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ABSTRACT

Due to mining, industrial wastewater discharge and agricultural fertilization and other human activities, 
heavy metal cadmium pollution in water bodies has become increasingly prominent. In this study, 
the sulfidated nanoscale zero-valent iron was prepared by the method of liquid-phase reduction. The 
removal behaviour of Cd(II) ion in aqueous solution and the effect of pH in solution on its removal 
rate were investigated. The synthesized materials before and after the adsorption reaction were 
characterized by scanning electron microscopy, X-ray diffraction and Zeta potential tester. The removal 
mechanism of Cd(II) ion in solution was explored in details. The results showed that the S-nZVI 
particles present a polymeric sheet. They contained Fe0, Fe3O4 and FeS. The removal rate of Cd(II) ion 
by the S-nZVI particles is higher than the nZVI particles. The reaction mechanism for S-nZVI particles 
to remove Cd(II) ion is that Cd(II) ion replaces Fe in FeS and then combines with S to form stable CdS 
compound. S has a significant effect on the oxidation process of iron. 

INTRODUCTION

The heavy metal cadmium is a non-essential element of the 
human body. It mainly comes from the discharge of industrial 
wastewater such as mining, electroplating, batteries, smelting 
and dyes (Su et al. 2015). At present, the presence of heavy 
metal of cadmium can be detected in the environment (Lv 
et al. 2018). Compared with other heavy metals, cadmium 
has higher fluidity and is easily absorbed by plants. Addi-
tionally, it also can be enriched in the human body through 
the food chain, thus causing serious harm to human health 
(Qiu et al. 2018). Nowadays, the treatment techniques for 
removing cadmium from water mainly include adsorption, 
precipitation, ion exchange, membrane separation and so on 
(Zhang et al. 2014, Soleymanzadeh et al. 2015). Among these 
methods, the adsorption method mainly uses some chemical 
and biological adsorbents, such as activated carbon, hydrogel, 
carbon nanotubes, bagasse and so on. Precipitants commonly 
used in precipitation methods are sulphides, hydroxides and 
iron oxides (Gil-Díaz et al. 2017, Hu et al. 2017). These 
treatment techniques limit their large-scale applications due 
to cost or treatment efficiency issues. Therefore, there is an 
urgent need to develop more treatment methods for cadmium 
removal efficiency, low cost, and environmental friendliness.

Nano zero-valent iron (nZVI) is widely used in the 
pollution control of groundwater and soil heavy metals due 
to its high reactivity (Li et al. 2016, Zhu et al. 2019). The 

nZVI particles have a unique core-shell structure in which 
the core is Fe(0) and the shell is FeOOH based iron oxide. 
In the processing of reaction with heavy metals, the nucleus 
acts as an effective electron donor to reduce the nZVI par-
ticles (Vaidotas et al. 2018). The shell provides adsorption 
points for the removal of heavy metals, and the core has a 
special complimentary effect with the shell (Li et al. 2017a). 
However, the removal efficiency of nZVI particles for heavy 
metal cadmium ion in solution close to its oxidation-reduc-
tion potential is low and unstable (Li et al. 2017b, Meghdad 
et al. 2019). 

In recent years, many researchers have found that sulfi-
dated nZVI particles can further increase its reactivity and 
selectivity, depending on the type and amount of sulfidated 
agent, the synthesis method and the target contaminant 
(Soleymanzadeh et al. 2015, Janja et al. 2018). The com-
monly used sulfidated agents for the preparation of sulfidated 
nZVI particles are sodium sulphide, sodium dithionite and 
sodium thiosulfate (Kong et al. 2016). In the study of the 
synthesis method, the synthesis according to the sulfidated 
agent is added before and after the formation of nZVI can 
be divided into a one-step method and a two-step method. 
Han & Yan (2016) studied the effects of different sulfidated 
agents and synthetic methods on the degradation of trieth-
ylene compounds. The results showed that the effect of 
the degradation rate of triethylene was independent of the 
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sulfidated agent and the synthesis method, but was related 
to the ratio of S/Fe. The S-nZVI particles were synthesized 
with a two-step process using Na2S as a sulfided agent and 
removed the 99TcO4

- ion in solution. The experimental results 
showed that 99TcO4

- was reduced to TcO2 and fixed to the 
surface (Fan et al. 2013).

