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Matrices with restricted entries and q-analogues of
permutations

Joel Brewster Lewis, Ricky Ini Liu, Alejandro H. Morales,

Greta Panova, Steven V. Sam and Yan X. Zhang

We study the functions that count matrices of given rank over a fi-
nite field with specified positions equal to zero. We show that these
matrices are q-analogues of permutations with certain restricted
values. We obtain a simple closed formula for the number of invert-
ible matrices with zero diagonal, a q-analogue of derangements, and
a curious relationship between invertible skew-symmetric matrices
and invertible symmetric matrices with zero diagonal. In addition,
we provide recursions to enumerate matrices and symmetric ma-
trices with zero diagonal by rank, and we frame some of our results
in the context of Lie theory. Finally, we provide a brief exposition
of polynomiality results for enumeration questions related to those
mentioned, and give several open questions.

1. Introduction

Fix a prime power q. Let Fq denote the field with q elements and letGL(n, q)
denote the group of n × n invertible matrices over Fq. The support of a
matrix (Aij) is the set of indices (i, j) such that Aij �= 0. Our work was
initially motivated by the following question of Richard Stanley: how many
matrices inGL(n, q) have support avoiding the diagonal entries? The answer
to this question is

q(
n−1

2 )−1(q − 1)n

(
n∑

i=0

(−1)i
(
n

i

)
[n− i]q!

)
,

which is proven in Proposition 2.2 as part of a more general result. This
question has a natural combinatorial appeal and is reminiscent of the work
of Buckheister [Buc] and Bender [Ben] enumerating invertible matrices over
Fq with trace zero (see also [Sta1, Prop. 1.10.15]). It also falls naturally
into two broader contexts, the study of q-analogues of permutations and
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the study of polynomiality results for certain counting problems related to
algebraic varieties over Fq.

In the former context, we consider the following situation: fix m,n ≥ 1,
r ≥ 0, and S ⊂ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let Tq be the set of m × n
matrices A over Fq with rank r and support contained in the complement
of S. Also, let T1 be the set of 0–1 matrices with exactly r 1’s, no two of
which lie in the same row or column, and with support contained in the
complement of S (i.e., the set of rook placements avoiding S). We have that
Tq is a q-analogue of T1, in the following precise sense:

Proposition 5.1. We have #Tq ≡ #T1 · (q − 1)r (mod (q − 1)r+1).

In particular, when #Tq is a polynomial function of q we have that #Tq is
divisible by (q−1)r and #Tq/(q−1)r|q=1 = #T1. Thus, rank r matrices whose
support avoids the set S can be seen as a q-analogue of rook placements
that avoid S. Applying this to our situation where S is the set of diagonal
entries, we get that the set of invertible matrices avoiding the diagonal is a
q-analogue of the set of derangements, a fact that can also be seen directly
from the explicit formula above. We will give a more conceptual explanation
for this in Section 2.2 using the Bruhat decomposition of GL(n, q).

Note that for an arbitrary set S of positions, the function #Tq need not
be a polynomial in q. (Stembridge [Ste1] gives an example of non-polynomial
#Tq with n = m = 7, r = 7, and a set S with #S = 28 – see Figure 1.) The
second context concerns the question of which sets S give a polynomial #Tq

and is deeply related to a speculation of Kontsevich from 1997 (see Stanley
[Sta2] and Stembridge [Ste1]) that was proven false by Belkale and Brosnan
[BB]. We provide further background on this topic in Section 5.

We close this introduction with a summary of the results of our paper.
Section 2 is concerned with Stanley’s question on the enumeration of

matrices in GL(n, q) with zero diagonal. We attack this problem by enu-
merating larger classes of matrices. We provide two recursions, one based on
the size of the matrix and the other based on the rank of the matrix, and
we provide a closed-form solution for the first recursion.

In Section 3, we enumerate symmetric matrices in GL(n, q) whose sup-
port avoids the diagonal in the case that n is even. These matrices may be
viewed as a q-analogue of symmetric permutation matrices with zero diag-
onal, i.e., fixed point-free involutions. A curious byproduct of our formula
is that it also counts the number of symmetric matrices in GL(n− 1, q) as
well as the number of skew-symmetric matrices in GL(n, q). (This latter
equality was obtained earlier by Jones [Jon].) We remark that there is an
obvious bijection between skew-symmetric matrices and symmetric matri-
ces with 0 diagonal obtained by reversing some signs, but this map does not
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preserve the property of being invertible. In fact, the varieties associated to
these three classes of matrices are pairwise non-isomorphic, and we have not
found a satisfactory reason that their solution sets have the same size.

In Section 4, we attack the general problem of enumerating symmetric
matrices with zeroes on the diagonal with given rank. We provide recursions
for arbitrary rank and for full rank and solve the latter one to obtain the
enumeration of symmetric matrices inGL(n, q) when n is odd. The situation
in this case is significantly more complicated than in Sections 2 and 3.

Finally, in Section 5 we prove Proposition 5.1, discuss the two broader
contexts mentioned above and give some open questions about families of
sets S for which #Tq(m× n, S, r) is a polynomial in q.

While similar methods of proof are used in the various sections, each
section is essentially self-contained and so they can be read independently,
if desired.

Notation

Given an integer n, we define the q-number [n]q = qn−1
q−1 , the q-factorial

[n]q! = [n]q · [n − 1]q · [n − 2]q · · · and the q-double factorial [n]q!! = [n]q ·
[n−2]q · [n−4]q · · · (with [0]q!! = [−1]q!! = 1). In addition, we use a number
of invented notations; to avoid confusion and for easy reference, we include
Table 1 of these functions. The last column indicates the sections in which
the notation is used.

2. Matrices with zeroes on the diagonal

In this section, we consider the problem of counting invertible matrices over
Fq with zero diagonal. In Section 2.1 we recursively count full rank matrices
of rectangular shape with all-zero diagonal and in Section 2.3 we recursively
count square matrices by rank and number of zeroes on the diagonal. We
solve the first recursion and obtain a closed form formula for the number
of invertible matrices with zeroes on the diagonal. These numbers give an
enumerative q-analogue of the derangements, i.e., dividing all factors of q−1
and setting q = 1 in the result gives the number of derangements, and we
give a conceptual proof of this fact in Section 2.2.

2.1. Recursion by size

For 1 ≤ k ≤ n, denote by fk,n the number of k × n matrices A over Fq

such that A has full rank k and such that Aii = 0 for 1 ≤ i ≤ k. We
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Table 1: Notation

Set # Set Description Section
Mat0(n, k, r) mat0(n, k, r) set of n×nmatrices of rank r

over Fq with first k diagonal
entries equal to zero

2.3

mat0(r;n, r
′, ∗) number of n× n matrices A

of rank r′ with lower-right
(n − 1) × (n − 1) block of
rank r

2.3

mat0(r;n, r
′, 0) ditto, where in addition we

require A1,1 = 0
2.3

Sym(n) sym(n) set of n × n symmetric in-
vertible matrices over Fq

3, 4

Sym(n, r) sym(n, r) set of n × n symmetric ma-
trices over Fq of rank r

4

Sym0(n, r) sym0(n, r) set of n × n symmetric ma-
trices with rank r over Fq

with diagonal entries equal
to zero

4

Sz(n, k) sz(n, k) set of n × n symmetric in-
vertible matrices with first
k diagonal entries equal to
zero

3.1, 4.2

Sym0(n, k, r) sym0(n, k, r) set of n × n symmetric ma-
trices with rank r with first
k diagonal entries equal to
zero

4

sym0(r;n, r
′, ∗) number of n × n symmetric

matrices A of rank r′ with
lower-right (n− 1)× (n− 1)
block of rank r

4.1

sym0(r;n, r
′, 0) ditto, where in addition we

require A1,1 = 0
4.1

Tq(m× n, S, r) #Tq(m× n, S, r) set of m × n matrices over
Fq with rank r and sup-
port contained in the com-
plement of S

1, 5

T1(m× n, S, r) #T1(m× n, S, r) set of 0–1 matrices with ex-
actly r 1’s, no two of which
lie in the same row or col-
umn, and with support con-
tained in the complement
of S

1, 5
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first show that fk,n satisfies a simple recurrence, and then we solve this
recurrence for an explicit formula for fk,n. In particular, we will have a
formula for fn,n, the number of invertible n×n matrices with zeroes on the
diagonal.

Proposition 2.1. For 1 ≤ k < n, the number fk,n of k × n matrices with
rank k and diagonal entries equal to 0 satisfies the recursion

fk+1,n = qk−1(q − 1)(fk,n · [n− k]q − fk,n−1)

with initial values f1,n = qn−1 − 1.

Proof. Let A be a k×n matrix of rank k and such that Aii = 0 for 1 ≤ i ≤ k,
let V ⊂ Fn

q be the row span of A, and let W ⊂ Fn
q be the subspace of vectors

with (k + 1)-st coordinate 0. To extend A to a (k + 1)× n full rank matrix
with zero diagonal, we choose for the final row any vector in W\V . We have
two cases:

Case 1: the (k + 1)-st column of A is not entirely 0. In this case, V �⊂ W .
Since W is the kernel of the linear form xk+1, V ∩W is the kernel of the
linear form xk+1|V . This form is not identically zero, so dim(V ∩W ) =
dimV − 1 = k− 1. Thus, there are #(W\V ) = qn−1− qk−1 choices for
the final row.

Case 2: the (k + 1)-st column of A is entirely 0. In this case, V ⊂ W and
so dim(V ∩W ) = dimV = k. Thus, there are #(W\V ) = qn−1 − qk

choices for the final row.

The total number of matrices A is fk,n, while the number with (k+1)-st
column entirely 0 is fk,n−1 (as we can remove the column to get a full rank
k × (n− 1) matrix). It follows that

fk+1,n = (fk,n − fk,n−1)(q
n−1 − qk−1) + fk,n−1(q

n−1 − qk)

= fk,n(q
n−1 − qk−1)− fk,n−1(q

k − qk−1)

= qk−1(q − 1)(fk,n · [n− k]q − fk,n−1),

as desired.

With this observation, we can calculate the number fk,n explicitly.

Proposition 2.2. For 1 ≤ k ≤ n,

fk,n = q(
k−1

2 )(q − 1)k

(
q−1

k∑
i=0

(−1)i
(
k

i

)
[n− i]q!

[n− k]q!

)
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is the number of k × n matrices of rank k with zeroes on the diagonal. In
particular,

fn,n = q(
n−1

2 )(q − 1)n

(
q−1

n∑
i=0

(−1)i
(
n

i

)
[n− i]q!

)

is the number of invertible n× n matrices with zeroes on the diagonal.

