniques for SNP genotyping include allele-specific primer extension (Kwok, 2001), 

temperature-switch PCR (Tabone et al., 2009), array methodologies (Ishikawa et al., 2005), and 

targeted pyrosequencing (Ahmadian et al., 2000). The application of SNP markers has been 

limited primarily to diploid organisms, while the application of these markers to polyploid 

organisms for allele dosage estimation remains limited. The usefulness of SNPlex™ (Berard et 

al., 2009) and Illumina Golden Gate™ assays (Akhunov et al., 2009) for polyploid wheat 

genotyping has been demonstrated. However, these techniques are more suitable for 
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genotyping large numbers of samples over numerous markers than for performing small scale 

analysis. 

It is, therefore, important to develop alternative methods that offer a wider spectrum of 

genotyping possibilities to infer SNP allelic configurations in polyploid plants, particularly in 

citrus, for small- to larger-scale projects. 

 

6.3. Whole-genome sequencing 

Genomics has provided new tools for crop improvement, helping to identify and select 

candidate genes responsible of agronomic characters of interest, and allowing the development 

of fast methods to incorporate these characters into crop plants (Terol et al., 2007). 

Citrus, with a basic chromosome number of 9, has a relatively small genome size. Haploid 

genomes of C. sinensis and C. clementina are, respectively, 380 Mb and 370 Mb of size 

(Arumuganathan and Earle, 1991).  

BAC libraries of sweet orange, clementine, and satsuma have been established in the last 

few years in Spain, Japan, and the USA. The Spanish Citrus Genomic Consortium has 

constructed three BAC libraries from the clementine mandarin (EcoR I, Hind III, and MboI) 

containing a total of 57,000 clones with an average insert size of 120 kb (19x coverage).  

28,000 BAC clones were end-sequenced and these sequences analyzed (Terol et al., 2008). 

The Citrus Genome Analysis Team from Japan is engaged in the construction of a physical map 

of citrus by HICF (High-Information-Content Fingerprinting) analysis of a BAC library from the 

‘satsuma’ mandarin consisting of 37,000 clones, with 13.3x coverage of the citrus genome. A 

BAC library of ‘Ridge Pineapple’ sweet orange was produced in USA (USDA-ARS, Ft. Pierce, 

Fl, USA) containing 18,432 clones (BamHI/Mbo I) with an average insert size of 145 kb, or an 

estimated 7x coverage. A total of 16,727 clones from this library have been fingerprinted and 

assembled into 472 contigs (http://phymap.ucdavis.edu:8080/citrus/). 

A low-coverage (1.2X) shotgun sequence of the C. sinensis genome has revealed the 

difficulties related to high heterozygosity, and lead the International Citrus Genomic Consortium 

to select a haploid clementine (Aleza et al., 2009a) as the model for whole citrus genome 

sequencing. The International Consortium for Citrus Genomics has recently released the whole 

genome sequence of the haploid clementine, assembled in pseudo-chromosome 

[www.phytozome.net, (Wu et al., 2013)]. This reference sequence is currently used as template 

to organize sequences of the highly heterozygous species such as C. sinensis, C paradisi, and 

C. limon. 

Recently, Xu et al. (2013) sequenced and assembled a dihaploid genome of sweet 

orange and mapped the parental diploid genomic DNA sequence reads to the haploid reference 

genome to complete the construction of the heterozygous genome map. The availability of the 

http://www.phytozome.net/
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sweet orange and clementine genome sequence provides a valuable genomic resource for 

citrus genetics and breeding improvement. 

In addition, the complete chloroplast genome sequence of C. sinensis was published by 

Bausher et al. (2006). It is 160.129 bp in length and contains 133 genes (89 protein-coding, 4 

rRNAs, and 30 distinct tRNAs). 

 

6.4. Marker-trait association studies and marker assisted selection 

Quantitative Trait Loci (QTLs) and genetic association studies are used to find candidate 

genes or genome regions that contribute to a specific phenotypic trait, by testing for a 

correlation between phenotypic diversity and genetic variation (Lewis and Knight, 2012). Then, 

the identified DNA markers can be used to infer the presence of allelic variation in the genes 

underlying these traits and to assist plant breeding (marker-assisted selection – MAS). 

Selection can be carried out at the seedling stage, allowing more effectively selection of target 

genotypes and resulting in faster variety development and releasing (Bertrand et al., 2008). This 

is of particular interest for tree species with long juvenile phase, such citrus. 

The detection of major genes and QTLs controlling traits is based on the linkage 

disequilibrium between closely linked loci. Significant genetic association may be interpreted as 

either direct association, in which the genotyped molecular marker is the true causal variant 

conferring phenotypic variation; or indirect association, in which a molecular marker in linkage 

disequilibrium with the true causal variant is genotyped. Distinguishing between direct and 

indirect association is challenging and may require resequencing of the candidate region, dense 

genotyping of all available markers, or functional studies to confirm the role of a putative 

mutation in the phenotypic trait (Lewis and Knight, 2012). In citrus, only a few characters of 

agronomic interest have been linked to molecular markers, such as RAPD markers linked to 

dwarfing (Cheng and Roose, 1995), RAPD markers linked to a gene controlling fruit acidity 

(Fang et al., 1997), SSR markers linked to CTV resistance from Poncirus trifoliata (Gmitter et 

al., 1996; Yang et al., 2003; Asins et al., 2004; Bernet et al., 2004), AFLP markers linked to 

nucellar embryony (García et al., 1999; Kepiro and Roose, 2010) and the dominant PCR assay 

for the anthocyan content of pulp from blood orange due to a transposable element in the 5’ 

extremity of the Ruby gene (Butelli et al., 2012). Other characters of interest have been tagged 

to QTLs, such as salinity tolerance (Moore et al., 2000) and nematode resistance (Ling et al., 

2000). Alternaria brown spot resistance has also been tagged with molecular markers. (Dalkilic 

et al., 2005) reported two RAPD markers with loose linkage with the locus (15.3 cM and 36.7 

cM far from ABS resistance locus in the same side). More recently, (Gulsen et al., 2010) 

identified two flanking SRAP markers at 3 cM and 13 cM. However, markers tightly (or 

completely) linked to ABS resistance would greatly improve the selection of resistant genotypes 

in early development stages and avoid growing susceptible genotypes (false positives) or 

discard resistant ones (false negatives). 
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Sexual polyploidization through unreduced gamete formation is currently a central 

approach in citrus triploid breeding programs aiming to develop new seedless cultivars. 

However, despite the undisputable importance of polyploid plant species, their genetics are less 

well known than those of their diploid counterparts, which is especially evident in research fields 

as DNA analysis. Indeed, the estimation of molecular marker allele copy number has long been 

considered a challenge for polyploid species with polysomic inheritance, while it is essential to 

assign the allelic configuration for different types of heterozygotes for accurate population 

genetic studies. For SSR markers, these allelic configurations in polyploids can be assigned 

using the microsatellite allele counting – peak ratios method (MAC-PR). However, SSR analysis 

remains relatively costly and time consuming compared with actual SNP genotyping methods; 

moreover, with the increasing availability of SNP information in citrus, an efficient method for 

SNP genotyping allowing inferring allele doses in polyploid genotypes appears essential for 

optimal integration of molecular tools in citrus triploid breeding. Allelic configurations in triploid 

segregating polyploid progeny, particularly in citrus, should provide useful information in the 

underlying meiosis mechanisms that take place in the formation of these progeny and other 

genetic studies. 

The genetic structure of triploid progeny arising from unreduced gametes depends on their 

mechanism of origin, being very different for first-division restitution (FDR) and second-division 

restitution (SDR). Moreover, for a concrete gene, segregations in triploid populations also 

depend on the gene-centromere distance. In this context, deep knowledge of the mechanism 

underlying meiotic nuclear restitution producing unreduced gametes and location of 

centromeres are crucial to optimize breeding strategies based on sexual hybridization. 

Moreover, trait segregations in triploid populations still not well understood, due to the 

complexity of polyploid genomes and eventually non-Mendelian segregations. In the case of 

citrus, the inheritance of very few characters has been studied on triploid progenies and genetic 

determinants underlying their segregations have not been characterised in any case. 

Alternaria brown spot (ABS) is a major fungal disease which affects susceptible mandarin 

cultivars and causes a substantial loss of production and fruit quality, limiting the number of 

usable breeding parents for triploid breeding. Knowledge on segregations for ABS-resistance 

for different breeding strategies and the identification of linked molecular markers would greatly 

improve the breeding efficiency for resistant cultivar selection. 

The specific objectives of the PhD thesis are the following: 

Objective 1: To implement a versatile SNP genotyping method to efficiently assign allelic 

configuration in polyploid plants  

With the increasing availability of SNPs markers in citrus, which have become the most 

abundant and powerful polymorphic markers that can be selected along the entire genome, 

a new method to assign SNP allele dosage in an accurate, simple, and cost effective way, 

usable in small- to large-scale projects will be developed. 
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Objective 2: To shed light on the mechanism underlying unreduced gamete formation in 

a wide range of citrus genotypes used as female parents in 2x × 2x triploid breeding 

programs  

The origin of unreduced megagametophytes in citrus is still controversial, although 

differences in genetic structures are expected for FDR and SDR origin. Moreover, 

segregations for concrete loci depend on the locus-centromere distance and are different 

for each mechanism. In this context, three objectives have been developed: 

2.1 To develop and apply a method for centromere mapping which allows 

comparing a large range of partial interference model functions 

2.2 To develop and apply a method for identifying unreduced gamete formation 

mechanism both at population and at individual level based on marker-

centromere distances  

2.3 To investigate the origin of unreduced gametes for sixteen mandarin 

genotypes used as female parents 

 

Objective 3: To gain knowledge about inheritance, genetic and molecular determinism of 

ABS-resistance 

The mode of inheritance for ABS-resistance has been previously studied at diploid level, 

but segregations on triploid populations still unknown. Moreover, development of molecular 

markers for an early selection of ABS resistant hybrids would greatly improve the efficiency 

of breeding programs. In this context, three objectives have been developed: 

3.1  To analyze segregations of ABS-resistance for different parents and 

strategies of triploid breeding 

3.2 To locate a chromosome region associated with the ABS-resistance and to 

identify candidate resistance genes in the located region 

3.3 To develop molecular markers for marker-assisted selection in citrus 

breeding programs for ABS-resistance 
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The manuscript is structured in four chapters, corresponding to published or in preparation 

scientific articles: 

 

Chapter 1: Assignment of SNP allelic configuration in polyploids using competitive 

allele­specific PCR: application to citrus triploid progenies. Cuenca, et al. (2013). Annals of 

Botany 111: 731 – 742. Objective 1. 

 

Chapter 2: Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of 

SDR mechanism for 2n megagametophyte production and partial chiasma interference in 

mandarin cv ‘Fortune’. Cuenca et al. (2011). Heredity 107: 462 – 470. Objective 2. 

 

Chapter 3: Maximum-likelihood method based on parental heterozygosity restitution of 

centromeric loci identifies SDR as the predominant mechanism leading to 2n 

megagametophytes in C. reticulata. Cuenca et al. Annals of Botany, Submitted. Objective 2. 

 

Chapter 4: Genetically based location from triploid populations and gene ontology of a 

3.3-Mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters 

of resistance genes. Cuenca et al. (2013). PLoS ONE 8(10): e76755. Objective 3. 
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Abstract 

 

Background: Polyploidy is a major component of eukaryote evolution. Estimation of allele copy 

numbers for molecular markers has long been considered a challenge for polyploid species, 

while this process is essential for most genetic research. With the increasing availability and 

whole genome coverage of SNP markers, it is essential to implement a versatile SNP 

genotyping method to efficiently assign allelic configuration in polyploids. 

 

Scope: This work evaluates the usefulness of the KASPar method, based on competitive allele-

specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model 

because of its economic importance, the ongoing worldwide polyploidy manipulation projects for 

cultivar and rootstock breeding, and the increasing availability of SNP markers. 

 

Conclusions: Fifteen SNP markers were successfully designed that produced clear allele 

signals that were in agreement with previous genotyping results at the diploid level. The 

analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different 

ratios revealed very high correlation (average = 0.9796; SD = 0.0094) between the allele ratio 

and two parameters [theta angle = tan
-1 

(y/x) and y' = y/(x+y)] derived from the two normalised 

allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance 

(ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99.71% correct 

allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid 

crosses were easily genotyped and provided useful genetic information. This work 

demonstrates that the KASPar SNP genotyping technique is an efficient way to assign 

heterozygous allelic configurations within polyploid populations. This method is accurate, 

simple, and cost effective. This genotyping technique has been successfully applied to two 

citrus triploid populations arising from 2n gametes and interploid crosses. Moreover, this 

method appears to be useful for quantitative studies, such as relative allele-specific expression 

analysis and bulk segregant analysis. 
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Introduction  

Polyploidy is a major component of eukaryote evolution, particularly in angiosperms 

(Grant, 1981; Soltis and Soltis, 1993; Wendel and Doyle, 2005). Many plant species result from 

autopolyploidization or allopolyploidization events, and polyploidization is considered the most 

common sympatric speciation mechanism (Otto and Whitton, 2000). Despite the undisputable 

importance of polyploid plant species, the genetics of these plant species are less well known 

than those of their diploid counterparts. Indeed, the estimation of molecular marker allele copy 

number has long been considered a challenge for polyploid species with polysomic inheritance, 

while it is essential to assign the allelic configuration for different types of heterozygotes for 

accurate population genetic studies. In segregating polyploid progenies, the population genetic 

structure can provide relevant information about the underlying meiosis mechanisms that take 

place in the formation of these progenies, which also greatly affect character segregation 

(Hutten et al., 1993; Tai and DeJong, 1997; Douches and Maas, 1998; Barcaccia et al., 2003; 

Brownfield and Kohler, 2011). Moreover, allelic dosage can affect gene expression and 

phenotype. Therefore, the determination of allelic dosages is particularly important for 

marker/trait association studies (De Jong et al., 2003; Sjoling et al., 2005). When parents of a 

polyploid progeny share one allele, only the dosage allele estimation allows knowing the alleles 

transmitted by each parent to heterozygous progeny. Therefore, knowledge of allelic dosage in 

polyploids appears to be essential for studies using single nucleotide polymorphisms (SNPs) 

markers, most of which are biallelic. 

Several techniques have been used to estimate allele dosage in polyploid genotypes or 

tissues. When analysing microsatellite markers (SSRs), the microsatellite allele counting – peak 

ratios method (MAC-PR; (Esselink et al., 2004) is especially useful. However, SSR analysis 

remains relatively costly and time consuming compared with actual SNP genotyping methods. 

Moreover, with the increasing availability of EST databases and whole genome sequences, 

SNPs have become the most abundant and powerful polymorphic markers that can be selected 

along the entire genome (Edwards and Batley, 2010).  

Several SNP genotyping methods have been developed. Some methods are based on 

electrophoretic separation after PCR amplification, including allele-specific primer extension  

(Kwok, 2001) and temperature-switch PCR (Tabone et al., 2009). High-throughput genotyping 

can be obtained using array methodologies (Sapolsky et al., 1999; Ishikawa et al., 2005); other 

techniques are based on pyrosequencing™ (Ronaghi et al., 1998; Ahmadian et al., 2000). 

However, the application of SNP markers has been limited primarily to diploid organisms, while 

the application of these markers to polyploid organisms for allele dosage estimation remains 

limited. Rickert et al. (2002) reported the use of pyrosequencing™ in polyploid potatoes, with 

some sequence-specific limitations. The usefulness of SNPlex™ (Berard et al., 2009) and 

Illumina Golden Gate™ assays (Akhunov et al., 2009) for the genotyping of polyploid wheat has 

been demonstrated. For genotype calling in tetraploid species with SNP analysis using the 

Illumina GoldenGate™ array, Voorrips et al. (2011) developed an algorithm using mixture 
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models, but they assumed Hardy Weinberg equilibrium within the population, which does not 

occur in all segregating polyploid progeny. Microarray data (Kirov et al., 2006; Meaburn et al., 

2006; Steer et al., 2007) have also been used to estimate allelic frequencies in bulk populations 

or DNA pools, i.e., to perform genome-wide association scans. Array analysis is more suitable 

for genotyping large numbers of samples over numerous markers than for performing small 

scale analysis, as array analysis lacks flexibility in term of the numbers and panels of SNP loci 

that can be analyzed. Targeted pyrosequencing™ (Gruber et al., 2002; Neve et al., 2002; 

Wasson et al., 2002; Lavebratt et al., 2004) can be useful for performing allele frequency 

estimation for a few genes in pooled DNA, but this technique remains relatively costly and time 

consuming. It is, therefore, important to develop alternative methods that offer a wider spectrum 

of genotyping possibilities to infer SNP allelic configurations in polyploid plants in small- to 

larger-scale projects. 

The KBiosciences Competitive Allele­Specific PCR SNP genotyping system (KASPar) is 

a homogeneous fluorescent endpoint genotyping system (Cuppen, 2007), that utilises a unique 

form of competitive, allele-specific PCR and combines the use of a highly specific 5’-3’ 

exonuclease-deleted Taq DNA polymerase with two competitive, allele-specific, tailed forward 

primers and one common reverse primer. This system is simple and cost effective compared to 

other SNP genotyping assays and is well adapted to low-to-medium throughput genotyping 

projects (Chen et al., 2010). This technology has been successfully applied to the study of 

humans, animals, and plants (Nijman et al., 2008; Bauer et al., 2009; Cortés et al., 2011; Rosso 

et al., 2011). 

Citrus is mainly diploid. However, many modern breeding projects for the production of 

seedless mandarins based on the production of triploid hybrids (Ollitrault et al., 2008; Aleza et 

al., 2010b, 2012c, 2012d) and tetraploid rootstocks are promising (Saleh et al., 2008; Dambier 

et al., 2011; Grosser and Gmitter, 2011). Triploid populations in citrus can arise from unreduced 

gametes in crosses between diploid parents or from interploid (diploid × tetraploid or tetraploid × 

diploid) crosses. Sexual polyploidization resulting from 2n megagametophyte production is 

routinely exploited for triploid citrus breeding (Aleza et al., 2010b). In such crosses, segregation 

of a marker depends on the parental genetic structure, the relative distance to the centromere, 

and the mode of restitution (First Division Restitution [FDR] or Second Division Restitution 

[SDR]). The MAC-PR method has been successfully applied to demonstrate the SDR origin of 

the 2n gametes arising from the ‘Fortune’ mandarin cultivar and to locate the centromere in one 

chromosome (Cuenca et al., 2011). For interploid crosses, marker segregations are almost 

exclusively dependent on the parental genetic conformation and preferential chromosome 

pairing. SSR markers were also used to analyse the meiotic behaviour of a tetraploid 

interspecific somatic hybrid of C. deliciosa + C. lemon (Kamiri et al., 2011), concluding that 

there was predominant tetrasomic segregation. However, the low availability of SSR markers 

displaying favourable parental allelic structure that can be used to differentiate male and female 

contributions to the hybrids limits such studies to just a few areas of the genome. Conversely, 
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large SNP resources have become available from extensive sequencing projects (Terol et al., 

2007; Terol et al., 2008; Gmitter et al., 2012; Ollitrault et al., 2012b). 

The objective of the present work was to evaluate the potential of the KASPar method 

to assess SNP allelic configurations in polyploid plants. Citrus was chosen as a model system 

because of its economic importance, the worldwide ongoing polyploidy manipulation projects for 

cultivar and rootstock breeding, and the increasing availability of SNP markers.   

The quantitative value of the KASPar assay was estimated by pooling DNA from two 

haploid lines at several relative concentrations, simulating, among others, triploid and tetraploid 

heterozygous progeny. A method was developed for semi-automated polyploid genotype calling 

and applied for allelic configuration analysis of 170 triploid hybrids from two families arising from 

both sexual polyploidization and interploid crosses. 

 

Material and methods 

Sample preparation 

DNA pool preparation:  

Genomic DNA from two haploid lines, Citrus maxima (Burm.) Merr. (pummelo) cv 

‘Chandler’ and C. clementina Hort. ex Tan. [clementine; (Aleza et al., 2009a)] was isolated 

using a Plant DNAeasy Kit from Qiagen Inc. (Valencia, CA, USA) following the manufacturer’s 

protocol. DNA concentrations were estimated with PicoGreen® and adjusted to 30 ng/µl. DNA 

from the two haploid lines were pooled at ratios of 9:1, 5:1, 3:1, 2:1, 3:2, 1:1, 2:3, 1:2, 1:3, 1:5, 

and 1:9. Five samples (replications) of each haploid line and pool were prepared and used to 

test the accuracy of the technique. 

Simulation of triploid and tetraploid hybrid samples by pooling DNA from haploid lines: 

Two subsets of haploid DNA pool, one corresponding to 2:1 and 1:2 ratios that 

simulated heterozygous triploid genotypes and the other corresponding to 3:1, 1:1, and 1:3 

ratios that simulated tetraploid heterozygous genotypes, were jointly used with the haploid 

genotypes to test the capability of the technique to discriminate among different types of 

heterozygotes within triploid and tetraploid populations. 

Natural triploid populations: 

2x × 2x crosses: ‘Fortune’ (C. clementina × C. tangerina) and ‘Willowleaf’ (C. deliciosa 

Ten.) diploid mandarins and 39 triploid hybrids segregating from this cross (Aleza et al., 2010b) 

were selected to test the accuracy of the technique by analysing two replicates of each sample. 

Moreover, 86 triploid hybrids from ‘Clementine’ (C. clementina) × ‘Nadorcott’ (C. reticulata 
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Blanco) population (Aleza et al., 2010b) were also analyzed as individual samples to perform 

genotype calling. 

4x × 2x cross: Tetraploid ‘Clementine’ (C. clementina 4x) and diploid ‘Pink’ pummelo (C. 

maxima 2x) and 88 triploid hybrids segregating from this cross (Aleza et al., 2012d) were also 

analyzed. Tetraploid ‘Clementine’ was obtained by treating buds of the diploid ‘Clementine’ with 

colchicines (Aleza et al., 2009b); therefore, this genotype should be duplex (aabb) for all 

heterozygous loci. 

SNP selection 

SNPs for the analysis of signal-dosage correlation: 

To validate the quantitative value that was obtained from the KASPar assay using 

pooled DNA, seven SNPs differentiating the two haploid lines (C. maxima and C. clementina) 

were selected from previous genotyping data obtained on the Illumina GoldenGate® platform 

(Ollitrault et al., 2012b). These SNPs were also used to test the accuracy of the technique in 

genotyping repetitions of the same sample over the ‘Fortune’ × ‘Willowleaf’ triploid population. 

SNPs for triploid population analysis: 

Three out of seven SNPs used for the previous analysis, and eight other SNP markers, 

were selected to test the capacity of the technique for differentiating between heterozygous 

genotypes within two triploid populations, one arising from a 2x × 2x cross, and the other from a 

4x × 2x cross. These SNPs are heterozygous for ‘Clementine’ and homozygous or 

heterozygous with null allele for ‘Nadorcott’ and ‘Pink’. 

SNP genotyping 

All samples were genotyped for the SNP markers using KASPar technology by 

KBioscience® (http://www.kbioscience.co.uk/). The KASPar™ Genotyping System is a 

competitive, allele-specific dual Förster Resonance Energy Transfer (FRET)-based assay for 

SNP genotyping. It uses two FRET cassettes where fluorometric dye [FAM (6-carboxy-

fluorescein) or VIC®] is conjugated to primer but quenched via resonance energy transfer; ROX 

dye (6-carboxy-X-rhodamine, succinimidyl ester) is used to normalise the data. Sample DNA is 

amplified with a thermal cycler using allele-specific primers, leading to the separation of 

fluorometric dye and quencher when the FRET cassette primer is hybridised with DNA. Primers 

were designed by KBioscience®, based on the SNP locus flanking sequence (approximately 50 

nt on each side of the SNP). Two 40-mer allele-specific oligonucleotides and one common 20-

mer oligonucleotide were defined for each locus. Detailed information for all SNP markers can 

be found in Additional File 1. Additional details about this genotyping method can be found in 

Cuppen (2007). 

 

http://www.kbioscience.co.uk/
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Data analysis method 

Normalised signals from each SNP allele (x and y) were provided by KBioscience® 

services, and two-dimensional plot representations were obtained using SNPViewer software 

(http://www.kbioscience.co.uk/software/SNP%20viewer%20intro.html). From the x and y 

normalised values, the theta angle [=tan
-1

(y/x); 0º ≤  ≤ 90º] and the relative y allele signal 

[y’=y/(x+y); 0 ≤ y’ ≤ 1] of each sample were calculated. Further analyses were carried out that 

considered the y’ parameter, as this parameter was found to provide better clustering and 

genotype calling of the samples. 

Data from all haploid lines and DNA pools with different allele configurations (9:1, 5:1, 

3:1, 2:1, 3:2, 1:1, 2:3, 1:2, 1:3, 1:5, and 1:9) were tested for correlations between doses and 

both the theta angle and y’ values that were obtained. Cluster analysis (MacQueen, 1966) using 

the farthest-neighbour method with standardised squared euclidean distances and ANOVA 

were performed from the normalised allele signals (x, y) jointly and from the y’ parameter data 

for each SNP. 

Data from triploid and tetraploid simulated populations were also analyzed separately by 

cluster analysis and ANOVA. Replications of the same samples were used to test the precision 

of the technique by genotype calling. 

All statistical data were analyzed using Statgraphics® Plus v5.1 software (Rockville, 

MD, USA). 

Results 

 

Marker design and data acquisition  

Primers for the KASPar assay were successfully designed by KBioscience® for all 15 of 

the submitted SNP surrounding sequences. Data acquisition for x and y allele signals allowed 

successful allelic calling for 2535 out of 2563 marker/genotype combinations (98.91%). The 

validity of the genotyping results was verified by comparing the results for 24 diploid varieties 

with previous data obtained with an Illumina GoldenGate® array. Complete conformity was 

observed (data not shown). 

Analysis of the correlation between relative allele signals and relative allele frequencies 

in the DNA pools 

To confirm the value of the KASPar assay for producing semi-quantitative data, 

equimolar DNA extracts from two haploid lines (clementine and pummelo) were mixed at 13 

different relative concentrations, and five replicates were analyzed for each of seven SNP 

markers. The correlations between relative allele signals and relative doses were analyzed. 
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An example of correlation analysis between relative allele dosage and signals is shown 

in Figure 1.1 for the CiC2840-01 SNP marker. From x and y signal values (Figure 1.1A), theta 

angle [ = tan
-1

(y/x); Figure 1.1B] and the relative y allele signal [y’ = y/(x+y); Figure 1.1C] of 

each haploid line sample and DNA pool were calculated. High values of correlation coefficients 

between both parameters and relative allele dosage in the DNA pools were obtained for all 

analyzed SNP markers, with an average of 0.9796 and a standard deviation of 0.0094 for the y’ 

parameter and an average of 0.9710 and a standard deviation of 0.0176 for angle theta. 

Correlation values obtained for the y’ parameter were slightly superior to those obtained by 

angle theta for six of the seven SNP markers that were analyzed (Table 1.1).  

 

 

Figure 1.1. Correlation study of allele doses and x, y signals for the CiC2840-01 SNP marker. (A) Plot of 

normalized x, y allele signals. (B) Correlation between relative haploid Chandler doses and theta angle [= 
tan

-1
(y/x)]. (C) Correlation between relative haploid Chandler doses and the y′ parameter [y′=y(x+y)]. 
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Table 1.1. Correlation coefficients between relative allele dosage and allele signals from DNA pools at 
intermediate proportions for theta angle and y’ parameter for the seven SNP markers analyzed. 

 

For some markers (CiC5785-01, F3H-M309, FLS-M400, and TRPA-M593; Figure 1.2), 

the lineal regression established from the mixed sample did not fit with the signals from the pure 

sample. For all these markers, the relative signals corresponding to the haploid ‘Chandler’ allele 

in the DNA mixes appear to be lower than expected in relation to the relative DNA dosages. 

This can probably be attributed to PCR allele competition between the ‘Clementine’ and 

‘Chandler’ allele in the DNA mixes.  

 

 

Figure 1.2. Correlation study between the relative haploid Chandler doses and the y′ parameter for six 

SNP markers. 

 

However, in the DNA mixes, the correlations between allele signals and allele doses 

remained high for these markers (between 0.9684 and 0.9803) testifying for a very good lineal 

regression between relative signals of the two alleles and relative allele dosages.  

SNP Marker Correlation coefficient for angle  Correlation coefficient for y’ parameter 

CiC2840-01 0,9941 0.9919 

CiC5089-06 0,9753 0.9779 

CiC5785-01 0,9580 0.9747 

DXS-M618 0,9881 0.9923 

F3H-M309 0,9788 0.9803 

FLS-M400 0,9535 0.9717 

TRPA-M593 0,9492 0.9684 

AVERAGE 0.9710 0.9796 
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These data indicate that the KASPar technique, using either the y’ parameter or the 

theta angle, can be useful for a quantitative analysis of the relative allele frequency in a 

genotype or DNA pool. Because y’ produced a slightly higher correlation coefficient, this 

parameter was employed in further analyses. 

 

Cluster analysis and ANOVA for simulated triploid and tetraploid allele dosage 

Separated cluster analyses and ANOVA from relative y allele signals (y’ parameter) in 

triploid and tetraploid simulated populations were performed. With diallelic markers, for a triploid 

heterozygous genotype, there are only two allelic configurations to distinguish: aab and abb 

(duplex and simplex of a-allele). For a heterozygous tetraploid genotype, three allelic 

configurations may be differentiated: aaab, aabb, and abbb (triplex, duplex and simplex of a-

allele). With higher ploidy levels, the number of possible allelic configurations becomes even 

larger (n-1 configurations for n ploidy). 

ANOVA analysis (Table 1.2) revealed a complete and correct classification of the 

average value of the different configurations that were simulated. An example of the x and y 

allele signals, the frequency histogram for the y’ parameter and the LSD intervals for the mean 

from ANOVA for simulating triploid and tetraploid populations, is provided for the CiC2840-01 

SNP marker in Figure 1.3. 

 

Table 1.2. Homogeneous groups formed, and F-values from ANOVA analysis of SNPs from DNA pools 

simulating triploid and tetraploid populations showing the percentage of correctly classified replications by 
cluster analysis based on the y’ parameter. 

 

 

 

 

 Simulating 3n populations Simulating 4n populations 

SNP Marker 1:0 2:1 1:2 0:1 
F value 

from 
ANOVA 

% 3n 
correctly 
classified 

1:0 3:1 1:1 1:3 0:1 
F value 

from 
ANOVA 

% 4n 
correctly 
classified 

CiC2840-01 a b c d 2975.34 100% a b c d e 1644.48 100% 

CiC5089-06 a b c d 1045.50 100% a b c d e 673.68 96% 

CiC5785-01 a b c d 5110.86 100% a b c d e 6084.71 100% 

DXS-M618 a b c d 2938.98 100% a b c d e 3013.55 100% 

F3H-M309 a b c d 2063.52 100% a b c d e 1445.66 100% 

FLS-M400 a b c d 10046.43 100% a b c d e 10459.43 100% 

TRPA-M593 a b c d 11140.59 100% a b c d e 6666.05 100% 

AVERAGE      100%       99.43% 
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Figure 1.3. Study of simulating triploid and tetraploid populations for the CiC2840-01 SNP marker. (A) Plot 

of normalized x, y allele signals. (B) Frequency histogram for the y′ parameter. (C) Cluster analysis. (D) 
Least significant difference intervals for the mean obtained from ANOVA. 

 
 

Moreover, all expected homogeneous groups were formed by cluster analysis using the 

farthest-neighbour method with standardised squared euclidean distances. All of the triploid 

sample replications and 99.43% of the tetraploid ones were correctly classified; only one 

replication for the CiC5089-06 SNP marker was classified into an incorrect cluster (Table 1.2). 

 

Allelic configuration of triploid populations 

Accuracy of genotype calling for duplicated triploid samples: 

Thirty-nine triploid hybrids arising from 'Fortune' 2n gametes in the ‘Fortune × 

Willowleaf’ hybridization were analyzed for seven SNPs, with two technical replications. All 

SNPs had the following allelic configuration: 'Fortune': ab and 'Willowleaf' mandarin: aa. 
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Therefore, depending on the origin of the diploid gamete, three genotypic clusters were 

expected: aaa, aab, and abb. Samples with replications that were classified in the same cluster 

and thus genotyped with the same allelic conformation reached 97.44%. Errors in classification 

were observed in five of the seven SNP markers analyzed. Considering a replicate for the same 

DNA sample (with different allele calling between replicates) to be classified correctly, the 

average error rate for further routinely genotyping without replicates was estimated to be 1.28%. 

To perform the genotype calling of triploid progeny, cluster analyses were performed 

according to the expected genotypes for each population and the parental-specific allelic 

configuration of each marker. 