In this research, the main objective is 1) the S-nZVI parti-
cles were prepared by the method of liquid-phase reduction; 
2) the adsorption of Cd(II) by the S-nZVI particles was tested; 
3) The synthesized materials before and after the adsorption 
reaction were characterized by scanning electron microscopy, 
X-ray diffraction and Zeta potential tester; 4) The removal 
mechanism of Cd(II) ion in solution was explored.

MATERIALS AND METHODS

Preparation of S-nZVI 

The S-nZVI was prepared by the method of liquid-phase 
reduction and a two-step method. 1 L 0.25 mol/L NaBH4 
solution was gradually added to a beaker containing 1 L 
0.045 mol/L FeCl3 solution. The solution was stirred by an 
electric stirring bar at the speed of 600 r/min, and the stirring 
operation was continued for 15 min after completion of the 
mixture reaction. The mixture was filtered through a Buchner 
funnel. The collected solid particles were rinsed 3 times with 
deionized water and then washed once with absolute ethanol. 
The nZVI particles were obtained. Ten g of nZVI particles 

be seen from Fig. 1(a), the surface of synthetic nZVI particles exhibited a chain shape. 

After sulfidation, the surface of the S-nZVI particles exhibits a polymeric sheet 

structure (Fig. 2(b)). 

 

 

 

 

 

 

 

  

Fig. 1: SEM images of nZVI and S-nZVI [(a) nZVI particles and (b) S-nZVI 

particles]. 

 

Fig. 2 is a graph showing the zeta potential of nZVI particles and S-nZVI 

particles as a function of pH. It can be seen from Fig. 2 that as the pH increases, the 

zeta potential gradually changes from a positive value to a negative value. The zeta 

potential of nZVI particles and S-nZVI particles are 8.91 and 5.95.  
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Fig. 2: The zeta potential of nZVI particles and S-nZVI particles as a function of pH. 

The results of XRD in Fig. 3 showed that the synthetic nZVI particles have 
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Fig. 2: The zeta potential of nZVI particles and S-nZVI particles as a function of pH. 
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were weighed into a 250 mL beaker containing 150 mL 215 
g/L Na2S solution and then shaken for 15 min at the speed 
of 600 r/min. Then, the S-nZVI particles were obtained for 
the experiment.

Characterization of S-nZVI

The morphology of S-nZVI particles was observed with SEM 
(JEOL 6500F, Japan). The XRD analysis was conducted in 
a D/Max-IIIA Powder X-ray Diffractometer (Rigaku Corp., 
Japan). The Zeta-potential was determined by Zeta potential 
tester (DT-1202, U.S.A.).

Adsorption Experiment

Adsorption experiments were conducted in a set of 250 mL 
Erlenmeyer flasks containing 0.1 g the S-nZVI and 100 mL 
of 200 mg/L Cd (II) ion solutions. The initial pH was adjusted 
to 4.0 with 1 mol/L HCl. The flasks were placed in a shaker 
at a constant temperature of 298 K and 200 rpm. The samples 
were filtered and analysed.

Analytical Methods

The concentration of cadmium ions was analysed by atomic 
absorption spectrophotometry. The amount of adsorbed Cd 
(II) ion qt (mg/g) at different times, was calculated as follows:
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Where, C0 and Ct (mg/L) are the initial and equilibrium concentrations of Cd(II) 

ion in solution respectively. Q is the degradation rate of Cd(II) ion. 