Proof. We proceed by induction on k. When k = 1, we need to show that

f1,n = (q − 1)q−1([n]q − 1) = (q − 1)[n− 1]q = qn−1 − 1.

This is clear since f1,n counts nonzero elements of Fn
q with first coordinate 0.

For the inductive step, assuming the claim holds for k we have by Propo-
sition 2.1 that

fk+1,n = qk−1(q − 1)(fk,n · [n− k]q − fk,n−1)

= q(
k

2)(q − 1)k+1 · q−1

(
k∑

i=0

(−1)i
(
k

i

)
[n− i]q!

[n− k]q!
· [n− k]q

−
k∑

i=0

(−1)i
(
k

i

)
[n− i− 1]q!

[n− k − 1]q!

)

= q(
k

2)(q − 1)k+1 · q−1

(
k∑

i=0

(−1)i
(
k

i

)
[n− i]q!

[n− k − 1]q!

+

k+1∑
i=1

(−1)i
(

k

i− 1

)
[n− i]q!

[n− k − 1]q!

)

= q(
k

2)(q − 1)k+1

(
q−1

k+1∑
i=0

(−1)i
(
k + 1

i

)
[n− i]q!

[n− k − 1]q!

)

as desired.

Remark 2.3. In the expression for fn,n, the q = 1 specialization of the
alternating sum is

n∑
i=0

(−1)i
(
n

i

)
(n− i)! = n!

n∑
i=0

(−1)i

i!
,

which is the n-th derangement number dn. The above proof does not “ex-
plain” this fact, so we provide another proof that better elucidates the result.
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2.2. The Bruhat decomposition

The square matrices with all-zero diagonal of full rank are exactly the ma-
trices in GL(n, q) with all-zero diagonal. This slight rephrasing motivates
us to recall the Bruhat decomposition of GL(n, q): let B be the subgroup of
GL(n, q) of lower triangular matrices. We have a double coset decomposition

GL(n, q) =
∐

w∈Sn

BwB,

into Bruhat cells, where we abuse notation by using w ∈ Sn to also denote
the corresponding permutation matrix. Hence, every matrix g ∈ GL(n, q)
can be uniquely written in the form bgw where b ∈ B, w ∈ Sn, and gw is
a matrix with a 1 in location (w(i), i) for all i, and such that gww(i),j = 0

whenever j > i and gwk,i = 0 whenever k > w(i). For a fixed w, call this set
of matrices B(n,w). We will enumerate the number of elements in each of
these sets with zeroes on the diagonal.

First we need a lemma. Let z(N, q) be the number of solutions to the
equation

∑N
j=1AiBi = 0 where Ai, Bi ∈ Fq, and let y(N, q) be the number

of solutions to the equation
∑N

j=1AiBi = α where α is some nonzero element
of Fq. This number is independent of which α we choose.

Lemma 2.4. We have z(N, q) ≡ 1 (mod (q−1)) and y(N, q) ≡ 0 (mod (q−
1)).

Proof. In both cases, the multiplicative group F×
q acts on the set of solutions:

for any x ∈ F×
q and a set of solutions {Ai} ∪ {Bi}, we can multiply all the

Ai by x and all the Bi by x−1 to get another solution. Each orbit has size
q − 1 except for one, namely when all the Ai and Bi are zero. The result
follows.

Remark 2.5. It isn’t too hard to prove the formulas

z(n, q) = qn−1(qn + q − 1), y(n, q) = qn−1(qn − 1),

but we will not need these exact counts here.

Now we are ready to give an alternative explanation for Remark 2.3.

Theorem 2.6. Consider the number of matrices in B(n,w) with zero diag-
onal. In the case that w is a derangement, this number will be of the form
(q − 1)n(qi + (q − 1)f(q)) for some polynomial f and some i. In all other
cases, this number will be divisible by (q − 1)n+1.
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Proof. Write g = bgw. Then the diagonal terms of g are gd,d =
∑n

i=1 bd,ig
w
i,d.

For each d = 1, . . . , n, the variables appearing in the sum are distinct, so we
can count the solutions to each equation gd,d = 0 independently of one an-
other. We need to consider three cases, corresponding to w(d) > d, w(d) = d,
and w(d) < d. Let Nd

w be the number of terms in the d-th column of gw that
are strictly above the diagonal and not forced to be 0 by our definition of gw.

1. Suppose that w(d) > d. Then the equation gd,d = 0 becomes

−bd,dg
w
d,d =

d−1∑
i=1

bd,ig
w
i,d.

We know that bd,d �= 0 and gwd,d is either 0 and could be nonzero if
w(j) �= d for j < i. If gwd,d = 0, then we are counting solutions to the
equation

Nd
w∑

j=1

AjBj = 0

where Aj , Bj ∈ Fq are arbitrary. If gwd,d �= 0, we are counting solutions

to the equation
∑Nd

w

j=1AjBj = α where α is some nonzero element of

Fq. So we conclude that the contribution is either (q − 1)(z(Nd
w, q) +

y(Nd
w, q)) or (q − 1)z(Nd

w, q).
2. Suppose that w(d) < d. Then the equation gd,d = 0 becomes

−bd,w(d) =

w(d)−1∑
i=1

bd,ig
w
i,d.

We know that bd,w(d) can be arbitrary. So the number of solutions is of

the form z(Nd
w, q)+(q−1)y(Nd

w, q). The variables bd,j for w(d) < j ≤ d
have not been involved, so we can choose them arbitrarily subject to
bd,d �= 0. Hence we get a contribution of

(q − 1)qd−1−w(d)(z(Nd
w, q) + (q − 1)y(Nd

w, q)).

3. Finally, suppose that w(d) = d. Then the equation gd,d = 0 becomes

−bd,d =

d−1∑
i=1

bd,ig
w
i,d,

and bd,d �= 0. Hence the contribution is (q − 1)y(Nd
w, q).
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Since the count for each d is independent of the other d, we multiply
the above contributions to get an expression for the number of matrices in
B(n,w) with zero diagonal. Using Lemma 2.4, we get the desired conclu-
sion.

Hence, when we specialize fn,n to q = 1 after dividing by (q − 1)n,
we will get a contribution of 1 for each derangement and 0 for all other
permutations, which gives us the derangement numbers.

2.3. Recursion by rank

In this section, we use recursive methods to attack the problem of enumer-
ating square matrices with a prescribed number of zeroes on the diagonal
by rank. We use the following strategy: each n × n matrix can be inflated
to q2n+1 different (n+1)× (n+1) matrices, and we count these by keeping
careful track of what their rank is and how many zeroes they have on the
diagonal. Unfortunately, in this case we are unable to solve the recursion to
provide a closed formula for the result.

Let mat0(n, k, r) be the number of n × n matrices over Fq of rank r
whose first k diagonal entries are zero (and the other diagonal entries may
or may not be zero).

Proposition 2.7. We have the following recursion:

mat0(n+ 1, k + 1, r + 1) =
1

q
mat0(n+ 1, k, r + 1)

+ (qr+1 − qr)mat0(n, k, r + 1)

− (qr − qr−1)mat0(n, k, r)

with initial conditions

mat0(n, 0, r) =
q(

r

2)(q − 1)r

[r]q!

(
r−1∏
i=0

[n− i]q

)2

.

Proof. Let B be any (fixed) n × n matrix of rank r whose first k diagonal
entries are zero. There are q2n+1 (n + 1) × (n + 1) matrices of the form
A =

[ a u
v B

]
where a is an element of Fq, u is a row vector over Fq of length

n, and v is a column vector over Fq of length n. We seek to enumerate these
matrices by rank, taking into account whether or not a = 0. Afterwards, we
will sum over all matrices B to arrive at the desired recursion. Observe that
the number of matrices A of rank r′ summed over all such B, a, u and v is
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mat0(n+ 1, k, r′), while the number of these matrices where in addition we
require a = 0 is mat0(n+ 1, k + 1, r′).

As a simplifying step, we show that the number of such A for a fixed
B depends only on n and r. Since B is of rank r, there are some matrices
X,Y ∈ GL(n, q) such that XBY = diag(1r, 0n−r). It follows that for any
matrix A of the form

A =

[
a u

v B

]

we have for D = diag(1r, 0n−r) that

[
1 0

0 X

]
·A ·

[
1 0

0 Y

]
=

[
a uY

Xv D

]
,

where by an abuse of notation we use the symbol 0 to represent both the
all-zero column and row vector of length n. Since X and Y are invertible
and we are interested in what happens as u and v vary over all possible
n-vectors, this computation reduces our problem to considering the case
that B = D = diag(1r, 0n−r), regardless of the value of k. Thus, we define
mat0(r;n+1, r′, ∗) to be the number of (n+1)× (n+1) matrices A of rank
r′ associated to the matrix B of rank r, and we define mat0(r;n + 1, r′, 0)
to be the number of such matrices where in addition a = 0.

Observe that when we “glue” an extra row or column to a matrix, we
increase its rank by either 1 or 0. Since every matrix of the form that interests
us arises by gluing one row and one column to B, we have that the rank of
A is one of r, r+1 and r+2. We now separately consider these three cases.

Case 1: rank(A) = r. In order to have rankA = r, all the entries of u and
v after the first r must be equal to zero, i.e., u = (u1, . . . , ur, 0, . . . , 0)
and v = (v1, . . . , vr, 0, . . . , 0)

T . In addition, if we apply Gaussian elim-
ination and use the entries of B to eliminate u and v, the (1, 1)-entry
in the result is a−uBv = a−

∑r
i=1 uivi, and this entry must be equal

to 0. Conversely, whenever a, u and v satisfy these conditions we have
rankA = r. Thus we have in this case the following conclusions:

(i) If we do not restrict a to be zero, the total number of matrices A
is q2r. In other words, mat0(r;n+ 1, r, ∗) = q2r.

(ii) Under the additional restriction a = 0, either u = 0 and v is
arbitrary or u �= 0 and v is orthogonal to u, so the total number
of matrices A is qr + (qr − 1)qr−1 = q2r−1 + qr − qr−1. In other
words, mat0(r;n+ 1, r, 0) = q2r−1 + qr − qr−1.
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The above two pieces of information imply the equation

(2.8) mat0(r;n+ 1, r, 0) =
1

q
mat0(r;n+ 1, r, ∗) + qr − qr−1.

Case 2: rank(A) = r + 2. In order to have rank(A) = r + 2, both u and v
must have a nonzero entry among their last n− r entries. This is also
clearly sufficient, regardless of the value of a. Thus, we have in this
case the following conclusions:

(i) If we do not restrict a to be zero, the total number of matrices A
is q · q2r · (qn−r − 1)2 = q(qn − qr)2. In other words, mat0(r;n +
1, r + 2, ∗) = q(qn − qr)2.