 

2x × 2x triploid progeny:  

When crossing a heterozygous female parent (ab) with homozygous parents (aa), 

maternal heterozygosity restitution (HR) is reflected in the duplex (aab) triploid hybrids. Under 

the SDR restitution mechanism, HR is directly linked with the distance from the locus under 

consideration to the centromere and, therefore, the frequency of HR can be estimated from this 

distance, as proposed by Cuenca et al. (2011). To validate genotype calling for triploids 

resulting from a 2x × 2x cross, three SNP markers (CiC3440-07, CiC5785-01 and CiC6278-01) 

mapped in chromosome II were selected. Indeed, Cuenca et al. (2011) located the centromere 

position for the corresponding linkage group at 59.6 cM of the current clementine’s reference 

genetic map (Ollitrault et al., 2012a) using the Cx(Co)
4
 partial interference model. The expected 

HR for the three considered markers (also mapped in the clementine map) was estimated using 

the same partial interference model. 

Cluster analyses were performed from y’ parameter values of each hybrid over 11 

analyzed SNPs (including the three markers on chromosome II) within the ‘Clementine × 

Nadorcott’ population to carry out genotype calling. Figure 1.4A shows an example of cluster 

analysis for the CiC2840-01 SNP marker. 
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Figure 1.4. Plot of normalized x, y allele signals and histogram representing genotype calling from cluster 
analysis over 85 triploids from the ‘Clementine × Nadorcott’ cross. (A, B) CiC2840-01 (ab × aa); (C, D) 
CiC1749-05 (ab × a0). 
 
 
 
 

The cluster analysis allowed the detection of null alleles in the male parent for two 

markers. Indeed, if the supposed homozygous parent in fact had heterozygosity for a null allele, 

five clusters should be obtained (abxa0: aab, ab0, aaa/aa0, abb, and bb0), where one cluster 

contains both ab0 triploids and ab diploid genotypes. Such a cluster configuration was observed 

for the CiC0610-01 and CiC1749-05 SNP markers (Figure 1.4C,D). 

On average, over all of the markers, 99.37% of the samples were assigned to a cluster 

and, therefore, could be accurately called. 

For the three markers of LGII, the observed HR values were not significantly different 

than those estimated from respective markers and centromere locations in the clementine map 

(Table 1.3). This provides additional validation of the accuracy of polyploid genotype calling 

using the method presented in this study.  
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Table 1.3. Results of 3-SNP genotype calling for the ‘Clementine × Nadorcott’ triploid population from 2n 

gametes for markers heterozygous for ‘Clementine’ and homozygous for ‘Nadorcott’, including the 
conformity (χ

2
 test) of the observed %HR with the theoretical one calculated from the distance from each 

locus to the centromere on chromosome II. 

SNP marker 
Map position 

(cM) 
NI aaa aab abb 

%HR 
(aab) 

observed 

%HR estimated 
from map 
position 

(centromere 
 at 59.6 cM) 

 
Χ

2
  

(p value) 

CiC3440-07 67.22 86 37 10 39 11.63% 13.59% 
0.282; NS 
(p=0.5954) 

CiC5785-01 44.73 84 32 17 35 20.24 % 28.23% 
2.648; NS 
(p=0.1037) 

CiC6278-01 57.01 86 46 0 40 0.00% 4.21% 
3.780; NS 
(p=0.0519) 

NI: number of individuals genotyped; aaa, aab and abb: number of individuals of each genotype; NS: non significantly 
different at alpha=0.05) 

 

For the eight remaining markers, the observed HR allowed us to estimate the relative 

distances of these markers from the centromere (Table 1.4), revealing markers with centromeric 

locations (less than 5 cM distance from centromere: CiC1380-05, CiC2840-01, and CiC4581-

01). 

 

 

Table 1.4. Results of 8-SNP genotype calling for the ‘Clementine × Nadorcott’ triploid population from 2n 

gametes for markers heterozygous for ‘Clementine’ and homozygous or heterozygous with null allele for 
‘Nadorcott’, showing the estimated marker-centromere distance. 

SNP marker NI aaa aab abb ab0 bb0 
% HR 

(aab+ab0) 
observed 

Estimated distance 
to centromere (cM) 

CiC0610-01 86 22 22 14 22 6 51.16% 27.42 

CiC0868-01 86 39 14 33 - - 16.8%   9.23 

CiC1380-05 86 43 1 42 - - 1.16%   0.75 

CiC1749-05 85 11 33 7 24 10 67.06% 40.61 

CiC1757-02 86 42 12 32 - - 13.95%   7.80 

CiC2840-01 85 46 2 37 - - 2.35%   1.49 

CiC4581-01 86 37 6 43 - - 6.98%   4.15 

CiC5089-06 84 27 40 17 - - 47.62 % 25.23 

NI: number of individuals genotyped; aaa, aab, abb, ab0 and bb0: number of individuals of each genotype. 
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4x × 2x triploid progeny: 

Triploid genotyping was also performed for progeny arising from a cross between 

doubled diploid ‘Clementine’ (Aleza et al., 2009a) and ‘Pink’ pummelo. When crossing a duplex 

tetraploid parent (aabb) with a homozygous diploid parent (aa), three clusters can be expected 

(triplex-aaa, duplex-aab, and simplex-abb), where maternal heterozygosity restitution is 

reflected into the duplex (aab) triploid hybrids. On average, over all of the markers, 97.08% of 

the samples were assigned to a cluster and, therefore, could be accurately called. 

The genetic structure of the triploid progeny arising from ‘Clementine 4x’ × ‘Pink’ is 

shown in Table 1.5, which indicates the percentage of heterozygosity restitution. For the other 

loci, HR values varied, ranging from 52.94% for CiC4581-01 to 69.41% for CiC5089-06. The 

average HR value over all loci was 59.64%. 

 

Table 1.5. Results of 7-SNP genotype calling for the ‘Clementine 4x × Pink’ triploid population, indicating 
the heterozygosity restitution in Clementine 4x (%HR) at each locus. 

SNP marker NI aaa aab abb %HR (aab) observed 

CiC3440-07 88 17 50 21 56.82% 

CiC0868-01 87 11 58 18 66.67% 

CiC1380-05 87 19 53 15 60.92% 

CiC4581-01 85 19 45 21 52.94% 

CiC5089-06 85 15 59 11 69.41% 

CiC5785-01 80 22 43 15 53.75% 

CiC6278-01 86 22 49 15 56.98% 

NI: number of individuals genotyped; aaa, aab and abb: number of individuals of each genotype. 

  



Chapter 1. Assignment of SNP allelic configuration in polyploids using competitive allele­specific PCR 

55 

Discussion 

The KASPar method is a powerful technique for assigning SNP allelic configurations in 

polyploid progeny 

Several techniques have been used to estimate allele dosage in polyploids, such as the 

MAC-PR method (Esselink et al., 2004) for SSR markers, and techniques for SNP genotyping, 

including allele-specific primer extension (Kwok, 2001), temperature-switch PCR (Tabone et al., 

2009), array methodologies (Ishikawa et al., 2005), and targeted pyrosequencing™ (Ahmadian 

et al., 2000). Our study demonstrates that the KASPar technique (Cuppen, 2007) is an 

alternative method to infer SNP allelic configurations in polyploid plants that offers a wider 

spectrum of genotyping possibilities. The KASPar method is simple and cost effective compared 

to other SNP genotyping assays and is well adapted to low- to medium-throughput genotyping 

projects. In addition to the markers published herein, 51 KASPar markers were successfully 

developed to analyze triploid and tetraploid citrus populations (Aleza et al., 2012a, 2012b; 

Cuenca et al., 2012). KASPar markers were also successfully developed (41 over 42 tested) 

and transferred in the true citrus group (Citrus, Fortunella, Poncirus, Microcitrus and 

Eremocitrus genera) from SNPs mining by sequencing within a Citrus collection (García-Lor et 

al., 2013a). When SNPs are mined in large discovery panel, this offers the opportunity to 

selects markers without additional variation in the flanking DNA sequence used as template for 

the competitive PCR of the KASPar assay and therefore to have a high success in marker 

development. KASPar markers were successfully developed in a large range of plant (Cortes et 

al., 2011; Rosso et al., 2011; Byers et al., 2012) and animal (Nijman et al., 2008; Murad et al., 

2009; Luciano et al., 2010) species demonstrating its universal applicability. 

The SNP genotyping and data analysis method presented in this study is simple and 

effective for genotyping triploid and tetraploid progeny and can be also used in the quantitative 

analysis of allele-specific expression. Allele signals (x, y) obtained from KBioscience® can 

easily be transformed into y’ [y’=y/(x+y); 0 ≤ y’ ≤ 1], which is a very useful parameter to cluster 

analyzed samples. Theta angles [=tan
-1

(y/x); 0º ≤  ≤ 90º] can also be used to analyse data, 

but the y’ parameter offers better clustering results. Quantitative analyses for correlation of the 

allele signals, and the allele doses and sample clustering carried out in this work, were powerful 

techniques for assigning allelic configurations in simulated triploid and tetraploid citrus 

genotypes for all SNP markers that were analyzed (100% of the triploids were correctly 

classified triploids as well as 99.43% of the tetraploids). The analysis of concrete triploid hybrids 

with technical replications confirmed the high degree of accuracy of the technique (error < 

1.5%). This SNP genotyping and data analysis method allowed us to distinguish among very 

close allele ratios, and it can also be efficiently employed for the analysis of higher ploidy levels. 

Moreover, the segregations observed with this technique have allowed us to identify 

heterozygous null alleles in one parent for some of the markers. Diploid progeny genotyping 

confirmed these conclusions for null alleles in ‘Pink’ pummelo (Ollitrault et al., 2012a). 
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PCR drift can affect allelic configuration inference in natural polyploid germplasm  

Interpretation of relative allele dosage for markers based on relative polymerase chain 

reaction (PCR) product intensities has been reported for various plants (Buteler et al., 1999; 

Julier et al., 2003; Landergott et al., 2006; Martins et al., 2009) and animals (McQuown et al., 

2002). The limits of such direct allele doses evaluation are associated with PCR selection 

caused by differential primer affinity and PCR drift resulting from random events during early 

cycles of PCR (Wagner et al., 1994).  

In this study, such PCR drift has been observed for some markers, displaying 

incongruence between the lineal regressions established from the mixed DNA pools and the 

pure sample. However, the correlations between allele signals and allele doses in the DNA 

pools remained high for these markers. Therefore, as lineal regression appears to offer a good 

approximation of the doses/relative signal relationship, a control with two dosage points should 

be sufficient to establish a function that correlates both parameters. 

Heterozygous diploid genotypes are suitable for determining the 1:1 ratios that are used 

as a baseline for calculations of allele quantification in the other heterozygous genotype. In the 

analysis of citrus triploid progeny, the location of different clusters relative to the heterozygous 

diploid parent allowed us to assign the alternate theoretical triploid heterozygous allelic 

configuration.  

The situation is much more complicated when analysing polyploid germplasm of 

unknown origin. Indeed, the variability in the flanking regions of the SNPs that were studied 

(where the primers were defined) should result in different levels of relative PCR competition 

and, therefore, should avoid proper allele dose identification from relative x/y signals. This is 

inherent to all PCR genotyping methods. Perhaps, as suggested by (Landergott et al., 2006) for 

the MAC-PR method, the KASPar assay may be very useful for determining the allelic 

configuration within crossing families, but it would not be generally applicable for estimating 

allelic dosage in polyploid germplasm without previous verification of the stability of relative 

allele amplification. An approach to limit the PCR drift associated with variation in the flanking 

area of the studied SNP should be to select SNPs flanked by conserved sequences. Such 

information is available in SNP mining studies where large discovery panels are used while 

there is generally no information of flanking sequence of microsatellite markers. This should be 

an important advantage of using SNPs rather than microsatellite markers for assignment of 

allelic configuration in polyploids. 

 

 

 



Chapter 1. Assignment of SNP allelic configuration in polyploids using competitive allele­specific PCR 

57 

Potential of KASPar for semi-quantitative estimation of allele-specific expression 

analysis or allelic frequency estimation in DNA extracted from pools 

Many genetic variants resulting in phenotypic differences are mediated through changes 

in gene expression. Variation in gene expression can be due to polymorphisms either at the 

gene locus (cis) or in other genes that influence gene expression (trans) or cis/trans interactions 

(Rockman and Kruglyak, 2006). Allele-specific expression (ASE) studies have introduced a 

creative method to uncover the respective contributions of cis- and trans-regulatory variation 

(Ronald et al., 2005; Main et al., 2009). Allelic imbalance in non-imprinted genes has been 

shown to be common in humans, maize, and Arabidopsis (Lo et al., 2003; Guo et al., 2004; 

Zhang et al., 2009; Zhang and Borevitz, 2009). Moreover, ASE analysis should enable the 

integration of potentially differential allelic functionality in association models between gene 

expression and phenotype. Therefore, gene expression analysis is a critical step for better 

understanding genotype/phenotype relationships. 

Analysis of allele-specific expression in relation to genomic structure requires the 

assessment of DNA and RNA allele dosage. It can be done by different methods: Northern 

(Guo et al., 1996), RNA-FISH (Herzing et al., 2002), SNP-specific array-based (Bjornsson et al., 

2008), Solexa (Main et al., 2009) or RNA-seq (Rozowsky et al., 2011).  

Furthermore, the estimation of allelic frequencies on pooled DNA is of great interest 

both in ecological studies of plants (Ritland, 2002), animals (Shaw et al., 1998; Coop et al., 

2010; Grant, 2010) or micro-organisms (Brauer et al., 2006; Wenger et al., 2010), and in bulk 

segregant analysis to locate genes involved in phenotypic variation (Quarrie et al., 1999; Tabor 

et al., 2000; Yang et al., 2007). 

The high correlation coefficient values between relative allele dosage and SNP allele 

signals obtained with the KASPar technique, and the ability of this technique to distinguish 

between close relative allele dosages at the DNA level, has been demonstrated in this study. 

Moreover were able to detect a 0.1 allele frequency within DNA pools. This technique is a 

promising method for performing semi-quantitative analysis of relative allele-specific expression 

by analysing cDNA compared to genomic DNA, to complement global gene expression studies 

performed by real-time PCR. The KASPar technique may also be useful for allele frequency 

estimation in populations from DNA pools as mentioned before. For such studies, it should be 

interesting to extend the range of relative allele dosages to estimate the lowest differences 

distinguishable with this technique. 
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Application for citrus genetics and breeding 

Triploid citrus breeding is one of the most efficient techniques for the production of 

seedless mandarins (Ollitrault et al., 2008; Aleza et al., 2010b, 2012c, 2012d), and tetraploid 

rootstocks are promising tools that enable plants to adapt to various abiotic stresses (Saleh et 

al., 2008; Dambier et al., 2011). Triploid populations in citrus can arise from 2x × 2x crosses or 

from interploid crosses. Discriminating between different types of heterozygotes within triploid 

progeny is especially useful for population genetic structure studies and marker/trait association 

analysis. 

Knowing the allelic configuration in triploid and tetraploid progeny is also necessary to 

identify the mechanism of 2n gamete formation. The maternal heterozygosity restitution values 

of under 50% obtained in this study, which were estimated from a ‘Clementine × Nadorcott’ 

progeny for nine markers (CiC0868-01, CiC1380-05, CiC1757-02, CiC2840-01, CiC3440-07, 

CiC4581-01, CiC5089-06, CiC5785-01, and CiC6278-01), confirm the conclusion of (Luro et al., 

2004), that the 2n gamete in clementine arose from SDR, as in the ‘Fortune’ mandarin (Cuenca 

et al., 2011), while (Chen et al., 2008a) proposed FDR for sweet orange. Moreover, this study 

allowed us to identify several centromeric markers that should be very useful for further 

analyses of the origin of 2n gametes in different cultivars and genotypes, as it was done for 

potatoes (Douches and Quiros, 1988; Werner et al., 1992).  

Most tetraploid citrus germplasm arose from chromosome duplication of nucellar cells 

(Aleza et al., 2011) or were obtained by bud chemical treatment (Aleza et al., 2009b) of diploid 

genotypes. These tetraploids are, therefore, doubled diploids with the same aabb genomic 

structure at each heterozygous locus (ab) of the parental diploid line. For such tetraploids, the 

parental restitution (PR) of the heterozygosity to the diploid gamete depends on preferential 

pairing between chromosomes. In the case of total preferential pairing (disomic segregation), 

parental heterozygosity is transferred to all gametes (PR=100%). In the case of total random 

pairing (tetrasomic segregation), the PR ranged from 55% to 66%, depending on the double 

reduction frequency (Marsden et al., 1987). In this study, the PR results for the tetraploid 

(doubled diploid) Clementine ranged from 52.94% for the CiC4581-01 marker to 69.41% for the 

CiC5089-06 marker, which is in agreement with the expected PR values under tetrasomic 

segregation (Kamiri et al., 2011). 

In the case of triploid and tetraploids obtained by somatic hybridization (Dambier et al., 

2011; Grosser and Gmitter, 2011), the assignment of allelic configuration will be useful for 

revealing genome regions acquired from each parent, as well as potential chromosome 

fragment elimination or duplication. 
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Conclusions 

This work demonstrates that the KASPar SNP genotyping technique, combined with the 

cluster analysis method we proposed, enables the efficient assignment of heterozygous allelic 

configuration within polyploid populations. This method is accurate, simple, and cost effective. It 

has been successfully applied to two citrus triploid populations arising from 2n gametes and 

interploid crosses. Moreover, correlation studies, cluster analysis and ANOVA support the 

usefulness of this method for performing relative quantitative studies, such as relative allele-

specific expression analysis or, eventually, bulk segregant analysis. 

 

Supplementary information 

Table 1.S1. SNP information and genotyping of the parents used in this study 

Description: Detailed information of the 15 SNPs used in this work, including the GeneBank 

accessions, genomic sequences surrounding each SNP and the genotyping of the progeny 

parents. 
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Table 1.S1. SNP information and genotyping of the parents used in this study. 

SNP marker 
GENEBANK 

ACCESION 
Genomic sequence surrounding the SNP 

Haploid 
Chandler 

Haploid 
Clementine 

Fortune Willowleaf 
Clementine            
2x         4x 

Nadorcott Pink 

CiC0610-01 ET093305 

CAACTTAAAATCCCACTTTACTCTTTCCACATGGGCCGTCATGA

TGGTGTTTTTGACTGC[A/G]CTTGTTACTTCCACTAAACCCTTTT

AAAGATTGCAGATCTCTTTGTTTGAGTTAAAATAT 

- - - - AG - G0 - 

CiC0868-01 ET095107 

ACAGTTTCTGGGATCCAYATTTGATACCAACTTCATTTCAAGGG

TAACTTTCAGGAACTA[A/G]GATACAGTATGTGCCTTTAAATTCT

ATTAATCACGTGGGATCATTACGATGTCTTGCTTT 

- - - - CT CCTT CC TT 

CiC1380-05 ET072553 

TTGCTCGAGAAGTCAAAACTTTACAGGAATGCATTACTGGCCT

ATCTGGAGAGAAAGCTC[A/G]AGTACAGAAGGACTGCAATGAG

TTGAGGGCCATAAACGAGGATTTGTTATCCCGACAAAA 

- - - - CT CCTT CC 00 

CiC1749-05 ET097636 

ACATTACTCTGTCTACCCCGCAGATACTAATAAGGTATTTATGA

TCATGTTTTTGCTTCT[A/C]ATATTGCTGACTTCTGCTGTTTTTG

TTTGGAATTGATGTTCTGTGATTGATGTGGAGTCA 

- - - - GT - G0 - 

CiC1757-02 ET097717 

GTTTTCAGCTTTGAAAAAATCAGATACTTCCTCTCGAGTCAAGG

TAGGTTCTTATCACTT[A/C]CCATCTTCTATATCTGATGCATCTC

TGTTAAAGAAGCGATCTGAACTTGAAATTTCAGAT 

- - - - AC - CC - 

CiC2840-01 ET103429 

TTTATTTATTTACTTATGTATTTGTTTTGTAAATTTTTAATATTTC

AGATCCGCACAYAT[A/G]GCGAAAAGAGCGTTGTACGGTTCGT

TGAGGCTCACGAGTTCATTGACTGTGGACATATCC 

C T CT CT CT - TT - 

CiC3440-07 ET077539 

TTTTTATTTTTATTTTTATTCTTATTTTTGCCTCTTGAATCCATCG

GTATTCCTGGCTAT[A/G]AAAGAGAAGTTCAACTTCTAGCCGAA

TTAACTATATTAACTGCCATTCCAAATATGTTGA 

- - - - AG AAGG GG G0 

CiC4581-01 ET109034 

CCATTCAAATAAAAATCCTAAACATTCAATCATTAACAATCACA

GAGATGAAATTCCCAG[A/C]GGTTCAATAAGGCTGGTGGTTCT

CAAAGCACTGAACTGCATAATATAAAATAGGAAAAAG 

- - - - AC AACC AA AA 

 

 

 



Chapter 1. Assignment of SNP allelic configuration in polyploids using competitive allele­specific PCR 

61 

Table 1.S1-cont. SNP information and genotypes of the parents used in this study. 

SNP marker 
GENEBANK 

ACCESION 
Genomic sequence surrounding the SNP 

Haploid 
Chandler 

Haploid 
Clementine 

Fortune Willowleaf 
Clementine            
2x         4x 

Nadorcott Pink 

CiC5089-06 ET111533 

TCAGAACAACATAAAAATACCACTTTTKTTTTTTAGAAGTGGA

GGAAATTTCAGTGAAGA[A/G]CAGGAAGGCATCACATCTGAT

TCAAACAGTGAGATTGATGGGAAAGAAAATTCTAACCAG 

C T CT CT CT CCTT CC CC 

CiC5785-01 ET082673 

TCAACCACCTTGATAAATGAACAAAAGGAGGCTTAAACTTTG

ACTTCAATTTTAGCCATT[A/T]GTTATGTTCAATCTAATGATTA

TAATGATTGCAATTTAAGACGCTTTGATTGAATTACTA 

T A AT AT AT AATT TT TT 

CiC6278-01 ET085551 

CCTATTATGTTTATTTAAATTGTTGGTGGACGATAAAATTTAT

TGGCCAATTCAGAATTC[A/C]TAGTCATAATGAAATTCTGTAC

ACATAAAAAGCCAAATGGGTGACTCAGTTCTTTGTGTA 

- - - - AC AACC AA 00 

DXS M618 DN959423 

GGTGCAGGACATAGTTCCACAAGCATCTCTGCTGGTCTTGG

TATGTACTTC[G/A]CTCTCTTAATATTTTCCTTTCATCAATCTA

GAGAAATTGTAGGATGCAGAATAC 

A G AG AG - - - - 

F3H-M309 JX630066 

CTAAGCCGTCGAGTTTTTGTGACCAAAGGGACAGAATCTAA

TGAGTTTAAGGA[T/C]ATGGTGGTAGAGCTCATGACGTCAGC

TGGATTTTTCAACATTGGTGATTTTATACCC 

C T CT CT - - - - 

FLS-M400 AB011796 

GGGTTGATCATCTCTTCCACAGGGTTTGGCCTCCGTCTTCT

ATCAACTACCGCTT[T/C]TGGCCCAACAACCCTCCTTCTTAC

CGGTGAATGTT 

C T CT CT - - - - 

TRPA-M593 EF028327 

GGCACGACAGCATTCGTGAGCATGTGGATGCATAACGTGG

CAGCAGCAGTGAT[G/C]ATGATGCCAGTGGCCACTGGGATC

TTACAGAACTTGCCAGAGGTTC 

C G CG GG - - - - 
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Abstract 

 

The genetic structure of 2n gametes and, particularly, the parental heterozygosity 

restitution at each locus depends on the meiotic process by which they originated, with first 

division restitution and second-division restitution (SDR) being the two major mechanisms. The 

origin of 2n gametes in citrus is still controversial, although sexual polyploidization is widely 

used for triploid seedless cultivar development. In this study, we report the analysis of 2n 

gametes of mandarin cv ‘Fortune’ by genotyping 171 triploid hybrids with 35 simple sequence 

repeat markers. The microsatellite DNA allele counting-peak ratios method for allele dosage 

evaluation proved highly efficient in segregating triploid progenies and allowed half-tetrad 

analysis (HTA) by inferring the 2n gamete allelic configuration. All 2n gametes arose from the 

female genitor. The observed maternal heterozygosity restitution varied between 10 and 82%, 

depending on the locus, thus SDR appears to be the mechanism underlying 2n gamete 

production in mandarin cv ‘Fortune’. A new method to locate the centromere, based on the best 

fit between observed heterozygosity restitution within a linkage group and theoretical functions 

under either partial or no chiasmata interference hypotheses was successfully applied to linkage 

group II. The maximum value of heterozygosity restitution and the pattern of restitution along 

this linkage group would suggest there is partial chiasma interference. The implications of such 

a restitution mechanism for citrus breeding are discussed. 
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Introduction 

Sexual polyploidization has been widely exploited in several plant-breeding 

programmes (Ramanna and Jacobsen, 2003). Diploidy is the general rule in Citrus and related 

genera, with a basic chromosome number x=9. However, sexual polyploidization is currently a 

central approach used in triploid citrus-breeding programs, aiming to develop new seedless 

‘mandarin type’ cultivars (Ollitrault et al., 2008); very large triploid progenies have been obtained 

from 2x × 2x crosses and several cultivars patented (Aleza et al., 2010b). The recovery of 

triploid citrus hybrids arising from 2n megagametophytes produced by diploid plants was 

described in the 1970s (Esen and Soost, 1971, 1973; Aleza et al., 2010b). Cytogenetic studies 

(Esen and Soost, 1971) showed that triploid embryos are associated with pentaploid 

endosperm, indicating that triploid hybrids result from the fertilization of unreduced ovules by 

normal haploid pollen. According to the genotype, the frequency of duplication in the female 

gametes can range from below 1% to over 20%. Esen et al. (1979) proposed that 2n eggs result 

from the abortion of the second meiotic division in the megaspore (SDR) in citrus. This 

hypothesis has been corroborated for clementine (Citrus clementina Hort. ex Tan.) by molecular 

marker analysis (Luro et al., 2004). However, Chen et al. (2008a) proposed that 2n eggs of 

sweet orange (C. sinensis (L.) Osb.) resulted from first meiotic division restitution (FDR). The 

genetic configuration of 2n gametes depends on the mechanism of their formation (Figure 2.1), 

and the rate of parental heterozygosity restitution is directly linked with the rate of effective 

chiasma between the centromere and the considered locus (Mendiburu and Peloquin, 1976; 

Park et al., 2007). It is, total and null until the first chiasma for FDR and SDR, respectively. It is, 

thus, essential to gain a better understanding of the mechanisms underlying 2n gamete 

formation to optimise sexual polyploidy breeding schemes and to carry out trait-association 

studies of breeding populations.  

The objective of the present work was to shed light on the mechanism underlying 2n 

gamete formation in ‘Fortune’ mandarin (C. clementina × C. tangerina Hort. ex Tan.) by Simple 

Sequence Repeat (SSR) marker analysis. ‘Fortune’ mandarin is widely used in triploid breeding 

because of its fruit qualities, late maturing period and relatively high percentage of 2n eggs. This 

diploid cultivar is highly fertile, producing an average of 18.5 seeds per fruit, including 6.5% of 

seeds arising from 2n gametes (our unpublished data). Without the previous knowledge of 

centromere position, and to avoid the risk of misinterpreting data due to an insufficient or biased 

set of markers, we selected 35 SSR markers according to their position on the clementine map 

(Ollitrault et al., 2011). A general approach is proposed to estimate the centromere position by 

best-fit value between observed data and theoretical functions of heterozygosity restitution for 

no interference and partial interference models. For this purpose, we used the functions 

developed by Zhao and Speed (1998b) for ordered tetrads, based on the random spindle–

centromere attachment hypothesis (Griffiths et al., 1996), and extended by the same authors to 

half-tetrad analysis (HTA; (Zhao and Speed, 1998a). The results obtained were compared with 

the method proposed by Tavoletti et al. (1996) using the multilocus structure of half-tetrads. 
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Finally, we discuss the implications of the 2n gamete restitution mechanisms for citrus triploid 

breeding. 

 
 

 
 
Figure 2.1. SDR and FDR 2n gametes resulting from: (a) no crossover;(b) one crossover; (c) two 

crossovers involving two chromatids; (d) two crossovers involving three chromatids and (e) two crossovers 
involving four chromatids.  
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Materials and methods 

Plant material  

The mechanism underlying 2n gamete formation in ‘Fortune’ mandarin was investigated 

in 171 triploid hybrids, derived from four crosses between ‘Fortune’ mandarin (C. clementina 

Hort. ex Tan. × C. tangerina Hort. ex Tan.) as female diploid genitor and ‘Ellendale’ (C. 

reticulata Blanco × C. sinensis (L.) Osb.), ‘Common Mandarin’ (C. deliciosa Ten.), ‘Minneola’ (C. 

paradisi Macf × C. tangerina) or ‘Murcott’ (C. reticulata × C. sinensis) as male diploid genitors. 

Parental accessions and hybrids were grown at the ‘Instituto Valenciano de Investigaciones 

Agrarias’ orchards in Moncada, Valencia, Spain. Practical details on how the triploid populations 

were established from diploid × diploid crosses by embryo rescue and triploid selection by flow 

cytometry, can be found in Aleza et al. (2010b). Genomic DNA of triploid hybrids and their 

parents was isolated using the Plant DNAeasy kit from Qiagen Inc. (Valencia, CA, USA), 

following the manufacturer’s protocol.  

 

Triploid progeny genotyping 

SSR markers that proved heterozygous for ‘Fortune’ were selected to genotype each 

triploid progeny, depending on the polymorphism existing between ‘Fortune’ and the male 

genitor. Thirty-five microsatellite loci were used to analyze the triploid progenies: CAC15, 

TAA41 (Kijas et al., 1997), CX6F03, CX6F23 (Chen et al., 2008b), mest121 (Luro et al., 2008), 

mest56, mest192, mest123 (Aleza et al., 2011), mest104, mest110, mest247, mest488 

(François Luro, personal communication; mail to luro@corse.inra.fr for further information), 

mCrCIR07F11 (Kamiri et al., 2011), Ci01C07, Ci02B07, Ci08C05, mCrCIR01E02, 

mCrCIR01F04a, mCrCIR06A12, mCrCIR06B05, mCrCIR06B07, mCrCIR07E12 (Froelicher et 

al., 2007) and thirteen new designed primers (mCrCIR01C06, mCrCIR02A09, mCrCIR02D09, 

mCrCIR02F12, mCrCIR02G01, mCrCIR02G02, mCrCIR03B07, mCrCIR03C08, mCrCIR03G05, 

mCrCIR04H06, mCrCIR05A05, mCrCIR07D05, mCrCIR07D06; Table 2.1). The polymerase 

chain reactions (PCRs) were performed with wellRED oligonucleotides (Sigma®) with the 

following protocol: Eppendorf® Mastercycler epgradient S; reaction volume 15 µl: 0.8 U Taq 

polymerase (N.E.E.D.®), reaction buffer -750 mM Tris HCl (pH 9), 50 mM KCl, 200 mM 

(NH4)2SO4, 0.001% BSA-, 0.1 mM of each dNTP, 5 mM MgCl2, 3 µM of each primer, 30 ng 

DNA; PCR program: 94ºC 5 min; 40 cycles of 30 sec at 94ºC, 1 min at 50-55ºC and 30 sec at 

72ºC; final elongation 10 min at 72ºC). Separation was carried out by Capillary Gel 

Electrophoresis (CEQ™ 8000 Genetic Analysis System; Beckman Coulter Inc.). Data collection 

and analysis were carried out with GenomeLab™ GeXP version 10.0 software.   
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Table 2.1. New primers designed to amplify the markers used in this study 

Marker 
name 

EMBL 
accession 

Sequence Forward 5’-3’ Sequence Reverse 5’-3’ 
Annealing 

Temperature 
(ºC) 

Observed 
alleles in 
Fortune 

mCrCIR01C06 AJ567393 GGACCACAACAAAGACAG TGGAGACACAAAGAAGAA 50 133-165 

mCrCIR02A09 FR677568 ACAGAAGGTAGTATTTTAGGG TTGTTTGGATGGGAAG 50 160-162 

mCrCIR02D09 FR677569 AATGATGAGGGTAAAGATG ACCCATCACAAAACAGA 55 231-239 

mCrCIR02F12 FR677570 GGCCATTTCTCTGATG TAACTGAGGGATTGGTTT 55 121-123 

mCrCIR02G01 FR677571 ATACCAAAACCCCAAAG CTTTGACCCAAGCAAG 55 291-296 

mCrCIR02G02 FR677572 CAATAAGAAAACGCAGG TGGTAGAGAAACAGAGGTG 55 112-122 

mCrCIR03B07 FR677573 CACCTTTCCCTTCCA TGAGGGACTAAACAGCA 55 264-278 

mCrCIR03C08 FR677576 CAGAGACAGCCAAGAGA GCTTCTTACATTCCTCAAA 55 210-223 

mCrCIR03G05 FR677578 CCACACAGGCAGACA CCTTGGAGGAGCTTTAC 50 199-228 

mCrCIR04H06 FR677579 GGACATAGTGAGAAGTTGG CAAAGTGGTGAAACCTG 55 190-196 

mCrCIR05A05 FR677580 ATACCTGTGAGCGTGAG CCTCTTCCCTTCCATT 50 144-162 

mCrCIR07D05 FR677574 TCGTTCTTGCTTTTCCAC GAATCAAACTACCCTCCAAT 55 206-208 

mCrCIR07D06 FR677581 CCTTTTCACAGTTTGCTAT TCAATTCCTCTAGTGTGTGT 55 166-188 

 

 

2n gamete allelic structure inference from triploid hybrid genotypes 

For a locus bearing totally different parental allelic configurations (A1A2XA3A4), the 

genotype of the 2n gamete was directly read from the triploid hybrid structure. When the male 

and female genitor shared one allele (A1A2XA2A2 and A1A2XA2A3), the inference of the 2n 

female gamete structure was carried out from the measured allele dosage by the microsatellite 

DNA allele counting-peak ratio method [MAC-PR; (Esselink et al., 2004)], for the triploid hybrids 

that have inherited the common allele from the male genitor. The validation of the MAC-PR 

method for the analyzed loci and populations is given as Supplementary Information. 

