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 A two-dimensional reflection/transmission problem for SH-waves at a corrugated 
interface between homogeneous transversely isotropic half-spaces is considered. 
Rayleigh's method is adopted and expressions for reflection and transmission coefficients 
are obtained in closed form for the first-order approximation of the corrugation. 
Numerical computations for a particular model have been performed.

1. Introduction 

 Theoretical study of the dynamic characteristics of seismic waves reflected/refract-
ed by surfaces is of great practical importance. Keeping in view the fact that 
earthquake-generated seismic waves encounter mountain basins, mountain roots and 
salt and ore bodies in their paths, it is doubtless that such irregularities affect the 
reflection and transmission of elastic waves through the earth. Seismic prospecting is 
widely carried out in regions of complex geological structures, and the interfacial 
curvature must be taken into account for a more accurate interpretation of the results. 
In reality, the boundaries of the earth medium can never be perfectly flat and are always 
stochastically irregular to a certain extent. Our research studies the motivation of the 
situation if the Mohorovicic discontinuity is not a horizontal plane, but has an irregular 
shape. The model is based on this type of geophysically interesting situation. Since the 
body waves carry information about the internal structure of the earth, the study of 
reflection and refraction of elastic waves is therefore of great importance in seismology. 

 There are several methods to deal with the problems of wave scattering from a 
corrugated surface. Sato (1955) treated the problem of elastic wave scattering from a 
corrugated, traction-free surface of a semi-infinite elastic medium using Rayleigh's 
method. The same method was adopted by Asano (1960, 1961, 1966), who investigated 
the problems of reflection and transmission of body waves across a periodic interface 
between two dissimilar half-spaces. In Rayleigh's method, expressions in the boundary 
conditions containing the function defining the corrugated boundary are expanded in
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a Fourier series, and the unknown coefficients in the solutions are determined to any 

given order of approximation in terms of a small parameter characteristic of the 
boundary. The reflection of body waves from an arbitrary, not necessarily periodic, 
rough surface of a semi-infinite solid was discussed by Abubakar (1962a) and Dunkin 
and Eringen (1962) among others, each of who applied a perturbation method to arrive 
at the results. The perturbation method of approximation is based on the assumption 
that the curvature of the boundary surface is small everywhere. In this method, the 
amplitudes of superposed scattered plane waves is expressed into sums of terms whose 
orders of magnitude are proportional to the powers of the amplitude of the rough 
surface, which is assumed small. It is noted that the first few terms of the power series 
will give an approximate solution of the problem. Abubakar (1962b, c) devoted two 

papers to work out the problems of reflection and refraction of SH-waves at an irregular 
interface using the perturbation method. Gilbert and Knopoff (1960) used a perturbation 
scheme for investigating the problem of scattering of seismic waves by an irregular 
surface. Kuo and Nafe (1962) obtained the period equation for Rayleigh waves in a 
solid layer overlying a solid half-space separated by a sinusoidal interface. DeNoyer 
(1961) has treated the problem of Love-wave dispersion in a layered medium, in which 
the layer thickness varies as a sine function of distance. Aki and Lamer (1970) dis-
cussed the surface motion of a layered medium having an irregular interface due to 
incident plane SH-waves. The Aki-Larner technique actually stems from Rayleigh's 
technique, in which the scattered wavefield is represented as a linear combination of 

plane waves with discrete horizontal wave numbers including inhomogeneous waves. 
The book by Ogilvy (1961) is worth noting regarding the subject of wave scattering 
from rough surfaces. 

 Musgrave (1960) treated the problem of reflection and refraction of plane elastic 
waves at a plane boundary between aelotropic media. Henneke (1972) studied the effect 
of anisotropy on the reflection and refraction of stress waves at a plane boundary in 
anisotropic media. Thapliyal (1974) studied the effect of anisotropy on the reflection of 
SH-waves from an anisotropic transition layer that lies between two isotropic half-spaces. 
Keith and Crampin (1977) derived the formulae for calculating the energy partition 
among waves generated by plane waves incident on a plane boundary between two 