(ii) Under the additional restriction a = 0, the number of matrices A
is (qn − qr)2. In other words, mat0(r;n+1, r+2, 0) = (qn − qr)2.

The above two pieces of information imply the equation

(2.9) mat0(r;n+ 1, r + 2, 0) =
1

q
mat0(r;n+ 1, r + 2, ∗).

Case 3: rank(A) = r + 1. The case rank(A) = r + 1 consists of all possible
choices of a, u and v that do not fall into either of the preceding cases.
Thus, we have the following conclusions:

(i) If we do not restrict a to be zero, the total number of matrices A is

q2n+1 − q2r − q(qn − qr)2 = 2qn+r+1 − q2r+1 − q2r.

In other words, mat0(r;n+ 1, r + 1, ∗) = 2qn+r+1 − q2r+1 − q2r.

(ii) Under the additional restriction a=0, the number of matricesA is

q2n−(q2r−1+qr−qr−1)−(qn−qr)2 = 2qn+r−q2r−q2r−1−qr+qr−1.

In other words, mat0(r;n + 1, r + 1, 0) = 2qn+r − q2r − q2r−1 −
qr + qr−1.

The above two pieces of information imply the equation

(2.10) mat0(r;n+1, r+1, 0) =
1

q
mat0(r;n+1, r+1, ∗)− qr + qr−1.

We now change our perspective and consider the set of all (n+1)×(n+1)
matrices A of rank r + 1 whose first k + 1 diagonal entries are equal to 0.
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Parametrizing these matrices by the n × n submatrix B that results from
removing the first row and first column, we have

(2.11) mat0(n+ 1, k + 1, r + 1) =
∑
B

mat0(rank(B);n+ 1, r + 1, 0)

where the sum is over all n×n matrices B whose first k diagonal entries are
zero. The summands on the right are zero unless rank(B) ∈ {r− 1, r, r+1},
and so splitting the right-hand side according to the rank of B gives

mat0(n+ 1, k + 1, r + 1) = mat0(n, k, r − 1) ·mat0(r − 1;n+ 1, r + 1, 0)

+ mat0(n, k, r + 1) ·mat0(r + 1;n+ 1, r + 1, 0)

+ mat0(n, k, r) ·mat0(r;n+ 1, r + 1, 0).(2.12)

Now we may substitute from Equations (2.8), (2.9), and (2.10) and collect
the terms with coefficient 1

q to conclude that

mat0(n+ 1, k + 1, r + 1) =
1

q
mat0(n+ 1, k, r + 1)

+ (qr+1 − qr)mat0(n, k, r + 1)

− (qr − qr−1)mat0(n, k, r),

as desired.
The initial values for this recursion are the numbers mat0(n, 0, r) of n×n

matrices of rank r with no prescribed values. A simple counting argument
(see, for example, [Mor, Section 1.7]) gives that the number of these is

mat0(n, 0, r) =
q(

r

2)(q − 1)r

[r]q!

(
r−1∏
i=0

[n− i]q

)2

.

The preceding recursion works by reducing the number of zeroes required
to lie on the diagonal. However, we can easily modify the proof to work only
with matrices of all-zero diagonal.

Corollary 2.13. For r ≥ 0, the number g(n, r) of n × n matrices over Fq

of rank r and with zero diagonal satisfies the recursion

g(n+ 1, r + 1) = (qn − qr−1)2g(n, r − 1) + (q2r+1 + qr+1 − qr)g(n, r + 1)

+ (2qn+r − q2r − q2r−1 − qr + qr−1)g(n, r)

with initial conditions g(n, 0) = 1, g(n,−1) = 0 and g(1, 1) = 0.
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Proof. We use the same setup as in Proposition 2.7. That is, we let B be
any (fixed) n × n matrix of rank r whose diagonal entries are zero. There
are q2n (n + 1) × (n + 1) matrices of the form A =

[
0 u
v B

]
where u is a row

vector over Fq of length n, and v is a column vector over Fq of length n.
We seek to enumerate these matrices by rank. Observe that the number of
matrices A of rank r′ summed over all such B, u and v is g(n, r′).

By the same simplifying step as in the proof of Proposition 2.7, it
is enough to count matrices of the form

[
0 u
v D

]
where case where D =

diag(1r, 0n−r). We re-use the notation mat0(r;n + 1, r′, 0) from the proof
of Proposition 2.7 for the number of such matrices.

By Equation (2.12) we have for r ≥ 1 the recursion

g(n+ 1, r + 1) = g(n, r − 1) ·mat0(r − 1;n+ 1, r + 1, 0)

+ g(n, r + 1) ·mat0(r + 1;n+ 1, r + 1, 0)

+ g(n, r) ·mat0(r;n+ 1, r + 1, 0).

When r = 0, the same recursion holds if we interpret g(n,−1) = 0.
We obtain the desired result by substituting the formulas for mat0( · ; · ,

· , 0) from the conclusions (ii) of the three cases in the proof of Proposi-
tion 2.7.

Corollary 2.14. For n ≥ r ≥ 0, the number g(n, r) = mat0(n, n, r) of n×n
matrices over Fq of rank r with zero diagonal is

g(n, r)= (q− 1)r
n−r∑
k=0

n∑
i=0

(−1)k+r+n+iq(
n

2)+(
k

2)−nk−r

(
n

i

)
[n+ k − i]q!

([k]q!)2 · [n− r− k]q!
.

Proof. Induct, taking as base cases r = n + 1 and r = n. (The former is
trivial and the latter easily reduces to Proposition 2.2.) Then check that the
formula above satisfies the recursion of Corollary 2.13.

3. Symmetric and skew-symmetric matrices

A natural next step is to consider symmetric matrices, which are (at least
morally) a q-analogue of involutions, suggesting the possibility of interesting
combinatorial results. This also brings us closer to a speculation by Kont-
sevich (see Section 5). In this section, we begin by enumerating symmetric
invertible matrices over Fq whose diagonal is all zero, a q-analogue of in-
volutions with no fixed points. This leads to two very unintuitive facts: in
Section 3.1, we show that the number of these matrices of size 2n is the
same as the number of invertible symmetric matrices of size 2n− 1; in Sec-
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tion 3.2 and Section 3.3, we show in two different ways that both of these
numbers equal the number of invertible skew-symmetric matrices of the
size 2n.

While extending the approach of Section 2.1 to the case of symmetric
matrices seems impossible, the ideas of Section 2.3 can be adjusted to work
in this context. The major complicating factor is that the bilinear form uBv
that we worked with implicitly in Section 2.3 must be replaced with the
quadratic form vBvT . Quadratic forms behave very differently in even and
odd characteristic, so we give the following proviso:

Remark 3.1. The proofs in this section are only valid for q odd, unless
otherwise noted.

Of course, some results still hold when q is even: for example, Propo-
sition 3.6 is equivalent to Theorem 3.3 for the silly reason that in even
characteristic, the skew-symmetric invertible matrices are exactly the sym-
metric invertible matrices with zeroes on the diagonal. For a more thorough
treatment of the case q even, see [Mac] and [Sta2].

3.1. Symmetric matrices with zeroes on the diagonal

Let Sym0(n) denote the set of n × n symmetric matrices in GL(n, q) with
zero diagonal and let sym0(n) = #Sym0(n). Similarly, let Sz(n, k) be the
set of n × n symmetric matrices in GL(n, q) whose first k diagonal entries
are zero and let sz(n, k) = #Sym0(n, k), so Sz(n, n) = Sym0(n).

In [Mac, Theorem 2], MacWilliams shows

Theorem. The number of symmetric invertible matrices (for any charac-
teristic) is

(3.2) sym(n) = q(
n+1

2 )
�n/2�∏
j=1

(1− q1−2j).

We now show that when n is even, sym(n − 1) also counts n × n sym-
metric invertible matrices with zero diagonal. Observe that this implies that
sym0(n) is an enumerative q-analogue of (n−1)!!, the number of fixed point-
free involutions in Sn.

Theorem 3.3. When n is even, the number of (n− 1)× (n− 1) symmetric
invertible matrices is equal to the number of n × n symmetric invertible
matrices with zero diagonal, i.e., sym(n− 1) = sym0(n).
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Note that the case for q even was done by MacWilliams [Mac, Theo-
rems 2, 3] (see also Equation (4.3)). To prove this for q odd, we will use a
lemma. Trivially, a q−k-fraction of all matrices have first k diagonal entries
equal to zero. Naively, one might expect this to carry over approximately to
other classes of matrices, e.g., one might guess that about q−k of all matrices
in Sym(n) = Sz(n, 0) belong to Sz(n, k). Our lemma shows that, remarkably,
this estimate is actually exact when n is even.

Lemma 3.4. When n is even, qk sz(n, k) = sz(n, 0).

Proof. It is enough to show that sz(n, k) = q ·sz(n, k+1). To do this, we will
partition both Sz(n, k) and Sz(n, k+1) into two disjoint sets and construct a
q-to-1 mapping from each piece of Sz(n, k) to a piece of Sz(n, k+1). The two
pieces will be defined by whether or not the bottom-right (n− 1)× (n− 1)
submatrix is invertible.

Recall that Sz(n, k) is the set of invertible symmetric n × n matrices
whose first k diagonal entries are required to be 0. If we only care about
the cardinality of this set, then the actual position of the forced zero entries
on the diagonal is irrelevant because we can permute rows and columns,
so for convenience let’s temporarily redefine sz(n, k) to be the number of
matrices whose diagonal pattern is (α, a1, . . . , an−k−1, 0, . . . , 0), where the
ai are “free” entries with k zeroes trailing them. So write a generic matrix
in Sz(n, k) as A =

[ α v
vT B

]
where B is an (n− 1)× (n− 1) matrix whose last

k diagonal entries are zero.
If detB = 0 then detA does not depend on α. Thus, changing α

to 0 results in a new matrix with the same determinant as A; in par-
ticular, the resulting matrix is also invertible. This operation gives a q-
to-1 map from Sz(n, k) to Sz(n, k + 1) in the case that B is not invert-
ible.

Otherwise, when B is invertible, we want to count matrices in Sz(n, k)
having B in the bottom-right corner. We can build such matrices as follows.
For every choice of v, there is a unique (n − 1)-tuple c such that cTB = v.
Then we can choose α to be anything other than cT · vT = cTBT c = cTBc
to get a nonsingular matrix.