 

Identification of 2n gamete origin by single-locus analysis 

Once female gamete structures were inferred, the percentages of heterozygosity were 

calculated for each locus in the whole population and for each genotype over all analyzed loci. 

Without previous knowledge about relative markers/centromere position, the observation of 

heterozygosity restitution over 50% for a single locus is not informative because it could have 

come from either FDR or SDR; however, theoretical heterozygosity restitutions lower than 50% 

are only found for SDR (Park et al., 2007). When such low values of heterozygosity restitution 

were observed for a marker, we compared the highest probability of such a population structure 

under the SDR and FDR hypothesis. Under SDR, the highest probability for such an 

observation is obtained for a centromere position, leading to a theoretical proportion of h 

heterozygous gametes, whereas the best theoretical proportion of heterozygous gametes to fit 

with such observed data is 0.5 in the case of FDR. Thus, logarithm of the odds ratios (LODs) 

were estimated as: 
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with h being the heterozygosity transmission observed for the marker and n, the number of 

genotypes analyzed with this marker.  

 

Comparison of observed heterozygosity restitution within a linkage group with 

theoretical functions to infer the 2n gamete formation mechanism and centromere 

position  

To integrate the information on all loci of the same linkage group coming from different 

populations, we propose a method based on the comparison between observed heterozygosity 

restitution among a linkage group with theoretical restitution functions under different models. 

We have tested FDR and SDR mechanisms, for no-interference and partial chiasma 

interference on a chromosome arm (and no between-arm interference) assuming several 

centromere positions (interval of 0.5 cM between two theoretical adjacent positions of the 

centromere). Discrepancies between the different models and the observed data were 

estimated by the sum of the squared differences between observed and theoretical values at 

the marker map positions. Under one model of restitution (FDR or SDR), let Fit(c) be the value 

of the sum of the squared distance for each position of the centromere; the best theoretical 

centromere position under this model is deduced by searching c, which minimises Fit(c). The 

confidence interval (95%) for the centromere position was estimated by bootstrap on the loci 

(500 bootstraps). For this analysis, we have used the marker position of the clementine genetic 

map (Ollitrault et al., 2011), which should be very similar to the Fortune map, because ‘Fortune’ 

is a hybrid between Clementine and Dancy mandarin. 

No interference model. According to Zhao and Speed (Zhao and Speed, 1998b), assuming that 

the number of chiasmata in an interval follows a Poisson process (no interference model 

corresponding to Haldane’s map function), the probabilities of a tetrad displaying a first division 

segregation (FDS; (Griffiths et al., 1996) pattern and a second division segregation (SDS; 

(Griffiths et al., 1996) pattern are as follows: )21(
3

1
)( 3deFDSp   and 

)1(
3

2
)( 3deSDSp  , where d is the genetic distance in Morgan units (Haldane’s map 

function) between a given locus and the centromere. Under the FDR mechanism for 2n gamete 

formation, the FDS tetrads and half of the SDS tetrads transfer the parental heterozygosity, 

while under the SDR mechanism, the restitution of parental heterozygosity will result from SDS 

tetrads (Zhao and Speed, 1998a).  
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We can thus derive the rates of heterozygosity transmission (H) as function of the 

distance to the centromere (d): H(d) )2(
3

1
)1(

3

1
)21(

3

1 333 ddd eee    for FDR and 

H(d) )1(
3

2 3de  for SDR. According to this model, from the centromere to the telomere, H 

varies between 1 and 2/3 for FDR and from 0 to 2/3 for SDR (Figure 2.2). 

Let p and c, respectively, be the positions of a locus and of the centromere in a linkage group. 

As Haldane’s map function is additive, the distance between the considered locus and the 

centromere is d=│p-c│. The heterozygosity restitution H(d) as a function of the distance to the 

centromere (d) can thus be applied to any locus position (p) on the clementine’s genetic map 

after transposition according to each theoretical position of the centromere (c) on the linkage 

group: H(p) )2(
3

1 )(3 cp
e


  for FDR and H(p) )1(

3

2 )(3 cp
e


  for SDR. Theoretical curves 

of H(p) are presented in Figure 2 for FDR and SDR models. 

 

Partial interference models. There are several proposals in the literature to incorporate chiasma 

interference in relating the map distance and SDS ordered tetrad proportion. (Zhao and Speed, 

1998b) developed functions for ordered tetrad frequencies derived from the chi-square chiasma 

interference models, which provide good fits to data from different organisms (Zhao et al., 

1995). Moreover, most map functions could be approximated by one of the chi-square models 

(Zhao and Speed, 1996). The model is represented in the form Cx(Co)
m
, where m is a 

parameter positively related to the interference level. For m>0, the SDS proportion rises above 

2⁄3 and as m increases, the maximal frequency of SDS increases (Zhao and Speed, 1998b). 

Likewise for the no interference model, the restitution of heterozygosity by half-tetrad under 

FDR and SDR can be directly derived from the SDS tetrad frequency for the different chi-square 

models; as examples, Figure 2 shows the pattern of heterozygosity restitution along a linkage 

group for the Cx(Co) and Cx(Co)
4
 models. The heterozygosity restitution at any position (p) on 

the Clementine’s genetic map can therefore be inferred for each theoretical position of the 

centromere (c) on the linkage group and thus, Fit(c) evaluated. The genetic map is established 

according to the map function corresponding to each considered chi-square model (Foss et al., 

1993). 
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Figure 2.2. Theoretical curves of heterozygosity restitution as function of genetic distance to the 

centromere for FDR and SDR without chiasma interference and two χ
2
-(Cx(Co)

m
) models of partial 

interference. 

 

Identification of the mode of 2n gamete formation and localization of the centromere by 

half-tetrad multilocus structure analysis 

Multilocus analyses were performed on 87 genotypes and five loci mapped in the 

linkage group whose order was obtained from the current map of clementine (Ollitrault et al., 

2011). The analysis was made according to Tavoletti et al. (1996) assuming that multiple 

crossovers do not occur between contiguous markers. Under this hypothesis, each crossover 

between two markers, i and i+1, leads to a change from homozygosity to heterozygosity in the 

case of SDR and a half change from heterozygosity to homozygosity in the case of FDR. Thus, 

the distance between two adjacent markers (dMiMi+1) can be estimated by the proportion of 2n 

gametes with changes (homozygosity versus heterozygosity; CMiMi+1) between the two markers. 

For FDR, dMiMi+1 = CMiMi+1 and for SDR, dMiMi+1 = ½ CMiMi+1. 

The probability of the observed multilocus progeny under the different models (FDR or 

SDR with different centromere positions) was calculated according to Tavoletti et al. (1996). 

Detailed formulas can be found in supplementary information. Both under FDR and SDR 

models, the centromere position was virtually moved from before the first considered locus 

along the linkage group to after the last considered locus (intervals of 0.5 cM) and the relative 

probability was estimated for each position. The LOD between best position under SDR and 

FDR was calculated in order to determine the mode of 2n gamete restitution and the position of 

the centromere was considered as the one producing the highest relative probability under the 

identified mode of restitution. The confidence interval was estimated following the LOD drop-off 
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method (Lander and Botstein, 1989). After determining the centromere position, chiasma 

interference can be estimated for each chromosome arm with three point linkage mapping as 

follows: 

Let 
21MMr denote the observed recombination rate (heterozygous to homozygous and 

vice versa) between the locus 1 and 2; 
32MMr the observed one between locus 2 and 3; and rd 

the observed rate of double recombination between the three loci. Thus, chromosome 

interference (I) is:    I



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Results 

Genotyping of triploid progenies 

Thirty-five heterozygous SSR markers in ‘Fortune’ were selected and used for 

genotyping the different triploid families according to their polymorphism between Fortune and 

the male genitors. Overall, 22, 18, 21 and 26 of these markers were polymorphic between the 

two parents for the families with ‘Minneola’, ‘Common Mandarin’, ‘Ellendale’ and ‘Murcott’ (Table 

2.2) as male parent.  

 

Table 2.2. Polymorphism observed among ‘Fortune’ mandarin and the male genitors for the 35 

heterozygous loci in ‘Fortune’. 

 

 

 

 

 

 

 

The unambiguous differentiation of allele dosage in heterozygous triploids has been 

confirmed by the very clear bimodal distribution of the peaks area ratio of the different triploid 

hybrids for all markers (Supplementary information). The loci with total allelic differentiation 

between female and male genitors enabled (based on heterozygosity transmission or allele 

dosage estimation) the genitor producing the 2n gametes for each triploid hybrid to be identified 

unequivocally. Maternal origin of the 2n gamete has been observed for all the analyzed triploids; 

therefore, based on the maternal origin of the 2n gamete and allele dosage, it was possible to 

infer the 2n gamete structure from the triploid hybrid genotypes. Potential allelic segregation 

 Heterozygous  Homozygous  
No Data 

 Num TP 1 CA 2 CA  Num TP 1 CA  

Minneola (P1) 25 0 16 9  6 1 5  4 

Common mandarin (P2) 19 1 10 8  7 1 6  9 

Ellendale (P3) 19 4 9 6  8 4 4  8 

Murcott (P4) 13 6 6 1  14 7 7  8 

Num: number of SSR markers for each class; TP: SSRs totally polymorphic between Fortune and male 
parent; CA: SSRs with common alleles between Fortune and male parent. Numbers in grey cells indicate 
primers used for genotyping each population. Codes in brackets indicate population (e.g. P1: Fortune X 
Minneola) 
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distortion in the 2n gamete population was tested for each marker by χ
2
 analysis (Table 2.3); 

only one of them (Ci02B07) showed significant distortion. 

 

Table 2.3. Heterozygosity restitution (% HR) for each analyzed locus, Ҳ
2
 test for allelic segregation, and 

LOD SDR/FDR for markers with less than 50% of heterozygosity restitution, linkage group (LG), number of 

individuals (NI) and populations (NP) analyzed. 

Marker name % HR Ҳ
2
 

LOD 
SDR/FDR 

LG 
NI  

(NP) 
 

Marker name 
% 

HR 
Ҳ

2
 

LOD 
SDR/FDR 

LG 
NI 

(NP) 

mCrCIR06B05 16.1 1.76 16.29 I 
149 

(P1-P2-P3-P4) 

 
CX6F03 65.4 0.24  V 

153 
(P1-P2-P3-P4) 

mest121 36.9 0.60 0.97 I 
65 

(P2-P3) 

 
mCrCIR06A12 70.1 0.00  V 

67 
(P4) 

CAC15 17.58 0.17 9.02 II 
91 

(P1-P4) 

 
mCrCIR07E12 67.3 0.38  V 

101 
(P2-P4) 

Ci01C07 75.26 0.75  II 
97 

(P1-P2-P3) 

 
mest56 69.7 0.45  V 

132 
(P1-P3-P4) 

CX6F23 14.29 0.14 16.35 II 
133 

(P1-P3-P4) 

 
mest104 59.4 0.96  V 

128 
(P1-P3-P4) 

mCrCIR02D09 82.46 0.27  II 
171 

(P1-P2-P3-P4) 

 
mCrCIR01C06 64.3 0.39  VI 

129 
(P1-P3-P4) 

mCrCIR02G01 79.41 0.07  II 
34 

(P2) 

 
mCrCIR01E02 68.5 0.32  VI 

124 
(P1-P3-P4) 

mCrCIR03C08 34.33 0.73 1.45 II 
67 

(P4) 

 
mCrCIR02F12 74.4 0.43  VI 

164 
(P1-P2-P3-P4) 

mCrCIR04H06 61.54 0.00  II 
130 

(P1-P3-P4) 

 
mest123 65.2 0.20  VI 

66 
(P4) 

mCrCIR05A05 78.03 0.02  II 
132 

(P1-P3-P4) 

 
mest192 67.0 0.24  VI 

103 
(P2-P4) 

mCrCIR06B07 73.13 0.44  II 
67 

(P2-P3) 

 
mest488 74.1 0.24  VI 

139 
(P1-P3-P4) 

mCrCIR07D05 26.67 0.00 1.47 II 
30 

(P1) 

 
mCrCIR03B07 34.1 2.97 3.03 VII 

135 
(P2-P3-P4) 

mest110 73.53 0.17  II 
102 

(P1-P2-P3) 

 
mCrCIR01F04a 39.8 0.57 1.07 VIII 

118 
(P1-P3-P4) 

mest247 80.00 0.07  II 
35 

(P2) 

 
mCrCIR02A09 65.1 0.60  VIII 

86 
(P1-P4) 

TAA41 73.74 0.31  II 
99 

(P3-P4) 

 
mCrCIR02G02 10.3 0.03 13.62 VIII 

87 
(P2-P4) 

mCrCIR03G05 72.2 0.02  IV 
97 

(P3-P4) 

 
Ci02B07 72.3 4.57  IX 

101 
(P1-P2-P4) 

mCrCIR07D06 11.94 0.02 19.05 IV 
134 

(P1-P2-P4) 

 
Ci08C05 17.4 0.16 13.85 IX 

138 
(P1-P2-P4) 

 
     

 
mCrCIR07F11 41.6 0.01 0.77 IX 

125 
(P1-P3-P4) 

 

 

Maternal heterozygosity restitution in the 2n eggs 

Restitution of maternal heterozygosity in each 2n gamete (based on all analyzed loci) 

varied between 15.38% and 100%, with 54.98% as mean value. The unimodal distribution of 

heterozygosity restitution in the 2n megaspores among the analyzed genotypes suggests that 

all these 2n gametes arise from the same mechanism (Figure 2.3). 
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Figure 2.3. Distribution and density trace of the heterozygosity restitution rates estimated for each 2n 

megaspore (estimation of restitution rates based on all markers). 

 

Global heterozygosity restitution for each marker  

Rate of maternal heterozygosity restitution was calculated for 35 loci, covering eight out 

of nine linkage groups from the current map for Clementine (Table 2.3); the average rate was 

55.23% and values varied from 10.34% (mCrCIR02G02 marker) up to 82.46% (mCrCIR02D09 

marker). Twelve of the analyzed markers displayed < 50% maternal heterozygosity restitution. 

For these markers, LODs of SDR/FDR probabilities were calculated and varied between 0.77 

and 19.05. These observations could only fulfil the SDR hypothesis, with markers that are close 

to the centromere, and rule out the FDR scenario.  

 

Pattern of heterozygosity restitution within linkage group II and centromere mapping 

Twelve of the analyzed markers in linkage group II of the Clementine genetic map 

(Ollitrault et al., 2011) were used to perform this analysis. Taking into account marker order and 

the distances between them (Haldane’s map function), the pattern of heterozygosity is 

represented in Figure 2.4 (dots). From one side of the linkage group to the other, the 

heterozygosity decreases from 82.46% for mCrCIR02D09 marker to 14.29% for CX6F23 marker 

and increases again up to 80% as the position rises on the map. Such a pattern within a linkage 

group is totally incompatible with the FDR model, in which the opposite variation is expected 

and the lowest theoretical restitution value would be 50%. Therefore, the search for the 

centromere position producing the best fit between the theoretical function of heterozygosity 

restitution and the observed data was only conducted under the SDR hypothesis. Under the 

SDR hypothesis with no interference, the best estimation of centromere position is 10.1 ± 6.4 

cM from CX6F23 marker (Figure 2.4). Without chiasma interference, the maximum theoretical 

heterozygosity restitution is 2/3, while we have observed values over 75% for five telomeric 
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markers (two of them with very low p-value: mCrCIR02D09, p=10
-5

 and mCrCIR05A05, 

p=0.006), suggesting the existence of chiasma interference. On the other hand, the maximum 

restitution found over all analyzed markers was 82.5% while 100% should be expected for 

telomeric markers in case of total interference. Therefore, among the χ
2
 models proposed by 

Zhao and Speed (1998a) for partial interference, we have tested the Cx(Co)
4
 model, allowing a 

maximum restitution of heterozygosity close to 75%. Under this model of chiasma interference 

and SDR hypothesis, the best estimation of centromere position is 11.8 ± 7.1 cM from CX6F23 

marker (Figure 2.5). This model fits better with the observed data than the no interference 

model (Fit(c) = 0.08 and Fit(c) = 0.24 respectively). 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Observed heterozygosity restitution 

values for markers in linkage group II (dots) and 
theoretical heterozygosity restitutions (line) for the 
best-fitting centromere position under SDR model 
without chiasma interference (markers in x axis 
are positioned according to Clementine genetic 
map using Haldane’s map function). 

Figure 2.5. Observed heterozygosity restitution 

values for markers in linkage group II (dots) and 
theoretical heterozygosity restitutions (line) for 
the best-fitting centromere position under SDR 
and the Cx(Co)

4
 model of partial interference 

(markers in x axis are positioned according to 
Clementine genetic map using  the  
corresponding Cx(Co)

4
 map function). 
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Multilocus half-tetrad structure analysis in linkage group II 

Considering homozygosity and heterozygosity at each locus, 15 different multilocus 

profiles have been observed. These profiles and the number of corresponding 2n gametes are 

given in Table 2.4.  

 

Table 2.4. Heterozygous (HE) and homozygous (HO) profiles for 87 genotypes and five simple-sequence 

repeat markers within linkage group II. 

N M1 M2 M3 M4 M5 

8 HE HE HE HE HE 
1 HE HE HE HE HO 
3 HE HE HE HO HE 
5 HE HE HO HO HO 

30 HE HE HO HO HE 
1 HE HE HO HE HE 
7 HE HO HO HO HO 

18 HE HO HO HO HE 
1 HE HO HE HE HE 
1 HO HO HO HO HO 
7 HO HO HO HO HE 
1 HO HO HE HE HE 
1 HO HE HO HE HO 
2 HO HE HE HO HE 
1 HO HE HO HO HE 

H 85.06 59.77 18.39 14.94 82.76 

 

 

 

 

Probabilities of the observed 2n gamete population under the FDR and SDR 

hypotheses for moving centromere positions have been calculated from this table. The LOD 

value of the SDR highest probability / FDR highest probability was 6.8, confirming that SDR is 

the most probable model. Under the SDR hypothesis, the probability variation as a function of 

the centromere position suggests that the most probable position is between 2.25 cM and 7.00 

cM (Morgan’s map function; which is between 2.30 cM and 7.54 cM with Haldane’s map 

function) close to the CX6F23 marker, between the former and the mCrCIR05A05 marker. This 

confidence interval overlaps the ones of the estimations done by the best fit method. If up to two 

crossovers per chromosome occur, it is possible to observe phase-changing between two 

markers when complementary crossovers take place (i.e. two crossovers involving all four 

chromatids) via the SDR restitution mechanism (Figure 2.1). The HTA analysis detected 16 

complementary crossovers, by revealing allelic phase changes between markers in 

homozygosity, as shown in Table 2.5; only two double crossovers affecting a chromatid pair 

have been identified. 

 

 

N, Number of genotypes for each profile; M1, mCrCIR02D09; M2, 
mCrCIR04H06; M3, CAC15; M4, CX6F23; M5, mCrCIR05A05; H, 
heterozygosity restitution percentage for 87 genotypes. Gray shading 
indicates heterozygous regions. 
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Table 2.5. Number of observed crossing over events on each arm in chromosome II for 87 genotypes and 

five markers 

 
 

Arm 1 

 Number c.o. 0 1 2 3 4  

Arm 2 

0 1 9 0 1(1) 0 12.64% 

1 3 56 7(7) 5(3) 1(1) 82.76% 

2 0 4(4) 0 0 0 4.60% 

 4.60% 79.31% 8.05% 6.90% 1.15%  

 

 

 

Interference analysis 

Considering centromere position between CX6F23 and mCrCIR07D05 markers, the 

interference coefficient was estimated for each arm of chromosome II with three markers per 

side. For arm 1, analyzing 87 genotypes for mCrCIR02D09, mCrCIR04H06 and CX6F23 

markers, the interference coefficient was found to be 0.73. For the other arm, the interference 

estimation was 0.53, analysing 66 2n gametes for mCrCIR03C08, mCrCIR05A05 and TAA41 

markers. 

 

Discussion 

MAC-PR is an efficient method to determine allelic configurations in triploid citrus 

segregating progenies 

In this work, the HTA is based on gamete allelic configuration inferred from triploid 

progeny genotyping. MAC-PR has been proposed to deal with differential amplification 

intensities among alleles in polyploid plant species (Esselink et al., 2004) for allele dosage 

estimation. Under the PCR conditions used for citrus SSR analysis, we have successfully 

verified the correlation between allele dosage and PCR product ratio. Finally, the very clear 

bimodal distribution of estimated doses for the 35 analyzed SSR markers among triploid hybrids 

ruled out the occurrence of random PCR drift in our amplifications and validated the MAC-PR 

approaches for triploid citrus progenies genotyping. A basic assumption of the MACPR method 

is the repeatability of relative allelic amplification intensities among individuals and, thus, the 

total homology of primer sites for DNA fragments producing the same allele (same PCR product 

size). Homoplasy of SSR markers was found at interspecific levels in citrus (Barkley et al., 

2009), and could limit general application of MAC-PR. ‘Fortune’ mandarin and most of the male 

genitors used in our study are closely related, which should explain why we have not 

encountered this difficulty because of the by-descent homology of alleles. 

 

 

Numbers in brackets indicate detected complementary crossovers; 
percentages of crossover events (0, 1, 2, 3, 4) in each chromosome arm 
are given in bold.  
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Origin of 2n gamete producing triploids in citrus 

We observed that all the 171 analyzed triploid hybrids show maternal heterozygosity 

restitution for at least one marker. This confirms that all triploid hybrids found in the progenies of 

2x × 2x crosses with ‘Fortune’ mandarin as female genitor arose from 2n megaspores. This 

result is in agreement with the cytogenetic observations done by Esen and Soost (1971), and 

with previous molecular observations (Luro et al., 2004; Chen et al., 2008a; Ferrante et al., 

2010). In the present work, the restitution heterozygosity rates significantly lower than 50% for 

several markers (distributed in 6 of the 8 represented linkage groups) and the pattern of 

heterozygosity inside linkage group II, definitively ruled out the FDR hypothesis. Multilocus 2n 

gamete allelic configuration in the same linkage group also revealed that SDR was much more 

likely to be the mechanism underlying unreduced gamete formation than FDR (LOD=6.8). 

Moreover, this analysis enabled us to detect four strand (complementary) double crossovers by 

phase changes of several homozygous markers. Such phase changes between homozygous 

positions are only possible under the SDR hypothesis if up to two crossovers per arm are 

considered. This conclusion for SDR is in agreement with that proposed by (Luro et al., 2004), 

who observed low heterozygosity restitution in C. clementina 2n megagametophyte. The 

conclusion of FDR given for sweet orange (Chen et al., 2008a) is questionable because of the 

low number of analyzed markers. Indeed, the unambiguous identification of FDR without 

previous location of the centromere must be based on a large set of markers with good genome 

coverage. In the same way, the results of Ferrante et al. (2010), based on a very low number of 

individuals and markers for each parental genotype are not sufficient to prove the authors’s 

conclusions of SDR for ‘Fortune’ and ‘Wilking’ mandarin and FDR for lemon. Systematic 

analysis of 2n gamete allelic configuration with the same set of loci, close and far from the 

centromere, will shed light on whether SDR is the only mechanism underlying 2n egg formation 

in citrus, or whether there is a different mechanism depending on genotype or environmental 

conditions.  

 

Analysis of the pattern of heterozygosity restitution within a linkage group is an 

alternative way to map the centromere compared with half tetrad multilocus allelic 

configuration analysis 

Centromere mapping has been carried out in several crops (Douches and Quiros, 1988; 

Okagaki et al., 2008) and animals (Kauffman et al., 1995; Lindner et al., 2000), using half-tetrad 

analysis. In the present work, half-tetrad analysis has been carried out in two ways: by 

multilocus allelic conformation analysis, as described in Tavoletti et al. (1996) and by 

comparison of observed and theoretical pattern of heterozygosity restitution rate within the 

linkage group under several models. Both methods estimated the centromere position to be 

between CX6F23 and mCrCIR07D05 markers. Confidence intervals of the positions obtained 

with the two methods overlapped, validating the best fit method. The fitting curve adjustment 

has the advantage of potential application to a set of loci analyzed in different progenies 
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(between a same parent producing the 2n eggs but different male parents), potentially enlarging 

the usable set of markers to all those heterozygous for the female 2n gamete producer. It could 

potentially be used to compare a large range of interference model functions. Furthermore, this 

method should be easily applied to dominant markers by estimating the heterozygous restitution 

as 1-2f (with f being the frequency of homozygous progeny for the recessive allele). However, it 

requires the use of an existing genetic map and assumes that crossover distribution is similar 

during normal meiosis and 2n gamete formation. Multilocus allelic HTA is advantageous in that 

it can be used without a previous genetic map of the markers and can be applied with a 

predefined order of markers (Tavoletti et al., 1996; Da et al., 1995) as we have done, or without 

any previous information about marker position (Da et al., 1995). An excel template has been 

developed for easy identification of restitution model (FDR or SDR) and positioning of 

centromere within a linkage group, from heterozygosity restitution data for a set of mapped loci. 

It includes an estimation of confidence interval for the centromere position by bootstrap on the 

loci. It is available under request to the authors. 

 

Evidence for positive chiasma interference in citrus cv ‘Fortune’ 

Many models of half-tetrad analysis are based in the hypothesis of complete 

interference. In the present work, the analysis of multilocus configuration in linkage group II 

revealed the occurrence of up to four crossovers in the same chromosome arm and thus, 

incomplete interference. It is confirmed by the maximum restitution values between 75% and 

82% observed for five of the markers, while for SDR, the maximum restitution should be 66.6% 

under the no interference hypothesis and should reach 100% for total interference. A better 

adjustment was found between observed data and theoretical curve with the Cx(Co)
4
 chi-square 

model for partial interference  than the no interference one. Interference values were estimated 

by three point analysis for each arm of linkage group II, with results suggesting that it should be 

higher for one arm (0.73) than for the other (0.53). Such variation of interference level between 

different parts of the genome has also been observed in Arabidopsis (Drouaud et al., 2007), in 

human (Lian et al., 2008) and in mouse (Broman et al., 2002). 

 

Implications for citrus breeding 

Seedlessness is one of the most important characteristics for the citrus fresh fruit 

market. An efficient way to achieve this aim is to obtain triploid mandarin varieties. Sexual 

triploidization is a classical method to obtain triploid citrus hybrids (Ollitrault et al., 2008). 

Indeed, some genotypes such as ‘Temple’, ‘Wilking’, and ‘Fortune’ mandarin (Esen and Soost, 

1973; Aleza et al., 2010b) are well known for their production of diploid megagametophytes. 

The other classical method to create triploid citrus progenies is inter-ploidy hybridization with 

doubled-diploid. Assuming an SDR origin of 2n gametes in ‘Fortune’ mandarin, sexual 

polyploidization may lead to lower average of heterozygosity restitution than interploid 
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hybridization, whatever the segregation model considered for the doubled diploid (Marsden et 

al., 1987). As heterozygosity and epistatic interactions are maintained for a great number of 

individuals in the progeny from interploid crosses with doubled-diploid, this triploid breeding 

strategy should be more efficient than 2x × 2x hybridization for developing new cultivars that are 

phenotypically close to ‘Fortune mandarin’ genitor. Conversely, 2x × 2x hybridization should 

produce more polymorphic progenies, by creating larger number of new multilocus allelic 

combinations (David et al., 1995), providing the opportunity to select innovative products within 

the perspective of market segmentation as a commercial strategy. 
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Supplementary information 

 

Validation of MAC-PR estimation of allele dosage  

The inference of a diploid gamete structure when the two parents share one allele 

requires the ability to estimate allelic dosage in triploid progenies. In this paper we have used 

the MAC-PR method (Esselink et al., 2004) to estimate allelic dosage after verification of its 

applicability in our populations and markers as described below. 

In order to verify that the MAC-PR method can be applied to estimate the allelic dosage 

of our markers in triploid genotypes, with our PCR conditions, a preliminary trial was performed 

with five markers. The DNA of two haploid lines (from clementine cv ‘Nules’ and pumello cv 

‘Chandler’) displaying allelic variability were mixed at different ratios (1:2, 1:1, 2:1 and 3:1). Ten 

replications (PCR and run in the genetic fragment analyzer) were done for each ratio and 

marker. Area ratios among the two observed peaks (alleles) were calculated for all runs and the 

correlation between DNA ratio and peak area ratio was analyzed. An illustration is given for the 

mest56 marker (Figure 2.S1), showing a very high correlation among DNA proportion and peak 

area ratio (r
2
=0.9902). Similar results were observed for the four other markers. 

 

 

 

 

 

 

 

Figure 2.S1. Relationship between several DNA proportions of ‘Clementine’ and ‘Chandler’ haploids and 
peak area ratio for three repetitions of the mest56 marker. 

 

To avoid misinterpretation of allele dosage associated with PCR allele competition, the 

triploid hybrid peak area ratios were systematically corrected by ‘Fortune’ genitor peak ratio as:  

12

21

·

·

FS

FS
SD   

where SD is the estimated allele dosage ratio in the sample; Si and Fi are the peak area 

for allele i for the analyzed sample and ‘Fortune’ diploid cultivar, respectively (Figure 2.S2). 
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Figure 2.S2. Observed peaks for the CAC15 marker in ‘Fortune’, ‘Murcott’, the FM60 hybrid and the FM38 

hybrid showing respectively ratio 2:1 and 1:2 between alleles 169 and 178. SD=(S1·F2)/(S2·F1) 

 

Ten technical replications (independent PCR) were done for mCrCIR06B05 with two 

triploid genotypes with ratios 1:2 and 2:1 to determine the discrimination power of the 

assignment of observed peak area ratios. The results (Figure 2.S3a) testified the high stability 

of allele dosage evaluation. 

 

 

 

 

 

 

 

 

Figure 2.S3. Scatterplot of peak area ratios for ten PCR repetitions of two genotypes with ratios 1:2 and 
2:1 for two alleles of mCrCIR06B05 marker (a) and distribution of peak area ratios for all the genotypes 
and markers showing 1:2 and 2:1 ratios (b). 

 

The unambiguous differentiation of allele dosage in heterozygous triploids has been 

confirmed during progeny analysis by the very clear bimodal distribution of the peaks area ratio 

of the different triploid hybrids for all markers (Figure 2.S3b). These results validate the method 

of area peak ratios used for genotyping the triploid progenies in this study. 
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Method for Half Tetrad Analysis 

The analysis was made according to Tavoletti et al. (1996) assuming that multiple 

crossovers do not occur between contiguous markers. Under this hypothesis, each crossover 

between two markers leads to a change from homozygosity to heterozygosity between marker i 

and  i+1 in the case of SDR and a half change from heterozygosity to homozygosity in the case 

of FDR. Thus, the distance between two adjacent markers (dMiMi+1) can be estimated by the 

proportion of 2n gametes with changes (homozygosity versus heterozygosity; CMiMi+1) between 

the two markers. For FDR, dMiMi+1 = CMiMi+1  and for SDR, dMiMi+1 = ½ CMiMi+1.  