generally anisotropic media. Saini and Singh (1977) investigated the problem of reflection 
and refraction of SH-waves at a plane interface between two homogeneous elastic media, 
one isotropic and the other transversely isotropic. Delay and Hron (1977) discussed the 
problem of reflection and refraction of elastic waves (P and SV) in transversely isotropic 
media. Hanyga (1980) discussed the outgoing waves and boundary value problem of 
anisotropic elasticity. Mandal and Mitchell (1986) obtained eigen solutions, using the 
recursive scheme of scattered operators and numerical wave number integration 
technique, in transversely isotropic medium. Rokhlin et al. (1986) and Mandal (1991) 
studied the reflection and transmission of elastic waves at a plane interface between 
two generally anisotropic media. Mandal and Toksoz (1990) developed an algorithm 
for generating complete waveforms in general anisotropic media and computed complete 
wavefields therein due to a point source. A report related to wave motion in anisotropic 
media has also been reviewed by Crampin (1981) and Pao (1983). 

 In the above investigations of corrugated interfaces, the elastic media considered

J. Phys. Earth



Reflection and Refraction of SH-Waves at a Corrugated Interface 349

were isotropic and homogeneous. Anisotropy is a well-established phenomenon within 

the earth and has been widely detected in field data, as well as in laboratory experiments 

(e.g., Babuska, 1981; Crampin et al., 1984; Gaiser et al., 1984). Transverse isotropy is 

the most important type of anisotropy encountered, in which elastic properties involved 

are the same in any direction perpendicular to an axis but are different parallel to this 

axis. We therefore consider the problem of reflection and refraction of SH-waves 

at a corrugated interface between two transversely isotropic, homogeneous elastic solids. 

Rayleigh's method is adopted and the expressions for the reflection and transmission 

coefficients are obtained for the first-order approximation of the corrugation. 

2. Formulation of the Problem and Its Solution 

 We consider two homogeneous transversely isotropic elastic half-spaces, H, and 

H2. The elastic constants, densities and velocities in Hi are given by Mi, Ni, ƒÏi, and ƒÀVi, ƒÀ

hi (i=1, 2), respectively. The anisotropy factor is denoted by Ni/Mi. The x-axis and 

y-axis are horizontal and z-axis is pointing vertically downward. The equation of the 

corrugated interface between two considered solid half-spaces is given by

(1)

where ƒÄ is assumed to be a periodic function of x and independent of y, the mean value 

of which is zero (Fig. 1). The representation of ƒÄ in the form of Fourier series can be 

expressed as (Sato, 1955)

(2)

On expanding the right side of Eq. (2) and introducing the notations

we obtain,

(3)

Fig. 1. Geometry of the problem.
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In the special case when the interface is represented by one cosine term, that is

(4)

the wavelength of corrugation is 2ƒÎ/p. 

 The equation of motion for SH-waves in transversely isotropic homogeneous elastic 

medium can be written as (Sheriff and Geldart, 1995, p. 56)

(5)

where M, N, and ƒÏ are elastic properties of the medium and V denotes the y-component 

of the displacement. In order to solve Eq. (5), we use the method of separation of 

variables. Consider the time harmonic waves and let

(6)

where ƒÖ is the circular frequency. Insertion of Eq. (6) into Eq. (5) and separating the 

variables, we obtain

(7) 

(8)

where

(9)

and a is the x-component of the wave number given by (Gupta, 1965),

(10)

where ƒÆ is the angle between the wave normal and the z-axis. 

 Consider a plane SH-wave of unit amplitude and period 2ƒÎ/ƒÖ with an incident 

from the upper half-space. Let ƒÁ be the angle between the z-axis and the incident wave 

normal, and the direction of propagation wave being along the positive x-axis. If the 

boundary surface is on the plane, then it suffice to consider the only solutions of Eqs. 