We want to show the following: the number of matrices in Sz(n, k) with B
as the lower right corner is q times the number of matrices in Sz(n, k) with
B in the lower right corner and α = 0. The latter number is qn−1(q − 1)
and the former number is qn−1 − N where N is the number of choices for
c such that cTBc = 0. Thus, what we want to show is equivalent to the
statement that cTBc = 0 for 1/q of the total number of choices for c, or that
cTBc = 0 for qn−2 values of c.
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To see this, we proceed as follows. Let C = (detB)B. Clearly cTCc = 0
if and only if cTBc = 0, so we can work with C in place of B. We have
detC = (detB)n, and since n is even this is a square in Fq. Using the
classification of symmetric bilinear forms over fields of odd characteristic
[Wan, Theorem 1.22], we can write C = MMT for some nonsingular ma-
trix M . So setting d = MT c, we only need to count the number of d such
that dTd = 0, but this number is qn−2 since n − 1 is odd [Wan, Theo-
rem 1.26].

Thus, we have provided a q-to-1 map from a subset of Sz(n, k) into
Sz(n, k+1) such that the complement of the domain has cardinality q times
that of the complement of the image. This proves the lemma.

We use this lemma to prove the main result of this section.

Proof of Theorem 3.3. Let n = 2m. We have

sz(n, n) = q−n sz(n, 0)

= q−n sym(n)

= q−2m
m∏
i=1

q2i

q2i − 1

2m−1∏
i=0

(q2m−i − 1)

=

m−1∏
i=1

q2i

q2i − 1

2m−2∏
i=0

(q2m−1−i − 1)

= sym(n− 1),

where in the first line we use Lemma 3.4 and in the rest we use Equa-
tion (3.2).

3.2. Skew-symmetric matrices

Let sk(n) denote the number of invertible n × n skew-symmetric matrices
over Fq. It is not clear a priori that there is any connection between these
matrices and invertible symmetric matrices, but there is a curious relation
between the two. In particular, we show that for n even, the number of n×n
invertible skew-symmetric matrices is the same as the number of (n− 1)×
(n−1) invertible symmetric matrices (and so, by Theorem 3.3, also the same
as the number of n×n invertible symmetric matrices with all-zero diagonal).
In addition, we explicitly count the invertible skew-symmetric matrices by
rank, obtaining a q-analogue of involutions with a certain number of fixed
points.
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To begin, we prove a helpful technical lemma which states that the
number of skew-symmetric matrices of a given rank is nearly independent
of the first row of the matrix.

Lemma 3.5. The number of n×n skew-symmetric matrices of rank r with
first row v is the same for all v �= (0, . . . , 0).

Proof. Let v be any nonzero vector whose first entry is zero. Permuting
rows and columns symmetrically preserves skew-symmetry and rank, so the
number of skew-symmetric matrices over Fq of rank r having v as first row
is equal to the number of such matrices with any permutation of v as the
first row. Similarly, multiplying a row and the corresponding column by a
scalar preserves skew-symmetry and rank, so for any nonzero entry vi of
v, the number of skew-symmetric matrices of rank r having v as first row
is the same as the number of such matrices with vi replaced by any other
nonzero element of Fq. Thus, we only have to consider first rows of the form
(0, 1, . . . , 1, 0, . . . , 0).

We now give a bijection between skew-symmetric matrices of rank r with
first row (0, 1i, 0n−i−1) and skew-symmetric matrices of rank r with first row
(0, 1i+1, 0n−i−2). For a skew-symmetric matrix of rank r with first row (0, 1i,
0n−i−1), add row i+1 to row i+2 and then add column i+1 to column i+2.
The resulting matrix is skew-symmetric of rank r and has first row (0, 1i+1,
0n−i−2). Moreover, this operation is reversible, so it is our desired bijection.
Together with the previous paragraph, this completes our result.

Proposition 3.6. For n even, sk(n) = sym(n− 1).

Remark 3.7. After the first write-up of this paper we found that this was
proven by Jones [Jon, Theorems 1.7, 1.7′, 1.8′, 1.9] using topological meth-
ods.

Proof. We proceed by showing that the two sides of the claimed equality
satisfy the same recursion. By Lemma 3.5, the number of invertible skew-
symmetric matrices of size n is equidistributed with respect to the nonzero
choices for the first row (and there are no invertible matrices with first row
all zero). Thus to compute sk(n) we multiply qn−1−1, the number of choices
for the first row, by the number of invertible skew-symmetric matrices with
first row (0, 1, 0, . . . , 0). Let

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
−1 0 a2,3 · · · a2,n
0 −a2,3
...

... B
0 −a2,n

⎤
⎥⎥⎥⎥⎦
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be one such matrix, where B is the lower-right (n− 2)× (n− 2) block of A.
The matrix B is certainly skew-symmetric; in addition, detA = detB and so
A is invertible if and only if B is invertible. Furthermore, the determinant of
A is independent of the n− 2 values a2,3, . . . , a2,n that appear in the second
row and column of A, so for each B we can choose these values freely. Thus,
we get the recurrence

sk(n) = qn−2(qn−1 − 1) sk(n− 2).

For n even, Equation (3.2) implies

sym(n− 1) = qn−2(qn−1 − 1) sym(n− 3).

Since sym(1) = sk(2) = q − 1, we’re done by induction.

In fact, it is not difficult to enumerate skew-symmetric matrices of arbi-
trary rank over Fq. We do this in the following result.

Proposition 3.8. Let sk(n, r) be the number of n× n skew-symmetric ma-
trices of rank r. When r is odd we have sk(n, r) = 0 and when r is even we
have

sk(n, r) = qr(r−2)/4(1− q)r/2 · [n]q!

[n− r]q! · [r]q!!
.

Proof. It is a well-known fact that all skew-symmetric matrices have even
rank (see for example [Lan, §XV.8]). Given an n × n skew-symmetric ma-
trix A of rank r, we write A =

[ 0 v
−vT B

]
where B is an (n − 1) × (n − 1)

skew-symmetric matrix. As we observed in the proof of Proposition 2.7,
we have rankA − rankB ∈ {0, 1, 2}. Since the rank of both matrices is
even we have that rankB = r or rankB = r − 2. Thus, we have that
rankB = r if and only if v is in the rowspace of B. It follows immediately
that

sk(n, r) = qr sk(n− 1, r) + (qn−1 − qr−2) sk(n− 1, r − 2),

with initial values sk(n, 0) = 1. One can easily verify by induction that the
solution to this recursion is

sk(n, r) = qr(r−2)/4(1− q)r/2 · [n]q!

[n− r]q! · [r]q!!

for r even.

One interesting observation is that this is a q-analogue of
(
n
r

)
(r − 1)!!,

the number of “partial involutions of rank r” with no fixed points, i.e., the
number of pairs of an r-subset of {1, . . . , n} together with a fixed point-free
involution on that set.
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3.3. The curious relation via Schubert varieties

Let n be even. In this section, we give another proof of Proposition 3.6 via
Schubert varieties. The idea is to first realize both as the intersections of
certain Schubert cells and opposite Schubert cells. Such intersections are
indexed by intervals in certain Bruhat orders and the number of Fq-valued
points is given by the (parabolic) R-polynomials of Deodhar. We then show
that the intervals in question are isomorphic as abstract posets and use
combinatorial invariance properties of these R-polynomials to get the desired
result. We will use [LR, Chapters 6 and 7] as a reference for the following.

We let Im be the m ×m identity matrix and Jm be the m ×m matrix
with 1’s on the antidiagonal and 0’s elsewhere. Assume that q is odd. (When
q is even, Proposition 3.6 becomes Theorem 3.3.) Let K be an algebraic
closure of Fq. Let V be a 2(n − 1)-dimensional vector space over K with a
nondegenerate skew-symmetric bilinear form 〈 , 〉. Let

X = {V ′ ⊂ V | dimV ′ = n− 1, the restriction of the form to V ′ is zero}

be the Lagrangian Grassmannian. This is a closed subvariety of the usual
Grassmannian of (n− 1)-dimensional subspaces of V .

Choose an ordered basis {e1, . . . , en−1, e
∗
n−1, . . . , e

∗
1} of V such that 〈ei,

e∗j 〉 = δi,j . So we can think of elements of X as 2(n− 1)× (n− 1) matrices
where the columns of the matrix are some basis for the given point. This
also gives us a choice of Borel and opposite Borel subgroup of the symplectic
group Sp(V ) acting on X, so we can define Schubert varieties and opposite
Schubert varieties. Then we can embed symmetric (n−1)× (n−1) matrices
into X via the map

M 
→
[

In−1

Jn−1M

]
.

The image of this map is the opposite big cell, and to get the set of sym-
metric matrices with rank at most r for some given r, we intersect with an
appropriate Schubert variety. So instead of counting invertible symmetric
matrices, we can count symmetric matrices with rank at most n−2. We can
index the Schubert varieties of X by the set

{(a1, . . . , an−1) | 1 ≤ a1 < · · · < an−1 ≤ 2(n− 1),

#({i, 2n− 1− i} ∩ {a1, . . . , an−1}) = 1 for all i}

and the Bruhat order is given by termwise comparison, i.e., (a1, . . . , an−1) ≤
(a′1, . . . , a

′
n−1) if and only if ai ≤ a′i. In particular, the Schubert variety we
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intersect with to get symmetric matrices with rank at most r is indexed by
(r + 1, r + 2, . . . , n− 1, 2n− 1− r, 2n− r, . . . , 2n− 2).

We can also do the same setup for skew-symmetric matrices. Let W
be a 2n-dimensional vector space over K with a nondegenerate symmetric
bilinear form ( , ). Let

Y ′ = {W ′ ⊂ W | dimW ′ = n, the restriction of the form on W ′ is zero}

be the orthogonal Grassmannian.

Choose an ordered basis {e1, . . . , en, e∗n, . . . , e∗1} of W such that (ei, e
∗
j ) =

δi,j . Then Y ′ has two connected components, each isomorphic to the spinor
variety. Let Y be the component which contains the subspace spanned by
{e1, . . . , en−1}. So we can think of elements of Y as 2n × n matrices where
the columns of the matrix are some basis for the given point. This also gives
us a choice of Borel and opposite Borel subgroup of the special orthogonal
group SO(V ) acting on Y , so we can define Schubert varieties and opposite
Schubert varieties. Then we can embed skew-symmetric n×n matrices into
Y via the map

M 
→
[

In
JnM

]
.