The probability of each observed genotype profile (Gj), considering that the locus is 

homozygous (Ho) or heterozygous (He), was calculated as:  

)·)(()( 11  CMaCMaMiMij PPPGP  

where:  

 PMiMi+1 is the probability of configuration for two adjacent loci whose interval does not 

include the centromere; being PMiMi+1 = CMiMi+1 in case of configuration change and  

PMiMi+1= 1- CMiMi+1 when no change occurs between the adjacent loci. 

 PCMa and PCMa+1 are the probability of the observed configuration for the two loci flanking 

the centromere, PCMa (and identically PCMa+1) values being (1-dCMa), (dCMa), (2dCMa) and 

(1-2dCMa) respectively for the following situation (He, FDR), (Ho, FDR), (He, SDR), (Ho, 

SDR); with dCMa being the mapped distance between the centromere and the given 

flanking locus. 

 

Under FDR or SDR models and different centromere positions, the probability of the 

observed 2n gamete population (P) is: 

n

j

j

GP )(C
1i
  

where n is the number of 2n gametes with the genotype j and C a combinatory 

coefficient constant for the set of observed data. 

Both under FDR and SDR models, the centromere position was virtually moved from 

before the first considered locus along the linkage group to after the last considered locus 

(intervals of 0.5 cM) and relative probability (P/C) was estimated for each position. The LOD 

between best position under SDR and FDR was calculated in order to determine the mode of 2n 

gamete restitution and the position of the centromere was considered as the one producing the 

highest relative probability under the identified mode of restitution. 
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Abstract 

 

Background: The use of unreduced gametes, resulting in the establishment of sexual polyploids 

is currently a major strategy for triploid citrus breeding. The origin mechanism of 2n gamete 

formation, i.e., FDR (First-Division Restitution) or SDR (Second-Division Restitution), greatly 

impacts the gametic structures and, therefore, the polyploid populations and the efficiency of 

breeding strategies. Methods previously developed to identify the underlying mechanism require 

the analysis of a large set of markers over large progeny. 

 

Scope: Simulating populations were used to check the power of the method in terms of 

individual and marker numbers needed to obtain significant conclusions. This work develops a 

new maximum-likelihood method to identify the unreduced gamete formation mechanism both 

at the population and individual levels using independent centromeric markers. This new 

method was applied to investigate the mechanism in sixteen mandarin genotypes used as 

female parents in triploid citrus breeding.  

 

Conclusions: Knowledge of marker-centromere distances greatly improves the statistical power 

of the comparison between the SDR and FDR hypotheses. The importance of selecting markers 

very close to the centromere to obtain significant conclusions at the individual level has been 

demonstrated by simulating data and illustrated by our results. All triploid hybrids analyzed 

originated from 2n megagametophytes. SDR was identified as the unreduced gamete formation 

mechanism in all mandarin genotypes analyzed. Moreover, SDR was identified as the restitution 

mechanism for 85.3% of the analyzed triploid hybrids, whereas 0.6% of the analyzed triploids 

were derived from FDR; for 14.1% of the hybrids, no significant conclusions were obtained.  
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Introduction 

Polyploidization is a key source of species diversification and speciation in plants 

(Harlan and DeWet, 1975; Otto and Whitton, 2000; Soltis and Soltis, 2009) and may occur by 

somatic chromosome doubling (somatic polyploidization) or sexually through gametic 

nonreduction (sexual polyploidization) (De Storme and Geelen, 2013). Currently, most 

researchers consider sexual polyploidization to be the main mechanism of polyploidization in 

plants (Bretagnolle and Thompson, 1995; Otto and Whitton, 2000; Ramsey and Shemske, 

2002). 

In sexual polyploidization, polyploids are generated by the formation of diploid gametes, 

i.e., pollen or eggs that have the somatic rather than the gametophytic chromosome number 

(Harlan and DeWet, 1975; Bretagnolle and Thompson, 1995; Ramsey and Schemske, 1998; 

Otto and Whitton, 2000). In most cases, diploid gametes result from a restitution of the meiotic 

cell cycle (Bretagnolle and Thompson, 1995). In this process, meiotic cell division is converted 

into a mitosis-like nonreductional process, generating dyads (unreduced gametes) instead of 

the normal tetrads at the end of meiosis II. This phenomenon is referred to as ‘meiotic 

restitution’ and is the predominant mechanism of unreduced gamete formation in plants (Otto 

and Whitton, 2000; Soltis and Soltis, 2009). 

Meiotic aberrations related to spindle formation, spindle function and cytokinesis can 

lead to unreduced gamete formation in plants. Up to seven major mechanisms of 2n gamete 

formation have been cytogenetically characterised: premeiotic doubling, first-division restitution 

(FDR), chromosome replication during the meiotic interphase, second-division restitution (SDR), 

postmeiotic doubling, indeterminate meiotic restitution, and apospory (Peloquin et al., 1989; Lim 

et al., 2004; Dewitte et al., 2012). FDR and SDR are the predominant mechanisms of 2n 

gamete formation. Failure of the first (FDR) or second (SDR) divisions leads to the formation of 

restitution nuclei with an unreduced chromosome number. An FDR 2n gamete contains non-

sister chromatids, while an SDR 2n gamete contains two sister chromatids (Bretagnolle and 

Thompson, 1995; Tavoletti et al., 1996; Cai and Xu, 2007). 
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Figure 3.1. Half tetrads resulting from no crossover and single crossover events under FDR and SDR 

mechanisms of unreduced gamete formation. 

 

The use of unreduced gametes in plant breeding (Ramanna and Jacobsen, 2003; 

Dewitte et al., 2012), resulting in the establishment of sexual polyploids, is useful for 

improvement of crops such as lily (Lim et al., 2004; Barba-González et al., 2004; 2005), maize 

(Rhoades and Dempsey, 1966), potato (Mok and Peloquin, 1975; Jongedijk et al., 1991), rose 

(Crespel and Gudin, 2003), rye (Lelley et al., 1987), alfalfa (Ortiz and Peloquin, 1991; Barcaccia 

et al., 2003) and banana (Ortiz, 1997; Ssebuliba et al., 2008). 

Diploidy is the general rule in Citrus and its related genera, with a basic chromosome 

number x=9 (Krug, 1943). However, triploid breeding has become an important strategic tool in 

the development of new seedless citrus commercial varieties (Starrantino, 1992; Ollitrault et al., 

2008; Recupero et al., 2005; Aleza et al., 2010a; Cuenca et al., 2010). Indeed, seedlessness is 

one of the most important economic traits related to fruit quality for fresh-fruit marketing of 

mandarins (Navarro et al., 2005; Ollitrault et al., 2008). 

Spontaneous occurrences of citrus triploid hybrids arising from the union of 2n 

megagametophytes with haploid pollen have been noted since the seventies (Esen and Soost, 

1971, 1973; Luro et al., 2004; Chen et al., 2008a; Aleza et al., 2010b). However, the frequency 

of such events is generally low (Cameron and Frost, 1968; Esen and Soost, 1971 Geraci et al., 

1975) and extensive breeding programs based on this type of hybridization require very 

effective methodologies for embryo rescue and ploidy evaluation of large progenies (Ollitrault et 

al., 2008; Aleza et al., 2010b). To date, very few cases of citrus triploid hybrid occurrence in 2x 

× 2x crosses from unreduced pollen have been reported (Luro et al., 2004; Chen et al., 2008a). 



Chapter 3. Mechanism leading to 2n gamete formation in C. reticulata 

90 

Esen et al. (1979) proposed that, in citrus, 2n eggs result from the abortion of the 

second meiotic division (SDR) in the megaspore. This hypothesis was corroborated by 

molecular marker analysis for clementine (Citrus clementina Hort. ex Tan.) (Luro et al., 2004; 

Aleza et al., 2012b) and for ‘Fortune’ mandarin (C. clementina × C. tangerina) (Cuenca et al., 

2011). By contrast, Chen et al. (2008a) proposed that 2n eggs of sweet orange (C. sinensis (L.) 

Osb.) resulted from first meiotic division restitution (FDR). 

The origin of 2n gamete formation greatly impacts the gametic structures and, therefore, 

the polyploid populations and the efficiency of breeding strategies. Under FDR, non-sister 

chromatids retain parental heterozygosity from the centromere to the first crossover point, and 

the gametes thus transfer a large proportion of this parental heterozygosity to the progeny. 

Under SDR, the two sister chromatids are homozygous between the centromere and the first 

crossover point, and the resultant gametes have lower levels of heterozygosity than FDR 

gametes (Figure 3.1, Bretagnolle and Thompson, 1995). Several studies based on genetic 

markers indicate that FDR gametes transmit 70–80% of the parental heterozygosity, but SDR 

gametes transmit only 30–40% (Barone et al., 1995; Douches and Quiros, 1988; Vorsa and 

Rowland, 1997; Crespel and Gudin, 2003; Buso et al., 1999; Dewitte et al., 2012). Thus, a 

tighter distribution is expected in FDR-derived populations than in SDR ones because a higher 

percentage of the parental genome is transferred intact, resulting in a more uniform gamete 

production (Douches and Maas; 1998). Therefore, insights into the meiotic nuclear restitution 

mechanisms that produce unreduced gametes are crucial for the optimization of breeding 

strategies based on sexual hybridization (Errico et al., 2005). 

Molecular marker analysis is a valuable tool for the estimation of heterozygosity 

transmission through diploid gametes to polyploid progenies and, therefore, to identify the 

mechanisms underlying unreduced gamete formation (Barone et al., 1995; Vorsa and Rowland, 

1997; Bastiaanssen et al., 1998; Barcaccia et al., 2003; Luro et al., 2004; Chen et al., 2008a; 

Hayashi et al., 2009). The models described therein are all based on population analysis and 

suppose complete chiasma interference.   

Cuenca et al. (2011) proposed an approach that takes into account different models of 

chromosome interference (i.e., no interference, partial interference or complete chiasma 

interference) when testing for FDR and SDR, and for mapping centromeres to linkage groups. 

This approach is based on functions of heterozygosity restitution (HR) at the population level 

along a chromosome in relation to locus-centromere distance (d) (Zhao and Speed, 1998a). 

Indeed, under FDR or SDR, HR is a direct function of the crossing over frequency between the 

considered locus and the centromere. It is, therefore, possible to implement the function 

(HR=f(d)) according to the FDR and SDR hypotheses while also taking into account different 

models of chromosome interference (Figure 3.2). This approach was successfully applied in 

populations of 2n ovules of ‘Fortune’ mandarin and 'Fina' clementine, and it was concluded that 

SDR was the main restitution mechanism and that partial chromosome interference occurs 
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(Cuenca et al., 2011; Aleza et al., 2012b). That study also contributed to the discovery of 

centromere locations in the nine citrus chromosomes. 

 

Figure 3.2. Rate (percentage) of heterozygosity restitution in the unreduced gametes under FDR and SDR 

mechanisms in function of the locus-centromere distance considering the total interference model, the no 
interference model and the Cx(Co)

4
 partial interference model. Adapted from Cuenca et al. (2011). 

 

In the present work, we propose a maximum-likelihood approach to test the SDR/FDR 

mechanism based on the HR of unlinked markers located close to the centromere of different 

chromosomes. This approach can be applied at the individual or population level. We simulated 

2n gamete populations arising from FDR or SDR. This enabled us to identify the number of 

independent markers necessary to test in order to draw significant conclusions at the individual 

level in relation to marker/centromere distances, as well as the minimum population size 

necessary to be able to draw significant conclusions when analysing a defined number of 

markers.  

Taking advantage of the known centromere locations (Aleza et al., 2012b) within the 

nine linkage groups of the clementine reference genetic map (Ollitrault et al., 2012a), we 

selected centromeric markers and used this maximum-likelihood method to (i) check the 

potential variability of origin between individuals for two genotypes in which SDR was proposed 

to be the predominant polyploidization mechanism as determined by population analysis 

(‘Fortune‘ mandarin, (Cuenca et al., 2011)) and clementines, (Luro et al., 2004, Aleza et al., 

2012b) and (ii) shed light on the mechanism leading to unreduced gamete formation in a range 

of mandarin genotypes used as female parents in 2x × 2x triploid breeding programs. 
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Materials and Methods 

Plant materials 

Analyses were performed using 497 triploid hybrids derived from 16 different mandarin 

genotypes as female parents in 2x × 2x cross populations (Table 3.1). The genotypes include 

six clementine and ten hybrid mandarin genotypes. Triploid hybrids were grown at the ‘Instituto 

Valenciano de Investigaciones Agrarias’ orchards in Moncada, Valencia, Spain. Practical details 

for the establishment of triploid populations from 2x × 2x crosses by embryo rescue and triploid 

selection by flow cytometry can be found in Aleza et al. (2010b). All triploid genotypes in the 

present study were selected after probation of their hybrid status by molecular marker analysis 

(data not shown). Taxonomic information about both female and male parental accessions is 

given in Table S3.1 according to the standard classification system for the Citrus genus 

(Swingle and Reece, 1967; Tanaka, 1977). 

 

Table 3.1. Number of hybrids within each population analyzed in this study 

# 
population 

Population 
Number of 

hybrids 
 

# 
population 

Population 
Number of 

hybrids 

1 Bruno × Chandler 17  7d Fortune × Willowleaf 37 

2 Clemenules × Nadorcott 23  8 Guillermina × Chandler 14 

3 Ellendale × Fortune 69  9 Hernandina × Nadorcott 22 

4 Encore × Ellendale 3  10 Honey × N’15 1 

5 Fallglo × N‘15 3  11 Imperial × Moncada 24 

6 Fina × Nadorcott 87  12 Kiyomi × Nadorcott 21 

7 Fortune × 4 male parents 197  13 Loretina × Chandler 2 

7a Fortune × Ellendale 58  14 Moncada × Ellendale 8 

7b Fortune × Minneola 35  15 Umatilla × Simeto 5 

7c Fortune × Murcott 67  16 Wilking × Fina 1 

 

 

Selection of centromeric markers for the analysis of 2n gamete origin and formation 

mechanisms 

Triploid citrus hybrids obtained in 2x × 2x hybridizations arise from unreduced 

megagametophytes (Esen and Soost, 1971, 1973; Geraci et al., 1975; Luro et al., 2004; Chen 

et al., 2008a; Aleza et al., 2010b; Cuenca et al., 2011). Therefore, markers heterozygous for the 

female parent and displaying polymorphism between the two parents were primarily selected for 

the molecular characterization of triploid hybrids and analysis of 2n gamete origin. 

Centromere positions in all nine clementine chromosomes are known (Aleza et al., 

2012b). Molecular markers within 20 cM of the centromere were used in this study because 

centromere-proximal markers are more informative with regard to the mechanisms of 2n gamete 

formation than centromere-distal markers (Ollitrault et al., 2012a). Within this range, the lowest 

expected HR rate is greater than 80% for FDR, while the highest HR for SDR is 40% (Figure 
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3.2). Twenty-four markers were selected for genotyping the triploid progeny. Between four and 

seven of these centromeric markers were used for genotyping each population (Table 3.2). 

 

Table 3.2. Centromeric markers used for genotyping each triploid population. 

LG 
Centromere 

Position (cM) 
Marker id 

Marker 
type 

Reference 
Marker 
Position 

(cM) 

Centomere-distance 
(cM) 

Populations analyzed (#) 

1 60.66 mCrCIR06B05 SSR Froelicher et al., 2008 50.27 10.39 7 

  
CID0806 InDel Ollitrault et al., 2012 55.17 5.49 8 

  
CIBE5720 SSR Ollitrault et al., 2010 58.45 2.21 4,5,11,12,14 

  
MEST539 SSR In preparation 61.82 1.16 6 

  
MEST001 SSR Luro et al., 2008 70.60 9.94 10,15,16 

  
mCrCIR07D05 SSR Cuenca et al., 2011 75.60 14.94 1,13,14,15 

2 56.87 CX2004 SSR Chen et al., 2008 46.67 10.20 15 

  
CX6F23 SSR Chen et al., 2006 49.53 7.34 1,2,4,5,6,7,9,10,11,12,13,15,16 

3 90.59 CiC4225-01 SNP Ollitrault et al., 2012 86.33 4.26 4 

  
MEST470 SSR In preparation 88.76 1.83 6 

  
CiC2167-02 SNP Ollitrault et al., 2012 90.60 0.01 12 

  
CX0124 SSR Chen et al., in prep 110.28 19.69 13,14,15 

4 16.14 mCrCIR07D06 SSR Cuenca et al., 2011 16.33 0.19 1,7,8,13 

  
CF-ACA01 SSR In preparation 24.41 8.27 2,4,6,9,11,15 

5 23.12 CiC0004-01 SNP Ollitrault et al., 2012 20.90 2.22 6 

  
CiC0245-11 SNP Ollitrault et al., 2012 20.94 2.18 2,5,9 

  
MEST104 SSR Garcia-Lor et al., 2012 40.46 17.34 1,3,8,12,13,14,15,16 

6 6.4 MEST191 SSR In preparation 10.86 4.46 1,5,8,10,11,12,13,16 

7 96.43 mCrCIR03B07 SSR Cuenca et al., 2011 83.39 13.04 7 

  
CX0114 SSR Chen et al., in prep 94.97 1.46 3 

  
CI07C07 SSR Froelicher et al., 2008 98.02 1.59 2,3,6,9,10,14 

8 54.21 mCrCIR07B05 SSR Froelicher et al., 2008 31.70 22.51 3 

9 52.16 mCrCIR07F11 SSR Kamiri et al., 2011 49.57 2.59 1,2,3,4,5,8,9,10,11,13,14,15,16 

  
CI08C05 SSR Froelicher et al., 2008 55.14 2.98 7 

 

 

Genotyping of triploid hybrids 

DNA extraction: Leaf DNA of triploid hybrids and their parents was isolated using the 

Plant DNAeasy kit from Qiagen Inc. (Valencia, CA, USA), following the manufacturer’s protocol. 

SSR and InDel analyses: Polymerase chain reactions (PCRs) were performed with 

wellRED oligonucleotides (Sigma-Aldrich®, St Louis, MO, USA) in a Mastercycler epgradient S 

(Eppendorf Scientific Inc., Westbury, NY, USA). The reaction (volume, 15 µl) contained 0.8 U 

Taq polymerase (Fermentas®, Burlington, VT, USA), 0.1 mM of each dNTP,  5 mM MgCl2, 3 

mM of each primer, and 30 ng of DNA in buffer containing 750 mM Tris-HCl (pH 9), 50 mM KCl, 

200 mM (NH4)2SO4, and 0.001% bovine serum albumin.  The PCR program was 94ºC for 5 min; 

40 cycles of 30 s at 94ºC, 1 min at 55ºC and 30 s at 72ºC, and a final elongation of 10 min at 

72ºC. Separation was carried out by capillary gel electrophoresis (CEQ 8000 Genetic Analysis 

System; Beckman Coulter Inc., Fullerton, CA, USA). Data collection and analysis were carried 

out with GenomeLab GeXP (Beckman Coulter Inc.) version 10.0 software. Identification of allele 
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doses in heterozygous triploid hybrids was carried out using the MAC-PR method (Esselink et 

al., 2004) adapted in Citrus by Cuenca et al. (2011). 

SNP analyses: SNP genotyping was performed by Kbioscience® services, using the 

KASPar technique. Experimental details were as described in Cuppen (2007). Identification of 

allele doses in heterozygous triploid hybrids was carried out using the relative allele signals as 

previously described for SNP markers (Cuenca et al., 2013a), based on competitive allele-

specific PCR. 

 

Analysis of the parental origin of the 2n gametes producing the triploid hybrids 

For each hybrid, determination of the 2n gamete origin was carried out by identifying the 

parent that passed double genetic information to the hybrid. For markers displaying A1A2 × A1A1 

or A1A2 × A1A3 configurations, the identification of A1A2A2 or A2A2A3 (i.e., double dosage of A2, 

the allele specific to the female parent) configurations in the hybrid would imply a female origin 

of the 2n gamete. For the second combination, the observation of A1A3A3 or A2A3A3 (i.e., double 

dosage of A3, the allele specific to the male parent) would indicate a male origin. 

 For markers displaying A1A2 × A3A3 configurations in the parents, the identification of 

A1A2A3, A1A1A3, or A2A2A3 configurations in the hybrid resulted from a maternal origin of the 

unreduced gamete, while A1A3A3 or A2A3A3 resulted from a paternal origin. 

For markers with A1A2 × A3A4 parental configuration, the identification of the following   

genotypes (A1A1A3, A1A1A4, A1A2A3, A1A2A4, A2A2A3, A2A2A4) and (A1A3A3, A2A3A3, A1A3A4, A2A3A4, 

A1A4A4, A2A4A4) implied, respectively, female and male origin of the 2n gamete. 

Once the parental origin of the 2n gamete was identified, the inference of the allelic 

configurations of the unreduced gametes from triploid hybrid genotyping was carried out as 

previously described by Cuenca et al. (2011). 

 

Identification of the restitution mechanism at an individual level 

For loci heterozygous for the parent producing the 2n gamete, the probabilities of a 2n 

gamete being heterozygous or homozygous as a consequence of FDR or SDR mechanisms are 

direct functions of the marker-centromere distance. 

To estimate such probabilities, the function relating HR rate and locus-centromere 

distance (Cuenca et al., 2011), derived from the Cx(Co)
4
 partial chiasma interference model 

developed by Foss et al. (1993) and Zhao and Speed (1998a), could be used. Indeed, Cuenca 

et al. (2011) showed that this model fit better to ‘Fortune’ mandarin data (SDR mechanism) than 

total or no interference models. However, since selected markers are located close to 

centromeres (as explained above), for our data, the Cx(Co)
4
 model and the total interference 
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model are equivalent (Figure 3.2). To simplify mathematical calculations of probabilities, the 

total interference model was used. Marker-centromere distances (d) were estimated from the 

clementine reference genetic map (Ollitrault et al., 2012a) and centromere locations in the 

clementine map were determined by Aleza et al. (2012b).  

The probabilities of a marker being inherited as heterozygous under the SDR 

[PSDR(MHe)] or FDR [PFDR(MHe)] mechanisms were directly estimated from the total interference 

model functions as PSDR(MHe)=2d and PFDR(MHe)=(1-d). The probabilities of a marker being 

inherited as homozygous under SDR and FDR were estimated as PSDR(MHo)=(1-2d) and 

PFDR(MHo)=d, respectively. 

Therefore, the LOD values used to compare the probabilities of a heterozygous or a 

homozygous diploid gamete occurring at a locus, under the two models (SDR/FDR), were 

calculated respectively as: 

LOD(MHe) = log [PSDR(MHe)/PFDR(MHe)] = log (2d/(1-d))      and 

LOD(MHo) = log [PSDR(MHo)/PFDR(MHo)] = log ((1-2d)/d) 

 

For each restitution model, the probability of a single unreduced gamete [P(G)] 

presenting the observed allelic configuration for i unlinked markers (Mi) is the product of the 

probabilities of the observed genotype at each locus, P(G)=πPMi, and therefore the LOD value 

to compare the SDR/FDR models is the sum of the LOD at each locus, 

LOD(G)=∑LODMi, 

where PMi and LODMi are the probability and the LOD value of the observed genotype at 

the locus I, respectively. 

As an example, if three unlinked loci (M1, M2 and M3) were heterozygous, homozygous 

and homozygous, respectively, the probabilities of observing such gametes [P(G); (M1He-M2Ho-

M3Ho)] are, respectively,  

PSDR(G) = 2d1 × (1-2d2) × (1-2d3)   under SDR and 

PFDR(G) = (1-d1) × d2 × d3   under FDR 

The LOD value used to compare the probabilities of SDR/FDR models is  

LOD(G) = log (2d1/(1-d1)) + log ((1-2d2)/d2) + log ((1-2d3)/d3) 

where di is the distance from the locus i to its centromere. 
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LOD scores greater than 3 (the probability of the observed gamete is more than 1000-

fold higher under the SDR model than the FDR one; LOD3) or greater than 2 (the probability of 

the observed gamete is more than 100-fold higher under the SDR model than the FDR one; 

LOD2) were considered as thresholds indicating that SDR was the mechanism involved in the 

single unreduced gamete formation, whereas LODs below -3 (or -2) indicate that FDR was the 

underlying mechanism; for LOD scores between -3 and 3 (or between 2 and -2), we considered 

that the mechanism could not be determined significantly. 

 

Identification of the restitution mechanism at population level 

 Considering an infinite population of 2n gametes and a single locus, the probability of 

observing a sample of gametes [P(Pop)] with j heterozygous and k homozygous individuals 

under the SDR and FDR model are, respectively: 

PSDR(Pop)= C × PSDR(MHe)
j
 × PSDR(MHo)

k 
= C × (2d)

j
 × (1-2d)

k
 

PFDR(Pop)= C × PFDR(MHe)
j
 × PFDR(MHo)

k 
= C × (1-d)

j
 × (d)

k
 

where C is a combinatory coefficient constant for the observed sample. Therefore,  

LOD Pop =
(2d)

 
 (1 2d)

 

(1 d)
 
 (d)

 
 

 

If i independent loci are analyzed, the probabilities of the observed sample of gametes 

occurring under the SDR [PSDR(Pop)] or FDR [PFDR(Pop)] models are the products of the 

probabilities of the observed sample at each locus  

PSDR(Pop) = π Ci × PSDR(MiHe)
ji
 × PSDR(MiHo)

ki 
= π Ci × (2di)

ji
 × (1-2di)

ki
 

PFDR(Pop) = π Ci × PFDR(MiHe)
ji
 × PFDR(MiHo)

ki 
= π Ci × (1-di)

ji
 × (di)

ki
 

and therefore,  

LOD Pop = 
     

          
  

      
       

  
 

where P(MiHe),P(MiHo), ji, ki and di are, respectively, the probability of heterozygous individuals, 

probability of homozygous individuals, number of heterozygous individuals, number of 

homozygous individuals and distance to centromere for the locus i. 

 At the population level, LOD scores greater than 3 were considered to indicate that SDR 

was the mechanism involved in unreduced gamete formation, whereas LODs below -3 indicated 
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that FDR was the underlying mechanism. When LOD scores between -3 and 3 were obtained, 

we considered that the mechanism could not be significantly determined. 

 

Studies to check the power of the method 

 We assessed the power of our method using simulated samples of diploid gametes 

arising from either the FDR or SDR mechanisms. From a theoretical infinite population with 

heterozygous and homozygous genotype frequencies directly defined by the considered locus-

centromere distances ([PFDR(MHe)=(1-d); PFDR(MHo)=d; PSDR(MHe)=2d; PSDR(MHo)=(1-2d)] as 

explained above), individual gametes with information for nine markers (the haploid number of 

chromosome in Citrus) were randomly generated. Then, the LOD values of these gametes were 

calculated as described above. We estimated the proportion of gametes with significant 

solutions at LOD3 (LOD value > 3 or < -3) and LOD2 (LOD value > 2 or < -2) when analysing 1–

9 markers mapped at the same centromere distance, but in different chromosomes, and for 

distances ranging from 0 to 20 cM.  

Gamete populations were also generated in order to estimate the theoretical number of 

hybrids that would need to be analyzed in order to obtain significant conclusions for a 

mechanism, depending on the number of markers used and the marker-centromere distances. 

From each theoretical population (FDR and SDR populations), 200 replicates of populations 

(with 1–100 gametes/population) were randomly generated. The generated population LODs 

were calculated as described above and, for each number of considered markers at a given 

centromere distance, we identified the minimum number of gametes needed in order to be able 

to reach a true significant conclusion for at least 99% of the generated populations (99% of 

replicates with LOD > 3 for SDR or LOD < -3 for FDR). 

 

Results 

Simulation results 

From 1000 randomly selected gametes with nine independent markers (at the same 

distance from their respective centromere) from a theoretical SDR and FDR infinite population, 

we analyzed the percentage of replicates with significant LOD value (i.e., LOD3 and LOD2) at a 

given distance considering the data from 1–9 markers.  

Curves corresponding to a significant true answer are shown in Figure 3.3. All curves 

display a vertical drop to 0, corresponding to the distance when the maximum theoretical LOD 

score (when all considered markers are in the most favourable combination for the model) is 

below the considered threshold. Compared with LOD3, the LOD2 threshold allows maintenance 

of the progressive decrease of the significant answer with increasing distance. As distance 

increases, more markers are needed to maintain a high level of significance. 
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Figure 3.3. Percentage of replicates with significant LOD value considering a LOD3 for (a) theoretical SDR 

and (b) FDR populations, and considering a LOD2 for (c) SDR and (d) FDR populations. 

 

At LOD3, the usefulness of only one marker is null for both the SDR (Figure 3.3a) and 

the FDR (Figure 3.3b) models at a very low marker distance from the centromere (0.1 cM). At 5 

cM, at least five (for SDR) and six (for FDR) markers are necessary to maintain a 90% true 

significant identification of the mechanism. When all markers were at least 10 cM from 

centromeres, nine markers were necessary to provide a 90% true significant answer for the 

SDR population, but only 78% significant true answers were obtained with nine markers for a 

FDR population. At 15 cM and nine markers, the true identification rates fall to 44% and 24% for 

SDR and FDR, and, at 20 cM, to 6.6% and 0%, respectively. 

If the LOD2 threshold is considered, a single marker was informative in the first cM 

interval for the SDR model (Figure 3.3c) but significant replicate number decreases very quickly 

for FDR (Figure 3.3d). At 5 cM, at least four and five markers were necessary to provide 90% of 

true significant identification for SDR and FDR populations, respectively. With all markers 10 cM 

from centromeres, at least eight markers were necessary to provide 90% true significant 

answers with an SDR or FDR population. For nine markers, the rate of true significant 

identification is improved for the SDR population at 15 cM and 20 cM (70% and 19%, 

respectively) as well as for the FDR population (59% and 14%, respectively) when compared 

with LOD3.    

The rate of false identification (FDR significant conclusion [i.e., LOD<-3 or LOD<-2] for a 

SDR population, or reciprocally) is very low for both models (SDR or FDR), whatever the 
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centromere distance and the number of considered loci. At LOD3, it is under 0.1% for all 

conditions and it remains below 1% for the LOD2 threshold (Figure 3.S1). 

At the population level (Figure 3.4), due to the probabilities of the 2n gamete genotypic 

structure under FDR and SDR models becoming similar as the distance to centromere rises, the 

number of hybrids needed to obtain significant conclusions for a mechanism increases as an 

exponential function and is more pronounced when analysing a single marker only.  

 

 

Figure 3.4. Number of hybrids needed to obtain significant conclusions for (a) SDR and (b) FDR 

mechanisms. 

 

For a concrete locus-centromere distance, the number of hybrids (hm) needed is related 

to the number of markers analyzed as: hm=h1/m, being h1 the number of hybrids needed for one 

marker and m, the number of markers analyzed. For example, for a SDR population model, at 

20 cM, 58 hybrids are necessary if analysing only one marker, 29 are necessary for two 

markers, and 20 are necessary for three markers. The number of hybrids needed to provide the 

same level of conclusive answer is slightly lower for FDR (50 hybrids for one marker at 20 cM). 

With these population sizes, no false mechanism identification occurred for the generated 

populations. 

 

Inference of allelic configuration of triploid hybrids and corresponding 2n gametes 

Assignment of allelic configuration in heterozygous triploid hybrids was performed using 

the MAC-PR method for SSR markers [(Esselink et al., 2004); Figure 3.S2] adapted for Citrus 

by Cuenca et al. (2011) and from relative allele signal for SNP markers as proposed by Cuenca 

et al. (2013a), based on competitive allele-specific PCR (Figure 3.S3). However, both these 

methods use a 1:1 dosage correction from the relative allele signals for heterozygous diploid 

parents (A1:A2, A1:A3 or A3:A4). Therefore, for markers displaying A1A2 × A1A3 configuration in 

the parents, among the heterozygous triploid hybrids only the A1A2A2/A1A1A2 or A1A3A3/A1A1A3 

configurations can be determined using these methods, while no direct allele dosage estimation 
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can be obtained for a triploid with A2/A3 heterozygosity without a reference for the relative A2/A3 

allele signal. Similarly, for markers displaying the A1A2 × A3A4 configuration, it is not possible to 

directly estimate allele dosage for the heterozygous triploid hybrids. 

When the parental origin of a 2n gamete can be demonstrated using one marker, this 

allows the estimation of the relative signals of the alleles for another locus in the hybrid under 

consideration. As an example, consider two loci, A and B, with the parental configurations A1A2 

× A3A3 and B1B2 × B1B3, which produce a triploid hybrid with A1A2A3 and B2B3 allelic 

configurations. Configuration of the A locus unequivocally reveals a maternal origin of the 2n 

gamete. Based on the maternal origin of the unreduced gamete, the only possibility for the B 

locus is B2B2B3. Thus, the allelic pattern for this triploid genotype can be used as a reference of 

the relative allele signal to infer allele dosage for the other triploid hybrids in the same progeny 

that display B2/B3 heterozygosity. A summary of triploid genotypes allowing inference of the 2n 

gamete genotype and origin, either directly or by inferring allele doses from diploid parents or 

reference triploid hybrids, is given in additional Table 3.S2. Loci with complete differentiation 

between the parents (A1A2xA3A4 or A1A2xA3A3) are by far the best configurations as they allow 

unequivocal identification of the 2n gamete parent and unambiguous determination of 2n 

gamete structure. When the parental origin of a 2n gamete has been determined by triploid 

patterns at other loci, the 2n gamete structure can be inferred for all triploid hybrids for the loci 

sharing a single allele between the two parents. 