Statistical Analyses of Data 

All the experiments were repeated in duplicate and the data of results were the 

mean and the standard deviation (SD). The value of the SD was calculated by Excel 

Software. All error estimates given in the text and error bars in figures are the 

standard deviation of means (mean ± SD). All statistical significances were noted at 

α=0.05 unless otherwise stated. 
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This peak is the characteristic peak of a – Fe0. It also 
indicates that the synthetic nZVI particles are mainly present 
in the form of a – Fe0 . There is no characteristic peak of iron 
oxide found in the synthetic nZVI particles. It may be the 
reason that the synthetic nZVI particles have low iron oxide 
content or a poor crystallinity and exist in an amorphous 
state (Sikder et al. 2014).

The synthetic S-nZVI particles detected a broad a – Fe0  
peak at 2q=44.6°. It indicates that the crystallinity of a – Fe0  

becomes low after the sulfidation treatment.

Besides, characteristic peaks of Fe3O4 and FeS were also 
detected. It indicates that the nZVI particles are loaded with 
S (Li et al. 2018).

Removal of Cadmium

Fig. 4 shows the removal rate of Cd(II) ion by the nZVI 
particles and the S-nZVI particles. As shown in Fig. 4, in 
the first 30 minutes, the removal rates of Cd(II) ion by the 

S-nZVI particles is higher than the nZVI particles. The removal rate of Cd(II) ion by 

the S-nZVI particles reaches 96.1% at 30min.  

 

 
Fig. 4: Removal rate of Cd(II) ion by the nZVI particles and the S-nZVI particles. 
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nZVI particles and the S-nZVI particles are increasing. At 
30 minutes, the removal rate of Cd(II) ion reached its maxi-
mum. Subsequently, the removal rate of Cd(II) ion increases 
very little. Additionally, the removal rate of Cd(II) ion by 
the S-nZVI particles is higher than the nZVI particles. The 
removal rate of Cd(II) ion by the S-nZVI particles reaches 
96.1% at 30min. 

Reaction Mechanism of Cadmium Removal

Fig. 5 is SEM images of the nZVI particles and S-nZVI parti-
cles after the reaction. As can be seen from the figure that the 
surface of the nZVI particles and S-nZVI particles is oxidized 
to a shape of a random sheet after reaction with Cd(II) ion in 
solution. The XRD of nZVI particles and S-nZVI particles 
after the reaction with Cd(II) ion is shown in Fig. 6. 

It can be seen from Fig. 6 that there are strong g–FeO(OH) 
characteristic peaks in the nZVI particles and S-nZVI par-
ticles after the reaction with Cd(II) ion in solution. The FeS 
characteristic peak disappeared and a CdS characteristic 
peak was detected. This indicates that Cd(II) ion will react 
with Fe in FeS compound to generate CdS. Additionally, the 
weak S0 characteristic peaks were also detected. This may 
be due to the action of FeS in the reaction and the residual 
O2 in the solution (Crane et al. 2018, Holmes & Crundwell 
2013 and Xia et al. 2010). After the reaction of nZVI with 
Cd(II) ion, the iron oxidation product in the material is mainly 
g–FeO(OH). For S-nZVI, the iron oxidation product in the 
material is mainly g–FeO(OH)  and a – Fe2O3. This indicates 
that S has a significant effect on the oxidation process of iron 
(Hardiljeet et al. 2011, Xue et al. 2018).

CONCLUSIONS

	(1)	  The S-nZVI particles were prepared by the method 

of liquid-phase reduction and a two-step method. The 
S-nZVI particles present a polymeric sheet. They con-
tain Fe0, Fe3O4 and FeS.

	(2)	 The removal rate of Cd(II) ion by the S-nZVI particles 
is higher than the nZVI particles.

	(3)	 The reaction mechanism for S-nZVI particles to remove 
of Cd(II) ion is that Cd(II) ion replaces Fe in FeS and 
then combines with S to form stable CdS compound. S 
has a significant effect on the oxidation process of iron.
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