The image of this map is the opposite big cell, and to get the set of skew-
symmetric matrices with rank at most r for some even integer r, we intersect
with an appropriate Schubert variety. So instead of counting invertible skew-
symmetric matrices, we can count skew-symmetric matrices with rank at
most n− 2. We can index the Schubert varieties of Y by the set⎧⎪⎨

⎪⎩(a1, . . . , an)

∣∣∣∣∣∣∣
1 ≤ a1 < · · · < an ≤ 2n,

#({i, 2n+ 1− i} ∩ {a1, . . . , an}) = 1 for all i,

#({a1, . . . , an} ∩ {n+ 1, . . . , 2n}) is even

⎫⎪⎬
⎪⎭ ,

and the Bruhat order is given by termwise comparison, i.e., (a1, . . . , an) ≤
(a′1, . . . , a

′
n) if and only if ai ≤ a′i. In particular, the Schubert variety we

intersect with to get skew-symmetric matrices with rank at most r (r even)
is indexed by (r + 1, r + 2, . . . , n, 2n+ 1− r, 2n+ 2− r, . . . , 2n).

We also note that these two Bruhat orders are isomorphic in such a way
that the Schubert varieties corresponding to matrices of rank at most n− 2
in the two cases correspond to one another. First define φ(i) = i if i ≤ n
and φ(i) = i + 2 if i > n − 1. The map from the first Bruhat order to the
second is (a1, . . . , an−1) 
→ (φ(a1), . . . , φ(an−1)) ∪ {x} where x ∈ {n, n + 1}
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is whichever element is needed to ensure that the result satisfies the right
evenness condition from above.

In both cases, we can count the number of points over Fq in the intersec-
tion using the parabolic R-polynomials of Deodhar [Deo, Proposition 4.2].
These only depend on the combinatorics of the Bruhat order since both the
Lagrangian Grassmannian and the spinor variety are cominuscule homoge-
neous spaces (see for example [Br, Corollary 4.8]). Hence the number of
matrices in both cases of rank at most n− 2 are the same. Since n is even,
a non-invertible skew-symmetric n × n matrix has rank at most n − 2. It
is clear that the number of skew-symmetric matrices n × n matrices is the
same as the number of symmetric (n− 1)× (n− 1) matrices, so we also get
that the number of invertible such matrices are the same.

4. Refined enumeration of symmetric matrices

In this section, we attack the problem of computing the number of n × n
symmetric matrices over Fq with all-zero diagonal by rank. Roughly speak-
ing, we should expect this problem to be a q-analogue of counting fixed
point-free involutions, or of “partial fixed point-free involutions” when we
consider matrices of less than full rank. As in the preceding sections, we
construct a recursion to count the desired objects. Our basic approach is
the same as in Section 2.3. The main difference is that the symmetry of
our matrices forces us to introduce a sort of parity condition depending on
whether or not we can write a matrix in the form M · MT for some other
matrix M . The details on whether or not we can do this are different for odd
and even characteristic. We begin by mentioning both cases to then restrict
our attention and results to the odd case.

Remark 4.1 (q even). It was shown by Albert [Alb, Thm. 7] that a sym-
metric matrix A in GL(n, q) can be factored in the form A = M ·MT for
some matrixM inGL(n, q) if and only if A has at least one nonzero diagonal
entry. Thus

#{A ∈ Sym(n) | A = M ·MT for some M ∈ GL(n, q)} = sym(n)−sym0(n).

MacWilliams [Mac] gave an elementary proof of Albert’s theorem and also
calculated sym0(n, r), the number of n × n symmetric matrices of rank r
with zero diagonal, when q is even.

Theorem ([Mac, Thm. 3]). For q even, if r = 2s+ 1 is odd then

(4.2) sym0(n, 2s+ 1) = 0
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Table 2: Values of the functions sq+ and sq−, from [Wan, Thm 1.26]. Note
that the case sq−(m) for odd m is not mentioned explicitly in the reference,
but that the proof method for m odd does not discriminate between the two
cases sq±(m)

m odd m even

sq+(m) qm−1

{
qm−1 + qm/2 − qm/2−1 if (−1)m/2 ∈ F∗2

q ,

qm−1 − qm/2 + qm/2−1 otherwise

sq−(m) qm−1

{
qm−1 − qm/2 + qm/2−1 if (−1)m/2 ∈ F∗2

q ,

qm−1 + qm/2 − qm/2−1 otherwise

while if r = 2s is even then

(4.3) sym0(n, 2s) =

s∏
i=1

q2i−2

q2i − 1

2s−1∏
i=0

(qn−i − 1).

Henceforth, we will always assume that q is odd.

For q odd, define F∗2
q to be the set of perfect squares in Fq, i.e., x ∈ F∗2

q

if and only if there is some y ∈ Fq such that y2 = x. Define ψ : F×
q → {+,−}

by ψ(δ) = + if and only if δ ∈ F∗2
q . In other words, ψ is the Legendre symbol

for Fq. This notion can be extended to symmetric matrices in a natural way,
as the following remark shows.

Remark 4.4. By applying symmetric row and column reductions, every
n × n symmetric matrix A of rank r > 0 can be written either in the
form A = M · diag(1r, 0n−r) · MT for some M ∈ GL(n, q) or in the form
M ·diag(1r−1, z, 0n−r) ·MT for some z ∈ Fq �F∗2

q and some M ∈ GL(n, q).

In the former case we say that A has (quadratic) character ψ(A) =
ψ(1) = + and in the latter case we say it has character ψ(A) = ψ(z) = −.
By convention ψ(0) = + where 0 is the zero matrix. (This will be used in
the proof of Proposition 4.12.) Two notable special cases are that if A ∈
GL(n, q) then ψ(A) = ψ(detA), while if A is diagonal then ψ(A) = + if
and only if the product of the nonzero diagonal entries of A is a square
in Fq.

Let sq+(m) be the number of solutions to the equation
∑m

i=1 x
2
i = 0 in

Fm
q , and similarly let sq−(m) be the number of solutions to the equation∑m−1
i=1 x2i + zx2m = 0 where z is some (fixed) non-square in Fq. Simple for-

mulas are known for sq+ and sq− (see [Wan, Thm 1.26]) and we list them
in Table 2.
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Let sym(n, r) be the number of n × n symmetric matrices with rank r,
and let symψ(n, r) be the number of n × n symmetric matrices with rank
r and character ψ. We will make substantial use of the following results of
MacWilliams.

Theorem ([Mac, Thm. 2]). We have

sym(n, r) =

�r/2�∏
i=1

q2i

q2i − 1

r−1∏
i=0

(qn−i − 1),(4.5)

sym+(n, 2s+ 1) =
1

2
sym(n, 2s+ 1),(4.6)

and

sym+(n, 2s) =

⎧⎨
⎩

qs+1
2qs sym(n, 2s) if −1 is a square in Fq,

qs+(−1)s

2qs sym(n, 2s) otherwise.
(4.7)

We now give several propositions that culminate in a recurrence for the
number of symmetric matrices over Fq of rank r with k zeroes on the di-
agonal (Proposition 4.12). We use this recurrence to enumerate invertible
symmetric matrices over Fq with zero diagonal (Corollary 4.24). As be-
fore, we proceed by building larger matrices by adding rows and columns to
smaller matrices; for each n×n symmetric matrix B with zero diagonal, we
consider the (n+ 1)× (n+ 1) matrices with zero diagonal of the form

A =

[
0 v

vT B

]

and analyze these matrices to write down a recursion. First, as a warm-up,
we consider matrices with all-zero diagonal by rank; the appearance of the
functions sq± indicate that a finer result is needed to reach our goal.

Proposition 4.8. Let B be a symmetric n × n matrix of rank r ≥ 1 and
quadratic character ψ(δ). Of the qn symmetric matrices A =

[
0 v
vT B

]
we have

(i) sqψ(δ)(r) matrices of rank r,
(ii) qr − sqψ(δ)(r) matrices of rank r + 1, and
(iii) qn − qr matrices of rank r + 2.

Proof. The proof proceeds along the same lines as Proposition 2.7. As noted
in Remark 4.4, if r = rank(B) > 0 and δ ∈ F∗

q is such that ψ(B) = ψ(δ)
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then there exists M ∈ GL(n, q) such that B = M · diag(1r−1, δ, 0) ·MT . In
this case, setting D = diag(1r−1, δ, 0), we have[

1 0

0 M

]
·
[
0 v

vT B

]
·
[
1 0

0 MT

]
=

[
0 vMT

(vMT )T D

]
.

Since M is invertible and we are interested in letting v vary over all row vec-
tors of length n, we may define w = vMT and let w vary over all row vectors
of length n, instead.

Case 1: rank(A) = r+2. As in the results of Section 2.3, we have rank(A) =
r + 2 if and only if w has a nonzero entry among its last n− r entries
(or equivalently, if v �∈ rowspace(B)). There are qn − qr such choices
for w, so qn − qr matrices A have rank r + 2.

Case 2: rank(A) = r. As in Case 1 of the proof of Proposition 2.7, in order
to have rank(A) = r, we must have both that w = (w1, . . . , wr, 0, . . . , 0)
and that using Gaussian elimination to kill the entries of w and wT

results in a matrix whose (1, 1)-entry is equal to 0. This (1, 1)-entry is
equal to −(w2

1+· · ·+w2
r−1+δ−1w2

r), so there are sq
ψ(δ−1)(r) = sqψ(δ)(r)

choices of w for which this entry is zero and thus sqψ(δ)(r) matrices A
of rank r.

Case 3: rank(A) = r + 1. All qr − sqψ(δ)(r) choices of w not yet accounted
for result in a matrix A of rank r + 1.

These three cases are exhaustive, so we have the claimed result.

The appearance of the function sqψ(B) means that we cannot use Propo-
sition 4.8 to write down a recursion. Instead, we need a finer enumeration
that also relates the character of the larger matrix A to the character of
B and the choice of v. The following result provides this recursion. As
usual, consider B to be a fixed n × n symmetric matrix with all-zero di-
agonal.

Proposition 4.9. Let B have rank r ≥ 1 and quadratic character ψ(δ). Of
the qn total choices for A =

[
0 v
vT B

]
, we have

(i) qn − qr matrices of rank r + 2 and character ψ(−δ),
(ii) sqψ(δ)(r) matrices of rank r and character ψ(δ),
(iii) 1

2(sq
ψ(δ)(r+1)− sqψ(δ)(r)) matrices of rank r+1 and character ψ(δ),

and
(iv) the remaining qr − sqψ(δ)(r) − 1

2(sq
ψ(δ)(r + 1) − sqψ(δ)(r)) = qr −

1
2(sq

ψ(δ)(r + 1) + sqψ(δ)(r)) matrices of rank r + 1 and charac-
ter −ψ(δ).
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Proof. As in the preceding results, write D = diag(1r−1, δ, 0n−r) and choose
M ∈ GL(n, q) such that B = M ·D ·MT . Then we wish to consider all qn

matrices of the form

(4.10) A =

[
1 0

0 M

]
·
[
0 w

wT D

]
·
[
1 0

0 MT

]

as w varies in Fn
q .