 

Identification of the unreduced gamete parental origin 

Allelic patterns of the markers allowed unequivocal identification of the origin of the 

double dosage for each analyzed triploid hybrid. Female parents were the unreduced gamete 

producers leading to triploid hybrids for all studied parental combinations. No triploid hybrid 

arising from unreduced pollen was found. It was therefore possible to infer the maternal 2n 

gamete genotypes for all hybrids and loci. 

 

Identification of the restitution mechanism at the individual level 

LOD score testing the SFR/FDR hypothesis was estimated for each individual 2n 

gamete from its inferred genotype, as described in the Materials and Methods. Positive LODs 

were found for 482 hybrids of the 497 analyzed (Figure 3.5), suggesting a large global 

predominance of the SDR mechanism. The LOD distribution for clementine 2n gametes is 

displaced to higher values when compared with the distribution for ‘Fortune’ and other mandarin 

2n gametes. Fifty-seven diploid gametes occur with LOD between 9 and 10, and these 

correspond mostly to the ‘Fina’ clementine progeny. 
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Figure 3.5. Frequency histogram of LOD values obtained for each individual 2n gamete, indicating those 

arising from clementines, ‘Fortune’ mandarin and other mandarins analyzed in this study. 

 

When using LOD3 as the threshold, SDR was found to be the restitution mechanism 

underlying unreduced megagametophyte production for 424 (85.3%) of the analyzed triploid 

hybrids (Table 3.3). For one triploid hybrid arising from ‘Ellendale’ and two arising from ‘Fortune’ 

(0.6%), the FDR mechanism was implicated. The other 70 (14.1%) triploid hybrids did not give 

significant conclusions for either the SDR or FDR mechanisms. All unreduced gametes arising 

from ‘Encore’, ‘Fallgo’, ‘Guillermina’, ‘Honey’, ‘Loretina’ and ‘Wilking’ were identified as having 

an SDR origin, whereas for 33 unreduced gametes arising from ‘Fortune’ (16.7%) no significant 

conclusions were obtained (Table 3.3). 

When using LOD2 as the threshold, the percentage of gametes with unidentified origins 

decreased to 9%. Gametes attributed to SDR increased to 90.1%, with significance achieved for 

an additional three clementine gametes, another ten from ‘Fortune’ and an extra 11 from other 

mandarins. No additional 2n gametes arising from FDR were identified. 

 

Identification of the restitution mechanism at population level 

At the population level, all LOD scores were greater than 3, even for small populations 

with fewer than five hybrids. Therefore, SDR was identified as the preeminent restitution 

mechanism producing 2n megagametophyte for all female parents analyzed (Table 3.3). 
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Table 3.3. LOD scores for progeny of 16 female parents analyzed at population level and individuals within 

each population originated by SDR, FDR, or with unidentified origin. 

Group Female parent Nh Nm 
Cd 

average 
(cM) 

LODs > +3 LODs -3  − +3 LODs < -3 Population 
LOD 

PSDR / PFDR number (%) number (%) number (%) 

Clementine 

‘Bruno’ 17 6 7.8 15 (88.2) 2 (11.8) 0 (0.0) 98.9 
‘Clemenules’ 23 5 4.4 22 (95.6) 1 (4.4) 0 (0.0) 143.3 

‘Fina’ 87 6 3.7 83 (95.4) 4 (4.6) 0 (0.0) 699.3 
‘Guillermina’ 14 6 8.1 14 (100.0) 0 (0.0) 0 (0.0) 91.1 
‘Hernandina’ 22 5 4.4 20 (90.9) 2 (9.1) 0 (0.0) 139.0 
‘Loretina’ 2 7 9.5 2 (100.0) 0 (0.0) 0 (0.0) 10.3 

Mandarin ‘Imperial’ 24 5 5.0 23 (95.8) 1 (4.2) 0 (0.0) 138.5 

Hybrid 

mandarin 

‘Ellendale’ 69 5 9.1 50 (72.5) 18 (26.1) 1 (1.4) 282.7 

‘Encore’ 3 5 4.9 3 (100.0) 0 (0.0) 0 (0.0) 17.9 

‘Fallglo’ 3 5 3.7 3 (100.0) 0 (0.0) 0 (0.0) 21.6 

‘Fortune’ 197 5 6.8 162 (82.2) 33 (16.7) 2 (1.1) 933.0 

‘Fortune’ × ‘Ellendale’ 58 5 6.8 54 (93.1) 4 (6.9) 0 (0.0) 310.5 

‘Fortune’ × ‘Minneola’ 35 4 5.2 28 (80.0) 6 (17.1) 1 (2.9) 145.7 

‘Fortune’ × ‘Murcott’ 67 5 6.8 53 (79.1) 14 (20.9) 0 (0.0) 326.2 

‘Fortune’ × ‘Willowleaf’ 37 4 6.6 28 (75.7) 8 (21.6) 1 (2.7) 150.6 

‘Honey’ 1 4 6.1 1 (100.0) 0 (0.0) 0 (0.0) 5.1 

‘Kiyomi’ 21 5 6.3 20 (95.2) 1 (4.8) 0 (0.0) 162.9 

‘Moncada’ 8 4 10.3 4 (50.0) 4 (50.0) 0 (0.0) 22.1 

‘Umatilla’ 5 4 11.3 1 (20.0) 4 (80.0) 0 (0.0) 9.6 

‘Wilking’ 1 5 8.3 1 (100.0) 0 (0.0) 0 (0.0) 15.6 

Nh: number of hybrids within each population (pop). Nm: number of markers analyzed over each population. Cd: Centromere distance 

 

Discussion 

A powerful maximum-likelihood method to compare FDR and SDR hypothesis at the 

individual and population level has been developed 

In sexual polyploidization, polyploids are generated by the formation of unreduced 

diploid gametes. From the cytogenetic point of view, two types of meiotic nuclear restitution 

leading to 2n gamete formation are considered, FDR and SDR (Bretagnolle and Thompson, 

1995; Ramsey and Schemske, 1998; Bastiaanssen et al., 1998; Dewitte et al., 2012; Brownfield 

and Kholer, 2011). The subsequent union of unreduced and reduced gametes leads to the 

formation of polyploids. 

The identification of the mechanisms driving the formation of 2n gametes is complex. 

However, the use of cytological or marker analysis on polyploid progeny provide accurate or 

additional information on these mechanisms (Lim et al., 2001; Crespel and Gudin, 2003; 

Dewitte et al., 2012). Molecular cytological approaches have been used successfully, including 

the unequivocal identification of genomes and recombinant segments in the sexual polyploid 

progenies (Takahashi et al., 1997; Karlov et al., 1999; Lim et al., 2001; Ramanna and 

Jacobsen, 2003; Barba-Gonzalez et al., 2005). Molecular marker analysis is also useful for the 

identification of mechanisms underlying unreduced gamete formation, and different approaches 

based on population analysis have been developed previously. Several methods are based on 

the analysis of HR rates for randomly chosen unmapped markers (Vorsa and Rowland, 1997; 

Chen et al., 2008a; Ferrante et al., 2010). These methods require the analysis of a large set of 

molecular markers to encounter, by chance, the loci with HR lower than 50% that are only found 

under SDR (Park et al., 2007). However, when HR over 50% is observed for all loci, no 
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definitive conclusion can be reached without a prior knowledge of their location relative to a 

centromere. Significant FDR conclusions are therefore difficult to obtain with such non-mapped 

markers. Half-tetrad analysis (HTA; (Mendiburu and Peloquin, 1979)), based on multiple linked 

loci, is a powerful method for mapping centromeres or for determining the mode(s) of 2n 

gamete formation. Tavoletti et al. (1996) developed a multilocus maximum-likelihood method of 

HTA that permits the estimation of both the relative frequencies of FDR and SDR 2n gametes 

and the centromere location within a linkage group without relying on previously identified 

centromeric markers. These methods generally assume complete chiasma interference. The 

method proposed by Cuenca et al. (2011), based on the HR restitution curve along a linkage 

group, allows simultaneous identification of the restitution mechanism, raw centromere location, 

and comparison of several chromosome interference models. This approach is based on the 

analysis of genotype frequency in relatively large populations and provides global results of the 

preeminent mechanism; however, determination of the potential coexistence of the two 

mechanisms in the same progeny was not possible. 

In this study, a maximum-likelihood approach based on marker HR with centromeric loci 

was developed and successfully applied both at the individual and population levels. Knowledge 

of marker-centromere distances greatly improves the statistical power of the comparison 

between the SDR and FDR hypotheses. For example, in this study, the restitution mechanism 

was identified in ‘Fortune’ as SDR at the population level with a LOD(SDR/FDR) of 933, 

whereas for the same population using 12 markers without information regarding marker-

centromere distance, but with HR values under 50% (Cuenca et al., 2011), the mechanism was 

identified as SDR with a LOD value of only 6.8. With the method proposed in the present paper, 

conclusions at the population level could therefore be obtained from smaller numbers of 

progeny and fewer markers than with non-located markers. 

The theoretical limits of our method were assessed by the simulation of populations 

arising from FDR or SDR mechanisms. At the population level, considering that the independent 

markers used are at the same distance from their respective centromeres, the power of the 

statistical test was directly linked to the product of the number of markers and the number of 

individuals. That means that the efficiency would be the same for n individuals with m markers 

as for 2·n individuals with m/2 markers. Moreover, the necessary n·m genotyping points 

increase exponentially with increasing distance of the marker to the centromere. For example, 

to obtain a greater than 99% significant answer, it would be necessary for n·m to be greater 

than fifty-seven for markers at 20 cM, while an n·m value greater than eight and four would be 

sufficient for markers at 5 cM and 1 cM, respectively. The selection of markers as close as 

possible to their centromere is therefore a key element for successful analysis when low 

numbers of individuals and markers are used. 

In the study of citrus 2n gamete progenies, significant results were obtained for all 

analyzed populations, even populations of fewer than five individuals. 
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One major improvement of our approach over existing methods is that it allows the 

identification of the restitution mechanism for each individual unreduced gamete. Simulation 

studies indicated that the proximity of markers to the centromeres is a key factor. With markers 

closer than 5 cM, five markers are sufficient to result in 95% significant answers, but 

significance diminishes to less than 78% and 0% for nine markers at 10 cM and 20 cM from 

their centromeres, respectively. 

The importance of selecting markers very close to the centromere to obtain significant 

conclusions at the individual level is illustrated by the results of our citrus analysis. Indeed, a 

very high percentage of significant results at the individual level (95.4%) and with high LODs 

were obtained for the ‘Fina’ clementine progeny analyzed with markers closer to centromeres 

than the other progenies. 

 

2n megagametophytes arising from SDR are the preeminent source of triploid 

occurrence in 2x × 2x hybrid populations using mandarin-like parents 

In this study, the mechanism leading to triploid formation in 2x × 2x crosses was 

elucidated, both at individual and population level, for nineteen parental combinations involving, 

respectively, sixteen and eleven varieties as female and male parents.  

All the 497 triploid hybrids analyzed originated from 2n megagametophytes and, 

therefore, no 2n pollen contributed to the production of triploids in our parental combinations. 

These results expand to a large range of genotypes the prior conclusion obtained from 

cytological studies (Esen and Soost, 1971, 1973) for 'Sukega' (C. paradisi × C. sinensis), 

'Temple' (C. reticulata × C. sinensis and clementine (C. clementina), indicating that in such 2x × 

2x crosses, triploid embryos were associated with pentaploid endosperm. However, the 

occurrence of triploids arising from 2n pollen at very low rates has been previously reported in 

studies using molecular markers for three selections of clementine (‘Caffin’, ‘Commun’ or 

‘SRA85’ and ‘Muskat’), and ‘King’ mandarin pollinated with C. deliciosa (‘Tardivo di Ciaculi’, 

‘Willow Leaf’), C. reticulata (‘Hansen’, ‘Ananas’), C. paradisi (‘Star Ruby’) and C. sinensis 

(‘Tarroco Rosso’, ‘Sanguinelli’) (Luro et al., 2004) and for C. sinensis × Poncirus trifoliata 

hybridizations (Chen et al., 2008a).  

When using the LOD3 threshold, SDR was identified as the restitution mechanism for 

85.3% of the analyzed triploid hybrids, no significant conclusions were obtained for 14.1% of the 

hybrids, and 0.6% of the analyzed triploids were derived from FDR (one triploid hybrid from 

arising from ‘Ellendale’ and two arising from ‘Fortune’). When the LOD2 threshold was 

considered, the percentage of individuals with unidentified origin decreased to 9% and SDR 

levels increased to 90.1%. Moreover, we conducted individual level analysis of previously 

studied ‘Fortune’ mandarin progeny (Cuenca et al., 2011) and the progeny arising from ‘Fina’ 

Aleza et al., 2012b), and we confirmed SDR at the individual level for most hybrids, which 

concurs with the global-level conclusions proposed in these two studies. In the current study, six 
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clementine genotypes were also analyzed to discover their unreduced gamete formation 

mechanism. Results indicate that SDR is the most probable mechanism in the clementine 

group, in agreement with previous conclusions of Luro et al. (2004) and Aleza et al. (2012b). 

For the other mandarin varieties, SDR was also the most probable mechanism at the individual 

level and, therefore, also at the population level. Taken together, our data and those of others 

suggest that SDR is the major mechanism underlying unreduced megagametophyte formation 

in most mandarin genotypes. 

The mechanism leading to unreduced eggs or pollen was previously elucidated for 

several plant species (Ramanna and Jacobsen, 2003; De Storme and Geelen, 2013). 

Bretagnolle and Thompson (1995) identified that both FDR and SDR are responsible for 2n 

pollen formation, while SDR is more frequent in the formation of 2n eggs. In potatoes, 2n pollen 

arises predominantly by FDR (Mok and Peloquin, 1975), while 2n megagametophytes arise 

most frequently by SDR (Stelly and Peloquin, 1986), although SDR-FDR mixture in the 

formation of 2n eggs has been also found (Conicella et al., 1991). Bilateral sexual 

polyploidization can arise either from FDR and SDR in Lilium (Lim et al., 2004; Errico et al., 

2005; Nadeem, et al., 2010) and alfalfa (Barcaccia et al., 2003). Moreover, Bretagnolle and 

Thompson (1995) described other several examples of single plant species where FDR and 

SDR may occur simultaneously, underlining the influence of genotype and environment on the 

expression of meiotic abnormality factors (Pécrix et al., 2011; Mason et al., 2011). 

 

Implications for citrus triploid breeding 

The genetic and phenotypic consequences of FDR and SDR gametes are highly 

divergent, and are of potential importance for breeding applications, due to the different parental 

heterozygosity rate that each mechanism transmit to the polyploid progeny (Errico et al., 2005; 

De Storme and Geelen, 2013). 

Under FDR, the resulting 2n gametes are heterozygous from the centromere to the first 

crossover point, and hence the gametes retain most parental heterozygosity and epistatic 

interactions. With the SDR mechanism, the resulting 2n gametes are homozygous from the 

centromere to the first crossover point, but retain parental heterozygosity on the telomeric 

regions (Ramanna and Jacobsen, 2003). As a result, SDR-2n gametes confer a reduced level 

of heterozygosity than FDR-2n and show a corresponding greater loss of parental epistasis 

(Bretagnolle and Thompson, 1995; Dewitte et al., 2012).  

If an SDR origin of 2n gametes is assumed for most mandarins, sexual polyploidization 

may lead to a reduced average of HR and, therefore, loss of epistatic interactions. Therefore, 

when compared with interploid crosses using doubled diploids (Aleza et al., 2012a, 2012c), the 

sexual polyploidization strategy should produce more polymorphic progeny by creating a larger 

number of new multilocus allelic combinations (David et al., 1995). This provides the opportunity 
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to select innovative products within the perspective of market segmentation as a commercial 

strategy.  

Consequences of the SDR restitution mechanism would be clearly apparent for a 

characteristic controlled by a single gene. If the gene is heterozygous in the female parent, most 

unreduced gametes will be homozygous for that gene if it is located near the centromere, but 

gametes will be mostly be heterozygous for the gene if it is telomere-proximal (partial 

interference model; Cuenca et al., 2011). Recently, Cuenca et al. (2013b) analyzed the 

inheritance of resistance to Alternaria brown-spot fungal disease in triploid progenies arising 

from crosses between diploid parents. They demonstrated that the resistance was controlled as 

a recessive trait by a single locus located near a centromere (10.5 cM from the centromere of 

chromosome 3). If a susceptible female parent is heterozygous, the SDR mechanism leads to 

approximately 80% homozygous unreduced gametes, half of which present with two resistant 

alleles. As Alternaria resistance is a major selective trait when maternal heterozygous parents 

are used, sexual polyploidization is a more effective strategy than use of interploid crosses in 

this case, which results in only 16.7–22.5% of progeny being resistant. For dominant traits 

controlled by a single centromeric locus, interploid crosses should be more interesting than 2x × 

2x crosses. For characters controlled by major loci more distant than 30 cM from the 

centromere, the efficiency of the two triploid breeding strategies would be relatively similar. 
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Supplementary information 

 
 
Table 3.S1. Taxonomic information on parental genotypes used in this study 

 

  

Group Genotype Swingle and Reece, 1967 Tanaka, 1977 

clementine 

‘Bruno’ 

‘Clemenules’ 

‘Fina’ 

‘Guillermina’ 

‘Hernandina’ 

‘Loretina’ 

Citrus reticulata Citrus  clementina 

mandarin 
‘Imperial’  C. reticulata  

‘Willowleaf’  C. deliciosa 

hybrid mandarin  

‘Ellendale’ C. reticulata × C. sinensis C. reticulata × C. sinensis 

‘Encore’ C. reticulata C. nobilis × C. deliciosa 

‘Fallglo’  
[C. clementina × (C. paradisi × C. tangerina)] × C. 

temple 

‘Fortune’  C. clementina × C. tangerina 

‘Honey’  C. nobilis × C. deliciosa 

‘Kiyomi’ C. reticulata × C. sinensis C. unshiu × C. sinensis 

‘Minneola’ C. reticulata C. paradisi × C. tangerina 

‘Moncada’  C. clementina × (C. unshiu ×  C. nobilis) 

‘Murcott’ C. reticulata × C. sinensis (C. reticulata × C. sinensis) 

 ‘N’15’ C. reticulata C. clementina × (C. unshiu × C. nobilis) 

‘Nadorcott’ - (C. reticulata × C. sinensis) × (unknown) 

‘Umatilla’ C. reticulata × C. sinensis C. unshiu × C. sinensis 

‘Simeto’ C. reticulata C. unshiu × C. deliciosa 

‘Wilking’  C. deliciosa × C. nobilis 

pummelo ‘Chandler’ C. grandis C. maxima  
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Table 3.S2. Inferring of the 2n gamete parental producer depending on parental configuration and the raw 

genotype pattern observed. 
 

Parental 
configuration 

Raw 
genotype 
pattern 

observed 

Allele doses 
estimation 

method 

Inferred 
triploid 

genotype 

Inferred 2n 
gamete 

configuration 

Inferred 
parental 
origin 

  

Inferred 2n 
gamete if 
maternal 

origin proved 

Inferred 2n 
gamete if 
paternal 

origin proved 

A1A2 × A3A4 

A1A2A3 D A1A2A3 A1A2 M 
 

A1A2  

A1A2A4 D A1A2A4 A1A2 M 
 

A1A2  

A1A3A4 D A1A3A4 A3A4 P 
  

A3A4 

A2A3A4 D A2A3A4 A3A4 P 
  

A3A4 

A1A3 
TH A1A1A3 A1A1 M   A1A1   

TH A3A3A1 A3A3 P     A3A3 

A1A4 
TH A1A1A4 A1A1 M 

 
A1A1  

TH A4A4A1 A4A4 P 
  

A4A4 

A2A3 
TH A2A2A3 A2A2 M   A2A2   

TH A3A3A2 A3A3 P     A3A3 

A2A4 
TH A2A2A4 A2A2 M 

 
A2A2  

TH A4A4A2 A4A4 P     A4A4 

A1A2 × A1A1 

A1 D A1A1A1 A1A1 NI 
 

A1A1 A1A1 

A1A2 
DP A1A2A2 A2A2 M   A2A2   

DP A1A1A2 NI NI   A1A2 A1A1 

A1A2 × A3A3 

A1A2A3 D A1A2A3 A1A2 M 
 

A1A2  

A1A3 
TH A1A1A3 A1A1 M   A1A1   

TH A3A3A1 A3A3 P     A3A3 

A2A3 
TH A2A2A3 A2A2 M 

 
A2A2  

TH A3A3A2 A3A3 P     A3A3 

A1A2 × A1A3 

A1A2A3 D A1A2A3 A1A2 M 
 

A1A2  

A1 D A1A1A1 A1A1 NI 
 

A1A1 A1A1 

A1A2 
DP A1A1A2 NI NI   A1A2 A1A1 

DP A1A2A2 A2A2 M   A2A2   

A1A3 
DP A1A1A3 NI NI 

 
A1A1 A1A3 

DP A1A3A3 A3A3 P 
  

A3A3 

A2A3 
TH A2A2A3 A2A2 M   A2A2   

TH A2A3A3 A3A3 P     A3A3 

D: direct visualization of allelic constitution; DP: inference of allelic doses based on diploid parent reference; TH: 
inference of allelic doses based on at least one reference triploid hybrid; NI: not identified. Bold letters indicate gamete 
structures inferred when parental origin has been proved from other markers. 

 

 

 
 
  



Chapter 3. Mechanism leading to 2n gamete formation in C. reticulata 

109 

 

 
 

Figure 3.S1. Percentage of significant replicates giving false answer considering a LOD3 for populations 

arising from (a) SDR and (b) FDR, and considering LOD2 for populations arising from (c) SDR and (d) 
FDR. 

 
 

 

 
 

Figura 3.S2. Assignment of allelic configuration in heterozygous triploid hybrids for SSR markers showing 

(A) A1A2 × A1A1 (B) A1A2 × A3A3 and (C) A1A2 × A1A3 parental configurations. 
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Figura 3.S3. Assignment of allelic configuration in heterozygous triploid hybrids for SNP markers with A1A2 

× A1A1 parental configurations. 
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Abstract 

 

Genetic analysis of phenotypical traits and marker-trait association in polyploid species 

is generally considered as a challenge. In the present work, different approaches were 

combined taking advantage of the particular genetic structures of 2n gametes resulting from 

second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) 

resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine 

pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces 

necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It 

is a strong concern for triploid breeding programs aiming to produce seedless mandarin 

cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid 

population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with 

genome scan using a large set of genetically mapped SNP markers and targeted genetic 

mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb 

genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of 

resistance genes were identified by gene ontology analysis of this genomic region. Some of 

these genes are good candidates to control the dominant susceptibility to the ACT-toxin.  SSR 

and SNP markers were developed for efficient early marker-assisted selection of ABS resistant 

hybrids. 
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Introduction 

Alternaria brown spot (ABS) is a serious disease that induces necrotic lesions on fruit 

and young leaves, defoliation and fruit drop in susceptible citrus genotypes (Akimitsu et al., 

2003). The disease was first observed in Australia in 1903 on the 'Emperor' mandarin (Pegg, 

1966), and was subsequently detected in citrus-growing regions in America, the Mediterranean 

Basin, South Africa, Iran and China (Timmer et al., 2003; Golmohammadi et al., 2006; Wang et 

al., 2010). In Spain, the disease was first detected in 1998 (Vicent et al., 2000), and it is 

currently widespread in all citrus-growing areas, affecting mainly 'Fortune' and 'Nova' mandarin 

hybrids. The disease is caused by the tangerine pathotype of the fungus Alternaria alternata 

(Fr.) Keissl., which carries a gene cluster (ACTT) located in a small (<2.0 Mb) conditionally 

dispensable chromosome responsible for ACT-toxin biosynthesis (Ajiro et al., 2010). This host-

specific toxin is released during the germination of conidia, rapidly affecting the plasma 

membrane integrity of susceptible host cells (Kohmoto et al., 1993). There is also indirect 

evidence suggesting the presence of toxin receptors in susceptible citrus genotypes (Tsuge et 

al., 2012). In addition, recent studies indicate that the mitigation of reactive oxygen species 

(ROS) produced by the host plants is essential for pathogenicity (Yang and Chung, 2012). The 

pathogen sporulates on affected tissues, and conidia are disseminated by air currents and rain 

splash. Warm temperatures and prolonged wetness on the tree are required for infection. The 

incubation period is very short, and lesions are visible just 1 or 2 days after infection is initiated, 

due to the rapid effects of the ACT-toxin (Canihos et al., 1999). The disease causes severe 

epidemics in humid areas, as well as in semi-arid regions, due to its environmental flexibility 

(Timmer et al., 2003). Currently, ABS control is primarily based on the application of fungicides. 

Sprays must be scheduled to protect susceptible organs during the critical periods for infection. 

Depending on the climate of the region and the susceptibility of the cultivar, between four and 

ten fungicide sprays per year are needed to produce quality fruit for the fresh market (Bhatia et 

al., 2003; Peres and Timmer, 2006; Vicent et al., 2007). 

Despite this large number of sprays, disease control is not always satisfactory, and 

cultivation of susceptible cultivars such as the 'Fortune' mandarin has declined significantly in 

Spain during recent years. In addition, systematic application of fungicides for ABS control over 

many years may create environmental problems and public health concerns (Vicent et al., 

2009). Moreover, in the context of the changing global climate, plant breeding is especially 

focused on improving resistance to biotic and abiotic stresses. 

Several studies have been carried out to determine the resistance or susceptibility to 

ABS in citrus genotypes (Hutton and Mayers, 1988; Goes et al., 2001; Vicent et al., 2004; 

Dalkilic et al., 2005; Reis et al., 2007; de Souza et al., 2009). Although there are some 

discrepancies among the results of these studies, resistance is clearly present in clementine 

(Citrus clementina Hort. ex Tan), ‘Willowleaf’ (C. deliciosa Ten) and satsuma (C. unshiu Mark) 

mandarins. Susceptibility has also been well established for ‘Dancy’ (C. tangerina Hort. ex Tan) 

and ‘Fortune’ (supposed C. clementina Hort. ex Tan × C. tangerina Hort. ex Tan) mandarins; 
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‘Orlando’, ‘Minneola’ and ‘Nova’ tangelos (mandarin   grapefruit hybrids); and the ‘Murcott’ 

tangor (supposed mandarin × sweet-orange hybrid). Other cultivars such as the ‘Ellendale’ 

tangor and some sweet oranges and grapefruits have been characterised as sensitive or 

resistant by different authors. From diploid progeny analysis, it has been proposed that 

inheritance of ABS resistance in citrus is controlled by a single recessive allele (Dalkilic et al., 

2005; Gulsen et al., 2010). Resistance to the strawberry and pear Alternaria pathotypes, which 

produce toxins structurally analogous to those of the tangerine pathotype, as well as resistance 

to the apple pathotype, is controlled in the same way, by a single recessive allele (Tsuge et al., 

2012). Therefore, resistant cultivars are considered to be recessive homozygous for this locus, 

whereas susceptible cultivars could be heterozygous or homozygous dominant. 

Diploidy is the general rule in Citrus and related genera; however, polyploidy 

manipulation is currently widely used in triploid citrus breeding programs aimed at developing 

new seedless mandarin cultivars (Ollitrault et al., 2008). Many of these breeding programs 

(Mourao Fo et al., 1996; McCollum, 2007; Aleza et al., 2010a, 2010b; Cuenca et al., 2010; 

Grosser et al., 2010; Aleza et al., 2012c, 2012d; Froelicher et al., 2012; Navarro et al., 2012) 

use ABS-susceptible cultivars as parents, due to their utility with regard to other important traits 

(fruit quality, maturing period, production) and particular reproductive biology (monoembryony, 

high rate of triploid production). The inheritance and efficient selection of resistance to ABS is 

therefore of central importance to triploid mandarin breeding projects.  

Genetic analysis of phenotypical traits and marker-trait association in polyploid species 

is generally considered as a challenge due to complex segregation, dosage effects and 

potential non Mendelian inheritance associated with epigenetic variations.  

The main factor affecting trait inheritance in triploid families is the strategy used for 

triploid breeding (Ollitrault et al., 2008), with significant differences between the sexual 

polyploidization approach (2x × 2x crosses with unreduced -2n- gamete formation) and 

interploid crosses (2x × 4x or 4x × 2x). Indeed, the choice of strategy affects the transmission of 

parental heterozygosity to the diploid gamete. 

In sexual polyploidization, two factors affect the transmission of parental heterozygosity 

to the offspring: the mechanism of 2n gamete formation (i.e., first-division restitution [FDR] or 

second division restitution [SDR]) and the genetic distance from the locus of interest to the 

centromere (Douches and Quiros, 1988). Therefore, Half-Tetrad Analysis (HTA) based on 2n 

gametes is an efficient means of genetic mapping (Mendiburu and Peloquin, 1979; Douches 

and Quiros, 1987; Tavoletti et al., 1996). In 2x × 2x citrus crosses, the diploid (unreduced) 

gamete is transmitted by the female parent (Esen and Soost, 1971; 1973). SDR has been 

proposed for diploid megagametophyte development in clementines (Luro et al., 2004) and 

‘Fortune’ mandarins (Cuenca et al., 2011), whereas FDR has been reported in sweet oranges 

(Chen et al., 2008a). Recent studies have revealed that SDR is the main mechanism involved in 

unreduced gamete formation in the majority of citrus cultivars (Aleza et al., 2012b). For 
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interploid crosses, most of the tetraploid parents used in citrus breeding arise from chromosome 

doubling in nucellar cells of apomictic diploid parents (Aleza et al., 2011). Because mandarins 

are one of the ancestral species of cultivated citrus (García-Lor et al., 2012), doubled-diploid 

mandarins should be considered as autotetraploid, and tetrasomic inheritance should be 

expected (Kamiri et al., 2011). In such a situation, the frequency of diploid gametes that receive 

a locus in heterozygosis from the tetraploid parent varies between 0.55 and 0.66, depending on 

the double-reduction frequency (Marsden et al., 1987). 

In addition to the particular transmission of chromosome fragments and parental 

heterozygosity, the phenotypic trait inheritance in polyploids can be affected by dosage effects 

(Guo et al., 1996; 2004) and even by neoregulation of gene expression due to epigenomic 

reformatting (Liu and Wendel, 2003; Osborn et al., 2003), eventually leading to non- Mendelian 

segregation. Moreover, polyploidy induces morphological variations in leaves and fruits 

(Starrantino, 1992; Otto and Whitton, 2000; Allario et al., 2011) that should affect fungus 

colonization. In this context, no data have yet been published regarding the inheritance of ABS 

resistance in triploid progenies. 

Due to its direct applicability in marker-assisted selection, the identification of molecular 

markers linked to phenotypic variation, e.g., related to disease resistance, is a key step in most 

breeding programs. Bulked segregant analysis [BSA; (Michelmore et al., 1991)] can be used to 

identify molecular markers in a genomic region associated with a specific phenotype rapidly. 

This method is based on linkage disequilibrium between the gene and linked markers in 

segregating progeny, and the genetic linkage between markers and the causal gene is 

determined by differences in marker-allele frequencies between resistant and susceptible bulks. 

For characters controlled by one or a few genes, BSA is an effective technique for detecting 

alleles linked to phenotypes in a large sample of progeny at a relatively low cost, where the only 

requirement is that the genotyping technique and molecular markers utilised provide 

quantitative measurements of allelic frequencies (Liu et al., 2012). This approach should be 

optimised by coupling BSA with a high-throughput genotyping method using markers covering 

the whole genome. Genome-wide association studies of pooled DNA samples have been 

valuable tools in the fast, scalable and economical identification of candidate single nucleotide 

polymorphisms (SNPs) associated with a phenotype (Brauer et al., 2006; Akhunov et al., 2009; 

Hyten et al., 2009; Becker et al., 2011; Ricci et al., 2011; Szelinger et al., 2011; Swinnen et al., 

2012; Trick et al., 2012). In citrus, very large SNP resources are becoming available from 

extensive citrus sequencing projects (Terol et al., 2007, 2008; Gmitter et al., 2012; Ollitrault et 

al., 2012b); meanwhile, new technologies have been developed for very rapidly genotyping 

large numbers of SNPs in DNA samples. One such technology is the GoldenGate assay from 

Illumina™ (Fan et al., 2003; Hyten et al., 2009; Yan et al., 2010), which proved useful in citrus 

by allowing mapping of 677 SNP markers onto the clementine’s consensus map (Ollitrault et al., 

2012a).  
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The objectives of this study were (i) to confirm Mendelian monolocus inheritance of ABS 

resistance in triploid progenies, by analysing the segregation of resistance in different interploid 

crosses, and to confirm the dominance of susceptibility by analysing segregation of resistance 

in progeny produced by sexual polyploidization and interploid hybridization; (ii) to locate the 

chromosome region associated with the ABS resistance using a genome scan assay coupled 

with BSA, followed by targeted genetic mapping by HTA in triploid progenies arising from 2n 

gametes; and (iii) to identify candidate resistance genes in the located region, taking advantage 

of the recently released reference whole genome sequence of C. clementina (Wu et al., 2013). 