(7) and (8), and hence solution (6) of Eq. (5) which gives 

(i) for the incident of regularly reflected wave as

(11)

(ii) where the regularly refracted wave equals

(12) 

(13)
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and

(14)

Moreover, ƒÂ is the angle made by the refracted wave normal with the z-axis in the 

medium H2' with B0 and D0 as the reflection and transmission coefficients for a plane 

 interface. Snell's law is given by

(15)

Since the interface is corrugated, in addition to the regular reflected and refracted waves, 
it is necessary to take the effect of corrugation on reflection and refraction of waves 
into consideration and introduce the following waves: 

(i) irregularly reflected waves whose spectrum of the nth order is given by

(16)

(ii) irregularly refracted waves whose spectrum of the nth order is given by

(17)

where ƒÁn, ƒÁ'n, ƒÂn, and ƒÂ'h are given by the following spectrum theories (Asano, 1960),

(18)

and two more relations obtained by replacing ƒÁ, ƒÁn, ƒÁn', and ƒÀh1 by ƒÂ, ƒÂn, ƒÂn' and ƒÀh2 . 

respectively, and

(19)

where the values of qn' and rn' can be obtained by replacing ƒÁn by ƒÁn' in the above values of qn 

and rn, respectively. Bn, Bn', Dn, and Dn' are unknown constants. 

 The total displacement (V1) in the upper medium is the sum of those incidents, of 

regularly reflected and irregularly reflected waves. Thus, the combination of Eqs. (11) 

and (16) give

(20)

 Similarly, combining Eqs. (12) and (17) for the total displacement (V2) in the lower 
medium, we have
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(21)

Using relation (18), Eqs. (20) and (21) can be written as

(22)

and

(23)

where in writing. Eqs. (22) and (23), relation (15) is used. 

3. Boundary Conditions 

 The displacement-stress continuity conditions to be satisfied at the boundary surface

(24)

and

(25)

where ƒÄ' is the derivative of ƒÄ with respect to x. 

 Insertion of Eqs. (22) and (23) in Eqs. (24) and (25) make use of the following 

substitutions,

(26)

where

(27)

Therefore, we obtain
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(28)

and

(29)

4. Solution of the First Approximation , 

 The corrugation of the surface Z=ƒÄ is assumed to be very small, therefore, we have

and the terms of second and higher order in have been neglected for the first 

approximation. The first approximation for B0 and D0 can be obtained by collecting 

the terms independent of x and ƒÄ in Eqs. (28) and (29); therefore, we have

(30)

and

(31)

These formulae give the amplitudes of reflected and refracted waves at a plane boundary 
surface. 

 In order to obtain the solution for the first approximation for Bn and Dn, we collect 
the coefficients of e-mpx on both sides of Eqs. (28) and (29), thus obtaining

(32)

and

(33)

Similarly, the solutions of the first approximation for Bn' and Dn' be obtained by
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collecting the coefficients empx in Eqs. (28) and (29), giving

(34)

and

(35)

where, in writing Eqs. (33) and (35), we have made use of the spectrum theorem given 
by relation (18). From Eqs. (32) to (35), the solution for the first approximation for 

 Bn, Dn, Bn' and Dn' can be obtained, where B0 and D0 involved in these equations are 
to be found from Eqs. (30) and (31). 

5. Special Case 

 We consider a special case when the boundary surface is given by Eq. (4); that is,

(36)

We have already obtained the results for the corrugated interface of the form Z=ƒÄ. In 

the considered case, we have

(37)

 From Eqs. (30) and (31), one can obtain the solution of the first approximation 
for B0 and D0 as

(38)

where

and

 The formulae in Eq. (38) are the expressions for reflection and transmission 
coefficients when the SH-wave is incident at a plane interface between the transversely 
isotropic elastic solid half-spaces. 

 To obtain the solution of the first approximation for B1, D1, B1',, and D1', which 
are of much interest, we solve Eqs. (32)-(35) and obtain the following values:
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(39)

where

and

If the special case of normal incidence is considered then

It is easy to varify, from Eqs. (32)-(35) that B1=B1' and D1=D1'. 
 In the case that anisotropy vanishes, we have

(40)

and Snell's law, given by Eq. (15), reduces to

(41)

Vol. 45, No. 5, 1997



356 S. K. Tomar and S. L. Saini

where the notations used are

(42)

so that

With the help of relations (40) to (42), Eqs. (30) and (31) reduce to

(43)

and

(44)

and Eqs. (32) to (35) reduce to

(45) 

(46) 

(47)

and

(48)

Keeping in view the geometry of the problem given by Asano (1960) and making changes 

accordingly, we see that Eqs. (43) to (48) are the same as obtained by Asano (1960) in 

his problem of reflection and refraction of SH-waves incident at a corrugated interface 

between two elastic half-spaces. 