Case 1: rank(A) = r + 2. By applying further row and column reductions
in Equation (4.10) we may write

A = R ·

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

0
... D

0

1

⎤
⎥⎥⎥⎥⎥⎦ ·RT

for some invertible matrix R, whence ψ(A) = ψ
([

0 0 1
0 δ 0
1 0 0

])
= ψ(−δ).

Thus, all qn − qr matrices A of rank r + 2 have character ψ(−δ).
Case 2: rank(A) = r. In this case, there is some invertible R such that

R · A · RT =
[
0 0
0 D

]
, whence ψ(A) = ψ(B) = ψ(δ). Thus, all sqψ(δ)(r)

matrices A of rank r have character ψ(δ).
Case 3: rank(A) = r + 1. In this case we have w = (w1, . . . , wr, 0, . . . , 0).

Setting a = −(w2
1+· · ·+w2

r−1+δ−1w2
r) �= 0, there exists some invertible

R such that

A = R ·
[
a 0
0 D

]
·RT .

If a ∈ F∗2
q then ψ(A) = ψ(B) = ψ(δ), and otherwise ψ(A) = −ψ(δ).

We have a ∈ F∗2
q if and only if there exists x ∈ F∗

q such that x2+w2
1 +

· · ·+w2
r−1+ δ−1w2

r = 0, and the number of choices of w for which this

equation has a solution is 1
2(sq

ψ(δ)(r + 1)− sqψ(δ)(r)).

These cases are exhaustive, so we have our result.

Corollary 4.11. We have the recursion

symψ
0 (n+ 1, r + 1) = (qn − qr−1) sym

ψ·ψ(−1)
0 (n, r − 1)

+ sqψ(r + 1) symψ
0 (n, r + 1)
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+
1

2

(
sqψ(r + 1)− sqψ(r)

)
symψ

0 (n, r)

+

(
qr − 1

2
(sq−ψ(r + 1) + sq−ψ(r))

)
sym−ψ

0 (n, r).

We are now ready to derive a recurrence for the number of symmetric
matrices over Fq of rank r with a prescribed number k zeroes on the diagonal.
We use the same approach as in Proposition 2.7 and Lemma 3.4.

4.1. Recursions for fixed rank based on number of zeroes on the
diagonal

Let sym0(n, k, r) be the number of n × n symmetric matrices with rank
r and the first k diagonal elements equal to 0, with no other restrictions.
Thus, we have sym0(n, n, r) = sym0(n, r) while sym0(n, 0, r) = sym(n, r)

(the value of which is given in Equation (4.5)). Let symψ
0 (n, r, k) count only

those matrices that have character ψ.
We define sym0(r, ψ;n+1, r′, ∗) (respectively, symψ′

0 (r, ψ;n+1, r′, ∗)) to
be the number of (n+1)× (n+1) symmetric matrices A of rank r′ (respec-
tively, and character ψ′) associated to any matrix B of rank r and character

ψ, and we define sym0(r, ψ;n+1, r′, 0) (respectively, symψ′

0 (r, ψ;n+1, r′, 0))
to be the number of such matrices (respectively, of character ψ′) where in
addition a = A11 = 0.

Proposition 4.12. If r is odd, define t = 0 if (−1)(r+1)/2 is a square in Fq

and t = 1 otherwise. Then

symψ
0 (n+ 1, k + 1, r + 1)

=
1

q
symψ

0 (n+ 1, k, r + 1) + (−1)t · ψ ·
(
1

2
sym0(n, k, r)

+ symψ
0 (n, k, r + 1)

)
× (q(r+1)/2 − q(r−1)/2).

If r is even and r > 0, define t = 0 if (−1)r/2 is a square in Fq and t = 1
otherwise. Then

symψ
0 (n+ 1, k + 1, r + 1) =

1

q
symψ

0 (n+ 1, k, r + 1)

− (−1)t

2
(sym+

0 (n, k, r)

− sym−
0 (n, k, r))(q

r/2 − qr/2−1).
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We have initial values

symψ
0 (n+1, k+1, 1) =

1

2
sym0(n+1, k+1, 1) =

q − 1

2

n−k−1∑
i=0

qi =
qn−k − 1

2
,

sym+
0 (n, 0, 2s+ 1) =

1

2
sym(n, 2s+ 1),

and

sym+
0 (n, 0, 2s) =

1

2

qs + (ψ(−1))s

qs
sym(n, 2s).

Proof. As before, consider a symmetric n × n matrix B of rank r with k
prescribed zeroes on the diagonal, and choose δ ∈ F×

q such that ψ(B) = ψ(δ);

the matrix A is obtained from B by gluing on one row v and one column vT ,
and the rank of A is then one of r, r + 1 and r + 2. We split in three cases
but most of the work has been done in Propositions 4.8 and 4.9. As in the
preceding results, write D = diag(1r−1, δ, 0n−r) and choose M ∈ GL(n, q)
such that B = M · D · MT . Then we wish to consider all matrices of the
form

(4.13) A =

[
1 0
0 M

]
·
[
a w
wT D

]
·
[
1 0
0 MT

]

as w varies in Fn
q and a either varies over Fq or is fixed at a = 0.

Case 1: rank(A) = r+2. As in the first case of the proof of Proposition 4.9,
we have ψ(A) = ψ(−δ) = ψ(−1) · ψ(δ) regardless of the value of the
(1, 1)-entry a of A. It follows immediately that

(4.14)

sym
ψ·ψ(−1)
0 (r, ψ;n+ 1, r + 2, 0) =

1

q
sym

ψ·ψ(−1)
0 (r, ψ;n+ 1, r + 2, ∗),

i.e., exactly a q−1-fraction of all such matrices have (1, 1)-entry equal
to 0. (This recursion holds when r = 0, i.e., when B = 0 is the all-zero
matrix, due to our convention that ψ(0) = +.)

Case 2: rank(A) = r. Much like in Case 2 of Proposition 4.8, applying
further symmetric row and column operations on the right-hand side of
Equation 4.13 gives A = R·

[
b 0
0 D

]
·RT , where b = a−(w2

1+· · ·+w2
r−1+

δ−1w2
r). Thus rank(A) = r if and only if a−(w2

1+· · ·+w2
r−1+δ−1w2

r) =
0, and in this case ψ(A) = ψ(B) = ψ(δ). Now we consider two sub-
cases:
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(i) If a may take any value in Fq, then the value of a is determined

by the choice of w and so sym
ψ(δ)
0 (r, ψ(δ);n+ 1, r, ∗) = qr.

(ii) If we restrict to a = 0 then by Case 2 of the proof of Proposi-

tion 4.9 we have that sym
ψ(δ)
0 (r, ψ(δ);n+ 1, r, 0) = sqψ(δ)(r).

Using Table 2, the above two pieces of information imply that

(4.15)

symψ
0 (r, ψ;n+ 1, r, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1
q sym

ψ
0 (r, ψ;n+ 1, r, ∗), r odd,

1
q sym

ψ
0 (r, ψ;n+ 1, r, ∗)

+(−1)t · ψ · (qr/2 − qr/2−1), r even.

where t = 0 if (−1)r/2 is a square and t = 1 otherwise.
Case 3: rank(A) = r + 1. Beginning as in Case 2, we must have b = a −

(w2
1 + · · · + w2

r−1 + δ−1w2
r) �= 0. In this case, ψ(A) = ψ(b)ψ(B). We

consider two sub-cases:

(i) If a may take any value in Fq then for each choice of w there
are q−1

2 choices of a for which ψ(b) = + and q−1
2 choices of a for

which ψ(b) = −. It follows that sym
ψ(δ)
0 (r, ψ(δ);n+ 1, r+ 1, ∗) =

sym
−ψ(δ)
0 (r, ψ(δ);n+ 1, r + 1, ∗) = 1

2(q − 1)qr.

(ii) If we restrict to a = 0 then we must count solutions to b = −(w2
1+

· · ·+w2
r−1+δ−1w2

r) �= 0 depending on whether b is a square. When

b is a square (i.e., when ψ(A) = ψ(B)) there are sqψ(δ)(r+1) solu-
tion sets (w1, . . . , wr,

√
b) to this equation. However, in sqψ(δ)(r)

of these we have b = 0, and the others are counted twice, once

for each square root of b. Thus sym
ψ(δ)
0 (r, ψ(δ);n+ 1, r + 1, 0) =

1
2(sq

ψ(δ)(r + 1) − sqψ(δ)(r)). All remaining matrices are counted

by sym
−ψ(δ)
0 (r, ψ(δ);n + 1, r + 1, 0), so by subtraction we have

sym
−ψ(δ)
0 (r, ψ(δ);n+1, r+1, 0)= qr− 1

2(sq
ψ(δ)(r+1)+sqψ(δ)(r)).

Using Table 2 and calculating carefully, we conclude that for ε ∈ {±1}
we have

(4.16)

symε·ψ
0 (r, ψ;n+ 1, r + 1, 0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
q sym

ε·ψ
0 (r, ψ;n+ 1, r + 1, ∗)

+ (−1)t1 ·ε·ψ
2 q(r−1)/2(q − 1), r odd,

1
q sym

ε·ψ
0 (r, ψ;n+ 1, r + 1, ∗)

− (−1)t2 ·ψ
2 qr/2−1(q − 1), r even,
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where t1 = 0 if (−1)(r+1)/2 is a square in Fq and t1 = 1 otherwise, and

t2 = 0 if (−1)r/2 is a square in Fq and t2 = 1 otherwise.

As in the proof of Proposition 2.7, we now change our perspective and

consider the set of all (n+1)×(n+1) symmetric matrices A of rank r+1 and

character ψ whose first k + 1 diagonal entries are equal to 0. Parametrizing

these matrices by the n × n submatrix B that results from removing the

first row and first column, we have

(4.17) symψ
0 (n+1, k+1, r+1) =

∑
B

symψ
0 (rank(B), ψ(B);n+1, r+1, 0)

where the sum is over all n×n symmetric matrices B whose first k diagonal

entries are zero. The summands on the right are zero unless rank(B) ∈
{r − 1, r, r + 1}, and so splitting the right-hand side according to the rank

and character of B gives

symψ
0 (n+ 1, k + 1, r + 1)

= sym
ψ·ψ(−1)
0 (n, k, r − 1) · symψ

0 (r − 1, ψ · ψ(−1);n+ 1, r + 1, 0)

+ symψ
0 (n, k, r + 1) · symψ

0 (r + 1, ψ;n+ 1, r + 1, 0)

+ symψ
0 (n, k, r) · sym

ψ
0 (r, ψ;n+ 1, r + 1, 0)

+ sym−ψ
0 (n, k, r) · symψ

0 (r,−ψ;n+ 1, r + 1, 0).(4.18)

Now we may substitute from Equations (4.14), (4.15), and (4.16) and

collect the terms with coefficient 1
q to get the desired result.