A more applied objective was identification of molecular markers for marker-assisted selection 

(MAS) in citrus breeding programs. 

 

Material and methods 

Plant material 

Seven hundred and fourteen triploid hybrids arising from four 2x × 2x crosses, three 2x 

× 4x crosses and their parents were evaluated for field and in vitro infection by A. alternata. 

Parental genotypes included in the citrus germplasm bank and hybrids were grown at the 

‘Instituto Valenciano de Investigaciones Agrarias’ (I.V.I.A.) orchards in Moncada, Valencia, 

Spain. The plantings were very dense, with conditions very favourable for the development of 

ABS infection. 

Information about parental accessions, their origin, ABS phenotype and references are 

shown in Table 4.1. The genetic configuration of the ABSr locus (‘A’, dominant susceptible 

allele; ‘a’, recessive resistant allele) for each parental accession (also given in the table) has 

been deduced from information about ABS resistance/susceptibility of diploid genotypes, their 

pedigree and segregation data at the diploid level, under the hypothesis of single locus 

inheritance. The tetraploids ‘Nova’ and ‘Orlando’ resulted from chromosome stock doubling of 

the Nova and Orlando diploids, respectively (Aleza et al., 2011). The diploid lines are 

considered to be ‘Aa’ at the ABSr locus; therefore, the genotypes of the two tetraploid parents 

should be ‘AAaa’. 
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Table 4.1. Parental genotypes used in this study, phenotypic information on ABS resistance and deduced 

ABSr locus genotyping. 

(S) Susceptible phenotype; (R) Resistant phenotype; (A) Susceptible allele; (a) Resistant alelle 

 

Three of the 2x × 2x crosses share ‘Fortune’ as the female parent, with ‘Willowleaf’ 

mandarin (93 hybrids), ‘Minneola’ tangelo (127 hybrids) and ‘Murcott’ (148 hybrids) as male 

parents. The other 2x × 2x cross was ‘Fina’   ‘Nadorcott’ (50 hybrids). Details on procedures for 

establishing the triploid populations from 2x × 2x crosses by embryo rescue and triploid 

selection by flow cytometry can be found in Aleza et al. (2010b). 

Two of the 2x × 4x crosses share ‘Orlando 4x’ as the male parent, with ‘Clemenules’ 

(180 hybrids) and ‘Fortune’ (116 hybrids) as female parents. The other 2x × 4x population was 

‘Clemenules’   ‘Nova 4x’ (100 hybrids). Information about procedures for establishing the 2x × 

4x populations can be found in Aleza et al. (2012c).  

Moreover, five additional triploid populations arising from 2x × 2x and 2x × 4x crosses 

(114 hybrids) were also evaluated for ABS resistance to extend the experiments to other 

genetic backgrounds. Due to the relatively low number of triploid hybrids within each population, 

the resultant data have been included as supplementary material (Table 4.S1). 

 

Evaluation of ABS resistance 

Previous studies in diploid genotypes have shown a range of susceptibility level among 

citrus germplasm, but suggest that immune response could be controlled by a single recessive 

allele (Dalkilic et al., 2005; Gulsen et al., 2010). In the present study, genotypes have been 

considered as resistant if no symptoms have been observed neither under field evaluations nor 

leaf inoculations. Therefore, in this study as in the previous ones at diploid level (Dalkilic et al., 

2005; Reis et al., 2007; De Souza et al., 2009; Gulsen et al., 2010), the resistant phenotype 

corresponds to immune symptom. 

Genotype Origin Phenotype Reference 
ABSr locus 
genotype 

‘Fortune’ 
C. clementina ×  
C. tangerina  

S 
(Vicent et al., 2000) 
(Reis et al., 2007) 

Aa 

‘Minneola’ 
C. paradisi ×  
C. tangerina  

S 

(Solel, 1991) 
(Solel and Kimchi, 1997) 
(Peever et al., 1999) 
(Elena, 2006) 

AA 

‘Orlando’ C. paradisi × C. tangerina  S 
(Solel and Kimchi, 1997) 
(Gulsen et al., 2010) 

2x: Aa 
4x: AAaa 

‘Nova’ 
C. clementina × (C. 
paradisi × C. tangerina ) 

S (Dalkilic et al., 2005) 
2x: Aa 
4x: AAaa 

‘Murcott’ (unknown) S 
(Solel and Kimchi, 1997) 
(Dalkilic et al., 2005) 

Aa 

‘Willowleaf’ C. deliciosa R (Solel and Kimchi, 1997) aa 

‘Clemenules’ 
 
‘Fina’ 

C. clementina R 

(Kohmoto et al., 1991) 
(Solel and Kimchi, 1997) 
(Elena, 2006) 
(Reis et al., 2007) 
(Gulsen et al., 2010) 

aa 

‘Nadorcott’ ‘Murcott’ × unknown R Our unpublished data aa 
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Field evaluation: Symptoms of A. alternata were evaluated for all genotypes on trees 

grown at the I.V.I.A. orchards in spring, when young leaves are more susceptible to ABS and 

environmental conditions are highly favourable for infection (Vicent et al., 2009). Presence or 

absence of ABS symptoms on the leaves was recorded in a qualitative manner. For each tree, 

observations were carried out over three consecutive years (2010, 2011 and 2012). 

In vitro inoculation of detached leaves:  

Inoculum production: A virulent single-spore isolate of A. alternata (IVIA-A005) 

isolated from an infected ‘Fortune’ fruit from Valencia (Spain) was used for inoculations. 

Abundant conidia were obtained by a method adapted from (Everts and Lacy, 1996). The 

isolate was grown on potato dextrose agar (PDA) plates at 25°C in darkness for 8–10 days, 

illuminated with fluorescent lamps (Philips TLD 18W/33) at 25°C for 8 h to initiate conidiophore 

formation, and then placed in the dark at 18°C for 12 h. Conidial suspensions were prepared by 

pouring sterile water over the colonies and gently rubbing the surface with a sterile glass rod. 

The suspension was filtered through two layers of cheesecloth, and the spore concentration 

was adjusted to 10
5
 conidia·ml

-1
 with a haemocytometer. Suspensions with conidial germination 

lower than 90% were discarded. 

Leaf inoculations: Bioassays were performed immediately after leaf harvest. Young 

leaves (about 50% developed) were inoculated with 10
5
 conidia·ml

−1
 (Kohmoto et al., 1991). 

This suspension was sprayed over both upper and lower surfaces of each leaflet, using five 

leaves per genotype. Controls were inoculated by spraying sterile distilled water. Leaves were 

incubated in a moist chamber in the dark at 27°C, and the results were evaluated 48 h after 

inoculation. In susceptible genotypes, leaf symptoms appear during the second day after 

inoculations and very clear necrosis induced by the ACT-toxin can be observed after 48h 

(Figure 4.1). 

A genotype was considered resistant when no symptoms of ABS were observed in any 

leaf, whereas presence of infection was recorded when a clear symptom of ABS was observed 

in any leaf. The inoculations were repeated when there was doubt regarding interpretation. The 

complete experiments were carried out twice during spring of 2010 and twice during spring of 

2011. 
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Figure 4.1. Leaves of resistant genotype ‘Willowleaf’ mandarin (A) and susceptible genotype ‘Fortune’ 

mandarin (B) showing ABS symptoms 48h after inoculation with a suspension of 10
5
 conidia·ml

-1
. 

 

Two triploid populations derived from 2x × 2x crosses [‘Fortune’ (‘Aa’)   ‘Minneola’ 

(‘AA’) and ‘Fina’ (‘aa’)   ‘Nadorcott’ (‘aa’)] and three triploid populations derived from 2x × 4x 

crosses [‘Clemenules’ (‘aa’)   ‘Orlando 4x’ (‘AAaa’), ‘Fortune’ (‘Aa’)   ‘Orlando 4x’ (‘AAaa’) and 

‘Clemenules’ (‘aa’)   ‘Nova 4x’ (‘AAaa’)] were phenotyped to compare the expected and 

observed proportions of resistant and susceptible genotypes, to confirm the monolocus 

inheritance and dominance of the ABS susceptibility. For the ‘Aa’ × ‘AA’ cross, all segregation 

progeny are expected to be susceptible to ABS (‘AAA’, ‘AAa’ or ‘Aaa’), whereas for the ‘aa’ × 

‘aa’ cross, all segregation progeny are expected to be ABS resistant (‘aaa’). In case of the ‘aa’ × 

‘AAaa’ and ‘Aa’ × ‘AAaa’ crosses, the resistant and susceptible proportions depend on 

heterozygosity restitution (HR) from the tetraploid parent to the progeny, which varies between 

0.55 and 0.66 depending on the double-reduction frequency (Marsden et al., 1987). Therefore, 

in these cases, the resistant proportions are expected to be between 0.1667 and 0.225 for the 

‘aa’ × ‘AAaa’ cross and between 0.0833 and 0.1125 for the ‘Aa’ × ‘AAaa’ cross (Table 4.2). χ
2
 

tests were conducted on the observed and expected frequencies. In cases of diploid × tetraploid 

crosses, where expected frequencies are included in an interval (according to the double-

reduction frequency), if the observed value was found to be out of the interval, the observed 

value was compared with the closest value flanking this interval. 
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Table 4.2. Expected proportions of ABS locus allelic configuration (AAA, AAa, Aaa or aaa) for each 

population evaluated. 
 

POPULATION 

SUSCEPTIBLE RESISTANT 

AAA AAa Aaa 
TOTAL 

SUSCEPTIBLE 
aaa 

‘Fortune’ × ‘Minneola’ (Aa × AA) 
      

 
    

      

 
 1 0 

‘Fina’ × ‘Nadorcott’ (aa × aa) - - - 0 1 

‘Clemenules’ × ‘Orlando 4x’ (aa × AAaa) - 0.1667 – 0.225 0.55 – 0.66 0.775 – 0.833 0.1667 – 0.225 

‘Fortune’ × ‘Orlando 4x’ (Aa × AAaa) 0.0833 – 0.1125 0.3875 – 0.4167 0.3875 – 0.4167 0.8875 – 0.9167 0.0833 – 0.1125 

‘Clemenules’ × ‘Nova 4x’ (aa × AAaa) - 0.1667 – 0.225 0.55 – 0.66 0.775 – 0.833 0.1667 – 0.225 

HR: heterozygosity restitution 

 

Estimation of the locus-centromere genetic distance under the hypothesis of monolocus 

inheritance  

Two segregating triploid progeny derived from crosses between ‘Fortune’ (‘Aa’) as the 

female parent and ‘Willowleaf’ (‘aa’) and ‘Murcott’ (‘Aa’) as male parents have been used to 

estimate the locus-centromere distance. Because SDR is the mechanism leading to unreduced 

gamete formation in ‘Fortune’ (Cuenca et al., 2011), the maternal HR frequency varies between 

0 at the centromere to 0.66 if a model of no chromosome interference is assumed. However, 

Cuenca et al., (2011) demonstrated that the Cx(Co)
4
 model assuming partial chromosome 

interference (Zhao and Speed, 1998b) was better adapted to the observed HR in Fortune 2n 

gametes. 

The functions for estimating the frequency of diploid gametes that would be 

heterozygous for a given locus according to its distance from the centromere can be easily 

modified to estimate the expected genotypic frequency within resultant triploid progeny and 

even the expected segregation of phenotypic traits with monolocus inheritance. Considering 

that ABS resistance is a recessive trait controlled by a single locus, susceptible triploid 

genotypes may have ‘AAA’, ‘AAa’ or ‘Aaa’ allele configurations, whereas resistant triploid 

genotypes should present only the ‘aaa’ configuration for this locus (Table 4.3). Therefore, the 

frequency of resistant genotypes within each population is informative for HR estimation, and 

therefore for determination of the locus-centromere distance. The relation between centromere 

distance and percentage of resistant hybrids in controlled progeny have been represented 

(Figure 4.2) for the two models of crosses corresponding to the ‘Fortune’   ‘Willowleaf’ and 

‘Fortune’   ‘Murcott’ crosses (‘Aa’ × ‘aa’ and ‘Aa’ × ‘Aa’, respectively) under two models of 

chromosome interference (no interference and partial interference). It should be noted that 

under the Cx(Co)
4
 model of partial chromosome interference, the frequencies of resistant 

hybrids under 20% and 10% for the ‘Aa’ × ‘aa’ and ‘Aa’ × ‘Aa’ crosses, respectively, can 

correspond to two different distances from the centromere. 
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Table 4.3. Expected susceptible and resistant proportions for ‘Fortune’ (‘Aa’) × ‘Willowleaf’ (‘aa’) and 

‘Fortune’ (‘Aa’)   ‘Murcott’ (‘Aa’) populations. 

POPULATION 

SUSCEPTIBLE RESISTANT 

AAA AAa Aaa 
TOTAL 

SUSCEPTIBLE 
aaa 

‘Fortune’ × ‘Willowleaf’ (Aa × aa) - 
      

 
    

      

 
 

      

 
 

‘Fortune’ × ‘Murcott’ (Aa × Aa) 
      

 
 

      

 
 

  

 
 

      

 
 

      

 
 

  

 
 

      

 
 

      

 
 

      

 
 

HR: heterozygosity restitution 

 

 

 

Figure 4.2. Locus-centromere distance estimated from the proportion of resistant hybrids observed in ‘Aa’ 

× ‘aa’ and ‘Aa’ × ‘Aa’ crosses under a model of no chromosome interference and the Cx(Co)
4
 model of 

partial chromosome interference. 

 

Bulk segregant analysis coupled with genome scan 

BSA (Michelmore et al., 1991) has been used to identify genomic regions linked to ABS 

resistance. To simplify the analysis with only one parental segregation of ABS resistance, the 

‘Aa’ × ‘aa’ population (rather than ‘Aa’ × ‘Aa’) was selected. Triploid hybrids from the ‘Fortune’ 

(‘Aa’)   ‘Willowleaf’ (‘aa’) population yielding conclusive phenotypes (resistant or susceptible) in 

both field and in vitro evaluations were selected for this purpose. Genomic DNA of triploid 

hybrids and their parents was isolated using the Plant DNeasy kit from Qiagen, Inc. (Valencia, 

CA, USA), following the manufacturer’s protocol. DNA concentrations were estimated with 

PicoGreen® and adjusted to 30 ng/µl. Four resistant and four susceptible DNA bulks were 

established by mixing DNA from five resistant or susceptible hybrids. Each bulk and the parents 

were genotyped using an Illumina GoldenGate™ array platform, which contains 1536 SNP 
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markers (Ollitrault et al., 2012b). Six hundred and seventy-seven of these SNPs are mapped in 

the clementine’s reference genetic map (Ollitrault et al., 2012a).  

For the mapped markers that were heterozygous in the ‘Fortune’ genotype, we 

estimated the relative allele signal in each bulk by allelic composition measurement, called the 

“B allele frequency” (BAF) by Illumina™ (Fan et al., 2003), using the Illumina® GenomeStudio 

2009. The BAF parameter varies between 0 and 1 and is related to the proportion of the B allele 

versus A+B (SNP genotyping in GoldenGate™ array is diallelic). For pooled samples, this 

parameter provides useful information on the BAF in the bulk. 

ANOVA were performed using BAF information, and the significance of the 

differentiation between the resistant and susceptible bulks was tested by the F statistic. The 

pattern of this F parameter along the genome allowed identification of genomic regions with 

high probability of association with phenotype variation.  

 

Individual genotyping and mapping of the ABS resistance gene 

Ninety-three triploid hybrids for the ‘Fortune’   ‘Willowleaf’ population and their diploid 

parents were genotyped using available SSR and SNP markers already mapped (Ollitrault et 

al., 2012a) in the interval identified by the BSA analysis or developed from the clementine 

genomic sequence as described below. 

New SSR and SNP marker development: We have taken advantage of the recent 

release of the reference citrus genome sequence (haploid Clementine genome publicly 

available at http:://www.phytozome.net/clementine) by the International Citrus Genomics 

Consortium (ICGC) to develop new markers in the genomic region surrounding the SNPs 

identified by BSA genome scan as linked to ABS resistance. Microsatellites motifs were 

searched using Sputnik software (http://espressosoftware.com/sputnik/) and new SSR markers 

were developed and tested for useful polymorphisms. Moreover, 4.47 kb corresponding to four 

DNA fragments within this region were sequenced in ‘Fortune’ and ‘Willowleaf’ to find SNPs that 

could be heterozygous in ‘Fortune’ and homozygous in ‘Willowleaf’ mandarin (information on 

location of the corresponding sequences on the haploid Clementine reference genome and 

primers used to amplify these DNA fragments is given in Table 4.S2). 

SSR analyses: Polymerase chain reactions (PCRs) were performed with wellRED 

oligonucleotides (Sigma-Aldrich®, St Louis, MO, USA) using the following protocol: 

Mastercycler ep Gradient S (Eppendorf Scientific Inc., Westbury, NY, USA); reaction volume, 15 

µl; 0.8 U Taq polymerase (Fermentas®, Burlington, VT, USA); reaction buffer: 750 mM Tris-HCl 

(pH 9), 50 mM KCl, 200 mM (NH4)2SO4, 0.001% bovine serum albumin, 0.1 mM of each dNTP, 

5 mM MgCl2, 3 mM of each primer, 30 ng DNA. The PCR program was as follows: 94°C for 5 

min; 40 cycles of 30 s at 94°C, 1 min at 55°C and 30 s at 72ºC; final elongation 10 min at 72ºC. 

Separation was carried out by capillary gel electrophoresis (CEQ 8000 Genetic Analysis 
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System; Beckman Coulter Inc., Fullerton, CA, USA). Data collection and analysis were carried 

out using the GenomeLab GeXP (Beckman Coulter Inc.) version 10.0 software. 

SNP analyses: SNP genotyping was performed by Kbioscience® services, using the 

KASPar technique. Detailed explanation of specific conditions and reactives can be found in 

Cuppen (2007).  

Assignment of allelic configuration in heterozygous triploid hybrids was carried out using 

the MAC-PR method for SSR markers (Esselink et al., 2004), or using relative allele signal as 

proposed by Cuenca et al. (2013a) for SNPs genotyped by the KASPar (KBioscience®, UK) 

technique. Maternal HRs within the triploid progeny were used for de novo mapping of the 

markers in relation to the centromere position, using the Cx(Co)
4
 model for SDR with partial 

interference (Zhao and Speed, 1998b; Cuenca et al., 2011). 

Allelic phase of linked marker loci was inferred from the preferential association at the 

population level between the phenotype (resistant/susceptible) and the maternal alleles. Marker 

alleles linked with susceptibility were codified as ‘a’ alleles, and those linked with resistance as 

‘b’ alleles. The global coherence of this phase attribution was checked by performing a 

correlation (Pearson's coefficient) from an individual/loci matrix with values of 1, 0.5, and 0 for 

the ‘aa’, ‘ab’, and ‘bb’ genotypes, respectively. These correlation values were also used to 

determine the locations of the various markers in the relative chromosome arms (i.e., on either 

side of the centromere) in the de novo mapping process. 

The relative position of the ABSr locus and markers were analyzed by performing a 

multiple correspondence analysis (MCA), considering markers as individuals and the various 2n 

gametes as variables. From the previous matrix, we established the qualitative matrix for the 

factorial analysis by grouping 1 and 0.5 as the same modality (presence of the ‘a’ allele linked 

with the dominant susceptibility allele in ‘Fortune’) and considering the absence of the ‘a’ allele 

as the other modality. XLSAT was used to calculate the Pearson’s correlation coefficient and to 

perform the MCA. 

 

Gene ontology  

All genes encountered within the genomic region between the two markers flanking the 

estimated location of the ABSr locus were searched in the clementine whole genome assembly 

delivered by the ICGC and publicly available at http:://www.phytozome.net/clementine. The 

corresponding annotation data were then processed with Blast2GO (Conesa et al., 2005) to 

provide a global description of the cellular components and biological processes of the genes 

identified in this genome region.  
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Results 

 

Segregation of ABS resistance in various triploid progeny arising from sexual 

polyploidization and interploid crosses 

Field and in vitro evaluation of ABS resistance 

Symptoms of ABS were evaluated for all parental accessions and hybrids both from 

visual inspection of the trees grown at orchards and by in vitro inoculations with a conidial 

suspension of the pathogen. Results obtained for parental genotypes were according to those 

cited in the literature: ‘Fortune’, ‘Minneola’, ‘Murcott’ and ‘Orlando’ exhibited symptoms of ABS 

both in the field and in vitro in all evaluations; ‘Clemenules’, ‘Fina’, ‘Willowleaf’ and ‘Nadorcott’ 

did not exhibit any ABS symptoms on their leaves at any time. Triploid hybrids derived from 

various evaluated crosses were susceptible (exhibiting typical ABS symptoms) or resistant at 

proportions depending on the progeny evaluated. No resistant genotypes were found within the 

‘Fortune’   ‘Minneola’ population, whereas all triploid hybrids from the cross between two 

resistant genotypes (‘Fina’   ‘Nadorcott’) were resistant to ABS. Total concordance between 

field and in vitro evaluations was observed for all evaluated populations with the exception of 

‘Clemenules’   ‘Orlando 4x’, where it was over 97% (Table 4.4). 

 

Table 4.4. Results of field and in vitro phenotyping for Alternaria brown spot, showing the number of 

resistant hybrids within each population and the concordance between both types of evaluation. 

 
‘Fortune’ × 

‘Willoleaf’ 

‘Fortune’ × 

‘Murcott’ 

‘Fortune’ × 

‘Minneola’ 

‘Clemenules’ × 

‘Orlando 4x’ 

‘Clemenules’ 

× ‘Nova 4x’ 

‘Fortune’ × 

‘Orlando 4x’ 

‘Fina’ × 

‘Nadorcott’ 

Nmber of hybrids evaluated 93 148 127 180 100 116 50 

Resistant hybrids by field evaluation 
37 

(39.78%) 
26 (17.57%) 0 (0%) 46 (25.55%) 16 (16%) 12 (10.34%) 50 (100%) 

Resistant hybrids by in vitro evaluation 
37 

(39.78%) 
26 (17.57%) 0 (0%) 41 (22.78%) 16 (16%) 12 (10.34%) 50 (100%) 

Field-in vitro concordance (%) 
93/93 

(100%) 

148/148 

(100%) 

127/127 

(100%) 

175/180 

(97.22%) 

100/100 

(100%) 

116/116 

(100%) 
50/50 (100%) 

Consensus hybrids evaluated 93 148 127 175 100 116 50 

Consensus resistant hybrids 
37/93 

(39.78%) 

26/148 

(17.57%) 

0/127 

(0%) 

41/175 

(23.43%) 

16/100 

(16%) 

12/116 

(10.34%) 

50/50 

(100%) 
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Inheritance of ABS resistance 

Observed resistant proportions within the ‘Fortune’ (‘Aa’)   ‘Minneola’ (‘AA’), 

‘Clemenules’ (‘aa’)   ‘Orlando 4x’ (‘AAaa’), ‘Clemenules’ (‘aa’)   ‘Nova 4x’ (‘AAaa’), ‘Fortune’ 

(‘aa’)   ‘Orlando 4x’ (‘AAaa’) and ‘Fina’ (‘aa’)   ‘Nadorcott’ (‘aa’) populations are shown in Table 

4.5. As expected, no resistant genotypes were observed within the ‘Fortune’   ‘Minneola’ triploid 

population, whereas no susceptible ones were observed within the ‘Fina’   ‘Nadorcott’ 

population. Regarding the interploid crosses, 41/175 (23.43%) and 16/100 (16%) triploid hybrids 

were phenotyped as resistant within the ‘Clemenules’   ‘Orlando 4x’ and ‘Clemenules’   ‘Nova 

4x’ populations, respectively. These values are not significantly different (χ
2
=0.087, p-

value=0.769 and χ
2
=0.032, p-value=0.857, respectively) to the closest value of the theoretical 

interval (16.67–22.5%) under the hypothesis of single locus recessive inheritance of resistance 

in an ‘aa’ × ‘AAaa’ cross. In the same way, the observed proportion of resistant hybrids in 

‘Fortune’   ‘Orlando 4x’ is within the theoretical interval under the same hypothesis for an ‘Aa’ × 

‘AAaa’ cross. 

 

Table 4.5. Expected and observed frequencies of Alternaria brown spot resistant hybrids under the 

hypothesis of single dominant inheritance within each population and significances of χ
2
 conformity tests. 

 
‘Fortune’ × 

‘Minneola’ 

(‘Aa’ × ‘AA’) 

‘Clemenules’ × 

‘Orlando 4x’ 

(‘aa’ × ‘AAaa’) 

‘Clemenules’ × 

‘Nova 4x’ 

(‘aa’ × ‘AAaa’) 

‘Fortune’ × 

‘Orlando 4x’ 

(‘Aa’ × 

‘AAaa’) 

‘Fina’ × 

‘Nadorcott’ 

(‘aa’ × ‘aa’) 

Number of evaluated hybrids 127 175 100 116 50 

Expected resistant proportion (%) 0% 16.67% - 22.5% 16.67% - 22.5% 8.33% - 

11.25% 

100% 

Observed resistant proportion (%) 0% 23.43% 16.00% 10.34% 100% 

χ2 test; p-value NS 0.087; 0.769 

(NS) 

0.032; 0.857 

(NS) 

WTI NS 

WTI: within theoretical interval; NS: no significantly different than theoretical segregation or identical. 

 

These results confirmed the single dominant inheritance of the ABS susceptibility in 

triploid populations. Moreover, results of the five additional triploid populations evaluated for 

ABS resistance (Table 4.S1) also confirm the single recessive inheritance of ABS resistance. 

 

Estimation of the genetic distance of the ABS resistance locus (ABSr) to the centromere 

For the two triploid populations arising from 2x × 2x crosses (‘Fortune’   ‘Willowleaf’ and 

‘Fortune’   ‘Murcott’), the proportions of resistant and susceptible hybrids are related to the 

ABSr locus-centromere distance. To estimate the locus-centromere distance, we used a simple 

cross model in which only the 2n gametes segregate for the ABSr locus (‘Fortune’   

‘Willowleaf’). This allows avoiding any eventual bias associated with distorted segregation from 

the male parent.  
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The proportion of resistant hybrids in the ‘Fortune’   ‘Willowleaf’ population was 

39.78%, corresponding to an HR estimation value of 0.2043, assuming that ‘aa’ and ‘AA’ 2n 

gametes were equally represented. Only one value for centromere distance is associated with 

the observed proportion of resistant hybrids when the functions presented in Material and 

Methods are applied (Figure 4.2). Moreover, no interference and partial chromosome 

interference models gave very similar estimates for the centromere distance, which has been 

estimated to be 10.5 cM. 

With such an ABSr locus-centromere distance, the expected proportion of the resistant 

genotype in ‘Fortune’   ‘Murcott’ progeny (‘Aa’ × ‘Aa’) should be 19.9%. The observed value 

(17.57%) is not significantly different (χ
2
=0.501), confirming the proximity of the ABSr locus to a 

centromere. 

 

Bulk segregant analysis coupled with genome scan 

BSA over the ‘Fortune’ (‘Aa’)   ‘Willowleaf’ (‘aa’) population has been used to identify a 

genomic region linked to the ABS resistance gene. Four resistant and four susceptible bulks 

were genotyped for 1536 SNP markers using a GoldenGate™ array platform. Of these, 429 

SNP markers were heterozygous for the ‘Fortune’ mandarin and were used to perform ANOVA 

analyses over relative allele signal for each bulk; significance of the differentiation between the 

resistant and susceptible bulks was tested by the F statistic. A graphical example for the 

CiC3248-06 and CiC6243-03 markers, which differentiate resistant and susceptible bulks, is 

shown in Figure 4.3. 

 

Figure 4.3. Plot showing Bulked Segregant Analysis results for the CiC3248-06 (A) and CiC6243-03 (B) 

markers, distinguishing between susceptible and resistant genotypes and bulks. 
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The pattern of this F parameter along the nine linkage groups of the clementine’s 

genetic map (Ollitrault et al., 2012a) led us to discard most genomic regions (Figure 4.S1) and 

allowed identification of a region containing numerous markers with a high probability (>99%) of 

association with phenotype variation, located on chromosome III (Figure 4.4). This region 

includes 25 significant SNP markers within an interval of 13.1 cM between markers CiC4831-03 

(at 84.66 cM) and CiC1875-01 (at 97.76 cM) on the clementine’s map. The maximum F value 

within this region is attained by marker CiC4681-02, located at 92.78 cM (F=2055). The 

genomic region between these two markers contains around 15 Mb. No significant marker 

clusters were found in any other area of the genome. 

 

 

Figure 4.4. Pattern of F statistic from ANOVA along chromosome III (the linkage group map under the F 

value graph is taken from the genetic map of clementine (Ollitrault et al., 2012a). The blue line indicates 
the least significant value for F at p<0.01. 

 

 

Genetic mapping of the genomic region surrounding the ABS locus 

Among the SNP markers with significant linkage to ABS resistance, five displayed the 

most convenient allelic conformation in the parents (heterozygous in ‘Fortune’ and homozygous 

in ‘Willowleaf’) for genetic mapping by individual genotyping of the ‘Fortune’   ‘Willowleaf’ 

progeny. One SSR marker included in this segment in the clementine’s genetic map (Ollitrault et 

al., 2012a) also displayed useful allelic polymorphisms between parents. 

To develop additional markers with useful allelic conformation, the genomic region (from 

www.phytozome.net) surrounding the 25 significant SNPs was scanned to find new 

microsatellites and develop new SSR markers. Among 42 SSRs tested, four new SSR markers 
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provided useful polymorphisms. Moreover, 4.47 kb (Table S2) within this region in ‘Fortune’ and 

‘Willowleaf’ and two SNPs heterozygous in ‘Fortune’ and homozygous in ‘Willowleaf’ were 

sequenced. More detailed information on all markers used in this study is available as 

supplementary material in Table 4.S3 and Table 4.S4. 

Next, five mapped SNP markers (Ollitrault et al., 2012a), one mapped SSR marker 

[CX0038: (Chen et al., 2008a)], and six newly developed markers (four SSRs and two SNP 

markers) were used to genotype all 93 triploid hybrids of the ‘Fortune’   ‘Willowleaf’ population. 

Because the male parent was homozygous or different from the female parent at each selected 

locus, the genetic structure of the diploid female gamete (Table 4.S5) was deduced from the 

triploid hybrid genotyping [see (Cuenca et al., 2011) for details], and the marker HRs were 

estimated. 

We took advantage of the direct link between HR in 2n gametes and the locus-

centromere distance for de novo mapping of genetic markers in relation to the centromere 

position, using the Cx(Co)
4
 model for SDR with partial interference (Cuenca et al., 2011). No 

recombination was observed between the centromere and the CiC1229-05 and CiC6116-04 

markers. The markers next closest to centromere were SNP-ALT1 and SNP-ALT2 (with the 

same HTA data), 0.54 cM away; the next closest marker was CX0038 (2.7 cM). To determine 

whether this marker was located at one side or the other of the centromere, we checked its 

correlation with the markers in distal positions on the draft map (at this step, CiC1229-05 and 

CiC6116-04 on one side, and SNP-ALT1 and SNP-ALT2 on the other side). Because the lower 

correlation was for SNP-ALT1 and SNP-ALT2, CX0038 was positioned on the opposite 

chromosome arm. The same process was applied at each subsequent step of marker addition 

to the map, proceeding according to increasing distance from the centromere. The order of the 

mapped markers in the de novo map was the same as in the map of clementine (Ollitrault et al., 

2012a), and new (non-mapped) markers maintained the expected order of the assembled 

sequence available at www.phytozome.net (Figure 4.5a,b). However, the estimated genetic 

distances were higher than those on the clementine’s map, suggesting that the recombination 

rate in this genomic region during the production of the 2n gamete was higher in ‘Fortune’ than 

in clementine. A logically important modification of the slope of the physical distances according 

to genetic map is observed in the centromeric region (with lower recombination by physical 

distance unit). 