 To replace the corrugated interface by a plane interface, we put ƒÄ=0 in Eqs. (30) 

to (35), and removing the anisotropy with the help of Eq. (43), the problem reduces 

to the problem of SH-wave incident at plane interface z=0 between two homogeneous, 

isotropic elastic half-spaces. In this case Bn and Dn and their dashes become zero since 

they are proportional to C, and we obtain from Eq. (38)
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and

where

These expressions are the same as given in Savarensky (1975, p. 284) for the relevant 

problem.

Fig. 2. Variation of modulus of B1/pc with angle of incidence.

Fig. 3. Variation of modulus of D1/pc with angle of incidence.
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Fig. 4. Variation of modulus of B1'/pc with angle of incidence.

Fig. 5. Variation of modulus of D1'/pc with angle of incidence.

 If we put ƒÄ= 0 (i.e., the effect of corrugation vanishes) in Eqs. (30) to (35), then 

we are left with reflection and transmission coefficients Bo and Do given by Eq. (38), 

at a plane interface between two transversely isotropic half-spaces in welded contact. 

If we remove the anisotropy of half-space H1, then putting N1=M1=ƒÊ1 so that 

ƒÀh1=ƒÀv1=ƒÀ1 in the formulae given in Eq. (38), we can obtain the same expression for 

reflection and transmission coefficients as obtained by Saini and Singh (1977) for the 

problem of reflection and transmission of SH-waves striking at the interface between 

two homogeneous media; one isotropic and the other transversly isotropic.
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Fig. 6. Variation of modulus of B1'/B0pc with angle of incidence.

Fig. 7. Variation of modulus of D1'/D0pc with angle of incidence.

6. Numerical Results and Discussion 

 To study the problem in greater detail, numerical calculations were performed for 

a specific model. The following values of relevant parameters were used:
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Fig. 8. Variation of modulus of B1/B0pc with angle of incidence.

Fig. 9, Variation of modulus of D1/D0pc with angle of incidence.

 Figures 2 to 5 show the variation of various reflection and refraction coefficients 

with angle of incidence y, where ƒÖ/pƒÀ1h1=10. It can be seen from these figures that 

anisotropy has a significant effect on reflection/transmission coefficients, and the values 

of these coefficients increase with the increase in anisotropy factor Ni/Mi of the media. 

It is observed from Fig. 3 that the anisotropy has a negligible effect on refraction 

coefficient D1/pc at a 62-deg angle of incidence. It can be seen from these figures 

that all the coefficients for the first-order approximation of the corrugation are zero at 

ƒÁ=90-deg angle of incidence. This shows that at grazing incidence (i.e., at ƒÁ=90 deg), 

there is no effect of corrugation of the interface and the reflection/refraction phenomenon
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of SH-waves take place similar to that at the plane interface. In this case, we obtain 

from Eq. (38) that B0=-1 and D0=0. Figures 6-9 show the variation of ratios of 

reflection and transmission coefficients with angle of incidence y, when ƒÖ/pƒÀh1=10. It 

is observed that at the angle ƒÁ=0, B1/pc=B1'/pc and D1/pc=D1'/pc, implying that 

B1=B1' and D1=D1' as already proved theoretically. 

 In conclusion, a mathematical study of the problem of reflection and refraction of 

SH-waves at a corrugated interface between two transversely isotropic media has been 

considered. We note that the solutions of the first-order approximation for Bn, D,R, 

and Dn', given by formulae (32) to (35), are proportional to ƒÄn or ƒÄ-n. Hence, they 

depend upon the amplitude of corrugated interface. It was found that the values of 

reflection and transmission coefficients for the first-order approximation of corrugation 

increase, in general, with an increase in anisotropy of the media. However, for a 

corrugated interface, the major effect of anisotropy factor occurs at the ƒÁ=0-deg angle 

of incidence. If anisotropy in the media disappears, the results of Asano (1960) are 

obtained. The results of the problem of SH-wave incident at a plane interface between 

two homogeneous, isotropic elastic half-spaces have been obtained as a special case of 

our problem. 

 The authors are highly thankful to referees for their critical examination of this study and 

their valuable suggestions for improvements. 
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