The initial values of the recursion are the case of rank one, symψ
0 (n +

1, k + 1, 1), and the case when k = 0, symψ
0 (n, 0, r):

Rank one: Every such matrix A has exactly one nonzero diagonal entry.

So up to permuting rows and columns we assume the (1, 1) entry of A

is δ �= 0, in which case A has the form
[ δ v
vT vT v/δ

]
. Thus

(4.19) A =

[
δ 0

vT In

]
·
[
1/δ 0

0 0n

]
·
[
δ v

0 In

]

and so ψ(A) = ψ(δ). From this we deduce that symψ
0 (n+1, k+1, 1) =

1
2 sym0(n+1, k+1, 1). To find sym0(n+1, k+1, 1) we do the following:

since such matrices have rank 1 and the first k + 1 diagonal entries



384 Joel Brewster Lewis et al.

equal to zero, they are of the form⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...
. . .

...
0 · · · 0
... B

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where B is a (n − k) × (n − k) rank one symmetric matrix with no
other restrictions. Hence

symψ
0 (n+ 1, k + 1, 1) =

1

2
sym0(n− k, 0, 1) =

1

2
sym0(n− k, 1),

and the latter is given in (4.5).

k = 0: We have symψ
0 (n, 0, r) = symψ

0 (n, r), the number of n×n symmetric
rank r matrices with no other restrictions. Depending on the parity of
r this is given in (4.6) or (4.7).

This gives the desired result.

We do not have a solution for this recurrence. However, we use it to
obtain two partial results towards its solution:

Corollary 4.20. We have

sym+
0 (n+ 1, k + 1, 2s+ 1) = sym−

0 (n+ 1, k + 1, 2s+ 1)

=
1

2
sym0(n+ 1, k + 1, 2s+ 1),

and

sym0(n+ 1, k + 1, 2s) + sym0(n+ 1, k + 1, 2s+ 1)

=
1

qk+1
(sym(n+ 1, 2s) + sym(n+ 1, 2s+ 1)).

Proof. From the case r = 2s in Proposition 4.12 we have

sym+
0 (n+ 1, k + 1, 2s+ 1)− sym−

0 (n+ 1, k + 1, 2s+ 1)

=
1

q
(sym+

0 (n+ 1, k, 2s+ 1)− sym−
0 (n+ 1, k, 2s+ 1)).

Since sym+
0 (n+ 1, 0, 2s+ 1) = sym−

0 (n+ 1, 0, 2s+ 1), we have our result in
this case.
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Proposition 4.12 also provides a recurrence for sym0(n+1, k+1, r+1) =
sym+

0 (n+ 1, k + 1, r + 1) + sym−
0 (n+ 1, k + 1, r + 1). Setting t = 0 if (−1)s

is a square in Fq and t = 1 otherwise, we have

sym0(n+ 1, k + 1, 2s+ 1) =
1

q
sym0(n+ 1, k, 2s+ 1)

− (−1)t(sym+
0 (n, k, 2s)

− sym−
0 (n, k, 2s))(q

s − qs−1)

and

sym0(n+ 1, k + 1, 2s) =
1

q
sym0(n+ 1, k, 2s)

+ (−1)t(sym+
0 (n, k, 2s)

− sym−
0 (n, k, 2s))(q

s − qs−1).

Thus

sym0(n+ 1, k + 1, 2s) + sym0(n+ 1, k + 1, 2s+ 1)

=
1

q
(sym0(n+ 1, k, 2s) + sym0(n+ 1, k, 2s+ 1)).

Iterating this, we obtain the desired formula.

We also use Proposition 4.12 to obtain an explicit formula in the case
of invertible symmetric matrices (i.e., when r = n). We do this in the next
section.

4.2. Invertible symmetric matrices with a fixed number of zeroes
on the diagonal

Let sz(n, k) = sym0(n, k, n) be the number of invertible n × n symmetric
matrices with first k diagonal elements equal to 0, with no other restric-
tions. Let szψ(n, k) count only those matrices that have character ψ (in this
case the quadratic character of the determinant). We use the recursion in
Proposition 4.12 to give a recurrence for this full rank case.

Proposition 4.21. If n is odd define t = 0 if (−1)(n+1)/2 is a square in Fq

and t = 1 otherwise. Then

szψ(n+ 1, k + 1) =
1

q
szψ(n+ 1, k) +

(−1)t · ψ
2

sz(n, k)(q(n+1)/2 − q(n−1)/2).
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If n is even, define t = 0 if (−1)n/2 is a square in Fq and t = 1 otherwise.
Then

szψ(n+ 1, k + 1) =
1

q
szψ(n+ 1, k)

− (−1)t

2

(
sz+(n, k)− sz−(n, k)

)
(qn/2 − q(n−2)/2).

These recursions have initial values

(4.22) sz+(2m+ 1, 0) =
1

2
sz(2m+ 1, 0)

and

(4.23) sz+(2m, 0) =
1

2

qm + (ψ(−1))m

qm
sz(2m, 0).

Proof. Apply Proposition 4.12 with r = n.

Notice that in the first recursion (when n is odd), the sign of the last
summand depends on ψ. Exploiting this observation, we obtain simple recur-
rences for sz(m, k) = sz+(m, k)+sz−(m, k) (already given in Lemma 3.4) and
a more complicated one for m odd. We also give recurrences for sz+(m, k)−
sz−(m, k).

Corollary 4.24. We have

sz(n+ 1, k + 1) =

⎧⎪⎪⎨
⎪⎪⎩
q−1 sz(n+ 1, k) if n odd,

q−1 sz(n+ 1, k)− (−1)t(sz+(n, k)

− sz−(n, k))(qn/2 − q(n−2)/2) otherwise

where t = 0 if (−1)n/2 is a square in Fq and t = 1 otherwise, and

sz+(n+ 1, k + 1)− sz−(n+ 1, k + 1)

=

⎧⎪⎪⎨
⎪⎪⎩

1
q (sz

+(n+ 1, k)− sz−(n+ 1, k))

+(−1)t · sz(n, k)(q(n−1)/2 − q(n−3)/2) if n odd,

0 otherwise

where t = 0 if (−1)(n+1)/2 is a square in Fq, and t = 1 otherwise. We have
initial values sz(m, 0) = sym(2m) and
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sz+(m, 0)− sz−(m, 0) =

{ψ(−1)m

qm sym(m) if m is even,

0 otherwise.

We know from Lemma 3.4 that for n odd, we have sz(n + 1, k + 1) =
1

qk+1 sym(n+ 1). We now provide the complementary result for n even.

Theorem 4.25. Let sz(n, k) be the number of invertible n × n symmetric
matrices with the first k diagonal elements equal to 0 and let sym(n) be the
number of invertible n × n symmetric matrices with no other restrictions.
We have

sz(2m, k + 1) =
1

qk+1
sym(2m),

and

sz(2m+ 1, k + 1) =
qm

2+m

qk+1

�k/2�+1∑
j=0

(−1)j(q − 1)m+j [2m− 2j + 1]q!!

×
((

k + 1

2j − 1

)
+ (q − 1)

(
k + 1

2j

))
.

In terms of the character,

sz+(2m, k+1)=
sym(2m)

2qk+1
+

(−1)tqm
2

2qk+1

�k/2�∑
j=0

(−1)j(q − 1)m+j [2m− 2j− 1]q!!

×
((

k + 1

2j

)
+(q− 1)

(
k+1

2j+1

))
,

where t = 1 if (−1)m is a square in Fq and t = 0 otherwise; and

sz+(2m+ 1, k + 1) =
1

2
sz(2m+ 1, k + 1).

Proof. As in MacWilliams [Mac, p. 156], in the first attempt we iterate the
recursions of Corollary 4.24 to obtain the formulas above, but in hindsight
we can directly verify that the formulas satisfy the recursions.

5. Polynomiality, q-analogues, and some open questions

So far, we have fixed sets of the form S = {(i, i) | 1 ≤ i ≤ k}, counted matri-
ces over Fq with support avoiding S by rank, and done analogous counts for
symmetric and skew-symmetric matrices. In this section, we briefly examine
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Figure 1: A representative matrix from Tq(7×7, S′, 7) where S′ is the comple-
ment of the incidence matrix of the Fano plane, shown at right. Stembridge
[Ste1] showed this to be the smallest example where #Tq is not a polynomial
in q.

what happens when we enumerate matrices of given rank whose support
avoids an arbitrary fixed set of entries.

5.1. q-analogues and the proof of Proposition 5.1

Fix m,n ≥ 1, r ≥ 0, and S ⊂ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let
Tq = Tq(m × n, S, r) be the set of m × n matrices A over Fq with rank r
and support contained in the complement of S. We consider the problem of
computing #Tq, the number of such matrices.

A first observation is that, holding m,n, r, S fixed and letting q vary,
the function #Tq need not be polynomial in q. We have already seen this
phenomenon in the case of symmetric matrices; for instance, setting m =
n = r to be an odd positive integer and S = {(i, i) | 1 ≤ i ≤ n} we have
from Equations (4.2) and (4.3) and Theorem 4.25 that #(Tq(n × n, S, n) ∩
Sym(n)) = sym0(n) is equal to zero when q is even but is nonzero when q is
odd. This lack of polynomiality also occurs in the not-necessarily symmetric
case. Stembridge [Ste1, Section 7] showed that for n = m = 7, if S′ is the
complement of the incidence matrix of the Fano plane, then the number
of invertible 7 × 7 matrices in Fq whose support avoids S′ is given by two
different polynomials depending on whether q is even or odd. (This is the
smallest such example in the sense that #Tq(n × n, S, n) is a polynomial
if n < 7 for any set S, and if n = 7 and #S > 28.) See Figure 1 for a
construction of S′.

A second observation is that we expect #Tq to be a q-analogue of a
closely related problem for permutations. Specifically, let T1 = T1(m×n, S, r)
be the set of 0–1 matrices with exactly r 1’s, no two of which lie in the same
row or column, and with support contained in the complement of S. The
following proposition makes this precise.
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Proposition 5.1. Fix m,n ≥ 1, r ≥ 0, and S ⊂ {(i, j) | 1 ≤ i ≤ m, 1 ≤
j ≤ n}. Let Tq = Tq(m × n, S, r) be the set of m × n matrices A over Fq

with rank r and support contained in the complement of S, and T1 be the set
of 0–1 matrices with exactly r 1’s, no two of which lie in the same row or
column, and with support contained in the complement of S. Then we have

#Tq ≡ #T1 · (q − 1)r (mod (q − 1)r+1).