No recombination was observed between the AT21 marker and the ABSr locus. The 

two flanking markers (TTC8 and CiC3248-06) were found at 3.77 and 1.71 cM, respectively, 

from the ABSr locus, delimiting a 3.3 Mb genome region. This position of the ABSr locus was 

checked by an MCA based on a qualitative matrix (see Material and Methods). Most of the 

matrix diversity was represented in the first axis (72.9%; Figure 4.5c), where the order of 

markers and the relative position of the ABSr locus was identical to the de novo mapping, based 

on HR. 
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Figure 4.5. Order and location of markers and ABSr locus. (A) De novo genetic mapping (cM) of markers 
and the ABSr locus on chromosome III relative to the centromere by half-tetrad analysis, (B) relation 
between genetic and physical location in the clementine’s reference genome 
(www.phytozome.net/clementine), and (C) representation of the markers on the first axis of the multiple 
correspondence analysis. 

 

 

Gene annotations around the ABSr locus 

The assembled sequence (www.phytozome.org) of the region of chromosome III 

between the two markers flanking the ABSr locus (TTC8 and CiC3248-06) was examined for 

gene annotations. The results revealed several disease resistance genes along and at the 

extremes of the analyzed region, so the analysis was extended 1.5 Mb down from the TTC8 

marker and 1.7 Mb up from the CiC3248-06 marker. Ninety-five genes annotated as 

homologous to disease resistance genes were found within the corresponding 6.5 Mb region. A 

genome-wide analysis of disease resistance gene homologs revealed that 17% of them are 

located within this region on chromosome III.  

Within the 3.3-Mb region defined by the two flanking markers, 177 annotated genes 

were found (Table 4.S6). Gene ontology (GO) analysis of biological processes revealed that 

69.1% of these genes are involved in metabolic processes and 21.9% are related to response 

or cell death (Figure 4.6a). GO also indicated that 25% of the genes are intrinsic to the 

membrane (Figure 4.6b), which is the target of the ACT-toxin produced by the tangerine 

pathotype of A. alternata. 

http://www.phytozome.net/
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Figure 4.6. Classification of genes annotated between the TTC8 and CiC3248-06 markers according to 

gene ontology (GO) functional categories. (A) GO biological process categories. (B) GO cellular 
component categories. 

 

 

In the region defined by the two flanking markers, which includes the ABSr locus, 33 

disease resistance homologous genes were found (Figure 4.7). Thirty of these genes encode 

proteins predicted to have a central nucleotide-binding site (NBS) domain, 28 are involved in 

apoptosis, and 29 have a C-terminal leucine-rich repeat (LRR) domain. Six of the 30 NBS-

containing genes have transmembrane activity. Among the resistance genes identified, 15 are 

homologous to the LOV1 gene, which has been implicated in dominant susceptibility of 

Arabidopsis to the victorin toxin produced by Cochliobolus victoriae Nelson (Lorang et al., 

2007). Other three of these resistance genes belong to the mlo family, which confer durable 

broad-spectrum resistance against the powdery mildew pathogen in barley (Büschges et al., 

1997). 
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Figure 4.7. Genes found in the region around the ABSr locus, indicating the disease resistance gene 

homologous and their major domains and annotations. 

  

(Mb) 
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Discussion 

The monolocus inheritance and recessivity of ABS resistance was confirmed in citrus 

triploid progeny, and the ABSr locus was mapped in the chromosome III genetically 

close to the centromere 

 

Several studies have reported the single dominance inheritance of ABS susceptibility in 

diploid citrus genotypes (Dalkilic et al., 2005; Gulsen et al., 2010); however, no data have been 

previously published regarding triploid progeny. In this present study, inheritance of resistance 

to the ABS pathogen has been analyzed in triploid progeny produced by different strategies 

(sexual polyploidization and interploid crosses) over a wide range of genetic backgrounds. The 

segregations (resistance/susceptibility) observed for all the triploid populations we evaluated 

confirm the monolocus inheritance and recessivity of the disease in a triploid context. All 

progeny arising from a homozygous susceptible cultivar, such as ‘Minneola’, were susceptible, 

whereas in cases of heterozygous parents, segregations were as expected, depending on the 

hybridization strategy. 

Genetic mapping and marker-trait association in polyploids are complicated by the 

diversity of the meiotic process (and therefore, recombination mechanisms) involved, as well as 

the distribution of markers into multiple dosage classes (Da Silva and Sorrells, 1996). Despite 

these limitations, genetic maps based on segregating molecular markers have been generated 

for a wide range of polyploids including tetraploid cotton (Reinisch et al., 1994), hexaploid tall 

fescue (Xu et al., 1995), hexaploid wheat (Gill et al., 1991) and octoploid sugar-cane mandarin 

(Da Silva and Sorrells, 1996; Ming et al., 2001). 

In this study, the first information regarding the location of the ABSr locus was given 

directly by the analysis of the segregation between susceptible and resistant triploid hybrids in 

progeny obtained by sexual polyploidization (2n gametes), assuming monolocus recessive 

determination of the resistance. Indeed, for 2n gametes resulting from either FDR or SDR, as in 

the ‘Fortune’ mandarin (Cuenca et al., 2011), there is a direct linkage between parental HR (and 

therefore, the proportion of resistant and susceptible hybrids) and the genetic distance to the 

centromere. HTA is therefore an efficient way to map loci relative to a centromere (Johnson et 

al., 1995; Zhao and Speed, 1998a; Lindner et al., 2000). At this step, we identified that the ABSr 

locus was relatively close (10.5 cM) to one centromere.  

The ABSr locus was then located by combining two approaches. The first one was to 

perform BSA coupled with genome-scan using SNP markers mapped in the clementine’s 

reference genetic map (Ollitrault et al., 2012a). This approach allowed localization of the ABS 

resistance locus within a 13.1 cM area on chromosome III of the clementine’s genetic map, 

corresponding to 15 Mb of scaffold 3 of the current clementine whole genome assembly in 

pseudomolecules (www.phytozome.net). Our results confirm the potential for raw location of 

major genes involved in phenotypic trait variability by coupling BSA strategies with genomic 
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scanning, as previously proposed by Brauer et al. (2006), and demonstrate that it can be 

successfully applied in a polyploid segregating population. 

This genomic region was further examined for additional SSR and SNP markers, which 

were used for de novo mapping of the area by HTA of 2n gamete inferred from triploid hybrid 

genotypes. Mapping functions relating HR and centromere distance (Zhao and Speed, 1998a; 

Cuenca et al., 2011) and an approach based on a correlation matrix have given convergent 

results in identification of the closest markers flanking the candidate ABS resistance gene. The 

AT21 marker appeared to be tightly linked to the ABSr locus. However, it would be necessary to 

analyse many more progeny to estimate its linkage with the ABSr locus precisely. The two 

flanking markers of AT21 and the ABSr locus are TTC8 and CiC3248-06, respectively, at 3.77 

and 1.71 cM. This marker frame is much more closely linked than previous markers identified 

from diploid segregating progenies. Two RAPD markers are in loose linkage with the ABSr 

locus (15.3 cM and 36.7 cM far from the ABS locus in the same side) (Dalkilic et al., 2005). A 

more recent study identified two flanking SRAP markers at 3 cM and 13 cM, and the authors of 

that study proposed that the genomic region of the ABSr locus should display low 

polymorphism, explaining the difficulty of obtaining markers very close to the gene (Gulsen et 

al., 2010). The availability of the reference genetic map (Ollitrault et al., 2012a) and whole 

genome sequence (Xu et al., 2013) of clementine clearly increases the potential for marker-trait 

association studies in citrus, with co-dominant markers located both in the physical and genetic 

maps.  

 

Candidate genes for resistance to ABS were identified 

The ABSr locus appears to be included in a genomic region very rich in disease 

resistance gene homologs. Indeed, 17% of all resistance genes annotated in the citrus 

reference genome (www.phytozome.net) are found in a 6.5 Mb region (2.2% of the whole 

genome) of chromosome III, surrounding the ABSr locus. In the 3.3 Mb region defined by the 

two flanking markers, 33 disease resistance gene homologs were identified. Six of them are 

considered to be intrinsic to the membrane, including three belonging to the mlo family and 28 

related to apoptosis. These resistance genes are organised in clusters, as generally described 

in many crop species (Michelmore and Meyers, 1998; Yi and Richards, 2007), and as already 

demonstrated in citrus for resistance to Tristeza virus found in the Poncirus genome (Fang et 

al., 1998). 

A. alternata is a necrotroph pathogen, which first kills host cells before parasitizing them 

and metabolising their contents. If the toxins used to kill host cells are not released at the right 

time, place, or concentration, or if a particular host genotype is insensitive to the toxin, the host 

cells will not die, the necrotroph will be unable to infect or reproduce, and the plant will be 

resistant (Guest and Brown, 1997). A. alternata, like other necrotrophs, produces host-selective 

toxins (ACT-toxins), defined as pathogen effectors, which induce toxicity and promote disease 
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only in the host species expressing a specific and often dominant susceptibility gene (Friesen et 

al., 2008). Their pathogenic ability is conditioned by a gene in the pathogen that encodes 

production of the toxin and by a gene in the host that promotes sensitivity to the toxin. For this 

type of pathogen, plant resistance can be achieved via the loss or modification of the toxin’s 

target or through detoxification (Hammond-Kosack and Jones, 1997).  

Inheritance of ABS resistance in citrus has been described as monogenic (Dalkilic et al., 

2005; Gulsen et al., 2010), controlled by a single recessive allele. The results of this study 

corroborate this hypothesis by demonstrating the predicted proportions of resistant and 

susceptible genotypes obtained from various crosses and the identification, by BSA, of a single 

genomic region highly associated with resistance. ACT-toxins from the tangerine pathotype of 

A. alternata, as well as AF-toxin from the strawberry pathotype and AK-toxin from the Japanese 

pear pathotype, have an epoxy-decatrienoic acid structure and exert their primary effect on the 

plasma membrane of susceptible cells, causing a rapid increase in electrolyte loss from tissues 

and invaginations in plasma membranes (Otani et al., 1995). Varietal resistance to ACT-toxin in 

citrus is very highly correlated with ABS resistance. Therefore, a probable function for the gene 

of interest is to encode a protein involved in ACT-toxin recognition, which would allow the toxin 

to cause cell death. Such a dominant gene should be present (homozygously or 

heterozygously) in susceptible cultivars, and absent or defective in resistant cultivars.  

The most obvious candidate for providing recognition specificity to the pathogen effector 

is the LRR domain, which binds a corresponding ligand (Hammond-Kosack and Jones, 1997) 

with a putative nucleotide-binding (NB) site; these genes are classified as ‘NB-LRR’ genes 

(Toyoda et al., 2002). This class includes members that carry either N-terminal homology to the 

Toll protein and interleukin-1 receptor (TIR-NB-LRR) or a putative coiled-coil (CC) at the N-

terminus (CC-NB-LRR). Resistance (R) genes from both of these subclasses confer resistance 

against fungi, and several fungal resistance genes have been reported and used in crop 

improvement programs. NB-LRR genes have been identified that confer resistance against flax 

rust, maize rust, barley powdery mildew, rice blast and Fusarium wilt and downy mildew of 

tomato (Dangl and Jones, 2001). However, sequence variation within the central LRR domain, 

as well as variation in LRR copy number, plays an important role in determining recognition 

specificity (Gururani et al., 2012). Likewise, R genes, first identified as dominant resistance 

genes, could be targets of pathogen effectors and therefore play roles in susceptibility (Lorang 

et al., 2012). Thus, avirulence (Avr) elicitors and HST may be recognising the same resistance 

genes in plants, leading to evolutionary outcomes that differ between necrotrophs and biotrophs 

while affecting the evolution of the corresponding R genes (Stukenbrock and McDonald, 2009). 

In Arabidopsis, victorin (an HST produced by C. victoriae) sensitivity and disease susceptibility 

is conferred by the LOV1 gene, which encodes a NB-LRR protein. LOV1 is targeted by victorin, 

the pathogen effector, and this interaction results in disease susceptibility (Lorang et al., 2007). 

These NB-LRR proteins recognise specific pathogen-derived products and initiate a resistance 

response that often includes a type of cell death known as the hypersensitive response (Moffett 
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et al., 2002). In the same way, the Pc locus of sorghum, which contains genes encoding NB-

LRR proteins, determines dominant susceptibility to HSTs produced by the necrotroph fungus 

Periconia circinata (L). Mangin Sacc. (Nagy et al., 2007; Nagy and Bennetzen, 2008). Together, 

these results suggest that for necrotroph fungi, the disease is favoured by inducing the 

resistance response (Otani et al., 1995; Lorang et al., 2012); this mode of susceptibility could 

also apply to A. alternata. In this study, thirty disease resistance gene homologous encoding 

proteins with NBSs were found in the ABS locus region, and 15 of them are homologous to the 

LOV1 gene. Therefore, disease resistance gene homologous should be considered as 

candidate genes for inducing susceptibility, especially in the case of LOV1 homologs found in 

this region. 

Another class of resistance genes, belonging to the mlo family, has also been 

implicated in susceptibility to barley powdery mildew produced by Blumeria graminis f. sp. 

hordei (Büschges et al., 1997). Mlo proteins are localised in the plasma membrane and possess 

seven transmembrane domains; it has been suggested that they function as receptors in plants 

(Jørgensen and Wolfe, 1994; Büschges et al., 1997; Devoto et al., 1999). The resistance trait 

conferred by mlo is recessively inherited and non-race-specific, because it is effective against 

all isolates of the fungus B. graminis (Jørgensen, 1977; Qu et al., 2006). Three resistance 

genes found in the ABSr locus region belong to this class. However, in citrus, two pathotypes of 

A. alternata have been described that produce HSTs that affect a narrow range of genotypes 

(ACT-toxin to tangerines, ACR-toxin to Rough lemon [C. jambhiri Lush.] and Rangpur lime [C. 

limonia Osbeck]), and resistance found in the germplasm was pathotype-specific (Timmer et al., 

2003). 

The identification of the gene for ABS resistance will involve fine mapping with large 

diploid populations. SNP markers are currently being developed from each candidate gene for 

this purpose. From the reduced set of candidate genes that would result from this fine genetic 

mapping, functional validation could be performed by genetic transformation (Cervera et al., 

2005) or viral vector-induced gene silencing (Folimonov et al., 2007; Agüero et al., 2013). 

For susceptible genotypes it is probable that additional genes, but also environmental 

factors, affect the susceptibility level. QTLs analyses conducted in susceptible progeny should 

be necessary to decipher this quantitative component of susceptibility. 

 

Toward efficient breeding for ABS resistance 

ABS is a major fungal disease in certain mandarin cultivars around the world; the 

disease causes a substantial loss of production and fruit quality (Akimitsu et al., 2003; Timmer 

et al., 2003). Currently, ABS management relies mainly on the application of fungicides  (Bhatia 

et al., 2003; Peres and Timmer, 2006; Vicent et al., 2007), but this control is expensive, not 

environmentally friendly, and not always efficient. As a consequence, the production of 
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susceptible cultivars, such as 'Fortune' and ‘Nova’ among others, has declined significantly 

during recent years, and many trees of the most susceptible varieties have been removed and 

replaced by resistant cultivars that may lack some of the interesting agronomic traits of the 

susceptible cultivars (Navarro et al., 2005). Therefore, ABS resistance must be considered as a 

major selection criterion in mandarin breeding programs. 

Our results demonstrate that it is possible to use susceptible parents heterozygous for 

the resistance gene to breed resistant triploid varieties. For instance, the susceptible cultivar 

‘Fortune’, which is a very efficient female parent in producing high-quality triploid hybrids in 2x × 

2x hybridization (Aleza et al., 2010b), should not be discarded. Indeed, the 39% and 19% of 

resistant triploid hybrids produced when crossed with resistant or heterozygous susceptible 

genotypes, respectively, are acceptable if combined with early selection by controlled 

inoculation phenotyping or MAS. On the other hand, parents homozygous for the susceptible 

allele, such as ‘Minneola’, should be definitively ruled out. Our results also demonstrate that 

when heterozygous susceptible parents are used as producers of diploid gametes, it is much 

more efficient to integrate them in a 2x × 2x strategy rather than to use them as doubled-diploid 

parents in interploid crosses. Indeed, the heterozygosity transmission of the ABSr locus 

(associated with susceptibility transmission to the triploid progeny) is lower in the 2n gametes 

than in the diploid gametes produced by doubled-diploids, due to its location close to the 

centromere of chromosome III and the SDR origin of unreduced gamete formation in most citrus 

genotypes (Aleza et al., 2012b). 

HTA has permitted identification two flanking markers at 3.77 and 1.71 cM of the ABSr 

locus, as well as a third marker that did not exhibit any recombination with the ABSr locus within 

the analyzed population. These markers should be used together for efficient early MAS for 

different parental combinations when the markers are heterozygous in the susceptible parent 

and polymorphic between the two parents. We are currently sequencing DNA fragments 

between these two markers to identify SNP loci that provide a useful allelic combination for the 

various crosses of our mandarin breeding program. These are examples of the very few 

identified markers for MAS in citrus, which include the SSR markers flanking the Citrus Tristeza 

virus resistance gene(s) of Poncirus [(Yang et al., 2003); Mikeal Roose, personal 

communication] and the dominant PCR assay for the anthocyanin content of pulp of blood 

orange due to a transposable element in the 5’extremity of the Ruby gene (Butelli et al., 2012).  
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Supplementary information 

 
Table 4.S1. Number of individuals (N) evaluated within each population, and percentage of hybrids 

evaluated as resistant (%R) 

 Population 

 ‘Orri’ × ‘Oronules’ ‘Clemenules’ × ‘Nova’ ‘Fortune’ × ‘Scarlett’ 
‘Fina’ × 

‘Fairchild 4x’ 
‘Fortune’ × 
‘Kara 4x’ 

Segregation <aa × aa> <aa × Aa> <Aa × aa> <aa × AAaa> <Aa × aaaa> 

N 16 11 47 15 25 

% R 100% 54.55% 38.3% 20% 52% 

 

 

 

 

Table 4.S2. Primers used to sequence the 4.47 kb genomic region on scaffold 3 

(http:://www.phytozome.net/clementine) surrounding the SNPs identified by BSA-genome scan as linked to 
ABS resistance 

Primer Forward Primer Reverse Product size Position in scaffold 3 (bp) 

CAATTTGAGCTCGCTTATTT GGTTCATCTAGGTCACCTTCT 1154 19240437 to 19241590 

TAAAACTTGGCATGGATCTT CATATGGAATCTTCCCAGTC 1176 19241527 to 19242702 

TGCCAGCTATGATAAGAACA AGACAAAATTATCCCACTGTGT 1170 19242617 to 19243786 

ATTTAAATGATGAATTTGATGC TTATCTTTGCTGCATTTGAA 1175 19243732 to 19244906 

 

 

 

 

Table 4.S3. Information about SSR and SNP markers used in this study, indicating the alleles in the 

parental lines and the expected genotypes within the ‘Fortune’ (F)   ‘Willowleaf’ (WL) triploid progeny 

Marker id Marker type F alleles WL alleles Expected 3x genotypes Reference 

CiC1229-05 SNP (T/G) TG TT TTT, TTG, TGG Ollitrault et al., 2012a 

CiC1875-01 SNP (T/C) TC CC CCC, TCC, TTC Ollitrault et al., 2012a 

CiC3248-06 SNP (A/G) AG AA AAA, AAG, AGG Ollitrault et al., 2012a 

CiC6116-04 SNP (T/C) TC CC CCC, TCC, TTC Ollitrault et al., 2012a 

CiC6243-03 SNP (A/G) AG GG GGG, AGG, AAG Ollitrault et al., 2012a 

CX0038 SSR 337/339 339/339 319/319/321, 319/321/321, 321/321/321 Chen et al., 2008 

ATAC11 SSR 248/264 256/264 
248/248/256, 248/248/264, 248/256/264, 
248/264/264, 256/264/264, 264/264/264 

new 

AAT9 SSR 260/266 266/269 
260/260/266, 260/260/269, 260/266/266, 
260/266/269, 266/266/266, 266/266/269 

new 

TTC8 SSR 197/203 203/null 
197/197/203, 197/197/null, 197/203/203, 
197/203/null, 203/203/203, 203/203/null 

new 

AT21 SSR 193/205 177/205 
177/193/193, 193/193/205, 177/193/205, 
193/205/205, 177/205/205, 205/205/205 

new 

SNPALT1-Y SNP (C/T) CT CC CCC, CCT, CTT new 

SNPALT2-K SNP (G/T) GT TT GGT, GTT, GGT new 
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Table 4.S4. Information about new SSR and SNP markers developed 

Marker id 
Position in 
scaffold 3 

(bp) 

Allele 
polymorphism 
or repeat motif 

Sequence flaking the 
SNP 

Forward primer Reverse primer 
Melting Temp 

(ºC) 

SNPALT1-Y 19241709 C/T 

CCAGACTCGTCACC
ACCACGCCTCCTTC
CATCCAAATCGGCT
GCACCTAATGTTGA
TGATACCACGCTGG

CT[C/T]TAACTGTTG

CCCAAGCCCGCCAA
ACCCAATCTAGGCC
CATTGACCCCAGCC
AACAC 

   

SNPALT2-K 19243610 G/T 

GTATATGAATTTTTT
TAGTTTTACGATGG

ATCTATT[G/T]TCAC

GTGAAAATTGGTTT
CCAATTGCCTTCGC
CTCACATACCATAT
G 

   

ATAC11 
21375818 to 

21376080 
ATAC  GTCGGATTCCTCTATCAACA TCAAGCAAGCATTTCAATAA 55 

AAT9 
22207742 to 

22208005 
AAT  TTACTTCACCTCCCTGAAAA CAAGAATTGGGACAACTGAT 55 

TTC8 
24579024 to 

24579224 
TTC  TACATATCAAGCGCACAGAC GACAGAGCCGAATAGAGATG 55 

AT21 
25473601 to 

25473785 
AT  TAAAATTCTGCACCGATGA GGCTTCATTTTATTGCTTGT 55 

Positions from http:://www.phytozome.net/clementine 
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Table 4.S5. Allelic configuration for the analyzed markers of 93 diploid female gametes within the ‘Fortune’ 

  ‘Willowleaf’ population 

 CiC6243-03 CX0038 CiC1229-05 CiC6116-04 SNP-ALT1 SNP-ALT2 ATAC11 AAT9 TTC8 AT21 CiC3248-06 CiC1875-01  ABSr 

 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb ab ab  bb 
 ab ab bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa ab ab aa ab  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb ab ab bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb ab ab aa aa ab ab  a- 
 aa aa aa aa aa aa ab ab aa ab aa aa  a- 
 aa aa aa aa aa aa aa aa ab ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa ab  a- 
 bb bb bb bb bb bb aa aa aa aa bb ab  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb ab ab  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb ab  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa ab ab ab ab ab ab  a- 
 bb bb bb bb bb bb ab ab ab ab ab ab  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa ab ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa ab ab ab  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb ab ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb ab  bb 
 ab ab bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb ab ab  bb 
 aa aa aa aa aa aa aa aa ab ab aa aa  a- 
 ab ab bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb ab ab ab  a- 
 ab ab bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb ab ab ab ab aa  a- 
 ab ab bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa ab  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa ab ab ab ab ab  a- 
 bb bb bb bb bb bb bb bb bb ab ab ab  a- 
 aa aa aa aa ab ab ab ab ab ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 ab bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa ab ab aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb bb bb bb ab  bb 
 bb bb bb bb bb bb bb bb bb bb bb bb  bb 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 
 bb bb bb bb bb bb bb bb aa ab ab ab  a- 
 bb bb bb bb bb bb bb ab ab ab ab ab  a- 
 bb bb bb bb bb bb ab ab ab ab ab ab  a- 
 aa aa aa aa aa aa aa aa aa aa aa aa  a- 

%HR 
(ab) 

6.45% 5.38% 0.00% 0.00% 1.08% 1.08% 8.60% 11.83% 12.90% 20.43% 23.91% 31.11% 
 

20.43% 

Physical 
position 

(Mb) 
11.26 11.40 16.29 17.86 19.24 19.24 21.38 22.21 24.57 25.47 27.87 29.26 

 
- 
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Table 4.S6. Annotations between 24.57 Mb (TTC8 marker) and 27.87 Mb (CiC3248-06 marker) in scaffold 

3 (www.phytozome.net). (Annotations related to resistance response are indicated in bold letters). 

Initial position 
(bp) 

final 
position (bp) 

Locus name Annotations 

24584262 24588809 Ciclev10023819m.g Aluminium activated malate transporter family protein 

24593002 24597811 Ciclev10023283m.g disease resistance protein (TIR-NBS-LRR class), putative 

24598362 24600642 Ciclev10020543m.g alpha/beta-Hydrolases superfamily protein 

24611867 24615456 Ciclev10024092m.g disease resistance protein (TIR-NBS-LRR class), putative 

24617312 24619000 Ciclev10021706m.g alpha/beta-Hydrolases superfamily protein 

24620623 24627357 Ciclev10020009m.g Enhancer of polycomb-like transcription factor protein 

24629370 24637605 Ciclev10018715m.g Alkaline-phosphatase-like family protein 

24669795 24674192 Ciclev10018914m.g disease resistance protein (TIR-NBS-LRR class), putative 

24674735 24676674 Ciclev10021413m.g alpha/beta-Hydrolases superfamily protein 

24683380 24686055 Ciclev10023561m.g FAR1-related sequence 5 

24687505 24689173 Ciclev10023487m.g F-box/RNI-like superfamily protein 

24717374 24720944 Ciclev10023733m.g disease resistance protein (TIR-NBS-LRR class), putative 

24722080 24724113 Ciclev10021643m.g alpha/beta-Hydrolases superfamily protein 

24726485 24731694 Ciclev10021199m.g Enhancer of polycomb-like transcription factor protein 

24732324 24734809 Ciclev10023873m.g Alkaline-phosphatase-like family protein 

24741494 24743967 Ciclev10021112m.g RHOMBOID-like protein 14 

24744597 24750079 Ciclev10019165m.g DEA(D/H)-box RNA helicase family protein 

24750794 24752907 Ciclev10022561m.g Ribosomal L18p/L5e family protein 

24753302 24753667 Ciclev10023727m.g Plant self-incompatibility protein S1 family 

24756088 24758749 Ciclev10018885m.g cation/H+ exchanger 19 

24768060 24768577 Ciclev10023601m.g NAC domain containing protein 46 

24777286 24779149 Ciclev10024369m.g Ankyrin repeat family protein 

24779630 24784345 Ciclev10018504m.g NB-ARC domain-containing disease resistance protein 

24785318 24795064 Ciclev10019018m.g MUTL-homologue 1 

24796351 24800588 Ciclev10019689m.g serine hydroxymethyltransferase 3 

24802124 24804993 Ciclev10022715m.g Surfeit locus protein 5 subunit 22 of Mediator complex 

24806596 24809323 Ciclev10023969m.g ribosomal protein L24 

24809538 24814289 Ciclev10020286m.g Transducin/WD40 repeat-like superfamily protein 

24815262 24816480 Ciclev10023234m.g bonsai 

24819124 24831081 Ciclev10018511m.g Transducin/WD40 repeat-like superfamily protein 

24831949 24837740 Ciclev10020270m.g methionine aminopeptidase 2B 

24837938 24840296 Ciclev10021676m.g Nucleic acid-binding, OB-fold-like protein 

24840386 24845254 Ciclev10019406m.g methylenetetrahydrofolate reductase 2 

24856909 24862275 Ciclev10024071m.g histone-lysine N-methyltransferase ASHH3 

24893551 24898675 Ciclev10019906m.g Peptidase family C54 protein 

24899223 24901003 Ciclev10020147m.g Galactose oxidase/kelch repeat superfamily protein 

24943610 24945394 Ciclev10022372m.g Ribosomal protein L6 family 

24949255 24954319 Ciclev10019784m.g Seven transmembrane MLO family protein 

24958927 24963659 Ciclev10023336m.g Seven transmembrane MLO family protein 

24966135 24969178 Ciclev10024611m.g NB-ARC domain-containing disease resistance protein 

24985138 24987298 Ciclev10023902m.g LRR and NB-ARC domains-containing disease resistance protein 

24991889 24992787 Ciclev10024232m.g NB-ARC domain-containing disease resistance protein 

24993845 24995370 Ciclev10024038m.g NB-ARC domain-containing disease resistance protein 

25026668 25030809 Ciclev10024551m.g LRR and NB-ARC domains-containing disease resistance protein 

25039430 25044580 Ciclev10020313m.g Seven transmembrane MLO family protein 

25044600 25051607 Ciclev10020879m.g protein serine/threonine kinases;ATP binding;catalytics 

25053425 25057795 Ciclev10020158m.g guanosine nucleotide diphosphate dissociation inhibitor 1 

25067469 25072314 Ciclev10019310m.g Ankyrin repeat family protein 

25074163 25076367 Ciclev10022861m.g auxin-regulated gene involved in organ size 

25085745 25086451 Ciclev10023183m.g 
 

25087317 25089114 Ciclev10020871m.g Late embryogenesis abundant protein, group 2 

25100778 25104843 Ciclev10018688m.g NB-ARC domain-containing disease resistance protein 

25158172 25162574 Ciclev10019028m.g Prolyl oligopeptidase family protein 

25169542 25170675 Ciclev10023618m.g 
 

25204996 25205221 Ciclev10024113m.g Chaperone DnaJ-domain superfamily protein 

25205365 25207063 Ciclev10023518m.g 
 

25216526 25220629 Ciclev10024119m.g LRR and NB-ARC domains-containing disease resistance protein 

http://www.phytozome.net/
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25248367 25251368 Ciclev10023445m.g indole-3-acetate beta-D-glucosyltransferase 

25269003 25272836 Ciclev10018531m.g LRR and NB-ARC domains-containing disease resistance protein 

25286483 25288105 Ciclev10019912m.g UDP-glucosyl transferase 75B2 

25318178 25322601 Ciclev10018594m.g LRR and NB-ARC domains-containing disease resistance protein 

25361089 25365339 Ciclev10018499m.g LRR and NB-ARC domains-containing disease resistance protein 

25398286 25402615 Ciclev10023525m.g NB-ARC domain-containing disease resistance protein 

25426124 25427403 Ciclev10024201m.g basic helix-loop-helix (bHLH) DNA-binding superfamily protein 

25432861 25433406 Ciclev10024286m.g BED zinc finger ;hAT family dimerization domain 

25441988 25444731 Ciclev10019183m.g RAP 

25445568 25448031 Ciclev10023789m.g ADP-glucose pyrophosphorylase small subunit 2 

25448858 25451858 Ciclev10022149m.g 
6,7-dimethyl-8-ribityllumazine synthase / DMRL synthase / lumazine synthase / 

riboflavin synthase 

25452062 25455844 Ciclev10020914m.g Dihydrodipicolinate reductase, bacterial/plant 

25458171 25463466 Ciclev10019560m.g Poly (ADP-ribose) glycohydrolase (PARG) 

25463711 25465970 Ciclev10020069m.g FBD, F-box, Skp2-like and Leucine Rich Repeat domains containing protein 

25470795 25473216 Ciclev10020065m.g F-box/RNI-like/FBD-like domains-containing protein 

25474880 25476924 Ciclev10024256m.g Thioredoxin superfamily protein 

25495290 25499648 Ciclev10023260m.g LRR and NB-ARC domains-containing disease resistance protein 

25539228 25543442 Ciclev10018540m.g LRR and NB-ARC domains-containing disease resistance protein 

25546089 25546373 Ciclev10023953m.g mitochondrial ribosomal protein L11 

25558189 25563873 Ciclev10018510m.g LRR and NB-ARC domains-containing disease resistance protein 

25563004 25563956 Ciclev10024474m.g 
 

25577398 25580479 Ciclev10023481m.g NB-ARC domain-containing disease resistance protein 

25591667 25592171 Ciclev10022922m.g 
 

25596184 25598211 Ciclev10019166m.g 
 

25598722 25601734 Ciclev10020079m.g F-box family protein 

25605171 25606024 Ciclev10023014m.g F-box/RNI-like superfamily protein 

25612741 25615635 Ciclev10023374m.g uridine-ribohydrolase  2 

25625682 25630835 Ciclev10019447m.g inositol 1,3,4-trisphosphate 5/6-kinase 4 

25633452 25636420 Ciclev10018897m.g Disease resistance protein (CC-NBS-LRR class) family 

25639011 25644826 Ciclev10019649m.g RNA-binding protein 

25645230 25649184 Ciclev10021021m.g chloroplast outer envelope protein 37 

25649848 25653317 Ciclev10024361m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

25657664 25663490 Ciclev10024293m.g Endonuclease/exonuclease/phosphatase family protein 

25663967 25668616 Ciclev10019293m.g Ankyrin repeat family protein 

25702085 25702716 Ciclev10023674m.g 
 

25740008 25740471 Ciclev10023198m.g Pectin lyase-like superfamily protein 

25756520 25759773 Ciclev10018637m.g Leucine-rich repeat receptor-like protein kinase family protein 

25784246 25784449 Ciclev10023998m.g 
 

25838882 25842061 Ciclev10023511m.g Leucine-rich repeat receptor-like protein kinase family protein 

25844828 25845232 Ciclev10024127m.g Plant self-incompatibility protein S1 family 

25920662 25925208 Ciclev10023567m.g Leucine-rich repeat receptor-like protein kinase family protein 

25929095 25929878 Ciclev10024445m.g Leucine-rich repeat receptor-like protein kinase family protein 

26006287 26009481 Ciclev10024013m.g Leucine-rich repeat receptor-like protein kinase family protein 

26027989 26031836 Ciclev10024332m.g Leucine-rich repeat receptor-like protein kinase family protein 

26054584 26055280 Ciclev10023832m.g Leucine-rich repeat receptor-like protein kinase family protein 

26061449 26062187 Ciclev10023220m.g gamma-glutamyl hydrolase 1 

26288659 26290508 Ciclev10021937m.g response regulator 9 

26297949 26304739 Ciclev10021153m.g Plant protein 1589 of unknown function 

26303573 26304130 Ciclev10023069m.g 
 

26308767 26309588 Ciclev10023742m.g FAR1-related sequence 5 

26439998 26440627 Ciclev10024302m.g FAR1-related sequence 5 

26480614 26486649 Ciclev10020055m.g cystathionine beta-lyase 

26487045 26487269 Ciclev10023935m.g Ribosomal protein L39 family protein 

26517176 26525778 Ciclev10019027m.g Trimeric LpxA-like enzyme 

26526425 26531920 Ciclev10021922m.g tubulin folding cofactor B 

26552200 26563660 Ciclev10018515m.g binding 

26585748 26586352 Ciclev10023130m.g 
 

26591205 26592308 Ciclev10024114m.g Glutaredoxin family protein 

26603126 26608232 Ciclev10021999m.g Eukaryotic rpb5 RNA polymerase subunit family protein 

26610747 26615954 Ciclev10021431m.g 
 

26618336 26621274 Ciclev10022600m.g Tetratricopeptide repeat (TPR)-like superfamily protein 



Chapter 4. Location of a genome region linked to ABS resistance in citrus 

143 

26660974 26662413 Ciclev10021720m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

26666978 26668075 Ciclev10024496m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

26671216 26672059 Ciclev10024436m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

26724892 26726825 Ciclev10023900m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

26747398 26748527 Ciclev10023903m.g TTF-type zinc finger protein with HAT dimerization domain 

26847877 26850055 Ciclev10021728m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

26886018 26886467 Ciclev10023695m.g 
 

26976583 26978658 Ciclev10021734m.g S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

27092414 27093612 Ciclev10024663m.g Zinc-binding dehydrogenase family protein 

27120138 27122618 Ciclev10024396m.g S-locus lectin protein kinase family protein 

27132311 27137357 Ciclev10023678m.g cysteine-rich RLK (RECEPTOR-like protein kinase) 8 

27160750 27163015 Ciclev10024040m.g Na+/H+ antiporter 6 

27174902 27177223 Ciclev10023619m.g MuDR family transposase 

27179651 27180616 Ciclev10024633m.g 
 

27182222 27186798 Ciclev10018865m.g Prolyl oligopeptidase family protein 

27202252 27203036 Ciclev10023045m.g hemoglobin 1 

27203532 27205968 Ciclev10024617m.g Zinc-binding dehydrogenase family protein 

27206738 27207496 Ciclev10023412m.g Zinc-binding dehydrogenase family protein 

27210508 27212925 Ciclev10023669m.g NB-ARC domain-containing disease resistance protein 

27218280 27219176 Ciclev10023093m.g 
 

27222437 27223126 Ciclev10022330m.g Ribosomal protein L2 family 

27236430 27242516 Ciclev10018492m.g LRR and NB-ARC domains-containing disease resistance protein 

27243916 27244600 Ciclev10023862m.g 
 

27252187 27258492 Ciclev10023613m.g LRR and NB-ARC domains-containing disease resistance protein 

27267893 27272240 Ciclev10018507m.g LRR and NB-ARC domains-containing disease resistance protein 

27274447 27274841 Ciclev10023703m.g Ribosomal protein L2 family 

27288919 27290352 Ciclev10023361m.g Zinc-binding dehydrogenase family protein 

27291189 27295420 Ciclev10024454m.g NB-ARC domain-containing disease resistance protein 

27320758 27322899 Ciclev10024530m.g NB-ARC domain-containing disease resistance protein 

27338257 27339658 Ciclev10023645m.g Ribosomal protein L2 family 

27365802 27371376 Ciclev10018509m.g LRR and NB-ARC domains-containing disease resistance protein 

27373577 27374040 Ciclev10024425m.g Ribosomal protein L2 family 

27378259 27383779 Ciclev10019887m.g Integrin-linked protein kinase family 

27385466 27391796 Ciclev10018983m.g LETM1-like protein 

27392621 27394211 Ciclev10020021m.g HXXXD-type acyl-transferase family protein 

27395608 27398058 Ciclev10020092m.g UDP-glucosyltransferase 74F2 

27411566 27413326 Ciclev10023826m.g UDP-glucosyltransferase 74F2 

27420861 27421928 Ciclev10024366m.g Protein kinase family protein with leucine-rich repeat domain 

27453996 27456865 Ciclev10023662m.g Leucine-rich repeat receptor-like protein kinase family protein 

27512875 27514002 Ciclev10024240m.g Leucine-rich repeat receptor-like protein kinase family protein 

27522643 27525763 Ciclev10023288m.g Leucine-rich repeat receptor-like protein kinase family protein 

27550207 27553496 Ciclev10024387m.g Leucine-rich repeat receptor-like protein kinase family protein 

27579560 27591874 Ciclev10024208m.g Leucine-rich repeat receptor-like protein kinase family protein 

27610925 27611502 Ciclev10023474m.g Leucine-rich repeat receptor-like protein kinase family protein 

27624874 27626398 Ciclev10021536m.g Protein kinase family protein with leucine-rich repeat domain 

27682550 27684073 Ciclev10024553m.g Protein kinase family protein with leucine-rich repeat domain 

27717305 27722483 Ciclev10023899m.g Protein kinase family protein with leucine-rich repeat domain 

27737586 27740735 Ciclev10018816m.g Leucine-rich repeat receptor-like protein kinase family protein 

27750059 27750755 Ciclev10022950m.g Ribosomal protein S5/Elongation factor G/III/V family protein 

27780847 27783988 Ciclev10018798m.g Leucine-rich repeat receptor-like protein kinase family protein 

27792547 27797748 Ciclev10020409m.g BTB and TAZ domain protein 3 

27798973 27801782 Ciclev10023071m.g Small nuclear ribonucleoprotein family protein 

27802944 27807050 Ciclev10019655m.g Thioesterase/thiol ester dehydrase-isomerase superfamily protein 

27807172 27813248 Ciclev10018774m.g formin homology 1 

27827995 27830405 Ciclev10019217m.g Leucine-rich repeat receptor-like protein kinase family protein 

27852621 27853757 Ciclev10023555m.g Eukaryotic release factor 1 (eRF1) family protein 

27856160 27856424 Ciclev10024351m.g 
 

27857215 27861301 Ciclev10018573m.g Disease resistance protein (TIR-NBS-LRR class) family 

27867691 27874119 Ciclev10018528m.g Disease resistance protein (TIR-NBS-LRR class), putative 
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Figure 4.S1. Values of F parameter from ANOVA along the nine linkage groups of the clementine’s 
genetic map (Ollitrault et al., 2012a) 
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Background 

Polyploidy is a major component of angiosperms evolution (Grant, 1981; Soltis and 

Soltis, 1993; Wendel and Doyle, 2005) and sexual polyploidization is considered as the major 

mechanism leading to polyploidy (Harlan and DeWet, 1975; Bretagnolle and Thompson, 1995; 

Ramsey and Schemske, 1998). In sexual polyploidization, polyploids are generated by the 

formation of diploid (2n) gametes, i.e., pollen or eggs having the somatic chromosome number 

rather than the gametophytic number (Harlan and DeWet, 1975; Bretagnolle and Thompson, 

1995; Ramsey and Schemske, 1998; Otto and Whitton, 2000), mainly resulting from a 

restitution of the meiotic cell cycle. This phenomenon is referred to as meiotic restitution and it is 

the predominant mechanism of unreduced gamete formation in plants (Harlan and DeWet, 

1975; Bretagnolle and Thompson, 1995; Otto and Whitton, 2000; Soltis and Soltis, 2009). The 

types of unreduced gametes produced result essentially from one of two basic processes 

depending on the mode of meiotic restitution (Bretagnolle and Thompson, 1995; Tavoletti et al., 

1996), i.e., first-division restitution (FDR) and second-division restitution (SDR), which occur, 

respectively, during abnormal development of the first and second meiotic division. 

A FDR-2n gamete contains non-sister chromatids, while a SDR-2n gamete contains two 

sister chromatids (Bretagnolle and Thompson, 1995; Tavoletti et al., 1996; Cai and Xu, 2007). 

Under FDR, non-sister chromatids retain the parental heterozygosity from the centromere to the 

first crossover point, and hence, the gametes transfer a large part of this parental 

heterozygosity and epistatic interactions to the progenies. Under SDR, the two sister chromatids 

are homozygous between the centromere and the first crossover point, and the resultant 

gametes have reduced levels of heterozygosity compared with FDR ones (Bretagnolle and 

Thompson, 1995). Therefore, the genetic constitution of unreduced gametes depends on the 

mechanism of their formation: a tighter distribution is expected in FDR-derived populations than 

in SDR ones because a higher percentage of the parental genome is transferred intact, 

resulting in a more uniform gamete production (Douches and Maas, 1998). In this context, 

insights in the mechanism underlying meiotic nuclear restitution producing unreduced gametes 

are crucial to optimize breeding strategies based on sexual hybridization (Errico et al., 2005). 

Sexual polyploidization is currently a central approach in citrus triploid breeding 

programs, aiming to develop new seedless mandarin cultivars (Ollitrault et al., 2008). Citrus 

triploid hybrids can be recovered mainly from sexual hybridizations of 2x × 2x [through 

unreduced gametes; (Aleza et al., 2010b)], 2x × 4x (Aleza et al., 2012c) and 4x × 2x (Cameron 

and Bernett, 1978; Esen et al., 1978; Aleza et al., 2012d). 

Esen et al. (1979) proposed that unreduced gametes in citrus result from the abortion of 

the second meiotic division (SDR) in the megaspore. This hypothesis has been corroborated by 

molecular marker analysis for clementines (Citrus clementina) (Luro et al., 2004; Aleza et al., 

2012b). However, Chen et al. (2008a) proposed that 2n eggs of sweet orange (C. sinensis) 

resulted from first meiotic division restitution (FDR). 
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Molecular marker analysis has proved as a very useful tool to estimate the 

heterozygosity transmission through the diploid gametes to polyploid progenies and, therefore, 

to identify the mechanism underlying unreduced gamete formation. This strategy was previously 

successfully applied for several crops (Barone et al., 1995; Vorsa and Rowland, 1997; 

Bastiaanssen et al., 1998; Barcaccia et al., 2003; Luro et al., 2004; Chen et al., 2008a; Hayashi 

et al., 2009). However, the estimation of molecular marker allele copy number has long been 

considered as a challenge for polyploid species with polysomic inheritance. Assignment of 

allelic configurations for different types of heterozygous polyploids is essential for accurate 

genetic studies, such as segregation analyses and marker-trait association. Moreover, single 

nucleotide polymorphisms (SNPs) have emerged as the most widely used genotyping markers 

due to their abundance in the genome and increasing available data from sequencing projects. 

In addition, newly developed genetic maps have utilized information on SNP marker 

segregations. In this context, new methods to assign SNP allele configuration in polyploids 

should be considered. 

On the other hand, trait segregations in triploid populations are still not well understood, 

due to the complexity of polyploid genomes and eventually non-Mendelian segregations. In the 

case of citrus, very few characters have been studied on the basis of triploid genomes, and 

genetics underlying their segregations have not been characterized in any case. 

In this thesis, we have (i) developed a new method for genotyping heterozygous 

polyploid plants with SNP markers, (ii) proposed two methods for the identification of the origin 

of 2n gametes from genetic markers segregation data and (iii) applied them to study the origin 

of 2n ovules in mandarin germplasm. Finally, (iv) we analyzed the inheritance of resistance to 

the fungus causing Alternaria brown spot as a case of single trait segregation on triploid 

populations. We have taken advantage of the acquired knowledge on 2n gamete origin to locate 

a genome region controlling the resistance trait by half tetrad analysis, and to identify candidate 

genes. From these data, we have developed SSR and SNP markers for MAS. 

 

Competitive Allele-Specific PCR is an efficient method to assign SNP allelic configuration 

in heterozygous polyploid genotypes 

When analysing microsatellite markers (SSRs), the microsatellite allele counting – peak 

ratios method [MAC-PR; (Esselink et al., 2004)] is especially useful in assignment of allelic 

configurations in polyploids. However, SSR analysis remains relatively costly and time 

consuming compared with SNP genotyping methods. In this sense, several SNP genotyping 

methods have been developed (Ronaghi et al., 1998; Sapolsky et al., 1999; Ahmadian et al., 

2000; Fan et al., 2003; Kwok and Xiao, 2003; Lavebratt et al., 2004; Ishikawa et al., 2005; 

Tabone et al., 2009). The KBiosciences Competitive Allele-Specific PCR SNP genotyping 

system [KASPar; (Cuppen, 2007)] is a simple and cost-effective system compared with other 
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SNP genotyping assays and is well adapted to low- to medium- throughput genotyping projects 

(Chen et al., 2010). In this thesis, we have demonstrated that the relative allele signal of 

KASPar technique was highly correlated with relative allele doses and this method, combined 

with analysis of the allele signal data, has been useful for genotyping citrus triploid and 

tetraploid progenies (Cuenca et al., 2013a). Moreover, it could also be used in the semi-

quantitative analysis of relative allele-specific expression. KASPar technique is much more 

adapted for small- to medium- scale studies than the SNP genotyping methods previously used 

in polyploidy species (Bérard et al., 2009; Trick et al., 2009; Oliver et al., 2011; Trebbi et al., 

2011; Voorrips et al., 2011; Byers et al., 2012; Han et al., 2012). Indeed, these methods are 

more suitable for high-throughput genotyping than for performing small-scale analysis, and lack 

flexibility in terms of the numbers and panels of SNP loci that can be analyzed, while it is 

possible to design targeted KASPar assay for each specific study. Moreover, several of the 

previously used methods (Bérard et al., 2009; Voorrips et al., 2011) base the assignment of 

allele doses in polyploidy plants on statistical approach, assuming Hardy-Weinberg equilibrium, 

which is often not respected, particularly when working with progenies arising from 2n gametes. 

In our work, we have demonstrated that Competitive Allele-Specific PCR is an effective and 

versatile method to infer SNP allelic configurations in polyploid plants and developed KASPar 

markers that are currently routinely used for triploid and tetraploid genotyping in the IVIA citrus 

breeding program.  

 

Two new alternative approaches to identify the mechanism leading to unreduced gamete 

formation based on molecular marker (HR restitution) analysis have been developed 

Identifying the restitution mechanism using molecular markers can be achieved by 

several approaches. Half-tetrad analysis (HTA) developed by Mendiburu and Peloquin (1979) is 

a powerful method for mapping centromeres, or for determining the mode(s) of 2n gamete 

formation. Tavoletti et al. (1996) developed a multilocus maximum likelihood method of HTA 

that allows the estimation of both the relative frequencies of FDR and SDR 2n gametes and the 

centromere location within a linkage group without relying on previously identified centromeric 

markers. However, all these models assume complete chiasma interference. 

In this study, two alternative approaches have been proposed to check FDR/SDR 

hypothesis and, eventually, map the centromeres within linkage groups. For these two methods, 

molecular markers are selected to be heterozygous in the 2n gamete producer parent and to be 

polymorphic between the two parents. With this marker configuration, it is possible to infer the 

2n gamete genotypes from the triploid progeny ones. The first developed approach is based on 

functions of parental heterozygosity restitution in the 2n gamete (HR), along a chromosome in 

relation with locus-centromere distance (d) (Zhao and Speed, 1998a). Indeed, under FDR or 

SDR, HR is a direct function of the crossing over frequency between the considered locus and 

the centromere. It is therefore possible to implement functions (HR=f(d)) according to the FDR 
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and SDR hypothesis taking into account different models of chromosome interference (no 

interference, partial interference or complete chiasma interference). This strategy has been 

successfully applied during this thesis in ‘Fortune’ mandarin. The second alternative proposed 

to check FDR/SDR hypothesis is a maximum likelihood approach, based on the HR of 

independent markers closely linked to centromere of different chromosomes. Taking advantage 

of the centromere location (Aleza et al., 2012b)  within all nine linkage groups of the current 

clementine’s reference genetic map (Ollitrault et al., 2012a), centromeric markers were selected 

to analyze the predominant mechanisms for 16 mandarin genotypes used as female parents 

and to check potential variability of origin between 2n gametes of a same parent. 

The first newly developed method allows the identification of the unreduced gamete 

formation mechanism without any previous knowledge about centromere location, but it is 

necessary to analyze numerous markers with good dispersion in the chromosomes in large 

populations. In this method, the information on the mechanism is obtained at population level. 

Compared with previously published approaches of HTA (Mendiburu and Peloquin, 1979; 

Werner et al., 1992; Johnson et al., 1995; Tavoletti et al., 1996; Park et al., 2007) this new 

approach has the advantage to allow testing for no interference or partial interference models, 

but needs a set of previously mapped markers; on the other hand, HTA models assume total 

interference, but they could be applied without any previous  information on marker order. In 

addition, this new method allows the identification of the restitution model and the estimation of 

the centromere location at the same time. During this thesis, it has been used to locate the 

centromere on chromosome II of ‘Fortune’ mandarin (Cuenca et al., 2011) and recently to map 

the centromeres on all 9 clementine chromosomes (Aleza et al., 2012b). 

The second developed approach requires a previous location of centromeres, but is 

much more efficient than all previous methods. Indeed, it need a limited number of centromeric 

markers and has the advantage that allows deducing the restitution mechanism both at 

individual and population level, while the first developed one is only applicable at population 

level, requiring larger number of genotyping points (numerous markers and individuals) to give 

robust conclusions. 

 

SDR is the preeminent mechanism leading to unreduced ovule formation in mandarins 

In this thesis, the restitution mechanism leading to unreduced gamete formation has 

been uncovered for 16 mandarin genotypes by molecular marker analysis. Firstly, all the 

analyzed triploid hybrids in the progenies of 2x × 2x crosses were found to arise from 

unreduced megaspores. This result is in agreement with the cytogenetic observations of Esen 

and Soost (1971), and with previous molecular observations (Luro et al., 2004; Chen et al., 

2008a; Ferrante et al., 2010). To date, very few cases of citrus triploid hybrids occurrence in 2x 

×  2x crosses from unreduced pollen has been reported (Luro et al., 2004; Chen et al., 2008a). 
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The first approach described above allowed concluding that SDR, rather than FDR, was 

much more likely to be the mechanism underlying unreduced gamete formation in ‘Fortune’ 

mandarin and evidenced positive chiasma interference. Using the second approach, SDR has 

been identified as the preeminent restitution mechanism leading to unreduced gamete formation 

in all mandarin genotypes analyzed. Indeed among 497 triploid hybrids arising from 16 female 

genotypes studied, significant conclusions for SDR were obtained for 85.3%, but only 0.6% for 

FDR. The un-conclusive results for 14.1% of the analyzed triploids can be explained by 

insufficient number of markers analyzed in some families and/or the higher distance of some of 

these markers to the centromere. 

This global conclusion for SDR restitution mechanism is in agreement with that 

proposed by Luro et al. (2004), who observed low heterozygosity restitution in clementine 2n 

megagametophyte. The conclusion of FDR given for sweet orange (Chen et al., 2008a) is 

questionable because of the low number of analyzed markers without knowledge of their 

distance to centromere. Indeed, the unambiguous identification of FDR without previous 

location of the centromere must be based on a large set of markers with good genome 

coverage. In the same way, the results of Ferrante et al. (2010), based on a very low number of 

individuals and markers for each parental genotype are not sufficient to prove the authors’s 

conclusions of SDR for ‘Fortune’ and ‘Wilking’ mandarin and FDR for lemon. 

 

Triploid recovery strategy and restitution mechanism leading to unreduced gamete 

formation directly affect single character segregations in triploid progenies. The case of 

Alternaria brown spot resistance 

The main factor affecting trait inheritance in triploid progenies is the strategy of triploid 

breeding (Ollitrault et al., 2008) with strong differences between the sexual polyploidization 

approach (2x × 2x crosses with unreduced gamete formation) and interploid crosses (2x × 4x or 

4x × 2x). Indeed, it affects the transmission of the parental heterozygosity to the diploid gamete. 

In sexual polyploidization, two factors affect the transmission of the parental 

heterozygosity to the offspring: the mechanism of the 2n gamete formation (FDR or SDR), and 

the genetic distance from the considered locus to the chromosome centromere (Douches and 

Quiros, 1988). In 2x × 2x citrus crosses, most studies have demonstrated that triploid progeny 

arose from diploid megagametophyte (Esen and Soost, 1971, 1973). In this thesis, we have 

demonstrated that 2n megagametophyte resulted from SDR in the mandarin group, as 

previously proposed by Luro et al. (2004) for clementines. For interploid crosses, most of the 

tetraploid parents used in citrus breeding arise from chromosome doubling in nucellar cells of 

apomictic diploid parents (Aleza et al., 2011). Therefore, doubled diploid mandarins should be 

considered as autotetraploids and tetrasomic inheritance should be expected (Kamiri et al., 

2011). In such situation, the frequency of diploid gametes that receive a locus in heterozygosis 
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from the tetraploid parent varies between 0.55 and 0.66 depending on the double reduction 

frequency (Marsden et al., 1987). 

Segregations for the single inherited character Alternaria brown spot (ABS) resistance 

have been analyzed in this study for several triploid recovery strategies and parental 

combinations. ABS is a major fungal disease in some mandarin cultivars that causes a 

substantial loss of production and fruit quality worldwide (Akimitsu et al., 2003; Timmer et al., 

2003). As a consequence, the production of susceptible cultivars, such as 'Fortune' or ‘Nova’, 

among others, has declined significantly during recent years and many trees of the most 

susceptible varieties have been removed and replaced by resistant cultivars, which may lack 

some of the interesting agronomic traits of these susceptible cultivars (Navarro et al., 2005). In 

addition, many of actual triploid breeding programs (Mourao Fo et al., 1996; McCollum, 2007; 

Aleza et al., 2010a, 2010b; Cuenca et al., 2010; Grosser et al., 2010; Aleza et al., 2012c, 

2012d; Froelicher et al., 2012; Navarro et al., 2012) use ABS susceptible cultivars as parents, 

due to their interest for other important traits (fruit quality, maturing period, production) and 

particular reproductive biology (monoembryony, high rate of unreduced 2n gamete formation). 

Therefore, ABS resistance must be considered as a major selection criterion in the mandarin 

breeding programs and early efficient selection of ABS resistant hybrids is of central 

importance. 

In this thesis, the monolocus dominant inheritance of the susceptibility, proposed from 

diploid population studies (Dalkilic et al., 2005; Gulsen et al., 2010), was corroborated in triploid 

progenies by studying the segregations in several parent combinations and triploid recovery 

strategies. Moreover, a genome region including the ABS resistance (ABSr locus) was identified 

by genetic studies based in linkage disequilibrium. 

The first information regarding the location of the ABSr locus was given directly by the 

analysis of the segregation between susceptible and resistant triploid hybrids in progeny 

obtained by sexual polyploidization (2n gametes), assuming monolocus recessive determination 

of the resistance. Indeed, for 2n gametes, there is a direct linkage between parental HR (and 

therefore, the proportion of resistant and susceptible hybrids) and the genetic distance to the 

centromere. At this step, ABSr locus was identified to be relatively close (10.5 cM) to one 

centromere. 

The ABSr locus was then located performing Bulk Segregant Analysis (BSA) coupled 

with genome-scan using SNP markers mapped in the clementine’s reference genetic map 

(Ollitrault et al., 2012a). This approach allowed localization of the ABS resistance locus within a 

13.1 cM area on chromosome III of the genetic map of clementine, corresponding to 15 Mb of 

scaffold 3 of the current clementine whole genome assembly (www.phytozome.net). This 

genomic region was further examined for additional SSR and SNP markers, which were used 

for de novo mapping of the area by HTA of 2n gamete inferred from triploid hybrid genotypes. 

Results allowed identifying two flanking markers, located at 3.77 and 1.71 cM of the candidate 

http://www.phytozome.net/
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ABS resistance gene, and another one that appeared to be tightly linked to the ABSr locus. This 

marker frame is much more closely linked than previous markers identified from diploid 

segregating progenies by Dalkilic et al. (2005) (15.3 and 36.7 cM) and Gulsen et al. (2010) (3 

and 13 cM). A 3.3 Mb is now delimited and it has been found that a large number of resistance 

genes, organized in several clusters, which have been annotated. 

The closest markers are being currently used for molecular marker-assisted selection in 

our triploid breeding program. However, it would be necessary to analyze many more hybrids to 

accurately estimate their linkage with the ABSr locus and to perform fine mapping with 

additional markers mined in the corresponding genomic sequence. 

Due to the centromeric position of this gene and the recessivity of the resistant trait, the 

2x × 2x breeding strategy appears much more efficient to obtain resistant hybrids than the 

interploid strategy when susceptible heterozygous parents need to be used as diploid gamete 

producer. Indeed, with the 2x × 2x, about 40% of resistant genotypes are obtained, whereas this 

percentage varies between 16.7% and 22.5% with the interploid strategy. 

 

Global implication of the diploid gamete origin on triploid breeding strategy 

Cultivar breeding implies selection on multiple traits, many of them having a complex 

genetic determinism. If restrictive traits such as ABS susceptibility can orient a strategy when 

heterozygous susceptible parent is used, the choice of the breeding scheme should be globally 

more conducted by the targeted kind of innovation. Assuming an SDR origin of 2n gametes in 

mandarins, sexual polyploidization may lead to lower average of heterozygosity restitution than 

interploid hybridization, whatever the segregation model considered for the doubled diploid 

(Marsden et al., 1987). As heterozygosity and epistatic interactions are maintained for a great 

number of individuals in the progeny from interploid crosses with doubled-diploid, this triploid 

breeding strategy should be more efficient than 2x × 2x hybridization for developing new 

cultivars that are phenotypically close to the genitor giving the diploid gamete. Conversely, 2x × 

2x hybridization should produce more polymorphic progenies, by creating larger number of new 

multilocus allelic combinations (David et al., 1995), providing the opportunity to select innovative 

products within the perspective of market segmentation as a commercial strategy. 

 

 

 

 

 



General discussion 

154 

Perspectives 

 

An alternative way for SNP genotyping in polyploids, based in Competitive Allele-

Specific PCR, has been proposed and successfully applied in triploid populations. This 

approach is very powerful and particularly adapted for studies needing a limited number of 

markers (a few hundred). However, for pangenomic studies (particularly, in progeny of two 

highly heterozygous parents as in Citrus), methods based on next-generation sequencing such 

as Genotyping-by-sequencing (GBS) should be much more adapted. With enough sequencing 

coverage, these method should be applied efficiently to estimate allele doses in polyploid plants 

in a pangenomic way and should be the preeminent approach for marker-trait association 

studies both in diploid and polyploid citrus. 

The mechanism of unreduced megagametophyte formation has been elucidated for 

several monoembryonic mandarin genotypes. Further studies on polyembryonic mandarin 

genotypes and other ancestral and secondary species, such as citron, pummelo, grapefruit, 

sweet orange, lemon or lime could determine whether the same mechanism or any other is 

involved in the unreduced female gamete formation in citrus germplasm. The use of 2n pollen, 

revealed at low frequency by a few works should also be explored to produce triploid progeny in 

2x × 2x crosses. Moreover, further knowledge on environment influence as well as molecular 

insights on unreduced gamete formation in citrus would aid in altering frequencies of unreduced 

gamete formation. 

Segregations for the single inherited character Alternaria brown spot (ABS) resistance 

have been analyzed in this study for several triploid recovery strategies and parental 

combinations. In addition, molecular markers have been developed for marker-assisted 

selection. With the genomic region linked to ABS resistance indentified, further sequence 

analyses would allow selecting markers closer to the ABS resistance gene for selection within 

many parental combinations. Several candidate genes have been identified within this region; 

therefore, fine mapping based on large progeny genotyped with additional markers and 

functional analyses of the genes remaining between newly identified flanking markers would 

permit identifying the gene(s) controlling ABS resistance in citrus. In the same way, inheritance 

in other agronomic traits should be studied, even those with complex determinism. 
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A new method for genotyping heterozygous polyploids using SNP markers by 

competitive-allele specific PCR (KASPar) has been developed 

KASPar technique combined with analysis of the allele signal data is an alternative 

method to infer SNP allelic configurations in polyploid plants that offers a wider spectrum of 

genotyping possibilities. Moreover, quantitative analyses for correlation of the allele signals and 

the allele doses and sample clustering carried out in this work were powerful techniques for 

assigning allelic configurations. Therefore, it could also be used in the quantitative analysis of 

allele-specific expression. 

 

Two alternative approaches identify SDR as the mechanism leading to unreduced gamete 

formation in mandarins, based on molecular marker heterozygosity restitution analysis 

The first approach is based on functions of heterozygosity restitution along a 

chromosome in relation with locus-centromere distance. This strategy has been successfully 

applied in this study for ‘Fortune’ mandarin and allowed mapping the centromere on 

chromosome II of the current clementine’s genetic map. This strategy was used to conclude that 

SDR, rather than FDR, is much more likely to be the mechanism underlying unreduced gamete 

formation in ‘Fortune’ mandarin and evidenced positive chiasma interference. This same 

strategy has been later applied by Aleza et al. (2012b) to map centromeres on all nine citrus 

chromosomes. 

The second approach proposed to check FDR/SDR hypothesis is a maximum likelihood 

approach, based in the heterozygosity restitution of independent markers closely linked to 

centromere of different chromosomes. This method has the advantage that allows deducing the 

restitution mechanism at population level or even at individual level. Using this second 

approach, SDR has been identified as the restitution mechanism leading to unreduced gamete 

formation in a wide range of mandarin genotypes used as female parents in triploid breeding 

programs. 

 

The monolocus inheritance and recessivity of the Alternaria brown spot (ABS) resistance 

was confirmed in triploid progeny and the ABSr locus was mapped in the chromosome III 

genetically close to the centromere 

The monolocus inheritance of the resistance to ABS, proposed on the basis of diploid 

segregation studies was corroborated in triploid progeny by studying the segregations in several 

parent combinations and triploid recovery strategy. Taking advantage of the particular genetic 

structures of 2n gametes resulting from second division restitution (SDR), segregation analysis 

allowed mapping the ABSr locus genetically at 10.5 cM close to a centromere at a first step. 
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Bulk segregant analysis coupled with genome-scan using SNP markers mapped in the 

reference genetic map allowed locating the ABS resistance locus within a 13.1 cM area on 

chromosome III, corresponding to 15 Mb of the scaffold 3 in the current whole genome 

assembly. 

 

Molecular markers flanking the ABSr locus were selected for use in marker-assisted 

selection (MAS) 

Two flanking markers at 3.77 and 1.71 cM of the ABSr locus, as well as a third marker 

that did not exhibit any recombination are currently being used in marker-assisted selection in 

the IVIA mandarin breeding program. These markers should be used together for efficient early 

MAS for different parental combinations when the markers are heterozygous in the susceptible 

parent and polymorphic between the two parents. We are currently sequencing DNA fragments 

between these two markers to identify SNP loci that provide a useful allelic combination for a 

wider range of crosses of our mandarin breeding program. 

 

Gene ontology reveals clusters of resistance genes in the ABSr locus:  a first step 

towards identification of ABS resistance gene 

 The ABSr locus is included in a genomic region very rich in disease resistance 

homologous genes, organized in clusters. A probable function for the gene of interest is to 

encode a protein involved in ACT-toxin recognition, which would allow the toxin to cause cell 

death. With the genomic region containing ABSr locus mapped, the identification of the gene for 

ABS resistance will involve fine mapping with large diploid populations. For this purpose, SNP 

markers are currently being developed from each candidate gene. From the reduced set of 

candidate genes that would result from this fine genetic mapping, functional validation could be 

performed by genetic transformation or viral vector-induced gene silencing. 
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