In particular, for any infinite set of values of q for which #Tq is a poly-
nomial in q we have that (q − 1)r divides #Tq as a polynomial and that
#Tq/(q − 1)r |q=1= #T1.

Proof. For each �, identify (F×
q )

� with the group of invertible diagonal �× �
matrices. Consider the action of (F×

q )
m × (F×

q )
n on Tq given by (X,Y ) ·

A = XAY −1. For any A ∈ Tq, let G be the bipartite graph with vertices
v1, . . . , vm, w1, . . . , wn and an edge viwj if Aij �= 0. Then (x1, . . . , xm, y1, . . . ,
yn) ∈ (F×

q )
m × (F×

q )
n stabilizes A if and only if xi = yj for all edges viwj

of G. Thus, the size of the stabilizer of A is (q − 1)C(G), where C(G) is the
number of connected components of G, and the size of the orbit of A is
therefore (q − 1)m+n−C(G).

Since A has rank r, at least r of the vi and r of the wi have positive
degree. It follows that C(G) ≤ m + n − r with equality if and only if G
consists of r disjoint edges, that is, when G is the graph associated to a
matrix in T1. It follows that the size of each orbit is (q− 1)a for some a ≥ r,
and the number of orbits of size (q − 1)r is #T1.

Remark 5.2. The technique in the proof of Proposition 5.1 is widely appli-
cable to similar problems. We give one brief example in the case of symmetric
matrices. Suppose that q is odd. The group (F×

q )
n of invertible diagonal ma-

trices acts on the set of symmetric matrices by the rule X ·A = XAX. For
a symmetric matrix A, we consider the graph G on n vertices v1, . . . , vn
with edge vivj if and only if Aij �= 0. The order of the stabilizer of A is the
number of tuples (x1, . . . , xn) ∈ (F×

q )
n such that xixj = 1 whenever vivj is

an edge in G. For each connected component of G we have q − 1 solutions
if the component is bipartite or 2 solutions if the component contains odd
cycles (including possibly loops). Thus, if Cbip(G) is the number of bipar-
tite components of G then the size of the stabilizer of A is (q − 1)Cbip(G) ·
2C(G)−Cbip(G) and so the size of the orbit of A is (q − 1)n−C(G) · ((q − 1)/
2)C(G)−Cbip(G).

Now restrict consideration to matrices of rank 2s with zero diagonal. In
this case we have C(G) ≤ n − s, with equality exactly when G consists of
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s disjoint edges. The contribution of the orbits of such matrices is (q − 1)s

times the number of symmetric 0–1 matrices of rank 2s with no two ones
in the same row or column, so (looking modulo (q − 1)s+1) we have that
symmetric matrices with zero diagonal are a q-analogue of “partial fixed
point-free involutions.”

5.2. Polynomiality and a conjecture of Kontsevich

As mentioned in Section 1, the question of the polynomiality of #Tq is
related to the Kontsevich conjecture. We briefly provide some background
on this conjecture and on its relation to the polynomiality of #Tq.

Let G be an undirected connected graph with edge set E, and form the
polynomial ring Z[xe | e ∈ E]. We consider the polynomial

PG(x) =
∑
T

∏
e/∈T

xe,

where the sum is over all spanning trees T of G. Motivated by computer
calculations and some relations to algebraic geometry, Kontsevich speculated
that the number of solutions to PG(x) �= 0 over Fq is a polynomial function in
the parameter q. Stanley [Sta2] reformulated this as follows. First, consider
the renormalization

QG(x) = PG(1/x)
∏
e∈E

xe =
∑
T

∏
e∈T

xe.

Let gG(q) = #{x ∈ FE
q | QG(x) �= 0}. Using inclusion-exclusion, one finds

that the number of solutions to PG(x) �= 0 is a polynomial (in q) if and only if
gG(q) is a polynomial. Let v1, . . . , vn be the vertices of G and suppose that
vn is adjacent to all other vertices. By the matrix-tree theorem, one may
conclude that gG(q) is the number of symmetric matrices in GL(n − 1, q)
such that the (i, j)-th entry is 0 whenever i �= j and vi and vj are not
connected. Thus, gG(q) = #(Tq(n×n, SG, n)∩Sym(n)) where SG = {(i, j) |
i �= j and vivj �∈ E}.

Using Stanley’s reformulation, Belkale and Brosnan showed in [BB] that
Kontsevich’s speculation is false by showing that the functions gG(q) are as
complicated (in a very precise sense) as the functions counting the number
of solutions over Fq of any variety defined over Z. In addition, Stembridge
showed in [Ste1] that gG(q) is a polynomial for graphs G with at most 12
edges; in [Sch], Schnetz extended this result to 13 edges and found six non-
isomorphic graphs with 14 edges such that gG(q) is not a polynomial in q.
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S(4,3,2) S(5,5,4,3,1)/(2,2,1) S(5,5,4,3,1)/(2,2,1)

⎡
⎢⎢⎢⎢⎣

0 0 0 0 a15

0 0 0 a24 a25

0 0 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

a11 a12 0 0 0
a21 a22 0 0 0
a31 0 0 0 a35

0 0 0 a44 a45

0 a52 a53 a54 a55

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

0 0 a13 a14 a15

0 0 a23 a24 a25

0 a32 a33 a34 0
a41 a42 a43 0 0
a51 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Figure 2: Representative matrices from Tq(5 × 5, S, r) when S is a straight
shape, a skew shape, and the complement of a skew shape.

Given these results, it becomes an interesting problem to determine when
gG(q) is a polynomial in q. Taken together with Proposition 5.1, they also
suggest the following question:

Question 5.3. For which families of sets S is #Tq(m×n, S, r) a polynomial
in q?

Note that #Tq(m× n, S, r) is invariant under permutations of rows and
columns. Below, we describe one class of sets S for which the answer is
already known by the theory of q-rook numbers.

Let S denote the complement of the set S. We say that S ⊆ [n]× [n] is a
straight shape if its elements form a Young diagram. Thus, to every integer
partition λ with at most n parts and with largest part at most n (i.e., to each
sequence of integers (λ1, λ2, . . . , λn) such that n ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0)
there is an associated set S = Sλ. We have that #Sλ =

∑
λi = |λ| is the

sum of the parts of λ. Similarly, if λ and μ are partitions such that Sμ ⊆ Sλ

then we say that the set Sλ\Sμ has skew shape and we denote it by Sλ/μ.
Figure 2 gives examples of matrices in Tq(n × n, S, r) when S is a straight
shape, a skew shape, and the complement of a skew shape. Next we give
three easy facts about straight and skew shapes.

Remark 5.4. (i) Up to a rotation of [n]× [n], the complement Sλ of the
straight shape Sλ is also a straight shape. However, Sλ/μ is typically
not a skew shape.

(ii) If (i, j) ∈ Sλ then the rectangle {(s, t) | 1 ≤ s ≤ i, 1 ≤ t ≤ j} is
contained in Sλ. General skew shapes Sλ/μ do not have this property.

(iii) If λ = (n, n− 1, . . . , 2, 1) and μ = (n− 1, n− 2, . . . , 1, 0) are so-called
“staircase shapes” then Sλ/μ is, up to rotation, the set of diagonal
entries. Thus the value #Tq(n× n, Sλ/μ, n) is given in Proposition 2.2

while trivially #Tq(n×n, Sλ/μ, n) = #{invertible diagonal matrices} =
(q − 1)n.
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Given a set S ⊆ [n] × [n], the r q-rook number of Garsia and Remmel
[GR] is Rr(S, q) =

∑
C qinv(C,S), where the sum is over all rook placements

C ∈ T1(n×n, S, r) of r non-attacking rooks in S and where inv(C, S) is the
number of squares in S not directly above (in the same column) or to the
left (in the same row) of any placed rook.

The following result of Haglund shows that when S = Sλ, we have that
#Tq(n×n, Sλ, n) is a polynomial, and in fact is the product of a power of q−1
and a polynomial with nonnegative coefficients. We reproduce Haglund’s
proof to emphasize where we use that S is a straight shape.

Theorem ([Hag, Theorem 1]). For straight shapes Sλ,

#Tq(n× n, Sλ, r) = (q − 1)rqn
2−|λ|−rRr(Sλ, q

−1),

Proof sketch. From Remark 5.4 (i) it is equivalent to work with Tq(n ×
n, Sλ, r). Choose a matrix A in Tq(n × n, Sλ, r), that is, whose support is
in Sλ, and perform Gaussian elimination in the following order: traverse
columns from bottom to top, starting with the last column. When you come
to a nonzero entry (i.e., a pivot), use it to eliminate the entries above it in
the same column and to its left in the same row. Then move on to the next
column and repeat. The crucial point is that, by Remark 5.4 (ii), each step
in the elimination gives another matrix contained in Tq(n× n, Sλ, r). After
elimination, the positions of the pivots are a placement of r non-attacking
rooks on Sλ, and the number of matrices in Tq(n×n, Sλ, r) that give a fixed
rook placement is (q − 1)rq#Sλ−r−inv(C,Sλ).

Remark 5.5. Haglund’s theorem also implies that #Tq(n×n, S, r) is a poly-
nomial in q for any set S that can be arranged into a straight shape by per-
muting rows and columns since #Tq is invariant under these permutations.

Question 5.6. The proof above fails for Sλ/μ by Remark 5.4(ii). However,
computations using Stembridge’s Maple package reduce [Ste2] suggest that
when S is a skew shape, #Tq is still a polynomial and that when S is the
complement of a skew shape, #Tq is a power of q − 1 times a polynomial
with nonnegative coefficients. Is this true for all skew shapes and their com-
plements?

(Recall that any counter-examples satisfy n = 7 and #S ≥ 28 or n ≥ 8.)

Question 5.7. Haglund’s theorem and the preceding question suggest sim-
ilarities between #Tq for S and S that is reminiscent of the classical reci-
procity of rook placements and rook numbers (see [Cho] for a short combina-
torial proof). Dworkin [Dwo, Theorem 8.21] gave an analogue of this classical
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reciprocity for q-rook numbers Rr(S, q) when S = Sλ. By Haglund’s result,
this implies a reciprocity formula relating Tq(n×n, Sλ, r) and Tq(n×n, Sλ, r).
Can this reciprocity be extended to skew or other shapes? If so, we could
recover the formula for fn,n in Proposition 2.2 from the formula of its com-
plement: (q − 1)n.
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